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Abstract

A standard assumption in studies of multiagent resource allocation prob-
lems is that the value an individual agent places on its assignment remains
unchanged by any redistribution of the remaining resources among the other
agents. This assumption renders impossible analyses of scenarios where the
utility an agent attaches to a particular set of resources is determined by fac-
tors other than the resource set itself. Thus an agent’s perception of what
its allocation is worth may be tempered by its view of what other agents in
the system may own, e.g. if working within a coalition a particular allocation
may assume a greater value if other coalition members hold certain resources.
In this paper we develop a model for examining sachtext dependentl-
uations and consider various decision problems related to the existence of
context dependent allocations satisfying various criteria.

1 Introduction

Mechanisms for reasoning about allocations of resources within a group of agents
form an important body of work within the study of multiagent systems. Typical
abstract models derive from game-theoretic perspectives in economics and among
the issues that have been addressed are strategies that agents may use to negotiate,
e.g. [9, 11, 12], and protocols for negotiation in agent societies, e.g. [3, 5, 6, 10].

A formal definition of the standard resource allocation setting is given in Section 2
below, however, the analyses of this paper arise from one particular aspect of this
model. An implicit assumption it makes is that the value an aggnplaces upon

*Extended version of article to be presented ECAI'04, Valencia, August 2004



a subsetsS, of some set of resourcé®, is context independentin other words,

this value,u;(S), does not vary regardless of what allocation of the resouRGES

is used for the other agents in the systems. It is not difficult, however, to envisage
situations which such context independent interpretations of utility have difficulty
modelling. Thus, in a 3 agent systes, and A, may wish to act in partnership
againstAs in determining a partition of a resource set. In this context the value
thatA; places upon a particular sub&snhay vary according to which subset of the
remaining resource&, obtains. In addition to such coalitional settings, one may
wish to model situations whereby an individual agent will assess a given assign-
ment as having greater worth if it arises in a context for which some other agent is
not granted certain resources. As a more concrete example of where context depen-
dent evaluation is significant one can consider partnership games such as Bridge,
in which setting it is well-known that the ‘value’, in terms of trick taking potential,

of a given hand may depend significantly on the distribution of the remaining cards
among the other three players.

In this paper we develop an approach to the analysis of context dependent re-
source allocation settings, the central component of which allows agents to dis-
criminate among different overall allocations under which it receives a particular
set of resources. The basic approach is given with other definitions in Section 2.
The main aim of this paper is to initiate the study of our context dependent model
by considering a number of ‘natural’ decision questions within it. A selection of
these is presented in Section 3 and related complexity classifications obtained in
Section 4. Conclusions are given in the final section.

2 Definitions

The basic setting we are concerned with is encapsulated in the following definition.

Definition 1 Aresource allocation setting defined by a triplé.A,, Rm, ) where
An:{Al,AQ,...,Ar& ; Rm:{rl,rg,...,rm}

are, respectively, a set of (at least two) agents and a collection of (non-shareable)
resources. Autility function, u, is a mapping from subsets7®f, to rational values.

Each agent Ac A has associated with it a particular utility function,so thati/

is (up, Ug, . .., Un). AnallocationP of Ry amongA,, is a partition (P, P, . .., Pp)

of Rm. We use the notatioll, m to indicate the set of all distinct allocations By,
amongAy, noting that there are exactlymof these. The valug ;) is called the
utility of the resources assigned tg. A



The main aspect of the form of Definition 1 that we wish to address concerns its
assumption that for ang C R, and agen#y, for any allocations

P = (Py,...,Pi—1,SPit1,...,Pn)
Q = <Q17'"7Qi—1787Qi+17"'7Qﬂ>

The valuey; (S) within the allocationP is exactly the same as its value within the
allocationQ, i.e. u;(S) is invariant over all allocations dkR,/S among the other
agents.

