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A Partial Deducer Assisted by Predefined
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2 School of Computer Science, Technical U. of Madrid, german@fi.upm.es

3 School of Computer Science, University of Roskilde, jpg@ruc.dk

Abstract. Partial deduction is a program transformation technique which
specializes a program w.r.t. its static data. If the program contains im-

pure predicates, it is known that unfolding steps for atoms which are not
leftmost is problematic. Impure predicates include those which may raise
errors, exceptions or side-effects, external predicates whose definition is
not available, etc. Existing proposals allow obtaining correct residual
programs while still allowing non-leftmost unfolding steps, but at the
cost of accuracy: bindings and failure are not propagated backwards to
predicates which are classified as impure. Motivated by recent develop-
ments in the backwards analysis of logic programs, we propose a partial
deduction algorithm which can handle impure features and non-leftmost
unfolding in a more accurate way. We outline by means of examples
some optimizations which are not feasible using existing partial deduc-
tion techniques. We argue that our proposal goes beyond existing ones
and is a) accurate, since the classification of pure vs impure is done at
the level of atoms instead of predicates, b) extensible, as the informa-
tion about purity can be added to programs using assertions which can
guide the partial deduction process, without having to modify the partial
deducer itself, and c) automatic, since backwards analysis can be used
to automatically infer the required assertions. Our approach has been
implemented in the context of CiaoPP, the abstract interpretation-based
preprocessor of the Ciao logic programming system.

1 Background

We assume some basic knowledge on the terminology of logic programming. See
for example [16] for details. Very briefly, an atom A is a syntactic construction
of the form p(t1, . . . , tn), where p/n, with n ≥ 0, is a predicate symbol and
t1, . . . , tn are terms. The function pred applied to atom A, i.e., pred(A), returns
the predicate symbol p/n for A. A clause is of the form H ← B where its head
H is an atom and its body B is a conjunction of atoms. A definite program is a
finite set of clauses. A goal (or query) is a conjunction of atoms. The concept of
computation rule is used to select an atom within a goal for its evaluation. The
operational semantics of definite programs is based on derivations. Consider a
program P and a goal G of the form ← A1, . . . , AR, . . . , Ak. Let R be a compu-
tation rule such that R(G) =AR. Let C = H ← B1, . . . , Bm be a renamed apart
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clause in program P . Then θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak) is derived
from G and C via R where θ = mgu(AR, H). An SLD derivation for P ∪ {G}
consists of a possibly infinite sequence G = G0, G1, G2, . . . of goals, a sequence
C1, C2, . . . of properly renamed apart clauses of P , and a sequence θ1, θ2, . . . of
mgus such that each Gi+1 is derived from Gi and Ci+1 using θi+1. A derivation
step can be non-deterministic when AR unifies with several clauses in P , giving
rise to several possible SLD derivations for a given goal. Such SLD derivations
can be organized in SLD trees. A finite derivation G = G0, G1, G2, . . . , Gn is
called successful if Gn is empty. In that case θ = θ1θ2 . . . θn is called the com-
puted answer for goal G. Such a derivation is called failed if it is not possible
to perform a derivation step with Gn. We will also allow incomplete derivations
in which, though possible, no further resolution step is performed. We refer to
SLD resolution restricted to the case of leftmost unfolding as LD resolution.

Partial Deduction (PD) [15, 8] is a program transformation technique which
specializes a program w.r.t. part of its known input data. Hence sometimes also
known as program specialization. Informally, given an input program and a set
of atoms, the PD algorithm applies an unfolding rule in order to compute finite
(possibly incomplete) SLD trees for these atoms. This process returns a set of
resultants (or residual rules), i.e., a residual program, associated to the root-to-
leaf derivations of these trees. Each unfolding step during partial deduction can
be conceptually divided into two steps. First, given a goal← A1, . . . , AR, . . . , Ak

the computation rule determines the selected atom AR. Second, it must be de-
cided whether unfolding (or evaluation) of AR is profitable. It must be noted
that the unfolding process requires the introduction of this profitability test in
order to guarantee that unfolding terminates. Also, unfolding usually continues
as long as some evidence is found that further unfolding will improve the quality
of the resultant program.

Most of real-life Prolog programs use predicates which are not defined in the
program (module) being developed. We will refer to such predicates as exter-
nal. Examples of external predicates are traditional “built-in” predicates such
as arithmetic operations (e.g., is/2, <, =<, etc.), basic input/output facilities,
and predicates defined in libraries. We will also consider as external predicates
those defined in a different module, predicates written in another language, etc.
The trivial computation rule which always returns the leftmost atom in a goal is
interesting in that it avoids several correctness and efficiency issues in the context
of PD of full Prolog programs. Such issues are discussed in depth throughout
this extended abstract. When a (leftmost) atom AR is selected during PD, with
pred(AR) = p/n being an external predicate, it may not be possible to unfold AR

for several reasons. First, we may not have the code defining p/n and, even if we
have it, unfolding AR may introduce in the residual program calls to predicates
which are private to the module where the p/n is defined. Also, it can be the
case that the execution of atoms for (external) predicates produces other out-
comes such as side-effects, errors, and exceptions. Note that this precludes the
evaluation of such atoms to be performed at PD time, since those effects need to
be performed at run-time. In spite of this, if the executable code for the external
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predicate p/n is available, and under certain conditions, it can be possible to
fully evaluate AR at specialization time. The notion of evaluable atom [17] cap-
tures the requirements which allow executing external predicates at PD time.
Informally, an atom is evaluable if its execution satisfies four conditions: 1) it
universally terminates, 2) it does not produce side-effects, 3) it does not issue er-
rors and 4) it is binding insensitive. We use eval(E) to denote that the expression
E is evaluable. We will discuss all these properties in depth in Section 3.

2 Non-Leftmost Unfolding in Partial Deduction

It is well-known that non-leftmost unfolding is essential in partial deduction in
some cases for the satisfactory propagation of static information (see, e.g., [14]).
Informally, given a goal ← A1, . . . , An, it can happen that the profitable crite-
rion does not hold for the leftmost atom A1. For example, if A1 is an atom for
an internal predicate, it might not be profitable to select A1 because 1) unfold-
ing A1 endangers termination (for example, A1 may homeomorphically embed
[13] some selected atom in its sequence of covering ancestors), or 2) the atom
A1 unifies with several clause heads (for example, some unfolding rules do not
unfold non-deterministically for atoms other than the initial query). If A1 is an
atom for an external predicate, it can happen that A1 is not sufficiently instan-
tiated so as to be executed at this moment. It may nevertheless be profitable to
unfold atoms other than the leftmost. Therefore, it can be interesting to define
a computation rule which is able to detect the above circumstances and “jump
over” atoms whose profitability criterion is not satisfied in order to proceed with
the specialization of another atom in the goal as long as it is correct.

2.1 Non-Leftmost Unfolding and Impure Predicates

For pure logic programs without builtins, non-leftmost unfolding is safe thanks to
the independence of the computation rule (see for example [16]).4 Unfortunately,
non-leftmost unfolding poses several problems in the context of full Prolog pro-
grams with impure predicates, where such independence does not hold anymore.

For instance, var/1 is an impure predicate since, under LD resolution, the
goal var(X),X=a succeeds with computed answer X/a whereas X=a,var(X) fails.
They are not equivalent since the independence of the computation rule does not
hold. Thus, given the goal← var(X),X=a, if we allow the non-leftmost unfolding
step which binds the variable X, the goal will fail, either at specialization time
or at run-time, whereas the initial goal succeeds in LD resolution. The above
problem was early detected [18] and it is known as the problem of backpropaga-
tion of bindings. In addition to this, it is also problematic the backpropagation
of failure in the presence of impure predicates. There are atoms A for impure
predicates such that ← A, fail behaves differently from ← fail. For instance,

4 Although safe, non-leftmost unfolding presents problems with pure programs too
since it may introduce extra backtracking over the atoms to the left. We are not
concerned with such efficiency issues here.
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we have to ensure that failure to the right of a call to write does not prevent
the generation of the residual call to write nor its execution at runtime.

There are satisfactory solutions in the literature (see, e.g.,[11, 4, 1, 14]) which
allow unfolding non-leftmost atoms while avoiding the backpropagation of bind-
ings and failure. Basically, the common idea is to represent explicitly the bindings
by using unification [11] or residual case expressions [1] rather than backprop-
agating them (and thus applying them onto leftmost atoms). This guarantees
that the resulting program is correct, but it definitely introduces some inac-
curacy, since bindings (and failure) generated during unfolding of non-leftmost
atoms are hidden from atoms to the left of the selected one. It should be noted
that preventing backpropagation by introducing equalities can be a bad idea
from the performance point of view too (see, e.g., [19]). Thus, these solutions
should be applied only when it is really necessary, since backpropagation can
1) lead to early detection of failure, which may result in important speedups
and 2) make the profitability criterion for the leftmost atom to hold, which may
result in more aggressive unfolding. Thus, if backpropagation is disabled, some
interesting specializations can no longer be achieved.

It should also be noted that the backpropagation problem is very much re-
lated to that of reordering of atoms within a goal. Such reordering transfor-
mation can be of interest for achieving powerful optimizations like tupling, for
effectively handling the conjunction of atoms like conjunctive PD [3] and for the
use of efficient stack-based unfolding rules [17].

3 From Impure Predicates to Impure Atoms

As mentioned in Section 2.1 above, existing techniques for PD allow the unfolding
of non-leftmost atoms by combining a classification of predicates into pure and
impure with techniques for avoiding backpropagation of binding and failure in
the case of impure predicates. In order to classify predicates as pure or impure,
existing methods [14] are based on simple reachability analysis. As soon as an
impure predicate p can be reached from a predicate q, also q is considered impure
and backpropagation is not allowed. In other words, impurity is defined at the
level of predicates. Unfortunately, this notion of impurity quickly expands from
a predicate to all predicates which use it.

Our work improves on existing techniques by providing a more refined notion
of impurity. Rather than being defined at the level of predicates, we define purity
at the level of individual atoms. This is of interest since it is often the case that
some atoms for a predicate are pure whereas others are impure. As an example,
the atom var(X) is impure (binding sensitive), whereas the atom var(f(X))
is not (it is no longer binding sensitive). This allows reducing substantially the
situations in which backpropagation has to be avoided. In the following, we
characterize three different classes of impurities: binding-sensitiveness, errors
and side effects.
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3.1 Binding-sensitiveness

A binding-sensitive predicate is characterized by having a different success or
failure behaviour under leftmost execution if bindings are backpropagated onto
it. Examples of binding-sensitive predicates are var/1, nonvar/1, atom/1,

number/1, ground/1, .... However, rather than considering all atoms for such
predicates as binding-sensitive, we propose to define binding sensitiveness at the
atom level. The reason is that the fact that some atoms for the predicates above
are indeed binding sensitive does not necessarily mean that all atoms for such
predicates are. As we have seen above, the atom var(f(X)) is certainly not bind-
ing sensitive since its truth value is not changed by applying any substitution,
i.e., the atom will not succeed in any context.

Definition 1 (binding insensitive atom). An atom A is binding insensitive,
denoted bind ins(A), if ∀ sequence of variables 〈X1, . . . , Xk〉 s.t. Xi ∈ vars(A),
i = 1, . . . , k and ∀ sequence of terms 〈t1, . . . , tk〉, the goal ← (X1 = t1, . . . , Xk =
tk, A) succeeds in LD resolution with computed answer σ iff the goal ← (A, X1 =
t1, . . . , Xk = tk) also succeeds in LD resolution with computed answer σ.

Let us note that in the definition above we are only concerned with success-
ful derivations, which we aim at preserving. However, we are not in principle
concerned about preserving infinite failure. For example, ← (A, X = t) and
← (X = t, A) might have the same set of answers but a different termination
behaviour. In particular, the former might have an infinite derivation under LD
resolution while the second may finitely fail. More on this in Section 5.2.

If the atom contains no variables, binding insensitiveness trivially holds. The
following proposition directly follows from the definition of binding insensitive
atom.

Proposition 1. Let A be a ground atom. Then A is binding insensitive.

In spite of its simplicity, Proposition 1 can be quite useful in practice, since
it may allow considering a good number of atoms as binding insensitive even
if the predicate is in principle binding sensitive. All this without the need of
sophisticated analyses.

3.2 Side-effects

Predicates p for which θ(p(X1, ..., Xn)), fail and fail are not equivalent in LD
resolution are termed as “side-effects” in [18].

Definition 2 (side-effect-free atom). An atom A is side-effect free, denoted
sideff free(A), if the run-time behaviour of ← A, fail is equivalent to that of
← fail.

Since side-effects have to be preserved in the residual program, we have to avoid
any kind of backpropagation which can anticipate failure and, therefore, hides
the existing side-effect.
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3.3 Run-Time Errors

There are some predicates whose call patterns are expected to be of certain type
and/or instantiation state. If an atom A does not correspond to the intended call
pattern, the execution of A will issue some run-time errors. Since we consider
such run-time errors as part of the behaviour of a program, we will require
that partial deduction produces program whose behaviour w.r.t. run-time errors
is identical to that of the original program, i.e., run-time errors must not be
introduced to nor removed from the program.

For instance, the predefined predicate is/2 requires its second argument to
be an arithmetic expression. If that is detected not to be the case at run-time,
an error is issued. Clearly, backpropagation is dangerous in the context of atoms
which may issue run-time errors, since it can anticipate the failure of a call to
the left of is/2 (thus omitting the error), or it can make the call to is/2 not to
issue an error (if there is some free variable in the second argument which gets
instantiated to an arithmetic expression after backpropagation). The following
definition introduces the notion of error free atom.

Definition 3 (error-free atom). An atom A is error-free, denoted error free(A),
if the execution of A does not issue any error.

Somewhat surprising this condition for PD corresponds to that used in [10] for
computing safe call patterns. Unfortunately, the way in which errors are issued
can be implementation dependent. Some systems may write error messages and
continue execution, others may write error messages and make the execution of
the atom fail, others may halt the execution, others may raise exceptions, etc.
Though errors are often handled using side-effects, we will make a distinction
between side-effects and errors for two reasons. First, side-effects can be an
expected outcome of the execution, whereas run-time errors should not occur in
successful executions. Second, it is often the case that predicates which contain
side-effects produce them for all (or most of) atoms for such predicate. However,
predicates which can generate run-time errors can be guaranteed not to issue
errors when certain preconditions about the call are satisfied, i.e., when the atom
is well-moded and well-typed. A practical implication of the above distinction
is that simple, reachability analysis will be used for propagating side-effects at
the level of predicates, whereas a more refined, atom-based classification will be
used in the case of error-freeness.

3.4 Pure and Evaluable Atoms

Given the definitions of binding insensitive, side-effect free, and error free atoms,
it is useful to define aggregate properties which summarize the effect of such
individual properties.

Definition 4 (pure atom). An atom A is pure, denoted pure(A), if

bind ins(A) ∧ error free(A) ∧ sideff free(A)
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pure

eval

predicate sideff free error free bind ins termin

var(X) true true nonvar(X) true

nonvar(X) true true nonvar(X) true

write(X) false true ground(X) true

assert(X) false nonvar(X) ground(X) true

A is B true arithexp(B) ground(B) true

A <= B true arithexp(A)∧arithexp(B) ground(A)∧ground(B) true

A >= B true arithexp(A)∧arithexp(B) ground(A)∧ground(B) true

ground(X) true true ground(X) true

A = B true true true true

append(A,B,C) true true true list(A)∨list(C)

Fig. 1. Purity conditions for some predefined predicates.

In order to provide a precise definition of evaluable atom, we need to introduce
first the notion of terminating atom.

Definition 5 (terminating atom). An atom A is terminating, denoted termin(A),
if the LD tree for ← A is finite.

The definition above is equivalent to universal termination, i.e., the search for
all solutions to the atom can be performed in finite time.

Definition 6 (evaluable atom). An atom A is evaluable, denoted eval(A), if
pure(A) ∧ termin(A).

The notion of evaluable atoms can be extended in a natural way to boolean
expressions composed of conjunction and disjunctions of atoms.

Figure 1 presents sufficient conditions which guarantee that the atoms for
the corresponding predicates satisfy the purity properties discussed above, where
arithexp(X) stands for X being an arithmetic expression. For example, unification
is pure and evaluable, whereas the library predicate append/3 is pure but only
evaluable if either the first or third argument is bound to a list skeleton.

4 Assertions about Purity of Atoms

In this section, we provide the concrete syntax of the assertions we propose
to use to state the conditions under which atoms for a predicate are pure. Our
assertions may include sufficient conditions (SC) which are decidable and ensure
that, if the atom satisfies such conditions, then it meets the property.

We say that the execution of an atom A for p/n on a logic programming
system Sys (e.g., Ciao or Sicstus) in which the module M (where the exter-
nal predicate p/n is defined) has been loaded trivially succeeds, denoted by
triv suc(Sys, M, A), when its execution terminates and succeeds only once with
the empty computed answer, that is, it performs no bindings.
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Definition 7 (binding insensitive assertion). Let p/n be a predicate defined
in module M . The assertion “:- trust comp p(X1,...,Xn) : SC + bind ins.”
in the code for M is a correct binding insensitive assertion for predicate p/n in
a logic programming system Sys if, ∀ A s.t. A = θ(p(X1, . . . , Xn)),

1. eval(θ(SC)), and
2. triv suc(Sys, M, θ(SC)) ⇒ bind ins(A).

The fourth column in Fig. 1 comprises the information stated in several binding
insensitive assertions for a few predefined builtins in Ciao. In particular, this
column represents the sufficient conditions (SC in Def. 7) for the predicates in
the first column (p(X1, ..., Xn) in Def. 7). For instance, the predicate A is B is
bind ins if ground(B).

Definition 8 (error-free assertion). Let p/n be a predicate defined in mod-
ule M . The assertion “:- trust comp p(X1,...,Xn) : SC + error free.” in
the code for M is a correct error-free assertion for predicate p/n in a logic
programming system Sys if, ∀ A s.t. A = θ(p(X1, . . . , Xn)),

1. eval(θ(SC)), and
2. triv suc(Sys, M, θ(SC)) ⇒ error free(A).

For instance, the SC for predicate is/2 states that the second argument is an
arithmetic expression. This condition guarantees error free calls to predicate
is/2.

Definition 9 (side-effect free assertion). Let p/n be an external predicate
defined in module M . The assertion :- trust comp p(X1,...,Xn) + sideff free.

in the code for M is a correct side-effect free assertion for predicate p/n in a
logic programming system Sys if, ∀θ, the execution of θ(p(X1, ..., Xn)) does not
produce any side effect.

In contrast to the two previous assertions, side-effect assertions are uncondi-
tional, i.e., their SC always takes the value true. For brevity, both in the text
and in the implementation we omit the SC from them.

Example 1. The following assertions are predefined in Ciao for predicate ground/1:

:- trust comp ground(X) : true + error_free.

:- trust comp ground(X) + sideff_free.

:- trust comp ground(X) : ground(X) + bind_ins.

It can be seen that the third assertion for predicate ground/1 is indeed
redundant, since by Proposition 1 we already know that any atom which is
ground is binding insensitive.

An important thing to note is that rather than using the overall eval as-
sertions of [17], we prefer to have separate assertions for each of the different
properties required for an atom to be evaluable. There are several reasons for
this. On one hand, it will allow us the use of separate analysis for inferring each
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Fig. 2. Backwards Analysis in Non-leftmost Partial Deduction

of these properties (e.g., a simple reachability analysis is sufficient for uncon-
ditional side-effects while more elaborated analysis tools are needed for error
and binding sensitiveness). Also, it will allow reusing such assertions for other
purposes different from partial deduction. For instance, side-effect and error free
assertions are also interesting for other purposes (like, e.g., for program verifica-
tion, for automatic parallelization) and are frequently required by programmers
separately. Finally, eval assertions include termination which is not required for
ensuring correctness w.r.t. computed answers (see Sect. 3).

5 Automatic Inference of Assertions by Backwards

Analysis

Recent developments in backwards analysis of logic program [9, 7, 10] have pointed
out novel applications in termination analysis and inference of call patterns which
are guaranteed not to produce any runtime error. In this section, we outline a new
application of backwards analysis for automatically inferring binding insensitive,
error free and side-effect free annotations which are useful to this purpose. Auto-
matically figuring out when a substitution can be safely backpropagated onto a
call whose execution reaches an impure predicate has been considered a difficult
challenge and, to our knowledge, no accurate, satisfactory solution exists.

Fig. 2 illustrates the PD scheme based on assertions and backwards analy-
sis that we have implemented in CiaoPP. Initially, given a Program and a set of
Predefined Assertions for the external predicates, the Backwards Analyzer ob-
tains a Program w/ Assertionswhich includes error free, sideff free and bind ins

assertions for all user predicates. Notice that this is a goal-independent process
which can be started in our system regardless PD being performed or not. Af-
terwards, and independently from the backwards analysis process, the user can
decide to partially evaluate the program. To do so, an initial call has to be
provided by means of an Entry Goal. A Partial Deducer is executed from such
program and entry with the only consideration that, whenever a non-leftmost
unfolding step needs to be performed, it will take into account the information
available in the generated assertions.
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5.1 The Backwards Analyzer

Regarding the analyzer, we rely on the backwards analysis technique of [7]. In
this approach, the user first identifies a number of properties that are required
to hold at body atoms at specific program points. A meta-program is then au-
tomatically constructed, which captures the dependencies between initial goals
and the specified program points. This meta-program is based on the resultants
semantics of logic programs [6, 5], in which the meaning of a program is the set
of all pairs (A, R) where A = A′θ and there is an LD derivation from ← A′

to ← R with computed answer θ. An abstraction of the resultants semantics is
then defined, containing all pairs (A, B) such that A = A′θ and there is an LD
derivation from ← A′ to ← B, B1, . . . , Bm with computed answer θ, where B
corresponds to one of the specified program points. (This semantics is closely
related to the binary clause semantics defined by Codish and Taboch [2]). The
semantics is captured by a meta-program defining a meta-predicate d/2, such
that d(A,B) is a consequence of the meta-program whenever a pair (A, B) as
defined above exists. Standard abstract interpretation techniques are applied to
the meta-program; from the results of the analysis, conditions on initial goals
can be derived which guarantee that all the given properties hold whenever the
specified program points are reached.

As indicated in Fig. 2, the analyzer starts from a program and an initial set
of assertions which state the properties of interest defined in Sect. 2 for the ex-
ternal predicates. Essentially, the analysis algorithm propagates this information
backwards in order to get the appropriate assertions for all predicates. The next
example illustrates the use of backwards analysis to derive binding-insensitive
assertions for an exported predicate, starting from the assertions on its imported
predicates.

Example 2. Consider the predicate vars/2 which computes the set of variables
in a term, given in Figure 3.

There are several binding-sensitive predicates in the program, namely var/1,
atomic/1, nonvar/1, \== and ==. We can give assertions for each of these,
indicating the conditions under which they are binding-insensitive, as follows:

:- trust comp var(X) : nonvar(X) + bind_ins.

