
ASM-based Modelling of
Self-Replicating Programs

Computer Science Technical Report
ULCS-05-005

Presented at the 11th International Workshop
on Abstract State Machines (ASM 2004)

Matt Webster?

M.P.Webster@csc.liv.ac.uk

Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK

Abstract. Self-replicating programs are a class of algorithms it seems
has not yet been modelled using the Abstract State Machine (ASM) for-
malism. In this paper an attempt at modelling the sub-class of computer
viruses is shown. Implicit in modelling a computer virus is modelling
the environment it needs to survive, and this also is detailed. Finally, an
account of the experience of implementing these models in AsmL, the
Abstract State Machine Language from Microsoft Research, is given.

1 Introduction

The class of self-replicating programs includes viruses and worms, and
was described in detail in [1]. Viruses are the focus for this project, and
were defined formally by Cohen [2]:

We define a computer ’virus’ as a program that can ’infect’ other
programs by modifying them to include a possibly evolved copy
of itself. With the infection property, a virus can spread through-
out a computer system or network using the authorizations of
every user using it to infect their programs. Every program that
gets infected may also act as a virus and thus the infection grows.

2 Modelling an Operating System

An operating system has been modelled using a distributed ASM. Dis-
tributed ASMs are described in the Lipari guide [3]. In the model, mod-
ules represent the programs stored in the filestore ready to be run. Agents
represent processes in memory, which run a particular module (program).
Agents run in parallel with one another. The user is modelled using a
(non-deterministic) external function that runs programs randomly by
assigning modules to new agents. This could be implemented either by

? I thank my Honours project supervisor, Alexei Lisitsa, for suggesting I submit this
paper to ASM 2004.

actual user input, or more likely, by a function that non-deterministically
selects executable files to be run. When a particular agent has reached
fixpoint, that is, when it has ceased to update the store, it is considered
to have finished its execution run and terminated. The operating system
is simply the distributed ASM itself. The agents run modules, and run
concurrently with one another. We shall see that ASM rules are versatile
enough to simulate system calls, e.g. reading and writing files, which are
vital for the viral infection process.

3 A Viral Module

We use the following universes:

– Agents - the set of agents that are run by the distributed ASM.
– Modules - the set of modules. Each agent runs a module. Each

module is a set of rules (a single-agent program), and is similar to a
non-distributed ASM.

– Rules - the set of well-formed rules for ASMs.

We use the following vocabulary:

– Infected : Modules → Boolean. Returns true if a module has been
infected with the viral rule.

– addRuleToModule : Modules×Rules → Rules, where Rules is the
set of well-formed rules. Since a module is just an ASM program,
and an ASM program is just a rule composed of other rules, we can
assign the rule returned by this function to a module name to model
the addition of a rule to a module. We could define this function
set theoretically as: addRuleToModule(m, r) = RulesOf(m) ∪ {r},
where RulesOf(m) refers to the set of rules corresponding to the
module m.

– thisProgram :→ Rules. Returns the viral rule. This models a “real-
life” function that can analytically (or otherwise) identify the viral
code in the module, and return it. A possible implementation of this
would be to delimit the viral code within an infected program using
some sequence of bits (e.g. from an assembly language perspective,
a number of NOP1s strung together), which the virus can later use to
derive its own code when it comes to copying it for infection.

The viral module looks like this:

ProgramV iral = choose m in Modules satisfying not(Infected(m))
m := addRuleToModule(m, thisProgram)
Infected(m) := true

endchoose

The viral rule above copies itself to other modules in the distributed
ASM. When the modified (infected) modules are run, or when new agents
run the modified modules, the viral module finds even more modules to
infect.

1 NOP is a 68000 assembly language mnemonic, and stands for “No operation”.

4 Implementation using AsmL

4.1 Modelling the Virus’s Environment
The object-oriented features of AsmL [4] were most useful during imple-
mentation of the model of the computer virus and its environment. The
environment was based on the von Neumann computer architecture, and
consisted of three classes, Storage, OS and User. It was the intention
that the user must only interact with the store via the operating system
(OS), although an executable program (e.g. a virus) could interact with
the store directly.
Storage encapsulates the file store and some low-level operating system
methods, e.g. Add(...) and Remove(...) for adding and removing files
from the filespace. OS encapsulates user-level operating system methods.
The User class models the user, and contains methods for populating
the file space with executables, installing the first instance of the virus,
and running random programs. The latter method models the external
function mentioned earlier, and chooses filenames (which are modelled as
integers and stored in a set instance variable within the Storage class)
non-deterministically, then uses a method from the OS class to run them:

choose f in filenames

os1.Run(f)

4.2 Modelling Executable Files
One of the biggest challenges in designing a simulated file system was to
be able to have an AsmL set of the various types of executable file (e.g.
“Hello world” executable, virus etc.). Ideally, the virtual store consists
of such a set, in this case an instance variable within the Storage class.
It would be possible to implement such a set by enumerating the desired
types during set declaration, e.g.

var s as Set of Executable or Virus

However this leads to later incompatibility if a new virus class needs to
be added to the simulation. (All sets and methods declarations using the
disjunctive type must be updated.) The problem was eventually solved
by creating an interface to give classes executable status:

interface File

public abstract Program()

Any class that implements File must provide a definition for the abstract
method, Program(). In this way, a Set of File can be constructed, and
the Program() method can be called on any object in that set, regardless
of the object class. Taken within the context of the simulation, the File
interface is analogous to the flag an operating system sets for a given file
in order to give it executable status. Indeed, within the simulation any
file wanting to become executable must implement the File interface.

4.3 Modelling Viral Behaviour

The Storage class has an instance variable, FAT, that models the file allo-
cation table of the simulated store. FAT is a set of Integer × Seq of File

tuples, and associates filenames (integers) with sequences of objects that
implement the File interface (Seq of File). When a user selects a file-
name to be run by the operating system, the operating system retrieves
the sequence of File objects corresponding to the filename given using the
FAT instance variable. Then, the operating system (through a low-level
method in the Storage class) executes each File object in the sequence
in turn, by invoking its Program() method. The code looks something
like this:

foreach i in seqToRun

i.Program()

When the viral Program() method is executed, it searches for an unin-
fected file. If one is found, a new instance of the virus class is created, and
the constructor modifies the file allocation table (FAT instance variable
in the Storage class) so that the sequence of File objects corresponding
to the filename being infected now includes a virus object (the virus ob-
ject refers to itself using the AsmL keyword me). From now on, each time
that particular file is executed by the user, the virus object will execute
also. The executable has been infected.

References

1. Cohen, F.B.: It’s Alive! The New Breed of Living Computer Pro-
grams. John Wiley & Sons (1994) ISBN 0471008605.

2. Cohen, F.: Computer viruses – theory and experiments. Computers
and Security 6 (1987) 22–35

3. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In Börger, E.,
ed.: Specification and Validation Methods. Oxford University Press
(1995) 9–36

4. Microsoft Research: The Abstract State Machine Language. (http://
research.microsoft.com/foundations/AsmL/) Accessed 18th April
2005.