The basic mechanism we use to allow an agemd discriminate between such
allocations a® andQ above is that of aanking function

Definition 2 A prioritised resource allocation settifBRAS) is defined by a pair
({(An, Rm,U), V) where: (An, Rm,U) is a resource allocation setting, and =
(p1,p2,- .., pn) defines a collection akinking functions The ranking function for
A, pi, maps each F II, i to @ non-negative integes (P) in the rangef0, n™ — 1].
For a given allocation, Pc II, ,, the n-tuple of valuesp; (P), p2(P), ..., pn(P))

is called thepreference profil®ef P in ((An, Rm,U), V). We say that an n-tuple,
(ki, ko, ..., kn) of non-negative integer values is attainable profilef there is an
allocation, P, such thap;(P) < k; for eachl <i < n. If P and Q are allocations
under whichp; (P) < pi(Q) we say that Aprefers the allocatioR to the allocation

Q.

We note that our formulation of attainable profile requires only that each agent
views the allocation to bat leastas good as the preference rank indicated by the
profile: we do not require that the specified ranking value be matched exactly.

Within any prioritised resource allocation setting, there will, for each agent,
be some set of allocations that the agent regards as its most preferred. One of
our principal areas of interest will concern allocations that achieve the maximal
preferred status with respect to arbitrary subsetsgatitions from the set of all
agents.

Definition 3 We denote by; that value ofp; for which there is an allocation, P,
under whichp;(P) = y; and for all other allocations, Qe IInm, pi(Q) > wji. For
an agent A any allocation, P, that satisfigs(P) = p; is said to beoptimal with
respect to agem; in the setting (An, Rm,U), V). An allocation for whictp; (P) =

0 is said to be andeal allocation with respect # in the setting((An, Rm, U), V).
For a subset C A, (or coalition), an allocation P is said to be eonsensugvith
respect tcC if for each A € C it holds thatp;(P) = ui. An allocation, P, is andeal
consensufor C if pi(P) = 0 for every A € C.



The concept of (ideal) consensus is presented in Definition 3 with respect only to
the view held by a coalition regarding its members’ ranking functions, i.e. the rank-
ing assigned by agents outside the coalition is not considered. We can, additionally,
introduce a notion of allocations considered with respecpimosing coalitions

Definition 4 Let ((An, Rm,U), V) be a PRAS, and C A,, D C A, be disjoint

non-empty sets of agents. The coalitoran obstructhe coalitionD if: there

is a subset P of R, and an allocation Pof P. amongC for which if Q isany

allocation inIInm with @ = P{ for each A € C then Q is a consensus férand

for every A € D, pj(Q) > ;. We refer to such a subset Rs anobstructive set
for C with respect taD.

If a given coalitionC is capable of obstructing another coalitiénthis indicates

that the members af could collectively acquire and distribute some subge) (
from the overall resource s&p, in such a way that regardless of how the remain-
ing resources are divided among,/C, the resulting allocation will be one each

A € C views as optimal, but whicho agentin D will see as optimal. One con-
sequence arising from the idea of obstructive coalitions is that during negotiations
over exchange of resources between agents, a particular subset oStbeganay
acquire a certain significance in terms of the current allocation and given coalitions,
C andD: Smay becritical in the sense that wer&to acquireSthen it would, to-
gether with (some subset of) its holding undrbe able to obstrucd. Thus in

such situations, it would be in the interest<’aib acquire the missing elements of
Swhile, similarly, agents irD would not only seek to prevent this, but would also
have to recognise the potential for such situations to arise. Formally,

Definition 5 Let ((An, Rm,U), V) be a PRASC C An, D C A, be disjoint non-
empty sets of agents, andePII, ,, an allocation ofR, amongA,. We say that
the subset SC R, is critical for (C, D) in the allocationP if: S € Ujec P; and
S U Ujee Pjis an obstructive set faf with respect tdD. More generally, if S, T
are disjoint subsets ®®m with T C Uiec P and S¢ Uicc Pi, we say thatS T) is
acritical exchange fo€ with respect td if SU (Uiec Pi)/T is an obstructive set
for C with respect tdD.

