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Abstract

A standard assumption in studies of multiagent resource allocation prob-
lems is that the value an individual agent places on its assignment remains
unchanged by any redistribution of the remaining resources among the other
agents. This assumption renders impossible analyses of scenarios where the
utility an agent attaches to a particular set of resources is determined by fac-
tors other than the resource set itself. Thus an agent’s perception of what
its allocation is worth may be tempered by its view of what other agents in
the system may own, e.g. if working within a coalition a particular allocation
may assume a greater value if other coalition members hold certain resources.
In this paper we develop a model for examining suchcontext dependentval-
uations and consider various decision problems related to the existence of
context dependent allocations satisfying various criteria.

1 Introduction

Mechanisms for reasoning about allocations of resources within a group of agents
form an important body of work within the study of multiagent systems. Typical
abstract models derive from game-theoretic perspectives in economics and among
the issues that have been addressed are strategies that agents may use to negotiate,
e.g. [9, 11, 12], and protocols for negotiation in agent societies, e.g. [3, 5, 6, 10].
A formal definition of the standard resource allocation setting is given in Section 2
below, however, the analyses of this paper arise from one particular aspect of this
model. An implicit assumption it makes is that the value an agent,Ai , places upon
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a subset,S, of some set of resourcesR, is context independent. In other words,
this value,ui(S), does not vary regardless of what allocation of the resourcesR/S
is used for the other agents in the systems. It is not difficult, however, to envisage
situations which such context independent interpretations of utility have difficulty
modelling. Thus, in a 3 agent system,A1 andA2 may wish to act in partnership
againstA3 in determining a partition of a resource set. In this context the value
thatA1 places upon a particular subsetSmay vary according to which subset of the
remaining resourcesA2 obtains. In addition to such coalitional settings, one may
wish to model situations whereby an individual agent will assess a given assign-
ment as having greater worth if it arises in a context for which some other agent is
not granted certain resources. As a more concrete example of where context depen-
dent evaluation is significant one can consider partnership games such as Bridge,
in which setting it is well-known that the ‘value’, in terms of trick taking potential,
of a given hand may depend significantly on the distribution of the remaining cards
among the other three players.

In this paper we develop an approach to the analysis of context dependent re-
source allocation settings, the central component of which allows agents to dis-
criminate among different overall allocations under which it receives a particular
set of resources. The basic approach is given with other definitions in Section 2.
The main aim of this paper is to initiate the study of our context dependent model
by considering a number of ‘natural’ decision questions within it. A selection of
these is presented in Section 3 and related complexity classifications obtained in
Section 4. Conclusions are given in the final section.

2 Definitions

The basic setting we are concerned with is encapsulated in the following definition.

Definition 1 A resource allocation settingis defined by a triple〈An,Rm,U〉 where

An = {A1, A2, . . . , An} ; Rm = {r1, r2, . . . , rm}

are, respectively, a set of (at least two) agents and a collection of (non-shareable)
resources. Autility function, u, is a mapping from subsets ofRm to rational values.
Each agent Ai ∈ A has associated with it a particular utility function ui , so thatU
is 〈u1, u2, . . . , un〉. AnallocationP ofRm amongAn is a partition〈P1, P2, . . . , Pn〉
ofRm. We use the notationΠn,m to indicate the set of all distinct allocations ofRm

amongAn, noting that there are exactly nm of these. The value ui(Pi) is called the
utility of the resources assigned to Ai .
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The main aspect of the form of Definition 1 that we wish to address concerns its
assumption that for anyS⊆ Rm and agentAi , for any allocations

P = 〈P1, . . . , Pi−1, S, Pi+1, . . . , Pn〉
Q = 〈Q1, . . . , Qi−1, S, Qi+1, . . . , Qn〉

The valueui(S) within the allocationP is exactly the same as its value within the
allocationQ, i.e. ui(S) is invariant over all allocations ofRm/S among the other
agents.

The basic mechanism we use to allow an agentAi to discriminate between such
allocations asP andQ above is that of aranking function.

Definition 2 A prioritised resource allocation setting(PRAS) is defined by a pair
〈〈An,Rm,U〉,V〉 where: 〈An,Rm,U〉 is a resource allocation setting, andV =
〈ρ1, ρ2, . . . , ρn〉 defines a collection ofranking functions. The ranking function for
Ai , ρi , maps each P∈ Πn,m to a non-negative integerρi(P) in the range[0, nm−1].
For a given allocation, P∈ Πn,m, the n-tuple of values〈ρ1(P), ρ2(P), . . . , ρn(P)〉
is called thepreference profileof P in 〈〈An,Rm,U〉,V〉. We say that an n-tuple,
〈k1, k2, . . . , kn〉 of non-negative integer values is anattainable profileif there is an
allocation, P, such thatρi(P) ≤ ki for each1 ≤ i ≤ n. If P and Q are allocations
under whichρi(P) < ρi(Q) we say that Ai prefers the allocationP to the allocation
Q.