:- trust comp nonvar(X) : nonvar(X) + bind_ins.

:- trust comp atomic(X) : nonvar(X) + bind_ins.

:- trust comp X==Y : ground(X), ground(Y) + bind_ins.

:- trust comp X\==Y : ground(X), ground(Y) + bind_ins.

After performing a backwards analysis with respect to the occurrences of these
predicates, over the abstract domain {ground, nonground}, we obtain the fol-
lowing model for the meta-predicate d/2.

d(vars(A,ground),\==(A,ground)),

d(vars(A,ground),==(A,ground)),

d(vars(A,nonground),\==(A,ground)),

d(vars(ground,A),\==(ground,ground)),
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:- module(vars, [vars/2]).

vars(T,Vs) :- vars3(T,[],Vs).

vars3(X,Vs,Vs1) :- var(X), insertvar(X,Vs,Vs1).

vars3(X,Vs,Vs) :- atomic(X).

vars3(X,Vs,Vs1) :- nonvar(X), X =.. [_|Args], argvars(Args,Vs,Vs1).

argvars([],Q,Q).

argvars([X|Xs],Vs,Vs2) :- vars3(X,Vs,Vs1), argvars(Xs,Vs1,Vs2).

insertvar(X,[],[X]).

insertvar(X,[Y|Vs],[Y|Vs]) :- X == Y.

insertvar(X,[Y|Vs],[Y|Vs1]) :- X \== Y, insertvar(X,Vs,Vs1).

Fig. 3. The vars/2 procedure

d(vars(ground,A),==(ground,ground)),

d(vars(A,ground),atomic(A)),

d(vars(ground,A),atomic(ground)),

d(vars(A,B),var(A)),

d(vars(A,B),nonvar(A)),

d(vars(nonground,A),\==(B,C)),

d(vars(nonground,A),==(B,C)),

d(vars(nonground,A),var(B)),

d(vars(nonground,A),nonvar(B)),

d(vars(nonground,A),atomic(B))

It can automatically be deduced from these facts that whenever vars(X,Y) is
called with X ground, then all the conditions for binding-insensitivity are satisfied
(noting that ground(X) implies nonvar(X)). Thus we can export the assertion
on binding-insensitivity of vars/2.

:- trust comp vars(X,Y) : ground(X) + bind_ins.

We next consider a small example (continued in Ex. 4) illustrating how back-
wards analysis can assist non-leftmost unfolding .

Example 3. Consider the predefined assertions in Ciao for predicate ground/1

of Ex. 1 and the Ciao program in Fig. 4 whose modular structure appears to
the right. term typing is the name of the module in Ciao where ground/1 is
defined (and thus where the assertions for ground/1 are).

Predicate long comp/2 is externally defined in module comp where also these
predefined assertions for it are:

:- trust comp long_comp(X,Y) : true + error_free.

:- trust comp long_comp(X,Y) + sideff_free.

:- trust comp long_comp(X,Y) : ground(Y) + bind_ins.



12

:- module(main_prog,[main/2],[]).

:- use_module(comp,[long_comp/2],[]).

main(X,Y) :- problem(X,Y), q(X).

problem(a,Y):- ground(Y),long_comp(a,Y).

problem(b,Y):- ground(Y),long_comp(b,Y).

q(a).

main prog

yyrrr
r

((PP
PP

P

comp term typing

Fig. 4. Program from Example 3

From the program and the available assertions (for long comp/2 and ground/1),
the backwards analyzer infers the following assertions for problem/2:

:- trust comp problem(X,Y) : true + error_free.

:- trust comp problem(X,Y) + sideff_free.

:- trust comp problem(X,Y) : ground(Y) + bind_ins.

Backwards analysis of the above program, with analysis over a simple domain
with elements ground and nonground, yields the following dependencies, repre-
sented using the meta-predicate d(A,B) described above.

d(problem(X,ground), long_comp(ground,ground)).

d(problem(X,nonground), long_comp(ground,nonground)).

These facts imply that whenever a call problem(X,Y) is made where Y is ground,
any subsequent assertions concerning binding insensitivity are satisfied; specif-
ically, calls to long comp(X,Y) satisfy the assertion ground(Y). Hence the last
assertion (binding insensitivity) on problem(X,Y) is established. The analysis
results for d/2 also clearly establish first two assertions on problem(X,Y), with
condition true, since any call to problem(X,Y) is guaranteed to satisfy all the
(trivial) error-freeness and side-effect-freeness assertions.

The last assertion indicates that calls performed to problem(X,Y) with the
second argument being ground are not binding sensitive. This will be very useful
information for the specializer.

5.2 The Partial Deducer

In our system, we use a standard partial deducer (like, e.g., the ECCE system
[12]), with the notable difference of using a observable-preserving unfolding rule.
The following definition introduces this idea.

Definition 10 (observable-preserving unfolding rule). Let AS be a set of
correct assertions. We say that an unfolding rule is observable-preserving w.r.t.
AS if, for any goal ← G1, . . . , Gn, it always selects an atom Gk for unfolding
with k = 1, . . . , n such that all atoms G1, . . . , Gk−1 are binding insensitive, error
free and side-effect w.r.t. AS.
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The above definition allow us to ensure that our PD scheme is correct in the
sense that the partially evaluated program preserves the runtime behaviour (or
observables) of the original one w.r.t. the predefined assertions. Let us see an
example.

Example 4. Consider a deterministic unfolding rule (i.e., an unfolding rule which
cannot perform non-deterministic steps other than the first one). Given the
program of Ex. 3 and the entry goal: “ :- entry main(X,a).” The unfolding
rule performs an initial step and derives the goal problem(X,a),q(X). Now,
it cannot select the atom problem(X,a) because its execution performs a non
deterministic step. Fortunately, the assertions inferred for problem(X,Y) in Ex. 3
allow us to jump over this atom and specialize first q(X). In particular, the first
two assertions do not pose any restriction because their conditions are true, thus,
there is no problem related to errors or side-effects. From the last assertion, we
know that the above call is binding insensitive, since the condition “ground(a)”
trivially succeeds.

If atom q(X) is evaluated first, then variable X gets instantiated to a. Now,
the unfolding rule already can select the deterministic atom problem(a,a) and
obtain the fact “ main(a,a).” as partially evaluated program. The interesting
point ot note is that, without the use of assertions, the derivation is stopped when
the atom problem(X,a) is selected because any call to problem is considered
potentially dangerous since its execution reaches a binding sensitive predicate.
The specialized program in this case is:

main(X,a):-problem(X,a),q(X).

Intuitively, this residual program is much less efficient than our specialization
since the execution of the call to long comp has been totally performed at PD
time in our program while it remains residual in the above one.

As already mentioned in Section 1, our safety conditions for non-leftmost un-
folding preserve computed answers, but has the well-known implication that an
infinite failure can be transformed into a finite failure. However, in our frame-
work this will only happen for predicates which do not have side-effects, since
non-leftmost unfolding is only allowed in the presence of pure atoms. Neverthe-
less, our framework can be easily extended to preserve also infinite failure by
including termination as an additional property that non-leftmost unfolding has
to take into account, i.e. this implies requiring that all atoms to the left of the
selected atom should be avaluable and not only pure (see Section 3.4).

6 Conclusions

In the case of leftmost unfolding, eval assertions can be used in order to deter-
mine whether evaluation of atoms for external predicates can be fully evaluated
at specialization time or not. Such eval assertions should be present whenever
possible for all library (including builtin) predicates. Though the presence of
such assertions is not required, as the lack of assertions is interpreted as the
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predicate not being evaluable under any circumstances, the more eval assertions
are present for external predicates, the more profitable partial deduction will be.
Ideally, eval assertions can be provided by the system developers and the user
does not need to add any eval assertion.

If non-leftmost unfolding is allowed, the following conditions are required:
given a goal ← A1, . . . , AR, . . . , An, backpropagation of bindings and failure for
the execution of AR is only allowed if pure(A1)∧ . . .∧pure(AR−1). An important
distinction w.r.t. the case of leftmost unfolding above is that pure assertions are
of interest not only for external predicates but also for internal, i.e., user-defined
predicates. As already mentioned, the lack of pure assertions must be interpreted
as the predicate not being pure, since impure atoms can be reached from them.
Thus, for non-leftmost unfolding to be able to “jump over” internal predicates,
it is required that such pure assertions are available not only for external pred-
icates, but also for predicates internal to the module. Such assertions can be
manually added by the user or, much more interestingly, as our system does, by
backwards analysis. Indeed, we believe that manual introduction of assertions
about purity of goals is too much of a burden for the user. Therefore, accu-
rate non-leftmost unfolding becomes a realistic possibility only thanks to the
availability of backwards analysis.
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Abstract. We present the system SUBSEXPL used for simulating and
comparing explicit substitutions calculi. The system allows the manip-
ulation of expressions of the λ-calculus and of three different styles of
explicit substitutions: the λσ, the λse and the suspension calculus. Im-
plementations of the η-reduction are provided for each calculi. Other
explicit substitutions calculi can be incorporated into the system easily
due to its modular structure. Its applications include: the visualisation
of the contractions of the λ-calculus, and of guided one-step reductions
as well as normalisation via each of the associated substitution calculi.
Many useful facilities are available: reductions can be easily recorded and
stored into files or Latex outputs and several examples for dealing with
arithmetic operations and computational operators such as conditionals
and repetitions in the λ-calculus are available. The system has been of
great help for systematically comparing explicit substitutions calculi, as
well as for understanding properties of explicit substitutions such as the
Preservation of Strong Normalisation. In addition, it has been used for
teaching basic properties of the λ-calculus such as: computational ad-
equacy, the importance of de Bruijn’s notation and of making explicit
substitutions in real implementations.

Keywords: λ-Calculus, Explicit Substitutions, Visualisation of β- and η-
Contraction and Normalisation.

1 Introduction

In the last decade, a number of explicit substitutions calculi have been developed.
Most of these calculi have been claimed to be useful for practical notions such
as the implementation of typed functional programming languages and higher-
order proof assistants. We describe SUBSEXPL, a system developed in Ocaml,
a language of the ML family, which allows for the manipulation of expressions
of the λ-calculus and of three different calculi of explicit substitutions:

? Work supported by funds from CNPq (CT-INFO) 50.6598/04-7.
?? Corresponding author. Supported by Brazilian CAPES Foundation.

? ? ? Partially supported by Brazilian Research Council CNPq.
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1. λσ [1] which introduces two different sets of entities: one for terms and one
for substitutions.

2. λs [12] which is based on the philosophy of de Bruijn’s Automath [20] elabo-
rated in the new item notation [11]. In this framework, a term is a sequence
of items, which can be an application item, an abstraction item, a substitution

item or an updating item. The advantages of building the explicit substitu-
tions calculus in this framework include remaining as close as possible to the
familiar λ-calculus (cf. [13]).

3. The suspension calculus [17], which introduces three different sets of entities:
terms, environments and lists of environments.

Each of these different styles has plus and minus points. Although various
attempts have been made at comparing these styles (cf. [2, 13]), a lot remains
to be explained. A better understanding of the similarities and differences of
these styles may lead on one hand to solving the remaining open questions
related to the various calculi, and on the other hand, to a more inclusive cal-
culus and implementations which combine the advantages in one system. The
inclusion of other calculus of explicit substitutions is also possible: the docu-
mentation provided with the source code of the system includes a file called
adding-a-new-calculus which explains all the necessary steps.

Through SUBSEXPL, we attempt to understand the working of the rewrite
rules of these calculi. We developed a full scale Ocaml implementation of the
three calculi where contractions in all these calculi (as well as in the type-free
λ-calculus) can be visualised in a step-wise fashion and where the behaviour of
the reduction paths can be analysed. Especially, we concentrate on the one-step
guided reductions and normalisation via each of the associated substitution cal-

culi. However, implementation of rewriting rules is straightforward in rewriting
based languages such as ELAN and Maude, we prefer to use a language of the
ML family because of their natural ability to control the matching which allows
for selection of redexes before contractions are done.

SUBSEXPL has been successfully used for teaching our students basic prop-
erties of the λ-calculus such as: computational adequacy, the importance of de
Bruijn’s notation and of making explicit substitutions in real implementations
based on the λ-calculus. SUBSEXPL has also been of great importance for sys-
tematically comparing these three calculi of explicit substitutions.

Furthermore, SUBSEXPL includes adequate implementations of the rules of
η-reduction for the three calculi as well as a clean implementation for the λse-
calculus (cf. [2]) in the sense that no other rewriting rules than the ones strictly
involved in the Eta-contraction3 are included in one-step Eta-contraction. Work
on higher-order unification (HOU) in λσ and λse established the importance
of combining Eta-reduction or contraction (as well as expansion) with explicit
substitutions. This has provided extensions of λσ and λse with Eta-reduction
rules also referred to by λσ and λse (cf.[6, 3]). Eta reduction as well as expansion
are necessary for working with functions and programs, since one needs to express

3 We use the Greek letter η to refer only to the “η-rule” of the pure λ-calculus, and its
name “Eta” to refer to the corresponding rules in the explicit substitutions calculi.
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functional or extensional equality; i.e., when the application of two λ-terms to
any term yields the same result, then they should be considered equal. This
led to various extensions of explicit substitutions calculi with an Eta-rule even
before this was applied to HOU [9, 21, 5, 14].

Input/output of λ-terms is a difficult point because λ-expressions may be-
come big very quickly. In order to ease reading the outputs of the system, we
provided Latex outputs which can be generated during any step of the reduction
and, moreover, the generated file can be easily edited according to the user’s
requirement.

SUBSEXPL has been used as a tool for understanding properties of explicit
substitutions calculi. Desired properties of an explicit substitutions calculus in-
clude:

(a) Simulation of one step β-reduction: whenever a reduces to b in the λ-calculus
using one step β-reduction, we have that a reduces to b in the explicit sub-
stitutions calculus using one step of the explicit β-reduction (starting rule)
and the substitution rules.

(b) Confluence (CR): confluence is the property that establishes that reductions
do not depend on reduction strategies or in other words, that whenever a
term can be reduced in two different ways, the obtained terms can be joined

by rewriting into a common term. CR is considered for two classes of terms:
(b.1) Ground terms: these are the usual terms of the λ-calculus built from

variables, applications and abstractions.
(b.2) Open terms: in this case, the language of the explicit substitutions calcu-

lus is expanded with a new class of variables, known as meta-variables.
In this setting, open terms can be seen as contexts and meta-variables as
place-holders. Open terms are essential in higher-order unification and
matching algorithms that uses explicit substitutions [6, 3, 7].

(c) Strong normalisation (SN) of the underlying calculus of explicit substitu-
tions: this is the termination property of the explicit substitutions calculi
without the explicit β-reduction rule; i.e., without the rule that starts the
simulation of the β-reduction.

(d) Preservation of SN (PSN): whenever all possible reductions starting from a
pure λ-term are terminating in the λ-calculus, there are no possible infinite
reductions starting from this term in the explicit substitutions calculus.

Without Eta, λσ satisfies (a), (b.1), (c) and satisfies (b.2) only when the set
of open terms is restricted to those which admit meta-variables of sort terms.
Without Eta, λs satisfies (a)..(d) but not (b.2). However, λs has an extension
λse (again without Eta) for which (a), (b.1) and (b.2) holds, but (d) fails and
(c) is unknown. The suspension calculus (which does not have Eta) satisfies (a)
and when restricted to well formed terms it also satisfies (b.1), (b.2) and (c),
but (d) is unknown (cf. [13, 19]).

SUBSEXPL has been used as a tool for examining the PSN property of two
of the three calculi we consider. The system allows us to follow the counter-
examples of Melliès ([16]) and Guillaume ([8]) for proving that neither λσ- nor
λse-calculi preserve SN.
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In section 2 we briefly describe the system and its usage and, before conclud-
ing, in section 3 we illustrate the applications of the system.

2 Description of SUBSEXPL

SUBSEXPL is an implementation of the rewriting rules of the three treated
calculi of explicit substitutions. SUBSEXPL is an open source software, runs over
GNU/Linux platforms and is available at www.mat.unb.br/∼ayala/TCgroup/.

2.1 Use of the system

To start the system, execute the file subsexpl.bin (by typing ./subsexpl.bin

in a terminal). We recommend the use of the line editor ledit4:
./ledit.out ./subsexpl.bin.

Alternatively, the user can run SUBSEXPL inside a shell in the EMACS
editor so that (s)he can easily cut and paste and check the balance of expressions.
To do so just type within EMACS M-x shell and then ./subsexpl.

The first screen is as below where option 4 gives a brief grammatical descrip-
tion of the input and output for each calculus.

*************** SUBSEXPL ***************

SELECT the calculus
TYPE

0 for the Pure lambda-calculus
1 for the Lambda sigma calculus

2 for the Lambda s_e calculus
3 for the Suspension calculus

4 for the Grammatical description IN/OUT (and internal)
OR 5 for quit
>

Option 0 allows the user to simulate one-step β-reduction and η-reduction
as well as normalisations in the pure λ-calculus, while options 1, 2 and 3 per-
form simulations of reductions and normalisations in λσ, λse and the suspension
calculus, respectively.

As a complete example, we will show how to operate with the Church’s
numerals (cf. [4]) whose description can be found in the Examples file distributed
with the source code. Consider the reduction A+C1C1 →6

β C2, which evaluates
“1+1” in the λ-calculus, where A+ = λxypq.((x p)((y p) q)) represents the sum
operator, and C1 = λfx.fx is a Church numeral. The A+ operator is written
in de Bruijn notation as A+ = λλλλ.((4 2)(3 2) 1) which is translated to the
SUBSEXPL language as L(L(L(L(A(A(4,2),A(A(3,2),1)))))).

Applying this operator to add the Church numeral C1 twice, gives the ex-
pression corresponding to A+C1C1 in the SUBSEXPL grammar:
A(A(L(L(L(L(A(A(4,2),A(A(3,2),1)))))), L(L(A(2,1)))),L(L(A(2,1))))

After choosing option 0 in the first screen of the system, we type the above
expression:

4 http://cristal.inria.fr/∼ddr
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*************** SUBSEXPL ***************

SELECT the calculus

TYPE
0 for the Pure lambda-calculus
1 for the Lambda sigma calculus

2 for the Lambda s_e calculus
3 for the Suspension calculus

4 for the Grammatical description IN/OUT (and internal)
OR 5 for quit
> 0

Give an expression (or quit): A(A(L(L(L(L(A(A(4,2),
A(A(3,2),1)))))),L(L(A(2,1)))),L(L(A(2,1))))

After typing the expression, type ENTER. The next screen will output the
current expression and the available redexes for the rules:
Expression: A(A(L(L(L(L(A(A(4,2),A(A(3,2),1)))))),L(L(A(2,1)))),L(L(A(2,1))))

1. Beta: 1 7. Latex output.

2. Eta: 121 21 8. Save current reduction.
3. Leftmost/outermost normalisation. 9. Restart current reduction.

4. Rightmost/innermost normalisation. 10. Restart SUBSEXPL.
5. Back one step. 11. Quit.
6. See history.

Give the number:

To select β-reduction, type 1 and then type 1 again to select the redex at
position 1. Now the current screen is:

Expression: A(L(L(L(A(A(L(L(A(2,1))),2),A(A(3,2),1))))),L(L(A(2,1))))

1. Beta: 0 11111 7. Latex output.
2. Eta: 1111111 21 8. Save current reduction.
...

Give the number:

Note that we have two options to apply β-reduction. One at the root po-
sition of the term, written as 0, and another at position 11111. To reduce the
term at position 11111, first type 1 to select Beta and then type the position.
Continue the reduction until you get a normal term: L(L(A(2,A(2,1)))) which
corresponds to C2.

The additional options of the system are:
3. Leftmost/outermost normalisation: normalises the given term choosing
always the leftmost redex.
4. Rightmost/innermost normalisation: normalises the given term choosing
always the rightmost redex.
5. Back one step: allows the user to return to the previous step in the current
derivation.
6. See history: shows in the current screen the list of all expressions generated
in the current reduction.
7. Latex Output: generates automatically a file with the latex code of the cur-
rent reduction and display the .dvi file on the screen5

8. Save current reduction: allows the user to save the current reduction into
a simple text file, say my-reduction. To load this reduction in a further section,
the user should restart the system giving this file as argument: ./ledit.out

5 We assume that the running system has latex and xdvi installed.
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./subsexpl.bin my-reduction.
9. Restart current reduction: allows the user to restart the current reduc-
tion from the beginning after asking if the user wants to save the current reduc-
tion.
10. Restart SUBSEXPL: restarts the system after asking if the user wants to
save the current reduction.
11. Quit: halts the system after asking if the user wants to save the current
reduction.

To generate the latex output, which is possible to be generated even during
the intermediate steps in a reduction, just type 7 and then give a file name with-
out any extension. For example, my file. In this case, the system will generate
a dvi file named my file.dvi. Note that in the latex output, all the redexes you
chose during the reduction will appear underlined:

(((λ(λ(λ(λ((42)((32)1))))))(λ(λ(21))))(λ(λ(21)))) →β

((λ(λ(λ(((λ(λ(21)))2)((32)1)))))(λ(λ(21)))) →β

((λ(λ(λ((λ(31))((32)1)))))(λ(λ(21)))) →β

((λ(λ(λ(2((32)1)))))(λ(λ(21)))) →β

(λ(λ(2(((λ(λ(21)))2)1)))) →β

(λ(λ(2((λ(31))1)))) →β

(λ(λ(2(21))))

An interesting exercise is to simulate such a derivation step by step using the
λσ, the λse or the suspension calculus. The current implementation has two nor-
malisation strategies available: the leftmost/outermost strategy or the strategy
according to the order of the rules given on the screen of each calculi (we call this
strategy ’random’). An interesting fact is that the first step of the previous exam-
ple when simulated in the λσ-calculus using the random normalisation strategy
generates some huge λσ-terms which exceeds the available memory for the latex
compilation. In fact, the simulation of the first β-reduction in the λσ-calculus
using the ’random’ strategy is done in 236 steps, while the same simulation using
the leftmost strategy is performed in only 45 steps! The complete reduction us-
ing the leftmost/outermost strategy generated about 3 full pages of latex output
with small fonts. In the λse as well as in the suspension calculus, both strategies
generate the output within about 2 pages.

Terms with internal operators of the explicit substitutions calculi may be
given as input: as an example, take the λσ-term ((λ1) 1[↑])[1.id] which is written
in SUBSEXPL as Sb(A(L(1),Sb(One,Up)),Pt(One,Id)). Giving this term to
the system we get the screen below, from which one can follow the reduction by
selecting rules and redexes (positions).

Expression: Sb(A(L(One),Sb(One,Up)),Pt(One,Id))

1. Beta: 1 9. IdL: 17. Back one step.
2. App: 0 10. IdR: 18. See history.

3. Abs: 11. ShiftCons: 19. Latex output.
4. Clos: 12. VarShift: 20. Save current reduction.
5. VarCons: 13. SCons: 21. Restart current reduction.
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6. Id: 14. Eta: 22. Restart SUBSEXPL.