In the context of Defintion 5, it is advantageous for a coalition to identify and
acquire those resources in a critical set: in such circumstances the coalitions can
then achieve its most preferred allocations while preventing a select group of other
agents achieving theirs. For a critical exchange, a coalition in order to reach a
similar state must additionally arrange that some of its currently held resources are
reassigned to other agents.

In using the concept of rank functions, Definition 2 provides one mechanism
for an agentA;, to discriminate, should it wish to do so, between the- 1)™ il
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distinct allocations tod,/{A } that are consistent with; being assigne®; C Rm.

In addition we obtain an approach that can be used to describe a number of ideas
examined in earlier work. Consider, for example, the concept of an allocation being
“envy-free” studied in, e.g. [8].

Definition 6 For a resource allocation settingA, R, /) and an allocation P oR
amongA, P isenvy freeif for each distinct pair, i and j, Pi) > ui(P}), i.e. inan
envy-free allocation, Avalues what it has been given at least as highly as it would
value the resources granted to any other agent by the allocation.

This concept is easily encapsulated within a prioritised resource allocation setting:
define the ranking functiop; (P) as,

pi(P) = [{j :u(P) > u(P)}|

In this way an allocationP, is envy-free if and only ifp;(P) = 0 for eachi, or,
in terms of Definition 3:P is envy-free if and only iPP is an ideal consensus with
respect to the coalition of all agents,.

We note that we may recover the standard mechanism for an agent to distin-
guish between allocations (within a non-prioritised setting) merely by considering
a decreasing order of tf#" potential valuesi; (S) whereS C Ry, and fixingpi (P)
to be the position ofi;(P;) within this, so that higher valued resource subsets are
given preference.

3 Decision Problems for Prioritised Settings

Our aim in this preliminary study is to consider prioritised resource allocation set-
tings with respect to complexity issues. Thus, we now present and discuss a number
of decision problems that naturally arise in this model. In Section 4 we then obtain
results regarding their computational complexity.

The first set of such problems addresses questions concerning to what extent a
given allocation can be improved.

Definition 7 The decision problensubjective Improvementsi) takes as an in-
stance a PRAS({An, Rm,U),V), an allocation P € II,n and an index i with
1 <i < n. The instance is accepted if there is an allocatior QI ,, for which
pi(Q) < pi(P).

The decision problem®@bjective Improvemen(o!) takes as an instance a PRAS,
({(An, Rm,U), V) and an allocation Pe II, i, with the instance accepted if there is
an allocation Qe Iy, for which A, (pi(Q) < pi(P)) holds true.



The decision problenPareto Optimality(Po) takes as an instance a PRAS,
((An, Rm,U),V) and an allocation Pe II,n with the instance accepted if for
every allocation Qe II,yn: shouldpi(Q) < pi(P) for somel < i < n then
pi(Q) > p;(P) for somel <j < n.

Subjective Improvement deals with whether a single specified agent can realise
an allocation that it prefers to the given one, whereas the focus of Objective Im-
provement is on allocations which improve the preferences of all agents in the
system. The concept of Pareto Optimality has, of course, received much attention
both within the field of coalitional game theory and multiagent resource allocation
models. Our description of this in terms of ranking profiles, subsumes the latter
class of applications, so that in informal terms, an allocation is Pareto Optimal
if some agent can achieve a more preferred allocation only at the cost of another
agent being penalised.

Definition 8 An instance of the decision probleattainable Profile(Ap) com-
prises a PRAS((An, Rm,U),V) and an n-tuple(k;, ko, .. ., kn) of non-negative
integers. The instance is accepted if the profie ko, . . ., k,) is attainable in
({(An, Rm,U), V).

Definition 9 An instance of the decision probledbstructive Coalitiorfoc) com-
prises @ PRAS({(An, Rm,U), V) and two disjoint subset§, D from A,. The
instance is accepted if the coalitighcan obstruct the coalitiorD in the setting
<<~An> Rma Z/{>a V>

An instance of the decision proble@ritical Set(cs) consists of a PRAS,
{({An, Rm,U), V), two disjoint non-empty subsefs D from A,, and an alloca-
tion P € II,, m, for which p; (P) > i for each ie C UD. Aninstance is accepted if:
there is a set 8~ Rm such that S is critical fofC, D) in the allocation P.