We note that our formulation of attainable profile requires only that each agent
views the allocation to beat leastas good as the preference rank indicated by the
profile: we do not require that the specified ranking value be matched exactly.

Within any prioritised resource allocation setting, there will, for each agent,
be some set of allocations that the agent regards as its most preferred. One of
our principal areas of interest will concern allocations that achieve the maximal
preferred status with respect to arbitrary subsets (orcoalitions) from the set of all
agents.

Definition 3 We denote byµi that value ofρi for which there is an allocation, P,
under whichρi(P) = µi and for all other allocations, Q∈ Πn,m, ρi(Q) ≥ µi . For
an agent Ai , any allocation, P, that satisfiesρi(P) = µi is said to beoptimal with
respect to agentAi in the setting〈〈An,Rm,U〉,V〉. An allocation for whichρi(P) =
0 is said to be anideal allocation with respect toAi in the setting〈〈An,Rm,U〉,V〉.
For a subsetC ⊆ An (or coalition), an allocation P is said to be aconsensuswith
respect toC if for each Ai ∈ C it holds thatρi(P) = µi . An allocation, P, is anideal
consensusfor C if ρi(P) = 0 for every Ai ∈ C.
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The concept of (ideal) consensus is presented in Definition 3 with respect only to
the view held by a coalition regarding its members’ ranking functions, i.e. the rank-
ing assigned by agents outside the coalition is not considered. We can, additionally,
introduce a notion of allocations considered with respect toopposing coalitions

Definition 4 Let 〈〈An,Rm,U〉,V〉 be a PRAS, andC ⊂ An, D ⊂ An be disjoint
non-empty sets of agents. The coalitionC can obstructthe coalitionD if: there
is a subset PC of Rm and an allocation P′ of PC amongC for which if Q isany
allocation inΠn,m with Qi = P′

i for each Ai ∈ C then Q is a consensus forC and
for every Aj ∈ D, ρj(Q) > µj . We refer to such a subset PC as anobstructive set
for C with respect toD.

If a given coalitionC is capable of obstructing another coalitionD this indicates
that the members ofC could collectively acquire and distribute some subset (PC)
from the overall resource setRm in such a way that regardless of how the remain-
ing resources are divided amongAn/C, the resulting allocation will be one each
Ai ∈ C views as optimal, but whichno agentin D will see as optimal. One con-
sequence arising from the idea of obstructive coalitions is that during negotiations
over exchange of resources between agents, a particular subset of these,Ssay, may
acquire a certain significance in terms of the current allocation and given coalitions,
C andD: Smay becritical in the sense that wereC to acquireS then it would, to-
gether with (some subset of) its holding underP, be able to obstructD. Thus in
such situations, it would be in the interests ofC to acquire the missing elements of
Swhile, similarly, agents inD would not only seek to prevent this, but would also
have to recognise the potential for such situations to arise. Formally,

Definition 5 Let 〈〈An,Rm,U〉,V〉 be a PRAS,C ⊂ An, D ⊂ An be disjoint non-
empty sets of agents, and P∈ Πn,m an allocation ofRm amongAn. We say that
the subset S⊂ Rm is critical for 〈C,D〉 in the allocationP if: S 6⊆ ∪i∈C Pi and
S ∪ ∪i∈C Pi is an obstructive set forC with respect toD. More generally, if S, T
are disjoint subsets ofRm with T ⊆ ∪i∈C Pi and S6⊂ ∪i∈C Pi , we say that〈S, T〉 is
a critical exchange forC with respect toD if S∪ (∪i∈C Pi)/T is an obstructive set
for C with respect toD.

In the context of Defintion 5, it is advantageous for a coalition to identify and
acquire those resources in a critical set: in such circumstances the coalitions can
then achieve its most preferred allocations while preventing a select group of other
agents achieving theirs. For a critical exchange, a coalition in order to reach a
similar state must additionally arrange that some of its currently held resources are
reassigned to other agents.

In using the concept of rank functions, Definition 2 provides one mechanism
for an agent,Ai , to discriminate, should it wish to do so, between the(n− 1)m−|Pi |
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distinct allocations toAn/{Ai} that are consistent withAi being assignedPi ⊆ Rm.
In addition we obtain an approach that can be used to describe a number of ideas
examined in earlier work. Consider, for example, the concept of an allocation being
“envy-free” studied in, e.g. [8].

Definition 6 For a resource allocation setting〈A,R,U〉 and an allocation P ofR
amongA, P isenvy freeif for each distinct pair, i and j, ui(Pi) ≥ ui(Pj), i.e. in an
envy-free allocation, Ai values what it has been given at least as highly as it would
value the resources granted to any other agent by the allocation.