7. Assoc: 15. One beta full step (leftmost): 1 23. Quit.
8. Map: 16. One beta full step (random): 1

Give the number:

2.2 Implementation of Eta contraction

SUBSEXPL includes implementations of the Eta-rule for each of the three calculi
of explicit substitutions treated here. The implementation follows the notion of
cleanness as defined in [2]. The intuitive idea of a clean Eta implementation
is that it does not mix isolated applications of Eta-reduction with applications
of other rules of the corresponding substitution calculi that the ones strictly
involved in the Eta-reduction. Clean implementations of the Eta-rule allow us
to reach good simulations of the Eta-contraction, which implies the possibility
of combining steps of Beta and Eta contraction.

The suspension calculus did not originally have an Eta-rule. In [2] this cal-
culus was enlarged with an adequate Eta-rule in the so-called λsusp calculus. For
the enlarged calculus λsusp, λse and λσ we showed that there exists a correspon-
dence among their Eta-rules which means that, when applied to pure λ-terms,
these rules behave similarly (cf. [2]).

Neither the suspension calculus nor the λσ-calculus has completely clean
implementations of the Eta-rule. In fact, in these calculi, the implementation of
the Eta-rule requires the application of some rewriting rules, not directly related
to Eta contraction, but which are necessary to normalise some simple terms.
Nevertheless, our implementation of the Eta-rule for λse is clean.

Eta-reduction is important to computational problems that arise in applica-
tions of the λ-calculus. For instance, in [6, 3] η-reduction is useful in the treatment
of higher order unification and matching via explicit substitutions calculi.

3 Applications

SUBSEXPL has been successfully used to teach computational notions of the
λ-calculus as well as to compare and understand some properties of explicit
substitutions calculi. In this way, SUBSEXPL can be seen as a tool with both
educational and research purposes. In this section we start by explaining how
the system can be used for educational purposes exploring some computability
notions over the λ-calculus. After that, we explain how it can be used to compare
calculi of explicit substitutions according to the computational effort necessary
to simulate one step of β-reduction and finally we show how SUBSEXPL can be
used to follow the counter-examples of Melliès and Guillaume that establish that
the λσ- and the λse-calculus, respectively, do not preserve strong normalisation.

3.1 Understanding the λ-calculus and its implementations

We have used SUBSEXPL to explain to students questions related to the com-
putational adequacy of the λ-calculus and the problems which arise from the
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usual notation with symbolic variables and the implicit notion of substitution.
The computational expressiveness of the λ-calculus can be illustrated by ex-
amples which range from the λ-representation of arithmetic operations such
as addition, multiplication and exponentiation over Church’s numerals to the
λ-representation of basic data structures which include booleans and computa-
tional commands and operators such as if-then-else, iteration and recursion. All
this was done in the spirit of [4].

As a concrete example, we consider an expression for computing the fac-
torial function. This simple exercise takes a lot of effort, because students are
neither familiar with the notation nor with the operational semantics of the λ-
calculus. But implementing this class of exercises is necessary because this gives
the real flavour of the computational power of the λ-calculus. By using SUB-
SEXPL over EMACS we can very quickly implement these functions: Initially, we
create abbreviations for the needed operators and functions; afterwards, we com-
pound these operators and functions in order to complete the desired function.
We illustrate how this is done for the case of the factorial function. Basically,
this function is implementing by defining an iteration operator TH given by
λp.〈S+(p true), H(p true)(p false)〉, where S+ is the successor function, i.e.,
S+ = A+C1 and H is a convenient function that does the right job. The result
of applying TH to 〈Ci, Cf(i)〉 is the pair 〈Ci+1, Cf(i+1)〉, where f references the
function implemented by the iteration mechanism, the first component of the
pair is a counter for the iteration step and the second one is the value of the
desired function at that step. This iteration operator is then used repeatedly.

Abbreviations 1. The Church numbers are as given before;
2. The booleans true and false correspond to the λ-terms L(L(2)) and L(L(1)),
respectively.
3. 〈M, N〉 represents the pair operator which is given, in the language of SUB-
SEXPL, by the λ-term L(A(A(1,M),N)). Pairs can be applied to booleans, writ-
ten as 〈M, N〉true and 〈M, N〉false and the normal form of these terms are M
and N, respectively.
4. For the case of the factorial function, the adequate operator T is given as TH

above where H is selected as λxy.A∗ y (S+x). It is easy to see that this operator
satisfies the property: T〈Ck, Ck!〉 β-reduces to 〈Ck+1, C(k+1)!〉, and so, applying
repeatedly this mechanism we are counting the number of iteration in the first
component of the pair and computing the associated value of the factorial in
second one.

In the language of SUBSEXPL, the normal form of the operator T for factorial
is given by:
L(L(A(A(1,L(L(A(2,A(A(A(4,L(L(2))),2),1))))),

L(A(A(3,L(L(1))),L(A(2,A(A(A(4,L(L(2))),2),1))))))))

Checking parts of the implementation This step is useful for testing the
functionality of parts of the intended implementation which allows to infer
the functionality of the whole specification. For instance, we can check that
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T〈C2, C2!〉 reduces to 〈C3, C3!〉. In the input syntax of SUBSEXPL this is writ-
ten as

T〈C2, C2!〉

8

>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

A(

T

8

<

:

L(L(A(A(1, L(L(A(2, A(A(A(4, L(L(2))), 2), 1))))),
L(L(A(A(A(4, L(L(1))), 2), A(A(A(4, L(L(2))),

A(A(4, L(L(1))), 2)), 1)))))))

〈C2, C2!〉

8

>>>>>>>>>>><

>>>>>>>>>>>:

L(A(
A(1,

L(L(A(2, A(2, 1))))
| {z }

C2

),
L(L(A(2, A(2, 1))))
| {z }

C2

))
)

By β-normalisation this part of the implementation can be checked obtaining
the term
L(A(A(1,L(L(A(2,A(2,A(2,1)))))),

L(L(A(2,A(2,A(2,A(2,A(2,A(2,1)))))))))) which corresponds to 〈C3, C3!〉
The repetition mechanism is completed by applying n times the iteration

operator starting from the pair 〈C0, C0!〉. This is done by the term:

A(A(Cn, T), 〈C0, C0!〉) (1)

which reduces to 〈Cn, Cn!〉.
Functionality of all parts of the desired mechanism/function can be checked

by normalisation with SUBSEXPL.

Final function Once enough tests have been ran over SUBSEXPL, the factorial
function can be written as:

L( A(A(A(1, T), 〈C0, C0!〉)
︸ ︷︷ ︸

Match with eq. (1)

, L(L(1))
︸ ︷︷ ︸

false

)

︸ ︷︷ ︸

Selection of the 2nd element of the pair

) (2)

The equation (2), when applied to the Church numeral Cn, β-reduces to Cn!. In
fact, such an application will generate a β-redex in the root of the new term.
Reducing this new term, there is a sub-term of eq. (2) which reduces exactly to
the term corresponding to eq. (1). And, this term we have already showed that
reduces to the pair 〈Cn, Cn!〉. To get the desired result we need to select the
second element of this pair which is done by applying it to false, as previously
explained.

Observe that in the syntax of SUBSEXPL (which corresponds to the one of
the λ-calculus) the expression for factorial (eq. (2)) is incomprehensible:
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L(A(A(A(1,L(L(A(A(1,L(L(A(2,A(A(A(4,L(L(2))),2),1))))),

L(L(A(A(A(4,L(L(1))),2),A(A(A(4,L(L(2))),

A(A(4,L(L(1))),2)),1)))))))),L(A(A(1,L(L(1))),

L(L(A(2,1)))))),L(L(1))))

Similarly, other functions can be implemented easily. In fact, notice that from
this construction it is easy (also for students) to infer that the sole thing to be
changed in the whole repetition mechanism is the function H in the definition
of the iteration operator TH . For instance, for computing the function

∑n

i=0 i,
H should be replaced by λxy.A+ y (S+x); for computing the function

∑n

i=0 i2,
H should be replaced by λxy.A+y(A∗(S

+x)(S+x)); etc.

We believe that this kind of experiments is necessary and useful for obtaining
a flavor of the computational power of the λ-calculus. A way to speed-up the
generation of non elementary implementations is by using our system jointly with
an editor for creating the necessary abbreviations, cutting, pasting and testing
for modular constructions of “programs” or functions. In intelligent editors such
as EMACS, these abbreviations can be easily incorporated in new buttons and
short-cut keys, which makes the quick construction of these functions possible.
Some of these experiments are included in the file of examples of the distribution.

The problem of having an implicit notion of substitution involves a com-
plex implementational question because this is not a first-order operation. The
comprehension of the necessity of making substitution an explicit operation is
realised only when students are asked to implement β-contraction. After illus-
trating the computational adequacy of the λ-calculus, problems inherent to its
implementation may be easily pointed out: collisions, confusion, renaming of
variables, etc. Then students realise that substitution is a meta-operation that
must be carefully defined in any correct implementation of the λ-calculus and
are able to truly understand the beauty and usefulness of notational solutions
such as de Bruijn’s indexes and the importance of explicit substitutions calculi.

3.2 Comparing calculi by the simulation of β-reduction

SUBSEXPL has been implemented with the intention of comparing the three
treated calculi of explicit substitutions with respect to the necessary effort to
simulate one-step β-reduction. By applying this system we were able to conclude
that λse is more efficient than the suspension calculus and is incomparable to
the λσ-calculus in the simulation of one-step β-reduction [2]. The efficiency of
λse is justified by the fact that the manipulation of de Bruijn indexes in λse

is directly related to a built-in manipulation of natural numbers and arithmetic
(which is standard in today’s computational environments and programming
languages) whereas in the other two calculi, this is done constructively. Of course
this comparison is interesting, but not conclusive since λse is not completely
adequate for combining steps of β-reduction, which is more natural in λsusp

[15, 18]. But we believe this has to be investigated more carefully, since some
variations of λse like λt ([13]), which is a calculus à la λse but which updates à
la λσ, can allow this combination in the λσ family of calculi.
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3.3 Understanding properties of explicit substitutions

SUBSEXPL has been used as a tool for understanding properties of explicit sub-
stitutions calculi. This is illustrated by examining the property of Preservation
of Strong Normalisation (PSN).

To illustrate the use of SUBSEXPL in understanding properties of explicit
substitution calculi, we explain how one can follow(/check) papers which prove
some properties of these calculi. In particular, we follow the proofs of non PSN
of λσ and λse given in [16] and [8], respectively. By examining these counter-
examples in SUBSEXPL, firstly, one can animate the generation of an infinite
derivation in the associated substitution calculi starting from a well typed term
of the pure λ-calculus. Secondly, one can try to generate infinite derivations of
β-reductions from these λ-terms, concluding (the most critical of them) that this
is impossible. This last step is achieved without necessarily knowing that there
are no infinite (β-)derivations in the λ-calculus starting from well typed terms. In
this way it is possible to simultaneously understand the importance of the PSN
property as well as why it does not hold in these two calculi. The detailed steps
for running Guillaume’s counter-example can be found in the tutorial distributed
with the system.

The counter-example of Melliès To follow the counter-example in the λσ-
calculus, consider the well typed pure λ-term written in de Bruijn’s notation
as λ((λ(λ1)((λ1)1))((λ1)1)). The corresponding term in the language of SUB-
SEXPL is given by

L(A(L(A(L(1),A(L(1),1))),A(L(1),1)))

The infinite reduction is generated by applying an adequate strategy which
mixes rules of the associated calculus σ with the rule Beta which initiates the
simulation of one step β-reduction. The whole derivation, with the usual gram-
mar of the λσ-calculus, is given at the end of this subsection according to the
numbering of steps given in the following tables.

step rule position

1 1 111
2 1 1
3 4 1

At this point,
L(Sb(1,Cp(Pt(A(L(1),1),Id),Pt(A(L(1),1),Id)))) is the current term. Let
us define recursively:

s 1 = Pt(A(L(1),1),Id)

s 2 = Cp(Up,Pt(Sb(1,s 1),Id))

= Cp(Up,Pt(Sb(1,Pt(A(L(1),1),Id)),Id))

s 3 = Cp(Up,Pt(Sb(1,s 2),Id))

= Cp(Up,Pt(Sb(1,Cp(Up,Pt(Sb(1,Pt(A(L(1),1),Id)),Id))),Id))

...

s i = Cp(Up,Pt(Sb(1,s (i-1))),Id))
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With this definition, we can write the current term as L(Sb(1,Cp(s 1,s 1))).
At this point, applying the Map transition at position 12 the sub-term s 1 is
duplicated. And we get L(Sb(1,Pt(Sb(A(L(1),1),s 1),Cp(Id,s 1)))). Note
that the second occurrence of s 1 is vacuous, in the sense that it can be eas-
ily eliminated by the rule VarCons. The key idea of Melliès is to maintain this
second occurrence of s 1 and to propagate the first occurrence as follows:

step rule position

5 2 121
6 9 122
7 3 1211

Now the current term is L(Sb(1,Pt(A(L(Sb(1,Pt(1,Cp(s 1,Up)))),

Sb(1,s 1)),s 1))) and again we can apply the Beta rule and then compose the
two substitutions:

step rule position

8 1 121
9 4 121

The next 3 steps duplicate the sub-term Pt(Sb(1,Pt(A(L(1),1),Id)),Id)

and generate the term s 2 = Cp(Up,Pt(Sb(1,Pt(A(L(1),1),Id)),Id)) which
have inside an occurrence of s 1:

step rule position

10 8 1212
11 5 12121
12 7 12122

At this point, L(Sb(1,Pt(Sb(1,Pt(Sb(1,s 1),Cp(s 1,s 2))),s 1))) be-
comes the current term. It contains an occurrence of Cp(s 1,s 2). By repeating
the same sequence of rules, we will get a term with the sub-term Cp(s 2,s 3).

step rule position step rule position

13 8 12122 18 4 121221
14 2 121221 19 8 1212212
15 9 121222 20 5 12122121
16 3 1212211 21 7 12122122
17 1 121221

Here, it is easy to see how an infinite reduction can be built from the initial
well typed term in the λσ calculus of explicit substitutions. In the following we
give the corresponding reduction generated in Latex format by SUBSEXPL:

0 (λ((λ((λ1)((λ1)1)))((λ1)1)))→Beta

1 (λ((λ1[(((λ1)1)·id)])((λ1)1)))→Beta

2 (λ1[(((λ1)1)·id)][(((λ1)1)·id)])→Clos

3 (λ1[((((λ1)1)·id)
| {z }

s1

◦(((λ1)1)·id)
| {z }

s1

)])→Map

4 (λ1[(((λ1)1)[(((λ1)1)·id)]·(id◦(((λ1)1)·id)))])→App
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5 (λ1[(((λ1)[(((λ1)1)·id)]1[(((λ1)1)·id)])·(id◦(((λ1)1)·id)))])→IdL

6 (λ1[(((λ1)[(((λ1)1)·id)]1[(((λ1)1)·id)])·(((λ1)1)·id))])→Abs

7 (λ1[(((λ1[(1·((((λ1)1)·id)◦↑))])1[(((λ1)1)·id)])·(((λ1)1)·id))])→Beta

8 (λ1[(1[(1·((((λ1)1)·id)◦↑))][(1[(((λ1)1)·id)]·id)]·(((λ1)1)·id))])→Clos

9 (λ1[(1[((1·((((λ1)1)·id)◦↑))◦(1[(((λ1)1)·id)]·id))]·(((λ1)1)·id))])→Map

10 (λ1[(1[(1[(1[(((λ1)1)·id)]·id)]·(((((λ1)1)·id)◦↑)◦(1[(((λ1)1)·id)]·id)))]·(((λ1)1)·id))])

→V arCons

11 (λ1[(1[(1[(((λ1)1)·id)]·(((((λ1)1)·id)◦↑)◦(1[(((λ1)1)·id)]·id)))]·(((λ1)1)·id))])→Assoc

12 (λ1[(1[(1[(((λ1)1)·id)]·((((λ1)1)·id)
| {z }

s1

◦(↑◦(1[(((λ1)1)·id)]·id))
| {z }

s2

))]·(((λ1)1)·id))])→Map

13 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)1)[(↑◦(1[(((λ1)1)·id)]·id))]·

(id◦(↑◦(1[(((λ1)1)·id)]·id)))))]·(((λ1)1)·id))])→App

14 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)[(↑◦(1[(((λ1)1)·id)]·id))]1[(↑◦(1[(((λ1)1)·id)]·id))])·
(id◦(↑◦(1[(((λ1)1)·id)]·id)))))]·(((λ1)1)·id))])→IdL

15 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)[(↑◦(1[(((λ1)1)·id)]·id))]1[(↑◦(1[(((λ1)1)·id)]·id))])·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Abs

16 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1[(1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))])1[(↑◦(1[(((λ1)1)·id)]·id))])·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Beta

17 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))][(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Clos

18 (λ1[(1[(1[(((λ1)1)·id)]·(1[((1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Map

19 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)]·

(((↑◦(1[(((λ1)1)·id)]·id))◦↑)◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)))]·
(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→V arCons

20 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·
(((↑◦(1[(((λ1)1)·id)]·id))◦↑)◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Assoc

21 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·
((↑◦(1[(((λ1)1)·id)]·id))
| {z }

s2

◦(↑◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id))
| {z }

s3

))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])

The above steps are stored in the file mellies distributed with the source
code of SUBSEXPL and can be executed automatically with the command
./subsexpl.bin mellies (or ./ledit.out ./subsexpl.bin mellies). In this
case, the output dvi file automatically generated is mellies-ls.dvi. Note that
the notation s1, s2, s3 and the numeration of the steps are used here for ease
reading but is not automatically generated in the above dvi file. The latex code
of the output can be found in the file mellies-ls. The mellies-README file
(distributed with the source code) explains these details and some additional
information about generating the corresponding postscript file.
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4 Conclusions and future work

We presented the system SUBSEXPL which is an Ocaml implementation of
the rewriting rules of the λσ, the λse and the suspension calculi of explicit
substitutions, although according to the current structure the inclusion of other
explicit substitutions calculi can be easily done.

We showed how the system has been applied both to educational and research
purposes. Its educational uses include:

– the visualisation of the computational adequacy of the λ-calculus via speci-
fication of numerical functions and programming operators;

– the visualisation of (non trivial) properties of the λ-calculus such as non
termination and the normalisation theorem;

– the illustration of the problem of implicitness of the substitution operator
and how this is resolved in real implementations by explicit substitutions
calculi; etc.

Its research applications include:

– analysis of non trivial properties of explicit substitutions calculi;
– comparing calculi of explicit substitutions.

The former was illustrated by showing that one can check the proofs of Melliès
and Guillaume (included in the tutorial distributed with the source code of the
system) of the fact that neither λσ nor λse preserve strong normalisation using
the system. The latter by showing how the system assisted us in the proof that
λse is more efficient than the suspension calculus and is incomparable to the
λσ-calculus in the simulation of one-step β-reduction [2].

Furthermore, SUBSEXPL gives correct implementations of η-reduction for
each of the three explicit substitutions calculi treated here. For the λse-calculus
this implementation is also clean, but for λσ and λsusp (and by the nature of
these calculi), the simulation of one-step η-reduction requires the use of rewriting
rules that are not strictly related to this one-step simulation.

Other authors have presented tools that manipulate λ-expressions in a similar
way; for example Huet presented a tool and illustrated how this can be applied
for assisting in the understanding of non trivial properties of the λ-calculus
such as Böhm’s theorem [10]. The novelty of SUBSEXPL with relation to these
applications is that it follows the de Bruijn’s philosophy of avoiding names, which
makes our tool also adequate for assisting in the reasoning about properties of
explicit substitution calculi.

As any modern computational system, SUBSEXPL is in constant develop-
ment and new features should be included in future versions. Among these fea-
tures, we can point out the inclusion of variations of the suspension calculus
that combine applications of β-reduction and the development of new modules
for dealing with simply typed λ-terms and λ-calculus with names. Moreover, we
will develop an EMACS mode which may ease the inclusion of some common
structures used to build more complex terms.

Acknowledgments: We would like to thank Manuel Maarek and Stéphane
Gimenez for the useful help with Ocaml and suggestions to improve the system.
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13. F. Kamareddine and A. Ŕıos. Relating the λσ- and λs-Styles of Explicit Substi-

tutions. Journal of Logic and Computation, 10(3):349–380, 2000.
14. D. Kesner. Confluence of extensional and non-extensional λ-calculi with explicit

substitutions. TCS, 238(1-2):183–220, 2000.
15. C. Liang and G. Nadathur. Tradeoffs in the Intensional Representation of Lambda

Terms. In S. Tison, editor, Rewriting Techniques and Applications (RTA 2002),
volume 2378 of LNCS, pages 192–206. Spinger-Verlag, 2002.

16. P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate in
Proceedings of TLCA’95. LNCS, 902, 1995.

17. G. Nadathur. A Fine-Grained Notation for Lambda Terms and Its Use in Inten-
sional Operations. J. of Func. and Logic Programming, 1999(2):1–62, 1999.

18. G. Nadathur. The Suspension Notation for Lambda Terms and its Use in Met-
alanguage Implementations. In Proceedings Ninth Workshop on Logic, Language,
Information and Computation (WoLLIC 2002), volume 67 of ENTCS, 2002.

19. G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalization
of Environments. TCS, 198:49–98, 1998.

20. R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath.
North-Holland, 1994.
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Abstract. Second order predicate schema matching is concerned with
finding the matchers of a given pair such that 〈Φ, φ〉 where Φ is a for-
mula containing some second-order predicate variables and φ is a first
order logical formula. In general, this problem is intractable even if we
impose some strict syntactical restrictions. In this paper, we propose an
algorithm which improves the computational efficiency, and show a class
in which matchers can be derived in square time on input size.

1 Introduction

A schema is a template of formulas and knowledge processing which uses schemas
as guiding information is called schema guided knowledge processing [6]. Espe-
cially, processing based on second-order schemas has been studied in research
areas such that program transformations[12], automatic program syntheses[6],
analogical reasoning [2, 4, 8], and so on. Here, second order matching has an im-
portant role in the implementation of these systems. In this paper, we study
second order predicate schema matchings from the motivation of constructing a
schema-guided theorem prover[16].

The second-order matching is known to be intractable in general [1]. However,
Curien [3] proposed an algorithm which is more efficient than the one given by
Huet et al [11, 12] by introducing pre-checking method. Furthermore, Miller [14]
showed a class called higher order pattern in which matchers can be derived
in linear time. These results indicate that the efficiency of matchings strongly
depends on the existence of bound and free variables and syntactical restrictions.

In this paper, we treat second order matchings of a class of predicate schemas
which are closed but contain syntax free variables. This second-order predicate
schema matching is still intractable. Firstly, we propose a schema matching
based on the projection position indexing, and study heuristics to improve its
computational efficiency. Next, we define a class of predicate schemas where the
proposed schema matching derives a unique matcher in square time. Finally, we
explain briefly our implemented system.