We note the conditiom;(P) > u; for eachi € C U D implies that each agent in-
volved in the two coalitions has a reason to seek out some exchange in the resources
held in the hope that it will reach a position it regards as optimal.

4 Complexity in Prioritised Settings

Before presenting our complexity results, we deal with one technical issue concern-
ing the representation of instances of prioritised resource allocation settings. We re-
call that two elements of these are theuple of utility functionsZ/ = (uy, ..., up)

each of which maps subsets &Bf, to rational values; and the-tuple of ranking
functionsY = (p1, ..., pn) €ach of which maps allocationslit, , to non-negative



integer values. In giving representations of these in instances, say, afdoc

we face the problem that the domains are exponentially large in the ral@&
subsets ok, N allocations inll, m. Thus were these to be presented by explic-
itly enumerating pairs of subset and value @ror pairs of allocation and value

(for V) the space taken by the instance encoding would be unreasonable for all but
modest values ah. It is unlikely to be the case that such enumerative descriptions
would be used in practice, and it could also happen that assessments of the prob-
lem complexity in terms of the instance size would result in apparent ‘polynomial’
time algorithms: such methods would, however, be polynomial only by virtue of
the infeasible nature of the instance representation. In order to circumvent these
difficulties it is necessary to adopt a convention for descridingnd ) that will

allow, in such cases were it is possible to do so, these elements to be described by
an encoding whose length is polynomialrint m and which allows the relevant
functions to be evaluated efficiently (in terms of the encoding size). While there
are a wide range of possible schemes that could be employed, the one which will
be assumed in our subsequent development is the following: each utility function
u; is presented by eombinational logic networkver the basis o2-input Boolean
functions (i.e. a straight-line program) with input bits and{; output bits, this
network having the property that for eaSiC R, if the inputs are instantiated by

the Boolean valuér; € S) thenval(S) thet;-bit binary value induced at the output

will be such thaw;(S) = val(S)/m. We employ a similar formalism for encoding

i, this time employing a network withmBoolean inputs to encode allocations in
IThm. For further details on this widely-studied model of function computation we
refer the reader to any of the standard monographs such as [4].

Theorem 1 AP is NP—complete.

Proof. MembershipNP is immediate from the non-deterministic algorithm that
simply guesses an allocatidh € II,, and checks that , (pi(P) < ki) holds.
Recalling our convention for representitigeach tesp;(P) < k; can be performed
in time polynomial (in fact, linear) in the length of the encodingpf

For NP—hardness we will, in fact, prove a rather stronger reguwtis NP—hard
even when instances are restricted to 2 agents, with the pflfille,) = (0, 0) and
for a fixed pair of ranking function&1, p2) whose definition, given an allocation
P= <P1, P2>, is

{ 1 if Ul(Pz) > Ul(Pl)
0 if u1(P2) < Ul(Pl)



We employ a reduction fror8-SAT, in which instance®(Z;) = Al_; (Vi1 V Vi2 V
yi.3), are limited to those for which the number of propositional variabiess
odd It is a trivial matter to show that this restriction makes no difference to the
NP-complete status 03-sSAT. Given such an instance, and the fact that 2,
(ki, ko) = (0,0) with (p1, p2) as defined above, we need only spedifyand the
utility functions(uy, uy) to be employed. FiR = {z,2,...,z}, i.e. the resource
being divided is the set of propositional variables definin@;). Forw C R, the
instantiationpogW) is given byz, = T if z € W,z = L if z ¢ W, similarly,
the instantiatiomeg W) is given bypogR /W). The utility functions,(u;, uy) are
specified by,