? This work is partially supported by Grand-in-Aid for Scientific Research 13558036
from the Ministry of Education, Culture, Sports, Science and Technology, Japan,
and Foundation for promotion of researches on artificial intelligence



32

2 Preliminaries

Let IC , IV , FC , FV , PC , PV , ISV and FSV be a set of individual constants
denoted by a, b, . . ., a set of individual variables denoted by x, y, . . ., a set of
function constants denoted by f, g, . . ., a set of function variables denoted by
F,G, . . ., a set of predicate constants denoted by p, q, . . ., and a set of predicate
variables denoted by P,Q, . . ., a set of individual syntax variables denoted by
xc, yc, . . ., and a set of function syntax variables denoted by Fc, Gc, . . ., respec-
tively.

Throughout of this paper, we assume a set of elementary types containing
the Boolean type o. Furthermore, we assume that each d ∈ IC ∪ IV ∪ FC ∪
PC ∪ PV ∪ ISV ∪ FSV has a type denoted by τ(d). Each d ∈ IC ∪ IV ∪ ISV
has an elementary type not equal to o, each d ∈ FC ∪ FV ∪ FSV has a type
µ1 × · · · × µn → µ where neither µi nor µ is o, and each d ∈ PC ∪ PV has a
type µ1 × · · · × µn → o. Especially, we deal with the logical connectives ∧,∨,⊃
as predicate constants satisfying that τ(∧) = τ(∨) = τ(⊃) = o × o → o and
τ(¬) = o → o. For a quantifier Q (Q ∈ {∀,∃}) we also treat Qx. as a predicate
constant satisfying that τ(Qx.) = o → o. If τ(ϕ) = o and τ(x) 6= o, then Qx.ϕ

has the type o.
Typed terms are defined as usual [1]. Here, we assume that each term contains

no λ abstraction. A variable x ∈ IV is called bound if x appears in the scope
of a quantifier Qx(Q ∈ {∀,∃}) and free otherwise. A formula is called closed
if it contains no free individual variables. A second order predicate schema or
simply predicate schema is a closed formula which contains predicate variables
but contains no function variables. Note that a closed predicate schema may
contain some syntax free variables xc, Fc,. . . . In the following, we denote schemas
and formulas by Φ, Ψ, . . . and φ, ϕ, ψ, . . ., respectively. Examples of a predicate
schema Φ and a closed first order formulas φ are given next.

Φ = P (xc) ∧ ∀x.(P (x) ⊃ P (Ff (x))) ⊃ P (Ff (Ff (c))),
φ = ∀z.p(z, 0) ∧ ∀x.(∀z.p(z, x) ⊃ ∀z.p(z, f(x))) ⊃ ∀z.p(z, f(f(0)))

In this Φ, syntax variables xc and Fc denote constants from the logical viewpoint,
but they mean indefinite constants. From this reason, we treat them as free
variables which can be replaced with symbols under the renaming. By treating
them as syntax free variables, we can raise the expressive power of schemas. A
head of a schema Φ is a left-most symbol of Φ in its prefix expression and is
denoted by hd(Φ). In case of above Φ, hd(Φ) = ” ⊃ ”.

Let V ={IV ∪ FV ∪ ISV ∪ FSV }. A substitution θ is a function from V
to the set of all terms such that θ(v) 6= v holds only for finitely many v ∈ V.
For terms ti(1 ≤ i ≤ m) and variables vi(1 ≤ i ≤ m), a substitution such that
θ(vi) = ti is denoted by θ = [v1 := t1, . . . , vm := tm]. Intuitively, tθ denotes the
term obtained by replacing a variable vi in t with ti simultaneously under the
renaming, and is the same operation to (λv1 · · · vn.t)t1 · · · tn in λ-calculus.

We denote an m-tuple of terms t1, · · · , tm by tm. For a term t and a substi-
tution θ, tθ is defined inductively as follows:
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(1) If t = c,c ∈ IC, then tθ = c.
(2) If t = x ,x ∈ IV ,and [x := t′] ∈ θ, then tθ = t′; otherwise tθ = x.
(3) If t = xc ,xc ∈ ISV ,and [xc := c] ∈ θ,c ∈ IC, then tθ = c; otherwise tθ = xc.
(4) If t = f(tn) and f ∈ (FC ∪ PC ), then tθ = f(tnθ).
(5) If t = P (tn), P ∈ (PV ∪ FV ) and [P := λvn.t

′] ∈ θ, then tθ = t′[v1 :=
t1θ, . . . , vn := tnθ]; otherwise tθ = P (tnθ).

(6) If t = Ff (tn), Ff ∈ FSV and [Ff := λvn.f(vn)] ∈ θ, then tθ = f(tnθ).
(7) If t = Qx.t′ and Q ∈ {∀,∃}, then tθ = Qy.((t′[x := y])θ), where y is a new

variable.

Example 1. Let Φ be the schema mentioned above, and let θ be a substitution
such that θ = {P := λu.∀z.p(z, u), xc := 0, Ff := λv.f(v)}. Then we have:

Φθ = P (xc)θ ∧ (∀x.(P (x) ⊃ P (Ff (x)))θ ⊃ P (Ff (Ff (x)))θ = φ.

A finite set of pairs of schemas and formulas is called an expression. An ex-
pression of the form {〈Pi(t

i
1, . . . , t

i
ni

), ϕi〉 | i ∈ N} is called a reduced expression,
where Pi is a predicate variable and ϕi is a formula. The size of a term t is the
number of occurrences of all symbols in t and is denoted by |t|. For an expres-
sion E = {〈Φi, ϕi〉 | i ∈ N}, the size of E is defined by

∑

i∈I(|Φi| + |ϕi|) and
is denoted by |E|. A substitution θ such that Φiθ = ϕi for all i ∈ N is called a
matcher of E. The schema matching for E is a procedure to find a matcher of
E. If there is a matcher of E, then E is called matchable.

3 Projection Point Indexing for Schema Matching

We define rules for our schema matching by modifying the ones of [12]. Let E
be an expression and let 〈s, t〉 ∈ E. Assume that hd(s) = @, hd(t) = \. In the
following, we denote the transformation using a rule ”rule” by ” ⇒rule ”.

Rules for second-order matching:
E=E′ ∪ {〈s, t〉}, s=@(sr), t=\(td)

Simp (Simplification rule ) :
(1) If s = t and s ∈ IC or s = w: E=E ′ ∪ {〈s, t〉} ⇒Simp E

′

(2) If hd(s) = hd(t) = @ and @ ∈ (IC ∪ FC ∪ PC ∪ {∨,∧,⊃,¬}):
E=E′ ∪ {〈@(sm), \(tm)〉} ⇒Simp E′ ∪ {〈s1, t1〉, · · · , 〈sm, tm〉}

(3) If s = Qx.Φ, t = Qy.ϕ,(Q ∈ {∀,∃}):
E=E′ ∪ {〈s, t〉} ⇒Simp E

′ ∪ {〈Φ[x := w], ϕ[y := w]〉}
Imit (Imitation rule):

(1) If t=Qx.ϕ(td) (Q ∈ {∀,∃}) and τ(s)=τ(Qx.ϕ(td))=o:
E ⇒Imit E[@ := λvr.Qx.ϕ(H1(x, vr), . . . , Hd(x, vr)], whereHi ∈ FV (1 ≤
i ≤ d).

(2) If hd(s)=x ∈ IV and t contains no bound variables: E ⇒Imit E[x := t]
(3) If hd(s)=xc ∈ ISV and t ∈ IC: E ⇒Imit E[x := t]
(4) If hd(s)=Fc ∈ FSV and hd(t) ∈ FC: E ⇒Imit E[x := hd(t)]
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(5) If hd(s) ∈ FV and t=x ∈ IV :E ⇒Imit E[@ := λvr.x]
(6) If hd(s) = @ ∈ (PV ∪ FV ) and hd(t) = \ ∈ (IC ∪ FC ∪ PC):

E ⇒Imit E[@ := λvr.\(H1(vr), · · · , Hd(vr))].
(7) If hd(s) = @ ∈ (FSV ) and hd(t) = \ ∈ FC, r = d:

E ⇒Imit E[@ := λvr.\(v1, · · · , vr)].
Proj (Projection rule), where s̄r = (s1, . . . , sr).

If τ(si) = τ(t)(1 ≤ i ≤ r): E ⇒Proj E[@ := λvr.vi]

The rule Simp decomposes E into reduced form E ′. Note that Simp (3)
replaces quantified variables x, y, . . . with different symbols w1, w2, . . . to denote
bound variables in schemas explicitly after the quantifiers are deleted. In the
following, we also call them bound variables. For example, for an expression

〈∀x.(P (x) ⊃ P (Ff (x))),∀x.(∀z.p(z, x) ⊃ ∀z.p(z, f(x)))〉,

we have the following reduced expression by applying Simp(3):

{〈P (w),∀z.p(z, w)〉, 〈P (Ff (w)),∀z.p(z, f(w))〉}.

The rule Imit imitates the target formula t. The rule Imit (1) is the newly
introduced rule for predicate formulas. A predicate variable Φ imitates also for-
mulas having ∀ and ∃ as heads such that ∀x.p(. . . , x) and ∃x.p(. . . , x). There,
the bound variable x has to appear on the inside of p since it makes sense
only by the pair. For example, let E = {〈Φ(a),∀x.p(x)〉}, then the substitution
[Φ := λu.∀x.Ψ(x, u)] is available, where ∀x.Ψ(x, u) expresses any formulas quanti-
fied with ∀x. Then, we have ∀x.p(H(x, a)) by applying [Ψ := λv1v2.p(H(v1, v2))].
By combining these steps into one operation, the rule Imit (1) is defined. Here,
each Hi ∈ FV is a second order function variable introduced newly, and is called
fresh schema variable.

Note that Imit cannot be applied for any pair such that 〈s, w〉, where w is
a bound variables (see Imit (2)). For syntax free variables, the rule Imit(3)(4)
are used, where each syntax variable can be substituted with a symbol. For
example, let 〈H(xc), f(g(a))〉. Then we have [H := λv.f(g(v)), xc := a], but
[H := λv.f(v), xc := g(a)] is not available. Similarly, 〈Ff (xc), f(g(a))〉 is not
matchable.

For an expression E, we have an expression in the form E ′ = {〈Pi(s
i
1, . . . , s

i
ri

), ϕi〉 |
i ∈ N} by applying Simp rules to E repeatedly. We call this E ′ the reduced form
of E and this process pre-processing . Let ⇒∗ denote the finitely many appli-
cations of the rules Simp,Imit ,Proj . Then the following theorem holds in the
similar way to [12]:

Theorem 1. Let E be an expression and E ′ be its reduced form. Then E is
matchable if and only if E′ ⇒∗ ∅.

Let E be a reduced form {〈Pi(s
i
1, . . . , s

i
ri

), ϕi〉 | i ∈ N}. Then, our schema

matching applies the projection position indexing to E. Assume that sj
i is a term

which contains no fresh schema variables but may contain syntax free variables,
and t is a term which contains no free variables. By s

.
= t, we denote that

s and t are matchable. For example, Ff (xc)
.
= f(a), since a matcher [Ff :=

λu.f(u), xc := a] exists.
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Definition 1 (Projection position indexing). Let s be a schema P (s1, . . . , sr),
t a formula, ρ(t) a set {i | t

.
= si, 1 ≤ i ≤ r}. Then, a indexed term J(s, t) is

defined inductively as follows:

(1) J(s, w) = ∗ρ(w), J(s, c) = cρ(c) (c ∈ IC ), and J(s, x) = x∅ (x ∈ IV ).
(2) If t = f(t1, . . . , tm), f ∈ FC and J(s, ti) is a indexed term of ti for s (1 ≤

i ≤ m), then J(s, t) = fρ(t)(J(s, t1), . . . , J(s, tm)).
(3) If t = p(t1, . . . , tm), p ∈ PC ∪ {¬,∧,∨,⊃} and J(s, ti) is a indexed term of

ti for s (1 ≤ i ≤ m), then J(s, t) = p∅(J(s, t1), . . . , J(s, tm)).
(4) If t = Qx.t1 (Q ∈ {∀,∃}) and J(s, t1) is a indexed term of t1 for s, then

J(s, t) = Qx∅.J(s, t1).

Here, ∗ is a new symbol to denote that any imitation cannot be applied. From
indexed terms, we form a common indexed term as a common part of them.

Definition 2. For a reduced expression E = {〈si, ti〉 | i ∈ N} such that hd(si) =
P , let J(si, ti) be a indexed term of si for ti. Then, a common indexed term
J(E) = ui∈NJ(si, ti) of {J(si, ti) | i ∈ N} is defined inductively as follows:

(1) If J(si, ti) = cρi and c ∈ IC ∪ IV ∪{∗} for each i ∈ N , then J(E) = c∩i∈N ρi .
(2) If J(si, ti) = fρi(ti1, . . . , t

i
m) and f ∈ FC for each i ∈ N , then:

J(E) = f∩i∈N ρi(ui∈NJ(si, t
i
1), . . . ,ui∈NT (si, t

i
m)).

(3) If J(si, ti) = p∅(ti1, . . . , t
i
m) and p ∈ PC ∪ {¬,∧,∨,⊃} for each i ∈ N , then:

J(E) = p∅(ui∈NJ(si, t
i
1), . . . ,ui∈NJ(si, t

i
m)).

(4) If J(si, ti) = Qx∅i .t
′
i and Q ∈ {∀,∃} for each i ∈ N , then:

J(E) = Qx∅. ui∈N (J(si, t
′
i)[xi := x]).

(5) If there exist k, j ∈ N such that hd(J(sk, tk)) 6= hd(J(sj , tj)), then J(E) =
∗∩i∈N ρi .

Finally, we introduce a reduced indexed term from a common indexed term.

Definition 3. Let E = {〈si, ti〉 | i ∈ N} be a reduced expression. Then a reduced
indexed term uE of E is an indexed term obtained by applying the following rule
to J(E) as often as possible:

For a subterm t′ of J(E) if there exists a j(1 ≤ j ≤ m) such that
t′ = f∅(t′1, . . . , t

′
j , . . . , t

′
m) and t′j = ∗∅, then replace t′ with ∗∅.

The problem of indexing for a E=〈P (s1, . . . , sr), t〉 can be reduced to the
ordered subtree problem with logical variables in [13], and the indexing for each
pair 〈si, t〉 can be done in linear time. Hence, the total time required for the
indexing for E is O(r· | E |). This observation gives the following result.

Theorem 2. Let E be a reduced expression. Then, uE can be constructed in
O(|E|2) time, and E is matchable only if uE 6= ∗∅.
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Especially, if E contains no syntax variables, then E is matchable if uE 6= ∗∅.
Then we have the following property.

Corollary 1. Let E be a reduced expression. Then, E is matchable if and only
if uE 6= ∗∅.

Example 2 (Matchability).

(1) Consider the following expression E:

〈∀x1(P (x1, Ff (x1))∧P (x1, Fg(x1)), ∀x2(∃z1.p(z1, f(x2))∧∃z2.p(z2, g(x2)))〉

By applying the pre-processing to E, we obtain the following reduced ex-
pression E′.

E′ = {〈P (w,Ff (w)),∃z1.p(z1, f(w))〉, 〈P (w,Fg(w)),∃z2.p(z2, g(w))〉}
= {〈s1, t1〉, 〈s2, t2〉}.

It holds that ui∈{1,2}T (si, ti) = ∃z∅.p∅(z∅, ∗{2}) = uE′
2 6= ∗∅. Accordingly,

this is matchable.
(2) Consider the following expression E2 which contains no syntax free variables:

E2 =

{

〈∀x1.((P (x1, Ff (x1)) ∧ P (x1, Fg(x1))) ⊃ P (f(x1), x1)),
∀x2.((∃z1.p(z1, f(x2)) ∧ ∃z2.p(z2, g(x2))) ⊃ ∃z3.p(z3, f(x2)))〉

}

.

Firstly, we apply the pre-processing to E2. Then we have the following re-
duced expression.

E2 ⇒

{

〈(P (w,Ff (w)) ∧ P (w,Fg(w))) ⊃ P (Ff (w), w),
(∃z1.p(z1, f(w)) ∧ ∃z2.p(z2, g(w))) ⊃ ∃z3.p(z3, f(w)))〉

}

⇒

{

〈P (w,Ff (w)) ∧ P (w,Fg(w)), ∃z1.p(z1, f(w)) ∧ ∃z2.p(z2, g(w))〉,
〈P (Ff (w), w), ∃z3.p(z3, f(w))〉

}

⇒







〈P (w,Ff (w)), ∃z1.p(z1, f(w))〉,
〈P (w,Fg(w)), ∃z2.p(z2, g(w))〉,
〈P (Ff (w), w), ∃z3.p(z3, f(w))〉









=







〈s1, t1〉,
〈s2, t2〉,
〈s3, t3〉







= E′



.

Next, we apply the projection point indexing to E ′
1. The indexed terms@are:

J(s1, t1) = ∃z∅1 .p
∅(z∅1 , f

{2}(w{1})), J(s2, t2) = ∃z∅2 .p
∅(z∅2 , g

{2}(w{1})),

J(s3, t3) = ∃z∅3 .p
∅(z∅3 , f

{1}(w{2})).

By Definition 2, it holds that ui∈{1,2,3}T (si, ti) = ∃z∅.p∅(z∅, ∗∅). By Defini-

tion 3,it holds that uE′
1 = ∗∅. Hence, E is not matchable by Theorem 2.

4 Efficient Matcher Derivation

4.1 Matcher derivation algorithm

In this section we study algorithms of deriving any matchers of E from any
common reduced indexed term uE. Intuitively, projection rules can be applied
to the positions of uE whose index set ρ is not ∅, and imitation rules can be
applied to any positions of uE which are not ?. A matcher is derived by choosing
a set of projection positions so that it contains all the ? positions .



37

Definition 4. Let E be an expression such that {〈si, ti〉 | 1 ≤ j ≤ m},where
hd(si) = H for any i(1 ≤ i ≤ m). The set of substitutions SuE for E is defined
inductively as follows.

(1) uE = cρ : SuE = {λv̄n.c} ∪ {λv̄n.vj | j ∈ ρ}.
(2) uE = ?ρ : SuE ={λv̄n.vj | j ∈ ρ}.
(3) uE = fρ(SuE1

, . . . , SuEm
) :

SuE={λv̄n.f(t1, . . . , tm) | λv̄n.ti ∈ SuEi
, 1 ≤ i ≤ m} ∪ {λv̄n.vj | j ∈ ρ}.

A set of substitutions {θ1∪ . . .∪θm} is consistent if (θ1∪ . . .∪θm) is well defined.
For example, if θ1=[x := a] and θ2=[x := b], then {θ1, θ2} is not consistent. A
θ ∈ {[H := t] | t ∈ SuE} defines a substitution and is a matcher of E if it is
consistent. Note that the substitutions for syntax free variables arise only when
projection rules are applied. Accordingly, consistency check is required only when
projection rules are applied.

Theorem 3. Let E be an expression and let uE be its reduced indexed term.
Then each consistent θ ∈ {[H := t] | t ∈ SuE} is a matcher of E.

Corollary 2. Let E be an expression which contain no syntax free variables and
let uE be its reduced indexed term. Then each θ ∈ {[H := t] | t ∈ SuE} is a
matcher of E.

Example 3 (Matcher derivation).

(1) Let E be an expression such that

E =

{

〈H(w,Ff (xa, w)), f(a,w)〉, 〈H(xa, Ff (xa, xb)), f(a, b)〉,
〈H(xa, Ff (xa, xc)), f(a, c)〉

}

.

Then uE = f{2}(a∅, w{1}). From SuE , we have the following substitutions:
{

θ1 = [H := λv1v2.f(a, v1), xa := b, xa := c],
θ2 = [H := λv1v2.v2, Ff := λv1v2.f(v1, v2), xa := a].

}

Here, θ2 is a consistent matcher, but θ1 is not.
(2) Let E be the expression E1 in Example 2. Since uE′

2 = ∃z∅.p∅(z∅, ∗{2}), we
have a unique matcher {P := λv1v2.∃z.p(z, v2)}.

In cases of uE = cρ and uE = fρ(SuE1
, . . . , SuEm

), one imitation rule and
| ρ | projection rules can be applied to the positions of c and f . We introduce a
preference order � into uE such that if r1 � r2, then r1 is chosen in preference
to r2, and denote the ordered set by (uE,�).

Example 4. The imitation preference ordered �I and the set (SuE ,�I) is defined
inductively as follows:

(1) uE = cρ : (SuE ,�I) = {λv̄n.c �I λv̄n.v1 �I . . . �I λv̄n.v|ρ|}.
(2) uE = ?ρ : (SuE ,�I) = {λv̄n.v1 �I . . . �I λv̄n.v|ρ|}.
(3) uE = fρ(SuE1

, . . . , SuEm
): (SuE ,�I) =

{{λv̄n.f(t1, . . . , tm) | λv̄n.ti ∈ (SuEm
,�I)} �I λv̄n.v1 �I . . . �I λv̄n.v|ρ|}.
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A strategy which chooses rules according to preference orders �I is called
I-strategy, and a procedure which is based on I-strategy is denoted by MatchI .

Algorithm MatchI :
Input: E={〈P (s̄j), tj〉 | 1 ≤ j ≤ m}
Output: Matchers of E
begin
(1)Pre-process E to a reduced expression E ′;
(2)Derive the reduced indexed term uE;

If uE = ?∅ then output fail;
else

(3) While a possible choice of rules under I-strategy exist do;
(3-1)Choose the rules to be applied according to the preference order ;
(3-2)Derive substitutions for the chosen rules;
(3-2)Check the consistency of the obtained substitutions;
If consistent then output the substitutions;

end

MatchI is complete, that is, it derives any matchers of E.

Example 5. Let E be an expression such that 〈H(w,w, Ff (w), xc, xc), g(f(w), a)〉.
Then uE = g∅(f{3}(w{1,2}), a{4,5}), and MatchI derives the following 9 match-
ers in this order.























































(1)[λv1v2v3v4v5.g(f(v1), a)]
(2)[λv1v2v3v4v5.g(f(v2), a)],
(3)[λv1v2v3v4v5.g(f(v1), v4), xc := a],
(4)[λv1v2v3v4v5.g(f(v1), v5), xc := a]
(5)[λv1v2v3v4v5.g(f(v2), v4), xc := a]
(6)[λv1v2v3v4v5.g(f(v2), v5), xc := a]
(7)[λv1v2v3v4v5.g(v3, a), Ff := λv.f(v)]
(8)[λv1v2v3v4v5.g(v3, v4), Ff := λv.f(v), xc := a]
(9)[λv1v2v3v4v5.g(v3, v5), Ff := λv.f(v), xc := a]























































Especially, if E contains no syntax free variables, then the consistency check (3-
2) is not necessary. Hence, for each choice in (3-1), MatchI derives a consistent
matcher.

4.2 Efficiently Computable Predicate Schema Matching Classes

In Example 5, terms w, xc occur twice as arguments of H. When such terms
exist, the number of combinations of rules to be checked increases, and redundant
substitutions are derived. Furthermore, even if the occurrence number of each
term is restricted to at most one, the expressive power of schemas is not reduced.
From this viewpoint, we introduce the condition of simplex.

If a bound variable occurs in many arguments of an atom, then the number
of combinations to be checked increases. For example, let E be an expression

〈H(w,Ff (w, xc), Ff (Ff (w, xc), Ff (w, xc)), f(f(w, a), f(w, b)〉.
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Then, uE =f{3}(f{2}(w{1}, a), f{2}(w{1}, b)) , and the number of combinations
to be checked increaes. However, if the projection {2} or {3} success, then the
projection {1} also successes,since w is included to the orther terms. From such
a reason, we introduce the condition of linear.

In general, for cρ or fρ(· · · ), we can use imitation rule in preference to projec-
tion rules. However, for ?ρ, we have to apply projection rules and do consistency
checks. For example, let E be an expression such that

{

〈H(xa, xb), f(a, b)〉, 〈H(xb, xa), f(a, c)〉
}

.

Then uE = f∅(a{1,2}, ?{1,2}). For a{1,2}, we can use the imitation rule. For ?{1,2},
there exist 2 possible projections. On the other hand, in case of

{

〈H(xa, xb), f(a, b)〉, 〈H(xb, xa), f(a, c)〉 〈H(w, xa)), f(a,w)〉
}

,

uE = f∅(a{2}, ?{1}), and the rule which can be applied to the position ? is
decided uniquely. Thus, for a position ?ρ, if there exists a s

j
i (1 ≤ j ≤ m) for

each i ∈ ρ which contains bound variables, then the indeterminate in choosing
the projection rules can be decreased. From this viewpoint, we introduce the
condition of dominated.

Definition 5. Let {〈P (sj
1, . . . , s

j
r), t

j〉 | 1 ≤ j ≤ m} be a reduced expression of
〈Φ, φ〉 on P . Then

(1) An atom P (sj
1, . . . , s

j
r) is simplex if it contains bound variables, then s

j
i 6=

s
j
i′(1 ≤ i, i′ ≤ r) holds for any j(1 ≤ j ≤ m). A schema Φ is simplex if each

atom of Φ is simplex.
(2) An atom P (sj

1, . . . , s
j
r) is linear if each bound variable of the atom occurs at

most once in the atom. A schema Φ is linear if each atom of Φ is linear.

(3) A set of atoms {P (sj
1, . . . , s

j
r) | (1 ≤ j ≤ m)} is dominated if sj

i 6= s
j′

i (1 ≤

j, j′ ≤ m) holds for some i(1 ≤ i ≤ r), then at least a s ∈ {sj
i | 1 ≤ j ≤ m}

contains bound variables. A schema Φ is dominated if each atom set of Φ
with the same head is dominated.

Let Φ1, Φ2, Φ3 be schemas such that:






Φ1 = ∀xy.P (x, y, xa, xb) ⊃ P (xa, xb, xa, xb)
Φ2 = ∀x.P (x, f(x), xa, xb) ⊃ P (xa, xa, xa, xa)
Φ3 = ∀xy.P (x, y, xa, xa) ⊃ P (xa, xa, xa, xb)







Then Φ1 is simplex, dominated and linear. Φ2 is simplex. However, it is not
dominated since the 4th component of its atoms are different (xb 6= xa), but no
bound variables occurs in the 4th component of both atoms. It is not linear since
x occurs twice in ∀x.P (x, f(x), xa, xb). Φ3 is not simplex since xa occurs twice
in ∀x.P (x, f(x), xa, xa), but is dominated and linear.

Note that these restrictions don’t reduce the expressive power of schemas.
For example,∀x.P (x) matches with
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∀x.p(x, f(x), a),
∀x∃y.q(y, f(x), a),
∀x.(∃y.p(x, f(y), a) ∧ ∀y∃z.q(x, y, z))
. . . . . .















Example 6. (Simplex,Linear,Dominated)
(1) Let E1 = {〈H(Ff (xa), f(a)〉, 〈H(Ff (xa), f(b)〉}. This is simplex, linear and
dominated. Here, we have uE1=?

∅(i.e., reduced from f{1}(?∅)} ). In this case,
no matchers is derived.

(2) Let E2 = {〈H(Ff (xa), xa), f(a)〉, 〈H(Ff (xb), xb), f(b)〉. This is simplex and
linear. However, this is not dominated since Ff (xa) 6= Ff (xb) but both contains
no bound variables. Here, we have uE2=f

{1}(?{2}). In this case, matchers are
not unique.

We call a schema Φ which satisfies all the conditions of simplex, dominated
and linear s-d-l schema.

Next, we estimate the time complexity of MatchI . The sub-procedures (1)
can be done in linear time and (2) is O(r· | E |) as stated in section 3. The
other procedures except for (3-1) are linear. We need consistency check when
projections rules are applied. In case of s-d-l schema matching, the projection
rules which must be applied are uniquely decided. Hence, the time complexity
of the s-d-l schema matching is at most O(| E |2).

Theorem 4. Let Φ be a s-d-l schema. Then MatchI derives a unique matcher
of E in time O(| E |2) if E is matchable.

Especially, if the maximal arity of atoms in schemas is fixed to be constant, then
the time complexity of the s-d-l schema matching becomes linear.

Example 7. Let E be a matching pair 〈Φ,ϕ〉 such that






Φ = P (xc) ∧ ∀x.(P (x) ⊃ P (f(x))) ⊃ P (f(f(xc))).
φ = (p(0) ∧ q(0)) ∧ ∀x.(p(x) ∧ q(x) ⊃ p(suc(x)) ∧ suc(x))

⊃ (p(suc(suc(0))) ∧ q(suc(suc(0)))







Note that this is a s-d-l schema. At first, we have the following reduced form:

E =















〈P1(xc), p(0)〉 〈P1(w), p(w) 〉,
〈P1(Ff (w)), p(suc(w))〉, 〈P1(f(f(xc))), p(suc(suc(0)))〉
〈P2(xc), q(0)〉 〈P2(w), q(w) 〉
〈P2(Ff (w)), q(suc(w))〉, 〈P2(Ff (Ff (xc))), q(suc(suc(0)))〉















Then we have the reduced indexed terms such that :
{

uE1 = p∅(?{1}), uE2 = q∅(?{1}).
}

Hence, we have the following substitutions

{P1 := λu1.p(u1), P2 := λu2.q(u2), Ff := λv.suc(v), xc := 0}.

Finally, we have the matcher

[P := λu1u2.p(u1) ∧ q(u2), Ff := λv.suc(v), xc := 0}

.
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5 Discussion

We have discussed the second order predicate schema matching motivating to ap-
ply it to the schema guided theorem proving. We proposed an algorithm MatchI

based on the projection position indexing and showed a class in which MatchI

derives a unique matcher in square time on the input size. The restrictions on
syntax of schema introduced to improve the computational efficiency also relate
to the the provability of schemas. The study from this viewpoint should be done
further.

The proposed matching algorithm is implemented and is used in the schema
guided theorem prover which we have developed. For a given formula,the system
searches a matchable schema, and derives a matcher if matchable schema exists.
By applying the matcher to the schema, a proof of the input formula is produced.

Fig. 1. Schema matching system

The algorithm works satisfactory and the class which we have introduced in
this paper covers enough schemas for our system. Thus the second order match-
ing is very complex in general, but is useful if we impose adequate restrictions.
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Abstract. The event calculus is a powerful and highly usable formalism for rea-

soning about action and change. The discrete event calculus limits time to in-

tegers. This paper shows how discrete event calculus problems can be encoded

in first-order logic, and solved using a first-order logic automated theorem prov-

ing system. The following techniques are discussed: reification is used to convert

event and fluent atoms into first-order terms, uniqueness-of-names axioms are

generated to ensure uniqueness of event and fluent terms, predicate completion

is used to convert second-order circumscriptions into first-order formulae, and a

limited first-order axiomatization of integer arithmetic is developed. The perfor-

mance of first-order automated theorem proving is compared to that of satisfia-

bility solving.

1 Introduction

The event calculus (EC) [1] is a powerful and highly usable formalism for reasoning

about action and change, which is rapidly finding application in such areas as natural

language processing [2] and robotics [3]. Kowalski and Sergot [4] introduced the orig-

inal event calculus, which was expressed as a logic program, and Shanahan and Miller

introduced axiomatizations of the event calculus in first-order logic [5, 6].

The discrete event calculus (DEC) was developed by Mueller [7] in order to facil-

itate solution of event calculus reasoning problems using satisfiability (SAT) solvers.

DEC facilitates this by

– limiting time to the integers to allow a SAT encoding (unlike EC, which allows

continuous time), and

– eliminating triply quantified time from many of the axioms to reduce the size of the

SAT encoding.

Mueller [7] proves that if time is restricted to the integers, then DEC is equivalent to

an EC axiomatization of Miller and Shanahan [6]. The DEC axioms are given in the

appendix of this paper. The predicates used in the axioms are:

– happens(E, T ): Event E occurs at timepoint T .

– holdsAt(F, T ): Fluent F is true at T .

– releasedAt(F, T ): F is released from the commonsense law of inertia at T .
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– initiates(E,F, T ): If E occurs at T , then F is true and not released at T + 1.

– terminates(E,F, T ): If E occurs at T , then F is false and not released at T + 1.

– releases(E,F, T ): If E occurs at T , then F is released at T + 1.

– trajectory(F1, T1, F2, T2): If F1 is initiated by an event that occurs at T1, and T2 is

greater than zero, then F2 is true at T1 + T2.

– antiTrajectory(F1, T1, F2, T2): If F1 is terminated by an event that occurs at T1,

and T2 is greater than zero, then F2 is true at T1 + T2.

Since the introduction of the EC and DEC axiomatizations, several event calculus

reasoning systems have been implemented, including:

– Shanahan’s EC planner [8], which uses abductive logic programming,

– Shanahan and Witkowski’s EC planner [9], which uses SAT solvers, and

– Mueller’s DEC reasoner [10], which uses SAT solvers.

In this paper, we demonstrate the feasibility of using first-order logic automated

theorem proving (ATP) systems [11] to solve event calculus reasoning problems. To

our knowledge, this is the first time this has been done. We limit ourselves here to

discrete time.

Our long-term goal is to develop a collection of systems for solving event calculus

reasoning problems, both discrete and continuous, using both ATP and SAT. Depending

on the user’s problem and needs, one or more of these systems can be selected. The chief

benefit of ATP is that it produces humanly-understandable proofs (refutations), while

the chief benefits of SAT are its efficiency and ability to perform abduction and model

finding as well as deduction.

In order to make DEC problems solvable using ATP systems, we

– use reification to convert event and fluent atoms into first-order terms,

– generate uniqueness-of-names axioms to ensure uniqueness of event and fluent

terms,

– use predicate completion to convert second-order circumscriptions into first-order

formulae, and

– use a limited first-order axiomatization of integer arithmetic.

Our method has been tested on two benchmark scenarios for the event calculus,

which together cover many of the features of the event calculus: the supermarket trolley

scenario and the kitchen sink scenario. For some theorems, human assistance in the

form of lemma specifications is required to bring the problems within the reach of the

current state of the art in ATP.

2 Encoding DEC Problems

Encoding DEC problems for ATP systems requires solving several technical and prac-

tical problems, which are discussed in this section. The techniques are described using

examples from the kitchen sink scenario, in which a stopper is put into the drain of

a kitchen sink and the water is turned on (the scenario is fully specified later in this

paper).
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2.1 Reification

In a first-order logic language, the proposition that the water level of a sink is

2, is represented using an atom such as waterLevel(2). In the event calculus,

the truth of this proposition at timepoint 3 is represented using an atom such as

holdsAt(waterLevel(2), 3). However, this is not a well-formed first-order logic formula

if waterLevel(2) is an atom, since the first argument to the predicate symbol holdsAt is

not a term. Similarly, happens(tapOn, 0) is not well-formed if tapOn is a proposition.

The event calculus therefore uses the technique of reification [12], in which formulae

of one first-order language become terms of another first-order language.

Reification for the event calculus uses techniques originally developed for the situa-

tion calculus by Lifschitz [13], which were adapted for the event calculus by Shanahan

[5]. Flat sorted first-order logic languages are used, with sorts for fluents, events, and

timepoints, and additional sorts as required by the scenario under consideration. Each

DEC predicate and function has a sort signature that defines the sorts of its arguments.

These signatures are specified for each of the DEC predicates in the introduction of this

paper, e.g., the arguments of holdsAt are of sort fluent and timepoint, and the arguments

of happens are of sort event and timepoint. Atoms of the non-reified language become

terms of the reified language, and their sort is determined by their function symbol as

either event or fluent, e.g., waterLevel terms are of sort fluent, and tapOn terms are of

sort event.

Conformance to the sort signatures is ensured in an ATP system’s reasoning

through the conformance of the axioms and conjecture to the sort signatures, and

the one-to-one unification of atoms’ arguments. Note, however, that while this pre-

vents the deduction of anomalies such as holdsAt(tapOn, waterLevel(3)), it does not

allow deduction of the negations of such anomalies, e.g., it is not possible to deduce

¬holdsAt(tapOn, waterLevel(3)).

2.2 Unique Fluent and Event Objects

With the use of reification, it is necessary to add uniqueness-of-names axioms to ensure

that fluent and event terms denote unique objects. We use the U notation of Lifschitz

[13], in which U[f1, . . . , fk] is a notational shorthand for the set of axioms

fi(x1, . . . , xn) 6= fj(y1, . . . , ym),
fi(x1, . . . , xn) = fi(y1, . . . , yn) ⇒ (x1 = y1 ∧ . . . ∧ xn = yn),

where fi is an n-ary function symbol, fj is an m-ary function symbol, and

x1, . . . , xm, y1, . . . , yn/m are distinct variables, for every i, j ∈ {1, . . . , k} such that

i < j.

The axioms given by U[f1, . . . , fm] and U[e1, . . . , en] are added to each scenario’s

axiomatization, where f1, . . . , fm are the fluent function symbols and e1, . . . , en are

the event function symbols. For example, if the fluent function symbols are waterLevel

and waterVolume, we add U[waterLevel, waterVolume]. From this, we can show, for

example, that waterLevel(2) 6= waterVolume(2) and waterLevel(2) 6= waterLevel(3)
(since 2 6= 3).
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2.3 Circumscription

Consider the following scenario axioms:

∀T initiates(tapOn, filling, T ),
∀T terminates(tapOff, filling, T ),
happens(tapOn, 0).

These axioms specify events that initiate and terminate fluents, and a tapOn event.

However, they do not specify what events do not initiate and terminate particular flu-

ents, and they do not specify what events do not occur. Thus there are models of

the DEC and these axioms in which, e.g., ∀T terminates(waterOutage, filling, T ) and

happens(waterOutage, 1) are true. The event calculus uses minimization of the exten-

sion of a predicate, or circumscription [14], to minimize unexpected effects of events

and unexpected event occurrences, by minimizing the extensions of the predicates

initiates, terminates, releases, and happens.

Computing circumscription is in general difficult [15]. The circumscription of a

predicate in a first-order formula is defined by a second-order formula, and is not al-

ways equivalent to a first-order formula [16]. Fortunately, in many cases, including the

benchmark scenarios considered in this paper, the circumscription can be computed

using the following theorem [16, 17], which reduces circumscription to predicate com-

pletion:

Theorem 1. Let ρ be an n-ary predicate symbol and Γ (x1, . . . , xn) be a formula with

only x1, . . . , xn free. If Γ (x1, . . . , xn) does not mention ρ, then the circumscription

CIRC[∀x1, . . . , xn (Γ (x1, . . . , xn) ⇒ ρ(x1, . . . , xn)); ρ]

is equivalent to

∀x1, . . . , xn (Γ (x1, . . . , xn) ⇔ ρ(x1, . . . , xn)).

2.4 Arithmetic

Problems in the event calculus include the use of integer arithmetic, e.g., to increment

timepoints. Integer arithmetic is in general an undecidable theory, although fragments

are decidable. General purpose first-order axiomatizations of integer arithmetic, such

as Peano arithmetic, may produce very large search spaces and very large terms, which

hinder the performance of ATP systems. An alternative approach is to make a computer

algebra system available to an ATP system as a trusted external tool, and to have the

ATP system recognize arithmetic expressions and relegate their solution to the computer

algebra system [18].

For this work a first-order axiomatization of a small fragment of integer arithmetic

has been encoded as first-order logic axioms. The axioms capture the notions of equal-

ity, addition, and order, for the integers 0 to 9. Equality is dealt with through standard

equality theory. The axioms for addition and order are listed below.

– Addition is dealt with by enumerating the results of adding all pairs of ordered

integers, and providing the axiom of symmetry.
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– Ordering is described by axioms that specify the adjacent pairs of integers in con-

junction with a recursive definition of transitivity via the ≤ definition.

– The transitive sequence of ordered pairs is terminated by the axiom that specifies

that there is nothing less than 0.

– The totality of the relationship between all pairs of integers is enforced by the last

axiom.

– The last axiom also specifies that ordered integers are unequal (which is analogous

to the uniqueness-of-names axioms generated for fluents and events).

0 + 0 = 0,

0 + 1 = 1,

. . .

8 + 1 = 9,

∀X, Y X + Y = Y + X ,

∀X, Y (X ≤ Y ⇔ (X < Y ∨ X = Y )),
∀X (X < 1 ⇔ X ≤ 0),
. . .

∀X (X < 9 ⇔ X ≤ 8),
¬∃X X < 0,

∀X, Y (X < Y ⇔ (¬(Y < X) ∧ Y 6= X)).

Note that only the “less” inequalities are used, with “greater” being expressed by

reversal of arguments and negation.

3 Testing

The above encoding techniques have been tested on two benchmark scenarios. In each

case the axioms for the particular scenario are preprocessed by adding the necessary

uniqueness-of-names axioms and performing the necessary predicate completions. The

preprocessed axioms are then added to the DEC and integer arithmetic axioms. A con-

jecture formula is then added to produce a first-order ATP problem. The formulae are

written in the TSTP syntax [19], ready for submission to an ATP system. The ATP

problems were submitted to the ATP system Vampire 7.0 [20]. Vampire is acknowl-

edged to be a state-of-the-art ATP system—Vampire 7.0 won the FOF division of the

2004 CADE ATP system competition [21]. Initial testing was also performed using

other ATP systems, including E [22] and SPASS [23], and the results showed that Vam-

pire consistently outperforms those systems on these problems. Testing was done on a

Dell P3 computer, with a 930 MHz CPU, 512 MB of memory, and the Linux 2.4.20-6

operating system. A CPU time limit of 300s was imposed on each run.

3.1 The Supermarket Trolley Scenario

The supermarket trolley scenario, introduced by Shanahan [5], is used to test the

handling of concurrent events with cumulative and canceling effects. The scenario is

as follows: If a trolley is pushed, it moves forward. If it is pulled, it moves backward.
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If the trolley is simultaneously pulled and pushed, it spins around. The axiomatization

of this problem is that of Shanahan [5], reformulated using the technique of Miller and

Shanahan [6], which involves adding happens preconditions to initiates and terminates

axioms. The axiomatization is preprocessed to:

Circumscribed initiates axioms

∀E,F, T (initiates(E,F, T ) ⇔
((E = push ∧ F = forwards ∧ ¬happens(pull, T )) ∨
(E = pull ∧ F = backwards ∧ ¬happens(push, T )) ∨
(E = pull ∧ F = spinning ∧ happens(push, T )))).

Circumscribed terminates axioms

∀E,F, T (terminates(E,F, T ) ⇔
((E = push ∧ F = backwards ∧ ¬happens(pull, T )) ∨
(E = pull ∧ F = forwards ∧ ¬happens(push, T )) ∨
(E = pull ∧ F = forwards ∧ happens(push, T )) ∨
(E = pull ∧ F = backwards ∧ happens(push, T )) ∨
(E = push ∧ F = spinning ∧ ¬happens(pull, T )) ∨
(E = pull ∧ F = spinning ∧ ¬happens(push, T )))).

Circumscribed releases axioms

∀E,F, T ¬releases(E,F, T ).

Circumscribed event occurrences

∀E, T (happens(E, T ) ⇔
((E = push ∧ T = 0) ∨ (E = pull ∧ T = 1) ∨
(E = pull ∧ T = 2) ∨ (E = push ∧ T = 2))).

Uniqueness-of-names axioms for events

push 6= pull.

Uniqueness-of-names axioms for fluents

forwards 6= backwards,

forwards 6= spinning,

spinning 6= backwards.

Initial conditions

¬holdsAt(forwards, 0),
¬holdsAt(backwards, 0),
¬holdsAt(spinning, 0),
∀F, T ¬releasedAt(F, T ).

The axiomatization of the supermarket trolley scenario consists of 47 axioms

(23 axioms for integer arithmetic, 12 axioms for DEC, 8 axioms for the domain theory,

and 4 axioms for initial conditions).
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Given the above axioms, the DEC axioms, and the integer arithmetic axioms, Vam-

pire is quickly (less than 1s each) able to prove the theorems:

¬holdsAt(spinning, 1),
holdsAt(backwards, 2),
¬holdsAt(forwards, 2),
¬holdsAt(spinning, 2),
¬holdsAt(backwards, 3),
¬holdsAt(forwards, 3),
holdsAt(spinning, 3).

3.2 The Kitchen Sink Scenario

The kitchen sink scenario, introduced by Shanahan [24], is used to test initiates and

terminates axioms representing the effects of events, releases axioms representing

release from the commonsense law of inertia, trajectory axioms representing gradual

change, trigger axioms representing triggered events, and state constraints. In this

scenario, a stopper is put into the drain of a kitchen sink and the water is turned on.

The task is to perform temporal projection, a form of deduction, in order to infer that

the water level will rise, the water level will reach the rim of the sink, and then the

water will overflow and start spilling. The axiomatization of this problem is taken from

Shanahan [5], and preprocessed to:

Circumscribed initiates axioms

∀E,F, T (initiates(E,F, T ) ⇔
((E = tapOn ∧ F = filling) ∨
(E = overflow ∧ F = spilling) ∨
∃H (holdsAt(waterLevel(H), T ) ∧ E = tapOff ∧
F = waterLevel(H)) ∨
∃H (holdsAt(waterLevel(H), T ) ∧ E = overflow ∧
F = waterLevel(H)))).

Circumscribed terminates axioms

∀E,F, T (terminates(E,F, T ) ⇔
((E = tapOff ∧ F = filling) ∨
(E = overflow ∧ F = filling))).

Circumscribed releases axioms

∀E,F, T (releases(E,F, T ) ⇔
∃H (E = tapOn ∧ F = waterLevel(H))).