(S = { 2t if ®(pog9) =T
' S if ®(pogS) £ T

Ua(S) = { 2t if ®(neg9) =T
IS if ®(negS) #T

We claim that the profil€0, 0) is attainable in((A2, R, (U, Us)), (p1, p2)) if and
only if ®(Z;) is satisfiable. Suppose first that= (ay, ..., &) is an instantiation
of Z; that satisfiesb. Consider the subs&V, for whichz € W, if and only if
a = T. For this,u;(W,) = uy(R/W,) = 2t, and since2t is the maximum
valueu; can attain, it follows thap; ((W,, R/W,)) = p2((Wa, R/W,)) = 0 as
required. On the other hand, suppose &R /S) is an allocation which attains
the profile (0,0). Consider the instantiatiopogS) and suppose that this does
notsatisfy®(Z;). In this case we havey, (S) = |§ andu; (R/S) € {t — |, 2t};
similarly uz(R/S) = t—|9 anduz(S) € {|S, 2t}. If u;(R/S) = 2t anduy(S) = 2t
then the profile of S R/S) is (1, 1) — contradicting the assumption th@t 0) has
been attained. Noting that (R/S) = 2t if and only if u(S) = 2t this leaves
only the casesl; (S) = |§, 1(R/S) =t — |9, (R/S =t — |, (S = 1|9.
Now we recall that is odd and therefore we cannot hay§ = t — |§. We
thus obtain the contradiction shoubbgS) fail to satisfy ®(Z;) that the profile
(p1(9), p2(R/S)) € {(0,1),(1,0),(1,1)}. It follows that ®(Z;) is satisfiable if
and only the profild0, 0) is attainable in the constructed setting. o

The following Corollaries of Theorem 1 are easily proved, following directly from
the reduction used or by minor modifications to it.

Corollary 1 The following all hold even whepd| = 2:
a. slis NP—complete.
b. oI is NP—complete.

C. POis CO-NP—complete.



d. Deciding if a resource allocation settingd,, Rm, ) admits anenvy-free
allocation isNP—complete.

e. Deciding if an agent within a PRAS has an ideal allocationrscomplete.

f. Deciding ifa PRAS has an ideal consensus with respedt is NP—complete.

Proof. Omitted. o

Theorem 1 and its corollaries, although couched in terms of prioritised settings,
have analogous phrasings in the standard setting of Definition 1. Our remaining re-
sults, however, consider questions which have no natural counterpart in this arena,
i.e. they arise specifically in the treatment of context dependent schemes. We first
consider determining whether a coalition has the capability to obstruct another by
identifying an obstructive set of resources.

Theorem 2 ocis Y5—complete.

Proof. For membership it} it suffices to observe thdt(An, Rm,U), V), C, D)
is accepted as an instanceax if and only if: 3 (P;,, ..., P;,) V Q € IIn m, should
it be the case thaft;ijecPij =Qj then

A 2 (Q) =i A N\ £i(Q) > i,

ijeC ikeD

To establish thabc is ¥5-hard, we give a reduction fromsATy instances of
which comprise a&NF formula ®(X;, Y;) defined over 2 disjoint sets of proposi-
tional variables. An instance (()g_‘SATQE is accepted if there is an instantiamy of
Xt under which for all instantiationgly of Y; we have®(ax, fy) = L.

Given®(X;, Y;) we construct the following instance ot.

The set of agents contains three membeks, A2, A3} while R contains the
2t elements{xy, ..., X,VY1,...,¥%}. We may fixu(S) = 0 for eachi, since we
only need to define each ranking function appropriately. This we do as follows.
Using X; andY; to denote the setB; N {x;,...,x} andP; N {yi,...,y}, for



P = (P1,P2,P3) € II3 o

0 if Y9 =0 and®(pogX;),pogYq)) = L
p(P)={  and®(pogXy),pogYs)) = L
1 otherwise
(P) = 0 if Yy #0or®(pogX;),pogYs)) =T
PAE) = 1 otherwise

) — 0 ifY; #0or®(pogX;),pogYs)) =T
P3\F) =11 otherwise

wherepogS) is are as defined in the proof of Theorem 1 with respect to the sets
Xt andY;. We complete the construction of the instance by setfirg {A; } and
D = {As, As}.