Circumscribed event occurrence and trigger axiom

∀E, T (happens(E, T ) ⇔ ((E = tapOn ∧ T = 0) ∨
(holdsAt(waterLevel(3), T ) ∧ holdsAt(filling, T ) ∧
E = overflow))).
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Trajectory axiom

∀H1, T1, H2, O ((holdsAt(waterLevel(H1), T1) ∧
H2 = H1 + O) ⇒ trajectory(filling, T1, waterLevel(H2), O)).

State constraint

∀T,H1, H2 ((holdsAt(waterLevel(H1), T ) ∧
holdsAt(waterLevel(H2), T )) ⇒ H1 = H2).

Uniqueness-of-names axioms for events

tapOff 6= tapOn,

tapOff 6= overflow,

overflow 6= tapOn.

Uniqueness-of-names axioms for fluents

∀X filling 6= waterLevel(X),
∀X spilling 6= waterLevel(X),
filling 6= spilling,

∀X, Y (waterLevel(X) = waterLevel(Y ) ⇔ X = Y ).

Initial conditions

holdsAt(waterLevel(0), 0),
¬holdsAt(filling, 0),
¬holdsAt(spilling, 0),
∀H ¬releasedAt(waterLevel(H), 0),
¬releasedAt(filling, 0),
¬releasedAt(spilling, 0).

The axiomatization of the kitchen sink scenario consists of 54 axioms (23 ax-

ioms for integer arithmetic, 12 axioms for DEC, 13 axioms for the domain theory, and

6 axioms for initial conditions).

These axioms, in conjunction with the DEC axioms and the integer arithmetic ax-

ioms, form a specification of the problem for times and heights within the axiomatized

integer range. Various theorems that describe the state of the system at specified times

can be proved directly from the axioms, including (the CPU times taken are given in

()s):

holdsAt(filling, 1) (1s)

holdsAt(waterLevel(1), 1) (2s)

holdsAt(filling, 2) (3s)

holdsAt(waterLevel(2), 2) (3s)

¬∃E (happens(E, 2) ∧ terminates(E, filling, 2)) (42s)

holdsAt(waterLevel(3), 3) (104s)

¬stoppedIn(0, filling, 3) (110s)

holdsAt(filling, 3) (174s)
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For more complex theorems such as:

happens(overflow, 3),
¬holdsAt(filling, 4),
holdsAt(waterLevel(3), 4),
holdsAt(spilling, 4),

Vampire was unable to prove them directly from the axioms within the 300s time limit.

For each of these it was necessary to specify which of the previously proved theorems

should be used as lemmas, so that the harder theorem could be proved from the axioms

and lemmas. Such an incremental approach to proving hard theorems has been used in

previous ATP applications, e.g., Art Quaife’s development of Neumann-Bernays-Godel

set theory [25]. Figure 1 shows the lemma structure used, leading to proofs of the most

difficult theorems. Each link shows the CPU time taken to prove the lemma or theorem.

When proving the theorems, the axioms as well as the indicated lemmas are used.

Fig. 1. Lemmas for the Kitchen Sink Theorems

holdsAt(waterLevel(3),3) holdsAt(filling,3)

happens(overflow,3)

holdsAt(spilling,4)

holdsAt(filling,4)

holdsAt(waterLevel(3),4)

axioms

104s 174s

1s83s9s 110s

3.3 ATP vs. SAT

In this section we compare the performance of ATP and a SAT-based DEC reasoner

[10] on a version of the supermarket trolley scenario with n agents and n trolleys: For

each i in {1, . . . , n}, agent i pushes and pulls trolley i at timepoint 0. The problem

is to prove that for each i in {1, . . . , n}, trolley i spins at timepoint 1. The results are

shown in Table 1. The columns of this table are: (1) n: number of agents and trolleys,

(2) time: wall time for the DEC reasoner, including running the Relsat 2.0 SAT solver,

(3) SAT time: wall time for the SAT solver alone, (4) vars: number of variables in

the SAT problem, (5) clauses: number of clauses in the SAT problem, (6) time: wall

time for Vampire, (7) gclauses: number of generated clauses, and (8) rclauses: number

of retained clauses. Times here are elapsed wall-clock time in seconds, averaged over

10 trials, on an IBM T30 computer, with a 1.8 GHz Intel Pentium 4 CPU, 512 MB of

memory, and the Linux 2.4.9-31 operating system. Though SAT is more efficient than

ATP for this scenario, ATP has the benefit that the derivation retains meaning and can

be understood by humans.
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DEC reasoner Vampire

n time SAT time vars clauses time gclauses rclauses

1 0.2 0.0 16 70 1.0 12,791 3,828

2 0.3 0.0 61 328 1.1 13,002 4,003

4 0.7 0.0 190 1,084 1.4 13,637 4,350

8 2.4 0.1 625 3,562 7.8 79,754 5,091

9 3.0 0.1 765 4,446 26.0 276,582 5,287

10 3.9 0.1 919 5,428 fail

Table 1. DEC reasoner (SAT) vs. Vampire (ATP) on supermarket trolley problems (wall times in

seconds)

4 Related Work

The general topic of commonsense reasoning is widely and deeply studied. It includes

work that uses automated reasoning, whose roots are in John McCarthy’s paper “Pro-

grams with Common Sense” [26]. The use of automated reasoning techniques in com-

monsense reasoning produced significant output, including, e.g., a special issue of the

Journal of Automated Reasoning [27]. Despite the high level of activity, there appears

to be little work on performing commonsense reasoning using classical first-order logic

ATP systems. A similar state of affairs appears to exist in the subfield of reasoning

about action and change. Existing systems for reasoning about action and change use

task-specific logics and reasoning techniques, including: active logic reasoning [28],

abductive logic programming [8], answer set computing algorithms [29], argumenta-

tion programming [30], model finding via constraint propagation [31], and SAT solving

[32, 10, 9].

Planning is one type of reasoning about action and change in which first-order ATP

systems have been employed. Green [33] implemented a system that used resolution

theorem proving for planning. Citing performance problems with Green’s system, Fikes

and Nilsson [34] introduced STRIPS, which used means-ends analysis to search the

space of plans, and resolution theorem proving only for proving subgoals and opera-

tor preconditions. Kautz and Selman [35] demonstrated the efficiency of SAT solving

for planning. Modern planning systems use a variety of techniques including planning

graph analysis, forward heuristic search, SAT solving, model checking, and planning

by rewriting [36]. The TPTP problem library [37] contains a planning domain with 38

planning problems solved by ATP systems.

5 Conclusions

This paper shows, with techniques and examples, how DEC reasoning problems can be

encoded in first-order logic. Solutions to the technical issues regarding the translation

of DEC problems into pure first-order logic have been found, and the resulting ATP

problems have been successfully tackled with a state-of-the-art ATP system. The result

is a new and practical technology for solving DEC problems.
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The DEC problems are a reasonable challenge for ATP systems, from two perspec-

tives. First, the use of arithmetic requires either an axiomatic solution (as described in

this work), or the integration of arithmetic capabilities into the ATP system. Both of

these alternatives are the focus of research in the ATP community, and this work in

DEC further motivates that research. We are already in the process of replacing the

small fragment of integer arithmetic, described in Section 2.4, with a more robust ax-

iomatization of equality, addition, and order for byte arithmetic. The real arithmetic

that is necessary for non-discrete time will be implemented using the built-in arithmetic

capabilities of an ATP system, such as Otter [38]. To make ATP systems more applica-

ble, it will be important for the ATP community to address the issue of standardizing

mechanisms for built-in arithmetic.

Second, in the form described in this paper, the problems are suitable for testing ATP

systems, because they lie at the frontier of the current state of the art. The problems have

been incorporated into version 3.1.0 of the TPTP problem library [37] in a new domain

focusing on commonsense reasoning.

In the future it is planned to extend this work to the standard event calculus, in

which time is not forced to be discrete. We also plan to investigate the possibility of

transforming problems into those with a finite Herbrand universe, so that specialized

EPR (effectively propositional) solvers can be used.

6 Appendix: Discrete Event Calculus Axioms

The following DEC axioms were formed by Mueller [7], by introducing the new

axioms DEC5 through DEC12, and adding them to the existing axioms DEC1 through

DEC4 of Miller and Shanahan [6]:

Axiom DEC1

∀T1, F, T2 (stoppedIn(T1, F, T2) ⇔
∃E, T (T1 < T < T2 ∧ happens(E, T ) ∧ terminates(E,F, T ))).

Axiom DEC2

∀T1, F, T2 (startedIn(T1, F, T2) ⇔
∃E, T (T1 < T < T2 ∧ happens(E, T ) ∧ initiates(E,F, T ))).

Axiom DEC3

∀E, T1, F1, T2, F2 ((happens(E, T1) ∧ initiates(E,F1, T1) ∧ 0 < T2 ∧
trajectory(F1, T1, F2, T2) ∧ ¬stoppedIn(T1, F1, T1 + T2)) ⇒
holdsAt(F2, T1 + T2)).

Axiom DEC4

∀E, T1, F1, T2, F2 ((happens(E, T1) ∧ terminates(E,F1, T1) ∧ 0 < T2 ∧
antiTrajectory(F1, T1, F2, T2) ∧ ¬startedIn(T1, F1, T1 + T2)) ⇒
holdsAt(F2, T1 + T2)).
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Axiom DEC5

∀F, T ((holdsAt(F, T ) ∧ ¬releasedAt(F, T + 1) ∧
¬∃E (happens(E, T ) ∧ terminates(E,F, T ))) ⇒
holdsAt(F, T + 1)).

Axiom DEC6

∀F, T ((¬holdsAt(F, T ) ∧ ¬releasedAt(F, T + 1) ∧
¬∃E (happens(E, T ) ∧ initiates(E,F, T ))) ⇒
¬holdsAt(F, T + 1)).

Axiom DEC7

∀F, T ((releasedAt(F, T ) ∧
¬∃E (happens(E, T ) ∧ (initiates(E,F, T ) ∨ terminates(E,F, T )))) ⇒
releasedAt(F, T + 1)).

Axiom DEC8

∀F, T ((¬releasedAt(F, T ) ∧
¬∃E (happens(E, T ) ∧ releases(E,F, T ))) ⇒
¬releasedAt(F, T + 1)).

Axiom DEC9

∀E, T, F ((happens(E, T ) ∧ initiates(E,F, T )) ⇒ holdsAt(F, T + 1)).

Axiom DEC10

∀E, T, F ((happens(E, T ) ∧ terminates(E,F, T )) ⇒ ¬holdsAt(F, T + 1)).

Axiom DEC11

∀E, T, F ((happens(E, T ) ∧ releases(E,F, T )) ⇒ releasedAt(F, T + 1)).

Axiom DEC12

∀E, T, F ((happens(E, T ) ∧ (initiates(E,F, T ) ∨ terminates(E,F, T ))) ⇒
¬releasedAt(F, T + 1)).
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1 Introduction

The representation of mathematical objects in deduction systems is often dic-
tated by the requirements of the formalism and logic of a particular system. For
instance, natural numbers are often represented in terms of successors of zero or
lists of numbers are recursively concatenated via constructor functions. While
these representations are generally suitable for reasoning about properties of the
abstract mathematical concept they are often a hindrance when dealing with
concrete objects, i.e., instances of the abstract concept, and their computational
properties. Not only are the representations often rather detached from the in-
formal mathematical vernacular but also from a representation that is suitable
for direct computational manipulation. Moreover, it is often already difficult to
automatically identify these objects inside complex formulas.

When we take a look at typical representations in mathematics it seems that
information about the objects is attached to the object itself. It starts with the
choice of letters: a seems to be a better notation for an element of the set A than
any other letter, capital letters denote sets, G stands for a group in the context
of group theory, n and m are the ‘typical’ arbitrary natural numbers. Formal
systems are able to attach this kind of information to objects by using types, and
make it possible to identify objects or properties by their type. Other represen-
tations are harder to model, e.g., associativity of an operation is remembered by
forgetting the brackets, ‘+’ is used for different addition-like operations.1 These
observations suggest a more object oriented approach: Namely, to store infor-
mation about an object at the object itself rather than in detached procedures,
for instance, of the interface. This also eases the identification of certain objects,
for example in complex formulae, and the reuse of information on the objects
for different purposes.

To capture the information connected to certain mathematical representa-
tions we have introduced the data structure of annotated constants [10] (see
Sec. 3). It handles particular classes of objects that are given in a functional rep-
resentation in a logic language but that should be treated as constants from a

1 Overloading allows to reuse symbols but does not help to reuse the knowledge about
the symbols.
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mathematical point of view. Annotated constants replace functional objects with
logical constants that contain the information on the actual object as annota-
tion. The annotation allows on the one hand to reconstruct the original object,
should it be necessary, in the formal proof. On the other hand it enables the
recognition of the object by specialised proof rules as well as to perform efficient
manipulations and computations on the objects represented. We will present two
examples for mathematical concepts captured by annotated constants in Sec. 2.

We have implemented several classes of annotated constants in the Omega
proof development environment [9] to ease automatic proof construction, mainly
in proof planning scenarios. Besides simple objects like numbers, lists and sets,
we have also experimented with more complex objects such as matrices [11] and
permutations [2]. In particular, when automatically certifying computer algebra
algorithms in Omega a large number of concrete mathematical objects can be
handled efficiently using annotated constants. Unfortunately, the spectrum of
objects that can be handled by annotated constants in their current form is re-
stricted to concrete terms, that is, terms that do not contain variables. However,
it is often desirable to also identify a term containing variables as a particular
mathematical object. For instance, we would like to distinguish set objects even
though they contain variables, in order to perform efficient set manipulation on
them. We therefore extend our notion of annotated constants to that of anno-

tated terms (Sec. 4) that allows for terms with variables and show some of the
impacts this has on computations that can be carried out on them. Since our
concrete implementation is within the logical framework of the Omega system
— a simply typed lambda calculus (cf. [1]) — we will present our examples in
this formalism. However, the general concept of annotated constants and terms
is not restricted to a particular logic system.

2 Two Examples

We first examine two examples to motivate our concept of annotated constants.
Commonly deduction systems depend on the use of a finite signature, i.e., a finite
set of constants, functions, and predicate symbols. Therefore, infinite sets of
constants are generally recursively constructed, which means that the individual
objects are given in terms of their construction rather than as the constants they
actually are from a mathematical point of view. This fact makes these objects
not only cumbersome to handle but often difficult to identify. While some objects
such as integers or lists can still be fairly easily identified in their formal logic
representation even when embedded in complex terms, for other constructs this
is not so obvious.

For instance, in lambda calculus formal sets are usually represented as lambda
terms containing a disjunction of equalities. For example, a set of the form
{a, b, c} is represented as λx (x = a ∨ x = b ∨ x = c). It is now not necessarily
obvious whether a lambda term actually represents a finite set or not. Moreover,
equality between sets is independent of the order of its elements. However, the
(syntactic) equality on lambda expression depends on the order.

Another example is the formal representation of matrices. A mathematical
definition for matrix is for instance given in [7, p.441]:
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“By an m×n matrix in R one means a doubly indexed family of elements
of R, (aij), (i = 1, . . . , m and j = 1, . . . , n), usually written in the form

(

a11 · · · a1n

· · ·
am1 · · · amn

)

We call the elements aij the coefficients or components of the matrix.”

Translating this definition into a formal representation is relatively straight-
forward. Depending on the exact logical language, one would consider a matrix
as a tuple consisting of a double indexed function, number of rows, number of
columns, and the underlying ring. For an instance of a concrete matrix one can
then give the function in the following way:

a : i, j −→

{

3, if i = j ∧ i ∈ [1, 2]
1, if i = 1 ∧ j = 2
1, if j = 1 ∧ i = 2

with (aij) =

(

3 1
1 3

)

.

While the functional representation on the left hand side is sufficient to describe a
matrix, it has already lost information implicitly given by the actual matrix rep-
resentation on the right hand side: The definition introduces the representation
as a rectangular form in which the elements of a matrix are ordered with respect
to their indices to make relevant information directly accessible and ease reason-
ing. However, if we look at one representation of the above matrix in lambda cal-
culus, using an if-then-else construct [λi, j if (i = j∧(i = 1∨i = 2)) then 3 else 1]
it is no longer obvious that this even suffices to define a rectangular structure.
Other obvious information, such as symmetry, are also less accessible in the
lambda term. And even accessing components of the matrix will require consid-
erable reasoning.

While some problems arising from the sketched formal representations of
concrete mathematical objects could still be handled by adding some syntactic
sugar and elaborate translation and display facilities, the handling on the term
level would still remain difficult. In particular, for an automated system (e.g.,
an automated theorem prover, a proof planner or a computer algebra system) it
becomes a problem to automatically distinguish which part of the formula consti-
tutes concrete mathematical objects and which not. This is especially important
when we want to avoid semantically incorrect expressions that can arise from
manipulating the functional expression without adhering to constraining condi-
tions. While a sublist can usually be substituted without violating additional
properties, manipulations of matrix expressions need to explicitly preserve the
rectangular nature of the object. Therefore, it is of help if certain terms or sub-
terms can be explicitly marked as concrete mathematical objects that have to
adhere to certain side-conditions. We achieve this by using annotated constants.

3 Annotated Constants

Annotated constants are a mechanism that provides a representational layer that
can both capture the properties of the intuitive mathematical representation of
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objects, as well as connect these objects to their corresponding representation in
a formal logic framework. Annotated constants are implemented in the Omega
system [9] and offer special treatment for simple objects, such as numbers and
lists, but also for more complex structures like permutations [10], matrices, block
matrices and matrices containing ellipses [11]. For the sake of clarity we explain
the idea in the following using the much simpler example of finite sets.

Let us assume a logical language and a ground term t in this logical language.
Let c be a constant symbol with c = t. An annotated constant is then a triple
(c, t, a), in which a is the annotation. The annotation a is any object (making
use of an arbitrary data structure) from which c and t can be reconstructed.
Think of c as the name of the object, t as the representation within logic, and a

as a representation of the object outside logic.

Finite Sets: Finite sets have a special notation in the mathematical vernacular,
for example, the set consisting of the three elements a, b, and c is denoted by
{a, b, c}. We can define this by giving the set a name, e.g., A, and a definition in
logic as a ground term. Important knowledge about sets with which it is appro-
priate to reason efficiently is: sets are equal if they contain the same elements
regardless of their order, or the union of two sets consists of the elements which
are a member of one of the sets and so on. This type of set manipulation has not
so much to do with logical reasoning as it has with computation. The union of
two sets, for instance, can be very efficiently computed and should not be part
of the process of search for a proof.

Annotated constants for finite sets are defined with the attributes

Annotation for finite sets: The data structure of sets of the underlying pro-
gramming language is used as annotation and the elements of the set are
restricted to closed terms, e.g., the set containing the three constants a, b,
and c in the concrete example.

Constant symbol: We give the set a name such as A. Even more appropriate
for our purpose is to generate an identifier from a duplicate free ordering of
the elements of the set, for the example A{a,b,c}.

Definition: The definition of the set corresponds to a lambda term in higher-
order logic, e.g., λx (x=a∨ x=b ∨ x=c). In order to normalise such terms it
is useful to order the elements of the set, that is, we wouldn’t write the term
as λx (x=b ∨ x=a ∨ x=c). Since the annotation has to represent the object
completely the formal definition can be constructed from the annotation.

We use the annotation for the presentation of the concept in a standard
mathematical notation, and the annotation is given as input by the user. The
constant symbol and its definition are chosen according to the annotation. This
means that the sets {a, b, c} and {c, b, a} would be represented by the same
constant symbol because the annotations are equal. With this mechanism it
is possible to implement trivial equalities on annotated constants as syntactic
equality within our object logic.

The basic functionality for handling annotated constants is implemented on
the term level of the Omega system. In first approximation, an annotated con-
stant is a constant with a definition and has the type of its defining term t.
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As such it could be replaced by its defining term during the proof or when ex-
panding the proof to check formal correctness. Typically, this is not done, but
annotated constants are manipulated via their annotations. The defining term
of an annotated term is used only when necessary.

The manipulation of operations and verification of properties is realised as
procedural annotations to functions and predicates. A procedural annotation is
a triple (f,p, T ), where f is a function or predicate of the logical language, p

is a procedure of the underlying programming language with the same number
of arguments as f , and T is a specification (or tactic) for the construction of
a formal proof for the manipulation performed by p. The procedure p checks
its arguments, performs the simplification, and returns a simplified constant or
term together with possible conditions for this operation.

For example, the procedure for the union of concrete sets {a, b} ∪ {c, d}
checks whether the arguments are annotated constants for concrete sets, and
returns the annotated constant which has the concatenation of {a, b} and {c, d}
as annotation. Analogously the property {1, 2, 3} ⊂ Z holds, when all elements
of the annotation of the set are constants which have as annotation an integer
as data structure.

The proof specification T is used to formally justify the performed step.
Thereby an annotated constant is expanded to its formal definition and the
computation is reconstructed by tactic and theorem applications. This expansion
will be done only when a low level formal proof is required, certainly not during
proof search.

What are the advantages of using annotated constants?

Firstly, annotated constants provide an intermediate representation layer be-
tween the intuitive mathematical vernacular and a formal system. With anno-
tated constants it is possible to abstract from the formal introduction of objects,
allow the identification of certain classes of objects and enable the access of rele-
vant knowledge about an object directly. Annotations can be translated into full
formal logic expressions when necessary, but make it possible to work and reason
with mathematical objects in a style that abstracts from the formal construction.

Secondly, annotations allow for user friendly input and output facilities. We
extended Omega’s input language to provide a markup for an annotated con-
stant to indicate the type of the object it represents. For each kind of annotated
constant the term parser is extended by an additional function, which parses
annotations and transforms these annotations into an internal representation.
During parsing additional properties can be checked and errors in the specifica-
tion can be detected. In this way it is possible to extend syntactic type checking.
An additional output function for each kind of annotated constant allows to have
different display forms for presenting formulas to the user.

Thirdly, procedural annotations enable an efficient manipulation of annotated
constants. Theses procedures can access information without further analysis
on (lambda) terms (which define annotated constants formally) and allows to
compute standard functions and relations very efficiently. These operations and
properties become a computation on the data structures of annotated constants.
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4 Annotated Terms

Annotated constants provide a mechanism to encode concrete mathematical ob-
jects as constants for the object logic and at the same time allow the identification
of special objects, the storage of relevant information, and the implementation of
specialised reasoning techniques. However, since the actual term is replaced by a
single constant on the logic level the term is not permitted to contain variables,
as these would no longer be accessible during proof construction. Nevertheless we
would also like to be able to identify terms containing variables as certain types of
mathematical objects. For example, in the theorem ∀x, y x 6= y ⇒ |{x, y}| = 2,

we would like to mark {x, y} as a finite set, and handle it appropriately dur-
ing reasoning and when applying the theorem. Since we cannot use annotated
constants for this, we will extend the concept to annotated terms by making
the components of our annotated constants accessible to our object logic while
retaining most of the features of annotated constants, especially that we have
efficient reasoning techniques connected to special types of mathematical objects.

4.1 Modelling ‘General’ Concrete Objects

For general objects we use a tuple (f(a1, . . . , an), t), where f is an n-ary function
symbol with terms a1, . . . , an as arguments and t is an n-ary term that denotes
the definition of f . For annotated constants it is necessary to attach relevant
information as annotation to the constant, now we use f to identify the kind of
object, which has a1, . . . , an as its components.

Finite Sets: With annotated constants we encoded the whole object {a, b, c} as
constant of the object logic. Now we take a function symbol to identify finite
sets.

Formal term: For the given number of elements n we use a function symbol
Sn that takes the elements of the finite set as arguments. For our example
the term S3(a, b, c) is the formal representation of the finite set {a, b, c}.

Definition: In the simply typed lambda-calculus the function Sn can be defined
as λx1, . . . , xn, y (y=x1 ∨ · · · ∨ y=xn). The expansion of the definition yields
the term λy (y=a ∨ y=b ∨ y=c) for our example.

As for annotated constants, the finite set is given by its elements as input by
the user, a unique function symbol Sn is added to the signature during parsing.
The existence of more than one function symbol is only a technical detail, as
long as we can identify the Sn for arbitrary n as markup for finite sets. In fact,
Sn can again be modelled as a annotated constant and therefore generated on
the fly for arbitrary n.

The formal term and especially the function symbol do not change the un-
derlying logic formalism. The function Sn can be seen as a place holder for the
definition from the viewpoint of the object logic, but at the same time allows
the identification of the type of the object.
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Concrete Matrices: Analogous to finite sets we introduce function symbols for
the identification of matrices.

Formal term: For a matrix of dimension m × n there is a m · n-ary function
Mm×n which takes the elements of the matrix as arguments. The formal

term for the matrix

(

3 2 7
1 0 4

)

is M2×3(3, 2, 7, 1, 0, 4).

Definition: The corresponding defining term for Mm×n is a double indexed
function which contains all the cases for the single elements, in our example
the formal term would be expanded into

λiλj if i = 1 ∧ j = 1 then 3 elseif i = 1 ∧ j = 2 then 2
elseif i = 1 ∧ j = 3 then 7 elseif i = 2 ∧ j = 1 then 1
elseif i = 2 ∧ j = 2 then 0 else 4.

4.2 Functionality

With the change of the formal representation from constants to terms, the term
can be manipulated by tactics that are not aware of the special annotation.
Therefore the interpretation of the object as a data structure has to be generated
from the formal term when a tactic wants to access the annotation. This is less
efficient but it avoids the analysis of arbitrary terms.

For special representations containing concrete mathematical objects, we ex-
pressed trivial equalities of the annotation as syntactic equality for the formal
object, because we use the same constant whenever the annotation is equal.
For annotated terms we have to treat equality in the mechanism for procedural
annotations as described in Sec. 3.

The motivation for the implementation of annotated constants is that certain
classes of objects allow for efficient reasoning techniques, this is also true for the
extended representation. Consider the simple problem ({1, 2, x} ∪ {2, 3, y}) ⊂ Z

with variables x and y, which is given to the evaluation mechanism. The union
of finite sets is a procedure that creates finite sets consisting of the duplicate free
members of the input sets. Since it is not known whether x = y, both elements
appear in the resulting problem {1, 2, 3, x, y} ⊂ Z. Now the subset relation for
finite sets can be reduced to the element relation for all members of the finite set.
This is an instance of a more general reasoning technique connected with finite
sets: to show that a property holds for the elements of a finite set, check the
property for evey element in the set. The applicability of this technique depends
on the finiteness of the set, which can be directly identified with our annotated
terms. The resulting element relations i ∈ Z for i ∈ {1, 2, 3} are trivial because
integers are represented by annotated terms. However, the evaluation cannot
show x ∈ Z or y ∈ Z and returns both as new subproblems.

With the presence of variables, we can now express unification problems
on our representation. It is well-known that purely syntactic theory unification
procedures are undecidable. On the other hand there exist efficient algorithms
for many theories. With annotated terms we are able to identify the theory for
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which we have to solve a unification problem. For finite sets, for example, we
can use procedures for ACI-unification [4].2

5 Discussion

With annotated terms we attach semantic information to terms. This allows us
to distinguish between mathematical objects for which efficient computational
algorithms exist and objects which have to be treated purely by deduction. The
criterion for this distinction is the form in which the object is given and not the
properties of the object. For example, in the object logic it is not possible to
define a predicate (i.e., a sort) that distinguishes between finite sets given by its
elements from other representations of finite sets. So the distinction cannot be
expressed inside the object logic but it is necessary to express it as extra-logical
annotation.

The only other approach that does not leave the formal language is to for-
malise the data structure for special objects itself and its interpretation as theory
in the object logic. So all manipulations on the data structure have to be ex-
plicitly performed and justified by proofs. Unless the proof system supports a
high degree of automation for data structures this can be a tedious task. In
our approach we only have to reconstruct the operation for the formal object,
which is usually easier than to perform the manipulation itself. An example for
a framework with a high degree of automation for data structures is the Cal-
culus of Inductive Construction [3] implemented in the Coq system [5], where
inductively defined operations can be executed without proof obligations. The
advantage of our approach is that it does not depend on a specific formal system.

There exists related work in which computation is integrated into formal
reasoning, for example, the integer arithmetic in the type theory of NuPRL [6],
and evaluation for functions for certain terms in the automated theorem prover
Otter [8]. We applied this idea to other classes of objects and operations on these
objects and think that the possibility to introduce new classes is an important
feature to model the flexibility in mathematical representations. In contrast to
these systems our evaluation does not extend the formal system and therefore
does not influence the correctness. Our annotations are used to ease the con-
struction of an abstract proof, but require verification on the object-level.

A common observation for the formalisation of mathematics is, that there
does not exist a single best formalisation, but that there are several possible
ones, which are suitable for different purposes. With annotated terms, we don’t
have to make a decision. We can use a straight-forward encoding for the formal
representation while having alternative representations available in form of the
annotation.

2 Finite sets can be modelled with an operation that is associative, commutative and
idempotent.
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On Handling Distinct Objects in
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Abstract. Many domains of reasoning include a set of distinct objects.
For general-purpose automated theorem provers, this property has to be
specified explicitly, by including distinctness axioms. Since their number
grows quadratically with the number of distinct objects, this results in
large and clumsy specifications, that may affect performance adversely.
We show that object distinctness can be handled directly by a modi-
fied superposition-based inference system, including additional inference
rules. The new calculus is shown to be sound and complete. A prelimi-
nary implementation shows promising results in the theory of arrays.

1 Introduction

Theorem-proving applications often require reasoning in specific domains. A fre-
quent property of these domains is that certain named domain elements are
assumed to exist and to be distinct from other named elements. One of the more
frequent surprises for first-time users of theorem provers coming from Prolog

is that problems as the one in Fig. 1 are not provable for a pure first-order the-
orem prover, because a valid first-order interpretation can map both bob and
ted to the same domain element. The obvious solution is, of course, to add
the inequality ted!=bob, and indeed, with this refinement the problem becomes
provable.

This solution, however, does not really scale well to large problems, as the
number of inequalities grows quadratically with the number of distinct elements.
For instance, take applications where a partial table of arithmetic results needs
to be encoded (see, e.g., Fig. 2). In that case, all numbers used in the table are
supposed to be distinct. However, even if only natural numbers from 0 up to
99 are used, there are 4950 inequalities to specify (each of the 100 numbers is
distinct from 99 other numbers, but due to the symmetry of inequality, only one
half of the 9900 inequations need to be included in the specification).

Furthermore, in less regular domains it is easy to overlook a necessary in-
equality. To return to the family relationship example, even the näıvely amended
input set does not rule out that bob is his own son.

? Supported in part by MIUR grant no. 2003-097383.
?? schulz@eprover.org

? ? ? mariapaola.bonacina@univr.it
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# Some family relationships: in contrast with some user

# expectations, this set is satisfiable (i.e. not provable).

son(bob, john).

son(ted, john).

brother(X,Y) <- son(X, FATHER), son(Y, FATHER), X!=Y.

?-brother(bob,ted).

# To make it provable, add the following (nonobvious) clause:

# bob!=ted.

Fig. 1. Family relationships as an example of (expected) distinctness of constants

Sum( 0, 0) = 0 &

Sum( 0, 1) = 1 &

Sum( 0, 2) = 2 &

Sum( 0, 3) = 3 &

Sum( 0, 4) = 4 &

Sum( 0, 5) = 5 &

Sum( 0, 6) = 6 &

Sum( 0, 7) = 7 &

Sum( 0, 8) = 8 &

Sum( 0, 9) = 9 &

Sum( 0, 10) = 10 &

Fig. 2. Partial arithmetic table (taken from the EUF test suite used by Math-
SAT3 [BBC+05b,BBC+05a])

The inequality clauses not only cause specifications to be large and clumsy,
but they also need to be processed by the prover. Since they are treated as all
other clauses, they take space in term and clause indices, are tested as potential
inference partners, and, may, depending on the term ordering, even participate in
inferences. Hence, there a significant cost (in memory and CPU time) associated
with these clauses, and they can complicate the proof search.

In order to address these problems, we modified the superposition calculus by
adding special inference and simplification rules to handle object distincteness
without explicit axiomatization. The following sections describe this in some
detail.

2 Preliminaries

Let Σ = F]D be a finite signature where all elements of D have arity 0. Elements
of F are called free function symbols (or free constants for those with arity 0),
and elements of D are called object identifiers. Object identifiers are assumed
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Superposition (SP)
Q ∨ l[u′]'r R ∨ u'v

σ(Q ∨R ∨ l[v]'r)
(i), (ii), (iii), ∀L ∈ Q : σ(l[u′]'r) 6� σ(L)

Paramodulation (PM)
Q ∨ l[u′] 6'r R ∨ u'v

σ(Q ∨R ∨ l[v] 6'r)
(i), (ii), (iii), ∀L ∈ Q : σ(l[u′] 6'r) 6≺ σ(L)

Equality Resolution (ER)
R ∨ u′ 6'u

σ(R)
∀L ∈ R : σ(u′ 6'u) 6≺ σ(L)

Equality Factoring (EF)
R ∨ u'v ∨ u′'v′

σ(R ∨ v 6'v′ ∨ u'v′)
(i), ∀L ∈ (R ∨ u′'v′) : σ(u'v) 6≺ σL

where σ is the most general unifier of u and u′, u′ is not a variable in (SP) and (PM),
and the following abbreviations hold:

(i) σ(u) 6� σ(v),
(ii) ∀L ∈ R : σ(u ' v) 6� σ(L),
(iii) σ(l[u′]) 6� σ(r)

Fig. 3. Expansion inference rules of SP.

implicitly to denote distinct domain elements, and are referred to by i, j, k in
the following. We assume a countably infinite set V of first order variables, and
use upper case letters, usually X, Y, Z, to denote them.

The set of all terms over F , D, and V , Term(Σ ,V ) is defined as usual. An
equational literal is either an equation t1 ' t2 or an inequation t1 6' t2 over
terms, where we use ' for the equality predicate. Equations and inequations are
unordered pairs of terms, i.e. the order of terms in the literal does not matter.

A clause is a multi-set of literals, interpreted and written as the disjunction
of its literals, e.g., L1 ∨ L2 ∨ . . . ∨ Ln, where the Li are literals. If R is a clause
L1 ∨ L2 ∨ . . . ∨ Ln, we write R ∨ L for the clause L1 ∨ L2 ∨ . . . ∨ Ln ∨ L.
All clauses are assumed to be variable-disjoint. The empty clause is written as
�. A substitution is a mapping σ : V → Term(Σ ,V ) with the property that
Dom(σ) = {X ∈ V | σ(X) 6= X} is finite. It is extended to a function on terms,
literals and clauses in the usual way.

We define DL(D) = {i 6' j | ∀i, j ∈ D, i 6= j} and DC (D) as the set of
unit-clauses containing exactly one literal from DL(D). DL(D) and DC (D) are
termed the sets of D–disequality–literals and D–disequality–clauses, respectively.

We assume that � is a complete simplification ordering (CSO) on terms
(i.e., a simplication ordering that is total on ground terms), lifted to literals and
clauses via (sign-aware) multiset extension. Then the standard superposition
calculus [BG94,BG98,NR01] is given by the inference rules in Fig. 3. In addi-
tion to generating rules, the superposition calculus is compatible with several
contraction rules that either delete certain redundant clauses, or replace them
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Strict Subsumption
S ∪ {C, C′}

S ∪ {C}
if for some substitution θ, θ(C) ⊆ C ′

and for no substitution ρ, ρ(C ′) = C

Rewriting
S ∪ {C[l′], l'r}

S ∪ {C[θ(r)], l ' r}
if l′ = θ(l), θ(l) � θ(r), and C[θ(l)] �
(θ(l) ' θ(r))

Deletion
S ∪ {R ∨ t' t}

S

where S denotes a set of clauses.

Fig. 4. Contraction inference rules of SP.

by simpler ones in some well-founded ordering. Fig. 4 lists some of the most
important contraction rules. Let SP be the inference system given by the union
of the sets of inference rules in figures 3 and 4.

The standard superposition calculus is sound and complete. A fair derivation
starting from a clause set S will eventually derive the empty clause (and hence
an explicit inconsistency) if and only if S is unsatisfiable.

3 Handling Object Distinctness in the Calculus

An approach to avoid the inclusion of disequality clauses is to introduce a variant
superposition calculus that replaces explicit inferences with clauses from DC (D)
by the application of new inference rules. In the following, we require that � has
the property that all object identifiers are smaller than any other non-variable
term, i.e. s � i for all s /∈ D∪V , i ∈ D. Possible choices are a lexicographic path
ordering with a suitable precedence or a Knuth-Bendix ordering with suitable
weights and precedence.

Definition 1 The inference system SP ′ is composed of the rules of SP and the
additional rules shown in Fig. 5.

While (OEC) is stated (and implemented) as a simplifying rule, it is the
combination of a superposition and a subsumption inference, and hence (OEC)
inferences are necessary for the completeness of SP ′.

We will now show that SP ′ is sound and complete, i.e. S ∪DC (D) `∗
SP

� if
and only if S `∗

SP′ �.

Theorem 1 (Soundness of SP ′) If S `SP′ S ] {C}, then S ∪ DC (D) |= C.

Proof. Any clause that can be derived by (OER1), (OER2) and (OEC) is a
logical consequence of the premises and DC (D):
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Object equality resolution 1 (OER1)
R ∨X' i

σ(R)
if σ = {X ← j}, i, j ∈ D, i 6= j,
∀L ∈ σ(R) : σ(X ' i) 6� L,

Object equality resolution 2 (OER2)
R ∨X'Y

σ(R)
if σ = {X ← i, Y ← j}, i, j ∈ D, i 6= j

∀L ∈ σ(R) : σ(X ' Y ) 6� L,

Object equality cutting (OEC)
S ∪ {R ∨ i'j}

S ∪ {R}
if i, j ∈ D, i 6= j

Object tautology deletion (OTD)
S ∪ {R ∨ i 6'j}

S
if i, j ∈ D, i 6= j

Fig. 5. Object identifier rules for SP ′

(OER1) Consider a clause C = R ∨X' i and σ = {X ← j}, j ∈ D, j 6= i. Since
any clause implies all its instances, σ(C) = σ(R) ∨ j ' i is implied as well.
Resolution between σ(C) and j 6' i ∈ DC (D) generates σ(R).

(OER2) Strictly analogous, with σ = {X ← i, Y ← j}, i, j ∈ D, i 6= j.
(OEC) Again strictly analogous, with empty σ. 2

For completeness, since all clauses removed by (OTD) are subsumed if DC (D)
is part of the clause set, we are only concerned with inferences involving the dise-
quality clauses themselves. We shall see that rules (OER1 ), (OER2) and (OEC)
compensate for their absence.

The following definitions recapitulate and instantiate a few definitions dealing
with redundancy in the superposition calculus.

Definition 2 Let S be a set of clauses and C be a ground clause.

– C is called redundant with respect to S (and �), if there exist ground in-
stances C1, . . . , Cn of clauses in S such that C1, . . . , Cn |= C and C � Ci

for all i ∈ {1, . . . , n}. A non-ground clause is redundant, if all its ground
instances are.

– C is called object identifier redundant (OI-redundant) with respect to S (and
�), if C ∈ DC (D) or C is redundant in S ∪ DC (D).

The well-known principle “once redundant, always redundant” applies to OI-
redundancy as well:

Lemma 1 Let S be a set of clauses and let C, C ′ be clauses.

– If C is redundant (OI-redundant) in S, then C is redundant (OI-redundant)
in S ∪ {C ′}.

– If C and C ′ are redundant (OI-redundant) in S, then C is redundant (OI-
redundant) in S\{C ′}.
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Proof. See [BG94] for a detailed proof about redundancy. The result for OI-
redundancy follows from the result for redundancy and the definition. 2

Definition 3 An instance of an inference with premises C1, . . . .Cn and conclu-
sion C is an inference with premises σ(C1), . . . σ(Cn) and conclusion σ(C) for
some substitution σ. A ground instance of an inference is an instance such that
σ is a grounding substitution for C1, . . . , Cn and C. We write σ(I) to denote the
instance of I with substitution σ.

The previous definition does not require the same inference rule to be applied
in the inference instance. Many instances of the object equality resolution rules
are applications of object equality cutting, as shown by the following lemma:

Lemma 2

1. For each object equality resolution inference with premise clause C = R ∨
X ' t (where t is either an object identifier i or a variable Y ), substitution
σ and conclusion C ′ = σ(R), there is an object equality cutting inference
with premise σ(C) and conclusion σ(C ′).

2. For each object equality cutting inference with premise C = R ∨ i' j and
conclusion C ′ = R and for all substitutions σ, there is an object equality
cutting inference with premise σ(C) and conclusion σ(C ′).

Proof. The result follows from the definitions. 2

Inferences are redundant, if some of the participating clauses are:

Definition 4 A (generating) ground inference with premises C1, . . . , Cn ∈ S
and conclusion C is redundant (with respect to S and �) if any of the premises
is redundant, or C is redundant, or C ∈ S. An inference is redundant, if all its
ground inferences are. OI-redundant inferences are defined analogously, replac-
ing redundant with OI-redundant.

With the notion of OI-redundant inference the concept of saturation is ex-
tended to OI-redundancy :

Definition 5 Let S be a set of clauses and let IS be an inference system. S is
IS-saturated up to redundancy, if all (generating) IS inferences with premises
in S are redundant. It is called IS-saturated up to OI-redundancy, if all (gen-
erating) IS inferences with premises in S are OI-redundant.

As usual, the completeness proof shows completeness on the ground level
first, and then lifts it to the non-ground level. Non-ground inferences in the
superposition calculus represent the set of all their ground instances. However,
only non-redundant instances are necessary for completeness. The gist of the
proof will be to show that SP ′ can simulate all non-redundant instances of SP
inferences also in the absence of clauses deleted by (OTD).
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Lemma 3 For any non-redundant ground instance σ(I) of a generating SP
inference I over S = S ′∪DC (D) with conclusion σ(C), there is a ground instance
σ(I ′) of an SP ′ inference I ′ over S′ with conclusion σ(C ′), such that σ(C) and
σ(C ′) are logically equivalent, either σ(C) � σ(C ′) or σ(C) is σ(C ′), and no
premise of I ′ is OI-redundant in S′.

Proof. Consider an arbitrary SP-inference I with premises C1, . . . , Cn and con-
clusion C and its non-redundant instance σ(I). We distinguish the following
cases:

– None of C1, . . . , Cn is OI-redundant in S′. Then the thesis holds trivially
with I = I ′.

– At least one of the Cl, for 1 ≤ l ≤ n, is OI-redundant. Without loss of
generality, let l = 1. By Definition 2, either C1 is redundant in S ∪ DC (D)
or C1 ∈ DC (D). If C1 were redundant in S∪DC (D), all inferences involving
C1 and all its instances would be redundant, contrary to the assumption that
σ(I) is not redundant. Thus, we are left with the case where C1 ∈ DC (D),
i.e. C1 = i 6' j. We assume, also without loss of generality, that i � j. If we
consider the SP inference rules, it is easy to see that only Paramodulation
and Equality Resolution allow a negative unit clause as a premise. Equality
Resolution requires that the two sides of the literal are unifiable, which is
not the case for a disequality clause. So we only have to consider inferences
I where C2 = R ∨ u' v paramodulates into i 6' j with most general unifier
σ′. C2 is not redundant in S (otherwise I would be redundant). Since C2 6∈
DC (D) and C2 is not redundant in S, C2 is not OI-redundant in S′.
Since i is maximal in C1, u must unify with i for the inference rule to be
applicable. Thus, either u = i and σ′ is the empty substitution, or u = X
and σ′ = {X ← i}. Since σ′(u) = i has to be maximal in σ′(u'v) and i ∈ D
is smaller than any non-variable term not in D, σ′(v) has to be a variable Y
or another object identifier k ∈ D with i � k. We distinguish these cases:

C2 = R ∨ i'k: If k 6= j, then the conclusion of the inference I is C = R∨j 6'
k. C is subsumed by j 6' k ∈ DC (D) and hence redundant. So we can
assume k = j, and C = R ∨ j 6' j, which is equivalent to the smaller
clause C ′ = R. The same clause is generated by an SP ′ inference I ′

using Object equality cutting (OEC) with premise C2. Lemma 2 ensures
the existence of σ(I ′).

C2 = R ∨X'k: As in the previous case, we can assume k = j. Then the
conclusion of I is C = σ′(R ∨ j 6' j), equivalent to C ′ = σ′(R). The
same clause is generated by I ′ applying (OER1) with premise C2 and
the same substitution σ′. Lemma 2 again extends this to σ(I ′).

C2 = R ∨ i'Y : In this case, the conclusion of the inference I is C = R∨j 6'
Y . Here we have to consider explicitly ground instances of I . Let τ be
a grounding substitution for C2 and C. τ must necessarily map Y to
a term smaller than i, otherwise no inference is possible. As above, the
only possible instantiation for Y is a smaller object identifier k ∈ D,
and again the only choice that does not generate a redundant clause is
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k = j. So we can write τ as τ ′ ◦ θ, with θ = {Y ← k}. The conclusion
of the ground inference becomes τ(R ∨ j 6' j), which is equivalent to
C ′′ = τ(R). If we apply (OER1) to C2 with substitution θ, the resulting
clause is C ′ = θ(R) and τ ′(C ′) = C ′′. Lemma 2 again guarantees the
existence of the proper ground inference.

C2 = R ∨X'Y : This case is strictly analogous to the previous one, using
(OER2) and with the addition that we have to apply the unifier σ′ =
{X ← i} to C2 first.

2

With this result one can establish the relationship between OI-redundancy
and plain redundancy:

Lemma 4 Let S = S′ ∪ DC (D) be a clause set. If S ′ is SP ′-saturated up to
OI-redundancy, then S is SP-saturated up to redundancy.