We claim that our construction is accepted as an instancecdf and only if
® (X, V) is accepted as an instance@sATy. Suppose thab(X;, Y;) is a positive
instance onSAT§ and letax = (aj,a,...,a;) be the witnessing instantiation
of X;. Consider the allocatio®;, = {x : & = T}. Then for any allocation,
Q € II3 5 for which Q; = P; we havep, (Q) = 0 sinceY; is distributed amond\
andAs and, from the definition oftx, we get

B (ax, POSY2)) = P (ax, pos(Ys)) = L

and thus, in additionp2(Q) = p3(Q) = 1 > s = u3 = 0. We note that the
condition onY; means that there are allocations for whigf{Q) = p3(Q) = 0.

We deduce tha((As, R, U), V), {Ai},{A2, As}) is accepted as an instancead.

On the other hand suppose the constructed instance is a positive instance of

oc and consider a subsBf of R that witnesses this. It is certainly the case that

Y; = 0. It must also hold, however, that for every allocati@, with Q; =

Py and{yi, ..., y:} distributed overQ2, Q3) we havep;(Q) = 0 andp2(Q) =

p3(Q) = 1, ie. ®(pos(X;),pogYz)) = P(posX;), pogYz)) = L. We deduce

that the instantiatiopogX; ) witnessesb(X;, Y;) as a positive instance afSATY
completing the proof thabcC is Zg—complete. o

We obtain a similar classification for the decision problem Critical Set.

Theorem 3 csis Yb—complete.

Proof. Membership inx} follows by the algorithm which on a given instance
(((An,Rm,U),V),C,D,P), guesses a subs@&, of UjgcP; together with an allo-
cation,(P;,,...,P;,) of SU Ujec Pi amongC (noting that these can be combined
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in a singlex!, i.e. NP, stage), followed by checking for eaghe Il that should
Q; = Pj foreachl <j <, thenp;(Q) = ;i for eachA; € C, while pj(Q) >
for eachj € D. The entire process is easily accomplished B3P algorithm.

ForES—hardness we again employ a reduction froeaT . Given an instance
(X, Y;) of this we form an instance afsin which

A = {A, A, A3 AL}

R = {X1,- -, X Y1, Vi)
c — {ALAS)

D = {As}

(P1,P2,P3,Py) = (0,0,0,R)

We again may use (S) = 0 for each agent. It remains to defitle= (p1, p2, p3, p4)-
ForQ € I14 o, pi(Q) is defined as below, where, as in Theorem 2, the nota¥pns
andyY; are used foP; N {xy, ..., %} andP; N {yy,..., %t}

0 ifY1:[bandleJXg:{Xl,...,Xt}
Q) = andq)(poixl)a pOS(YEI)) =1

P1 o 1 if XlUXQC{Xl,...,Xt} andY; =0
otherwise

0 ing:(DanXmUXg:{Xl,...,Xt}

and®(negXz),neqY,)) = L
Q=91 j X UXy C {Xq,...,%}andYy =0
otherwise

0 ifY1:®andX3UX4:®
Q) and®(pogX;),poqYs)) =T
PIT =Y 1 if Xs £ DorXy # 0

2 otherwise

p1(Q) = and®(negXz),neqYs)) = T

0 ifY2:®andX3UX4=(Z)
1 otherwise

For the allocation
P=(0,0,0,R)

we get

(p1(P), p2(P), p3(P), pa(P)) = (1,1,1,1)
Now suppose tha®(X;, Y;) is accepted as an instance @ATY, letting ax =
(a1, ..., &) be aninstantiation witnessing this. Choos8im be the set containing
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exactly thosex for whicha = T, gives a critical set fof{A;, Az}, {As}) with
respect to the allocatioff), (, ), R), simply by assignind); = S Q: = X;/S
Then for any allocatioriQs, Q4) of Y; among{As, A4} we get,

p1((Q1, Q2, Qs,Qu)) = p2(Q1,Q2,Q3,Q4) =0
andp3((Q1, Q2,Q3,Qs)) = 2.