Proof. If S is not SP-saturated up to redundancy, there must be a non-redundant
SP-inference I over S, and hence a ground instance of I with non-redundant
conclusion C. But then, by Lemma 3, there is an SP ′-inference with non-OI-
redundant premises from S′ and with a ground instance I ′ with a conclusion
C ′ equivalent to C such that C = C ′ or C � C ′. If C ∈ DC (D), then I is OI-
redundant. Otherwise, C is not OI-redundant (since it is not redundant in S) and
hence C ′ cannot be OI-redundant. Hence I ′ is a non-OI-redundant instance of an
SP ′-inference over S′. But this contradicts the premise that S ′ is SP ′-saturated
up to OI-redundancy. Hence no such I exists, and therefore S is SP-saturated
up to redundancy. 2

The central theorem of the completeness proof follows:

Theorem 2 Let S = S′ ] DC (D) be a clause set. If S ′ is SP ′-saturated up to
OI-redundancy, then either � ∈ S ′, or S is consistent.

Proof. If S′ is SP ′-saturated up to OI-redundancy, then, by the previous lemma,
S is SP-saturated up to redundancy. Then the proof for standard superposi-
tion [BG94] applies. 2

The next theorem uses standard notions of derivation (substituting OI-
redundancy for redundancy) and fairness :

Theorem 3 The limit S∞ of a fair SP ′-derivation is saturated up to OI-redun-
dancy.

Proof. By definition of S∞, any non-redundant inference is performed eventually
and becomes redundant. Removal of OI-redundant clauses does not change this.
2

The last theorem wraps up the completeness proof:

Theorem 4 Let S = S′ ∪ DC (D) be a clause set. If S is unsatisfiable, then a
fair SP ′-derivation starting from S ′ will eventually derive the empty clause.

Proof. It follows from Theorem 3. 2
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4 Preliminary Implementation and Experiments

We implemented a partial version of SP ′ in the equational theorem prover
E [Sch02,Sch04]. Unless the feature is disabled by command line options, our ex-
perimental version of E treats strings in double quotes ("Object") and positive
integers (sequences of digits) as object identifiers. Our preliminary implementa-
tion supports only the inference rules (OEC) and (OTD). For the experiments
reported here this restriction is irrelevant, because they pertain to the use of E as
a decision procedure in the theory of arrays with extensionality. A case analysis
of all possible clauses that can be generated by SP from this theory and a set
of ground literals shows that (OER1) and (OER2) never apply to such prob-
lems [ABRS05]. We expect a full implementation of the calculus to be included
in the next public release of E.

The syntactic distinction of free constants, numbers, and objects was ac-
cepted also in version 3 of the TPTP syntax [SZS03,SZS04] (see [Sut05] for the
latest revision). Thus, we hope that this feature will see more use in future.

We observed the impact that distinctness axioms may have on performance
while experimenting with a set of synthetic benchmarks in the theory of ar-
rays [ABR+02]. The problems from the so-called STORECOMM family capture the
following property: given an array, the result of storing values at distinct in-
dices is independent of the order of the store operations. To express this prop-
erty, one needs to state that the array indices are distinct objects. For each n,
STORECOMM(n) is the family of all problems where n different values are stored
at n different indices in an array a. The theorem states that the resulting array
in each case is equal to an array achieved by storing the values in some standard
order in a. The axiomatization specifies the full theory of arrays with extension-
ality. As we were evaluating the use of E as a decision procedure, we also created
invalid variants of the problems, where two different values are stored twice at
the same index.

For each n, we have generated 9 valid and 9 invalid instances (with different
permutations of the assignments) of the problem classes. The problems are re-
duced to clausal form, flattened, and pre-processed as described in [ABR+02].
The resulting files in TPTP syntax are given to two versions of E. Except for
the handling of objects, both version run the same strategy, including clause
selection and term ordering. In particular, index constants are smaller than all
other non-variable terms for both versions, and the term orderings coincide for
all other terms. For comparison purposes, we have also tested CVC [SBD02]
and CVC Lite [BB04] on the same problems (in flattened form). Both systems
include hard-coded decision procedures for the theory of arrays. CVC is the
Stanford Cooperating Validity Checker, a highly optimized monolithic system
combining a SAT engine with various theory decision procedures. CVC is no
longer supported; it was superseded by CVC Lite, a much more modular and
programmable system. However, while CVC Lite has many advantages, the orig-
inal CVC is reportedly still faster on many problems. Our experiments support
this claim.



75

The reported result for each n use the median of the run times for all 9
instances. However, variation between different instances is negligible except for
CVC Lite, which shows some limited variation for the larger problems.
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Fig. 6. Performance comparison on valid (left) and invalid (right) STORECOMM array
problems

Figure 6 shows the results. For valid instances, the graphs for E with built-
in object distinctness and the graph for CVC are essentially identical. Both
systems need about 0.7 seconds for the instances of size 60. If the distinctness of
the indices is axiomatized, E needs about 1.66 seconds for the same instances,
for a speed-up factor of approximately 2.4. Finally, CVC Lite needed a median
of 3.3 seconds for the instances of size 60.

For invalid (i.e. satisfiable) instances, the speed-up for E is similar. However,
this is enough to make E with built-in support for distinct objects the strongest of
the systems, followed by CVC, and then E using axiomatized indices. CVC Lite
is again the slowest of the systems.

At least in this domain, the addition of rules for object identifiers yields a
significant speed-up, making E with a first-order axiomatization of the theory of
arrays competitive with some of the fastest special-purpose decision procedures.

5 Conclusion and Future Work

Object distinctness is a frequent requirement for many application domains. By
handling this simple property at the calculus level, significant performance gains
are possible at least in some of these domains. Moreover, the specification of
problems in these domains becomes easier and the behavior of the prover is
more in agreement with user expectations.
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The next step will be, of course, the implementation of the full calculus. After
that, we plan to evaluate the extended system over a larger range of problems,
including finite arithmetic specifications and finite groups.

Another direction is the automatic detection of distinct objects in existing
specifications. This would give us a better estimate of how widespread the prop-
erty is and a larger set of test cases, possibly allowing us to improve the system
on existing specifications.
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Abstract. Lemmas can provide valuable help for constructing a proof, by pro-

viding intermediate steps. However, not all the formulae supplied to an ATP sys-

tem as lemmas are necessarily helpful. It is therefore necessary to develop lemma

management techniques that use the right lemmas at the right time, to improve the

problem-solving ability of ATP systems. This paper presents three lemma man-

agement techniques, reports on their implementation, and illustrates their poten-

tial with example problems.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use of sys-

tems that automate sound reasoning: the derivation of conclusions that follow inevitably

from facts. This capability lies at the heart of many important computational tasks. In

this work we are dealing with ATP for 1st order classical logic, which has well known

computational properties, and henceforth all discussion is in that context. Current ATP

systems are capable of solving non-trivial problems. In practice however, the search

complexity of most interesting problems is enormous, and many problems cannot cur-

rently be solved within realistic resource limits. Therefore a key concern of ATP re-

search is the development of more powerful techniques and systems, capable of solving

more difficult problems within the same resource limits.

In the mathematics world people often use lemmas to help construct proofs for hard

theorems. They first make some trials by using existing lemmas that are pertinent to

the problem. If they cannot solve the problem, they then find or derive more lemmas

that might help solve the problem, and continue the same process until the theorem can

be proved. For example, the famous mathematician Gauss proved the Gauss lemma as

a step along the way to the quadratic reciprocity theorem [1]. There have been sev-

eral previous efforts to use lemmas in ATP systems. Lemmas have been used in model

elimination based systems in the context of an ongoing proof attempt, to avoid repeated

subdeductions, e.g., [2, 3]. Lemmas have also been used to augment a problem before

starting a model elimination system, with a filter being used to select the lemmas that

seem most likely to be useful [4]. A higher level approach to using lemmas, which

breaks a hard problem down into manageable chunks, has been used to find proofs of

hard problems in logical calculi [5]. The approach taken in this work is to augment the

axioms of a problem with lemmas, and prove the theorem from the axioms and lem-

mas. The lemmas are then proved from the axioms, either directly, or using the same
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technique recursively. The lemmas’ proofs are combined with the theorem’s proof, to

form a proof of the theorem from the axioms alone. The final proof may be viewed at a

proof structure level, showing the dependencies between the axioms, the lemmas, and

the theorem, or a fully detailed level that includes the inference steps of each component

proof.

Lemmas can provide valuable help for constructing a proof, by providing interme-

diate steps. However, not all the formulae supplied to an ATP system as lemmas are

necessarily helpful. Some may be not provable in the current theory (i.e., they are not

really lemmas), some may not be relevant to the conjecture, and some of them may

make only small steps in the overall proof at the expense of an increased search space.

It is therefore necessary to develop lemma management techniques that use the right

lemmas at the right time, to improve the problem-solving ability of ATP systems. This

paper presents three lemma management techniques, reports on their implementation,

and illustrates their potential with examples. The first technique, iterative lemma usage,

relies on the lemmas being provided in an order that allows each lemma to be proved

from the axioms and the preceding lemmas, even if some of the lemmas are not part

of the final proof structure. The second two techniques, recursive lemma selection and

recursive lemma minimization, are robust to the order in which the lemmas are sup-

plied, and can cope with the lemma set containing formulae that cannot be proved in

from the axioms or are irrelevant to the conjecture. Additionally, iterative lemma usage

is likely to fail is the proof structure is branching, i.e., requires multiple lemmas to be

used together in a component proof, while recursive lemma selection and minimization

are independent of the proof structure. However, in their current forms, the second two

techniques are likely to perform poorly if the lemma set is very large - two possible

solutions are proposed in the conclusion.

2 Iterative Lemma Usage

Art Quaife successfully used the ATP system Otter to prove theorems in several fun-

damental mathematical theories, such as Von Neumann-Bernays-Gödel set theory [6].

Proofs in these theories are often difficult for ATP systems; theorems that are very easy

for humans to prove are very hard for ATP systems to prove. To attack those chal-

lenging problems, Quaife used a systematic method in which theorems were proved

sequentially, from basic simple theorems through to advanced hard theorems. The se-

quence in which the theorems were proved was determined by Quaife, based on his

mathematical knowledge. Once a theorem was proved, it was added to the axiom list as

a lemma to help prove the next harder theorem. By such iterative lemma addition (also

referred to as lemma adjunction [7]), Quaife proved over 400 theorems in set theory.

Iterative lemma addition has been implemented in our YiLT system, and is activated in

the ILA mode of YiLT. A time limit is imposed on each proof.

Although iterative lemma addition is helpful for solving hard problems, it has some

weaknesses. Lemmas that have been added to the axioms may be redundant with respect

to (in the sense of being easily proved from) subsequently proved lemmas. Humans are

good at ignoring redundant lemmas and focusing on only useful ones, but for ATP sys-

tems redundant lemmas act as noise, disturbing the search for a proof. An alternative to
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iterative lemma addition, which counters this adverse effect, is iterative lemma replace-

ment. In iterative lemma replacement each previously proved lemma is replaced by the

newly proved lemma, until the conjecture is proved. Iterative lemma replacement has

been implemented in YiLT, and is activated in the ILR mode. Iterative lemma replace-

ment has the weakness that even if a lemma is not redundant, it is always replaced by

the next lemma proven. Iterative lemma replacement thus cannot produce a branching

proof structure.

Iterative lemma addition and replacement are at two extremes in terms of retaining

or discarding lemmas. A mechanism that retains selected useful lemmas is desirable.

One approach is to discard any previously proved lemmas that are easily proved from

the newly proved lemma, the axioms, and other previously proved (but not discarded)

lemmas. Such easily proved lemmas are redundant with respect to the axioms and the

other lemmas. This technique is called iterative lemma selection. A lemma is consid-

ered to be “easily” proved if the CPU time taken for the proof is below a specified

threshold. In [4] a refined version of this technique is presented, and used to filter out

redundancy from a set of lemmas before they are used to augment a problem. Iterative

lemma selection has been implemented in YiLT, and is activated in the ILS mode.

On average, iterative lemma selection performs better than iterative lemma addition

and replacement. However, iterative lemma addition and replacement have strengths in

some cases. Section 5 shows a case when iterative lemma addition outperforms iterative

lemma selection and replacement. All three variants have the key weakness that each

lemma in turn has to be provable from the axioms and preceding lemmas, and thus fails

if unprovable lemmas are encountered. Additionally, iterative lemma usage is likely to

fail if the proof structure is a branching.

3 Recursive Lemma Selection

The formulae provided as lemmas for a problem may be arbitrarily ordered, may not

all be provable in the current theory (i.e., not really lemmas), may not all be relevant

to the conjecture, and their use may induce a branching proof structure. These situa-

tions may prevent iterative lemma usage from finding a proof of the theorem. We have

therefore developed a demand-driven approach to lemma usage that can cope with these

situations.

Recursive lemma selection starts with the conjecture as the initial target formula.

Helper sets are formed from different combinations of increasing numbers of lemmas,

starting with no lemmas. If the target formula can be proved (within a time limit) from

the axioms and a helper set, then immediately the members of the helper set are itera-

tively treated as the target formula, in a recursive fashion. When all the target formulae

have been proved at all the levels of recursion, with the target formulae at the deepest

levels being proved directly from the axioms (i.e., with empty helper sets), a proof of

the theorem has been found. If at any stage a target formula cannot be proved, the next

alternative helper set is considered. At all stages no helper set element may be a descen-

dant of the target formula in the proof structure, to prevent circular arguments. A cache

is used to recall and reuse previous proofs of target formulae. This technique has been

implemented in our YuLM system.
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The power of recursive lemma selection lies in its robustness with respect to the

lemmas supplied. Recursive lemma selection identifies lemmas necessary for a proof,

and uses them to construct the proof. This robustness is achieved through the combina-

torial formation of helper sets of increasing size. If the proof has a branching structure,

in which multiple lemmas are required to prove the theorem or some lemma, a helper

set with all the necessary lemmas is used. As the helper sets are formed in increasing

order of size, less branching is preferred at each stage. The formation of all alternative

helper sets makes it possible for recursive lemma selection to find multiple proof struc-

tures for the theorem, which may then be compared in terms of some quality measure,

e.g., proof size. Section 5 shows cases when recursive lemma selection solves problems

that cannot be solved by iterative lemma usage.

4 Recursive Lemma Minimization

Recursive lemma selection has no regard for proof quality. This is due to the greedy

immediate recursion to prove the members of a successful helper set. We have therefore

developed a modified branch-and-bound style approach to lemma usage, which makes

it possible to find a proof that is optimized with respect to the number of lemmas used

or CPU time taken, while maintaining the robustness of recursive lemma selection.

Recursive lemma minimization starts with an initial proof candidate, formed by

placing the conjecture of the problem in the target queue of the initial proof candi-

date. This proof candidate is the initial target proof candidate. A list of alternative

proof candidates is initialized to empty. At each iteration, the head of the target queue

of the target proof candidate is the target formula. Helper sets are formed from different

combinations of increasing numbers of lemmas, starting with no lemmas. If the target

formula can be proved (within a time limit) from the axioms and a helper set, then no

larger helper sets are considered. All helper sets of that size, for which a proof of the

target formula can be obtained from the axioms and the helper set, are collected. Each

collected helper set is used to form a new proof candidate, by appending the helpers to

the target queue of the target proof candidate. (This is akin to the extension operation of

tableaux based ATP systems.) If the quality of the best new proof candidate is not more

than a (user supplied) tolerance factor worse than the quality of the best proof candidate

on the alternatives list, then the best new proof candidate is the target proof candidate

for the next iteration, and the remaining new proof candidates are added to the alterna-

tives list. If the quality of the best new proof candidate is more than the tolerance factor

worse than the quality of the best proof candidate on the alternatives list, then the best

proof candidate is removed from the alternatives list as the target proof candidate for

the next iteration, and all the new proof candidates are added to the alternatives list. The

quality of a proof candidate is measured as either the number of lemmas used, or the

CPU time taken for all proofs in the candidate (the quality of the initial proof candidate

is optimal - no lemmas, no CPU time taken). When a proof candidate with an empty

target queue is the target proof candidate, a proof has been found. It’s quality is within

the tolerance factor of optimal. If the alternatives list becomes empty then no proof can

be found (with the time limit). At all stages no helper set element may be a descendant

of the target formula in the proof structure, to prevent circular arguments. A cache is
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used to recall and reuse previous proofs of target formulae. This technique has been

implemented in our YuLM+ system.

Besides possessing all the strengths of recursive lemmas selection, recursive lemma

minimization finds a proof that is within the tolerance factor of optimal, with respect to

the number of lemmas used or CPU time taken. Recursive lemma minimization is also

more stable than recursive lemma selection, and finds the same proof regardless of the

order in which the lemmas are supplied. This is due to the policy of using all helper sets

of the successful size at each iteration. Finally, the tolerance factor can be used to tune

the performance of the approach, with a larger tolerance factor leading to a less optimal

proof, but with less swapping between alternative proof structures and therefore less

overall CPU time taken. As the tolerance factor goes to infinity YuLM+ converges to

YuLM. Section 5 illustrates situations where these advantages are evident.

5 Illustrative Experiments

YiLT, YuLM, and YuLM+ have been implemented as meta-systems on top of the Syste-

mOnTPTP [8] interface to ATP systems. This allows flexible selection and control of

the ATP system used for each proof. Final proof structures are output in TPTP format

[9], and can optionally include the full details of the component proofs. Output in TPTP

format allows use of the YuTV proof tree viewer to examine proof structures.

The potential of the three systems is illustrated here with three example problems:

the “graph triangles” problem, to prove that the maximal length of a shortest path be-

tween two vertices in a complete directed graph is the number of triangles in the graph

plus one; the “short 5 lemma part 2” [10] that proves surjectivity in a given commuta-

tive diagram of homological algebra; and the “kitchen sink” problem [11] in a first-order

encoding of the event calculus [12]. Lemmas for each problem were extracted from hu-

man proofs of the theorems, producing 11 lemmas for the graph triangles problem, 15

lemmas for the short 5 lemma, and 12 lemmas for the kitchen sink problem. The lem-

mas are all known to be provable from the axioms, but as the results show, not all are

necessary for an automated proof. The lemmas were supplied to the systems in the or-

der they were used in the hand-proofs, and additionally for the kitchen sink problem in

reversed order and two randomized orders. Using the lemmas, the proof structure of the

graph triangles problem is linear, while the proof structures of the short 5 lemma and

the kitchen sink problems are branching, i.e., expected to be out of the reach of YiLT.

SPASS 2.1 [13] was used as the ATP system inside YiLT, YuLM, and YuLM+. Nei-

ther the graph triangles problem nor the short 5 lemma problem can be solved by SPASS

alone with a 6200s time limit. The kitchen sink problem can be solved by SPASS in

400s, so the use of lemmas may be considered unnecessary, but the results usefully il-

lustrate differences between our three systems. For the testing, YuLM was configured to

stop when the first proof was found. For YuLM+ the tolerance factor was set to 1, i.e.,

forcing YuLM+ to find an optimal proof, and the quality measure was to minimize the

number of lemmas in the proof structure. The tests were done on a 930MHz Pentium

III computer with 512MB memory, running Linux 2.4. A 20s CPU limit was imposed

on each SPASS proof. Table 1 summarizes the results. Each result gives the number of
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lemmas in the final proof structure in ()s, followed by the total CPU time taken (to the

nearest second) to find the proof structure.

Table 1. YiLT, YuLM, and YuLM+ Results

System Graph Short 5 Kitchen sink

triangles lemma Ordered Random 1 Random 2 Reversed

YiLT ILA (11) 37 Failed Failed Failed Failed Failed

YiLT ILR Failed Failed Failed Failed Failed Failed

YiLT ILS (1) 88 Failed Failed Failed Failed Failed

YuLM (1) 34 (9) 4195 (5) 1509 (6) 2422 (8) 2333 (11) 2036

YuLM+ (1) 4882 (8) 5042 (5) 5315 (5) 5312 (5) 5320 (5) 5310

These are only illustrative test problems, and extrapolating general conclusions from

the results is not possible. The results do however illustrate performance features of the

systems. As expected, YiLT fails on the two examples that have a branching proof struc-

ture, illustrating the value of the more general lemma management techniques. Note

that iterative lemma addition outperforms iterative lemma replacement and selection in

the graph triangles problem. The solutions of the graphs triangles and short 5 lemma

problems show how the use of lemmas can extend the capabilities of SPASS.

The consistency of the results for YuLM+ across the four lemma orderings of the

kitchen sink problem contrasts with the variation of the results for YuLM. The extra

CPU time taken by YuLM+’s search for an optimal proof produces the desired result -

the same optimal proof regardless of the order in which the lemmas are supplied. With a

higher tolerance factor YuLM+ takes less time and produces less optimal proofs. Table 2

illustrates this for the kitchen sink problem with the ordered lemmas.

Table 2. YuLM+ Results for different Tolerance Factors

TF = 1 TF = 2 TF = 3 TF = 4 TF = 5

YuLM+ (5) 5315 (8) 4922 (9) 4530 (9) 3215 (9) 2318

Figure 1 shows the proof structures for YuLM and YuLM+ for the kitchen sink

problem. The left structure is from YuLM using the ordered lemmas and YuLM+ for

all lemma orders. The right structure is from YuLM using the reversed lemmas. The

inverted triangle add axioms represents all the axioms of the problem, the elongated

hexagons are lemmas, and the height 4 house is the final theorem. The lines from

the axioms to the lemmas have been drawn for only those lemmas that were proven

directly from the axioms, but of course the axioms are used in all proofs. The right

structure illustrates how YuLM greedily takes many small steps when the lemmas are
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provided in reverse order. At each stage it uses the next lemma(s) in the reverse lemma

sequence, hence using all 11 lemmas. This is in contrast to the smaller structure on the

left, produced by the other configurations, using only 5 of the lemmas.

Fig. 1. YuLM and YuLM+ Proof Structures

6 Conclusion

This paper presents three lemma management techniques, reports on their implemen-

tation, and illustrates their potential with example problems. Appropriate lemma man-

agement allows ATP systems to use lemmas to their advantage, and provides robustness

against poorly constituted lemma sets.

The principle weakness of the two recursive approaches is their combinatorial for-

mation of helper sets. If a large set of lemmas is supplied, a very large number of helper

sets can be formed. This can be overcome by pruning the lemma set before use. Prun-

ing may be achieved using the redundancy elimination technique described in [4], or by

using the Prophet tool1 to select lemmas that seem most relevant to the conjecture.

1 To be documented in a paper real soon.
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The next phase of this project will be to use the AGInT system [14] to generate the

lemmas, rather than rely on a human source. This will provide a strong challenge to the

lemma management techniques, because the automatic generation of lemmas is more

likely to supply lemmas that are irrelevant to the conjecture at hand. The lemma pruning

techniques will almost certainly have to be used.
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