On the other hand, suppose that our construction yields a positive instance
of cs and consider the set§, S, allocated to{A;, A;} from the critical setS
witnessing acceptance. It must certainly hold tBat {x,...,x} for any other
choice will result inp;(Q) > 0 andp2(Q) > O whenQ; = S, andQy = S,. It
follows that the resource subsfty, ..., y:} is distributed betweekAs, A4} and
no matter how such a distribution is made, we @€)) = 2 andp,(Q) = 1 (since
X3 = X4 = 0). From this we see that, regardless of whichever choic¥;aé
made, we hav@(pogX;),pogYs)) = L and deduce thab(X;, Y;) is accepted as
an instance ofsATY by virtue of the instantiatiopogX;) of X;. This completes
the proof thatsis ©5—complete. o

The4 agent setting employed in the proof of Theorem 3 raises a number of issues
of interest. Not least among these is the question of optimal strategies for the two
coalitions -{A;, A2} and{As}. Given an arbitrary formula instande(X;, Y;) the
resource set in the proof construction is, at first, held in its entiretAbyWe

may observe thad,, since it is a member of neither coalition, could be regarded
as neutral to the interests of both, even though it can only achieve a most preferred
allocation if there are circumstances which allédw to do the same. As such

we might assume that,; has no reason to object to subsets of its orginal holding
being claimed by any of the other three agents: such largesse cannot render the
resulting allocatiorlesspreferred than its initial one. Consider now the situation
that the coalitiof A;, A, } faces: certainly it can never be to its advantage for either
member to obtain elements §f,, ..., yt}. Thus the decision facing this coalition

is whether to obtairall of the resources ifx,,..., %} to distribute among its
members or whether only to acquir@eper subsetf these: the first could allow

{A1, A2} to obstruct{As;} but may also letA; devise allocations that are found
worsethan the initial one. On the other hand, the second choice prevents an ideal
state but can never leaé\;, A2} less content. Similar considerations impinge
upon the choices made By;: if it elects to obtain some element ¢%y, ..., %}

and retain it then it does so at the cost of never being able to achieve an ideal
allocation even if itwere possiblé¢o do so. If, howeverAs avoids choosing any
element of{xy, ..., X}, there is a risk tha#s ends up worse off.

12



5 Conclusions

The principal contention of this paper is that the oft employed model for consid-
ered in the study of multiagent resource allocation is insufficiently expressive to
address arenas wherein the worth a single agent attributes to its alloted resource
is dependent on external factors. We have argued that importing a simple rank-
ing mechanism into the standard setting provides an approach flexible enough to
model such context dependent issues, illustrating this view with refererence to a
select number of natural decision questions whose computational complexity has
been classified. These include both problems that encompass related questions in
the standard setting, e.g. Subjective Improvement, as well as a number that arise
specifically in our prioritised variant, e.g. Obstructive Coalition.

Although we have chosen to present this model from the viewpoint of mul-
tiagent resource allocation and evaluation, we note that the issues motivating it
are also of great relevance to more general concerns arising from scenarios mod-
elled through some underlying sé®) divided among a finite set of participants
(A). Thus if R is interpreted as a collection of beliefs, attitudes, and facts held
by members of4 then we have a framework for considering persuasive argument,
e.g. in the scheme of [10], where the force and acceptance of particular claims by
one agent depends not only on its own beliefs and attitudes but also on how these
relate to the views endorsed by other agents. Since, in principle abstract models
of argument and reasoning such as that of Dung [7] could be embedded within a
multi-party debate setting, the development of these to describe relative notions of
value preferences that has been initiated in the work of Bench-Capon [1, 2] may be
defined through our prioritised model.

Finally we note the potentially rich seam of problems that arise in formulating
strategies for coalitions to identify consensus allocations, critical sets, and obstruc-
tive possibilities. As we have outlined in the postlude to Theorem 3, even a setting
comprising only4 agents yields non-trivial strategic questions for the coalitions
involved when these seek either to improve their preference or avoid it degrading.
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