This concept is easily encapsulated within a prioritised resource allocation setting:
define the ranking functionρi(P) as,

ρi(P) = |{ j : ui(Pj) > ui(Pi)}|

In this way an allocation,P, is envy-free if and only ifρi(P) = 0 for eachi, or,
in terms of Definition 3:P is envy-free if and only ifP is an ideal consensus with
respect to the coalition of all agentsAn.

We note that we may recover the standard mechanism for an agent to distin-
guish between allocations (within a non-prioritised setting) merely by considering
a decreasing order of the2m potential valuesui(S) whereS⊆ Rm and fixingρi(P)
to be the position ofui(Pi) within this, so that higher valued resource subsets are
given preference.

3 Decision Problems for Prioritised Settings

Our aim in this preliminary study is to consider prioritised resource allocation set-
tings with respect to complexity issues. Thus, we now present and discuss a number
of decision problems that naturally arise in this model. In Section 4 we then obtain
results regarding their computational complexity.

The first set of such problems addresses questions concerning to what extent a
given allocation can be improved.

Definition 7 The decision problemSubjective Improvement(SI) takes as an in-
stance a PRAS,〈〈An,Rm,U〉,V〉, an allocation P∈ Πn,m and an index i with
1 ≤ i ≤ n. The instance is accepted if there is an allocation Q∈ Πn,m for which
ρi(Q) < ρi(P).

The decision problemObjective Improvement(OI) takes as an instance a PRAS,
〈〈An,Rm,U〉,V〉 and an allocation P∈ Πn,m with the instance accepted if there is
an allocation Q∈ Πn,m for which∧n

i=1(ρi(Q) < ρi(P)) holds true.
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The decision problemPareto Optimality(PO) takes as an instance a PRAS,
〈〈An,Rm,U〉,V〉 and an allocation P∈ Πn,m with the instance accepted if for
every allocation Q∈ Πn,m: should ρi(Q) < ρi(P) for some1 ≤ i ≤ n then
ρj(Q) > ρj(P) for some1 ≤ j ≤ n.

Subjective Improvement deals with whether a single specified agent can realise
an allocation that it prefers to the given one, whereas the focus of Objective Im-
provement is on allocations which improve the preferences of all agents in the
system. The concept of Pareto Optimality has, of course, received much attention
both within the field of coalitional game theory and multiagent resource allocation
models. Our description of this in terms of ranking profiles, subsumes the latter
class of applications, so that in informal terms, an allocation is Pareto Optimal
if some agent can achieve a more preferred allocation only at the cost of another
agent being penalised.

Definition 8 An instance of the decision problemAttainable Profile(AP) com-
prises a PRAS,〈〈An,Rm,U〉,V〉 and an n-tuple〈k1, k2, . . . , kn〉 of non-negative
integers. The instance is accepted if the profile〈k1, k2, . . . , kn〉 is attainable in
〈〈An,Rm,U〉,V〉.

Definition 9 An instance of the decision problemObstructive Coalition(OC) com-
prises a PRAS,〈〈An,Rm,U〉,V〉 and two disjoint subsetsC, D from An. The
instance is accepted if the coalitionC can obstruct the coalitionD in the setting
〈〈An,Rm,U〉,V〉.

An instance of the decision problemCritical Set (CS) consists of a PRAS,
〈〈An,Rm,U〉,V〉, two disjoint non-empty subsetsC, D from An, and an alloca-
tion P∈ Πn,m for whichρi(P) > µi for each i∈ C ∪D. An instance is accepted if:
there is a set S⊂ Rm such that S is critical for〈C,D〉 in the allocation P.

We note the conditionρi(P) > µi for eachi ∈ C ∪ D implies that each agent in-
volved in the two coalitions has a reason to seek out some exchange in the resources
held in the hope that it will reach a position it regards as optimal.

4 Complexity in Prioritised Settings

Before presenting our complexity results, we deal with one technical issue concern-
ing the representation of instances of prioritised resource allocation settings. We re-
call that two elements of these are then-tuple of utility functions,U = 〈u1, . . . , un〉
each of which maps subsets ofRm to rational values; and then-tuple of ranking
functionsV = 〈ρ1, . . . , ρn〉 each of which maps allocations inΠn,m to non-negative

6



integer values. In giving representations of these in instances, say, ofAP andOC

we face the problem that the domains are exponentially large in the valuem: 2m

subsets ofRm, nm allocations inΠn,m. Thus were these to be presented by explic-
itly enumerating pairs of subset and value (forU) or pairs of allocation and value
(for V) the space taken by the instance encoding would be unreasonable for all but
modest values ofm. It is unlikely to be the case that such enumerative descriptions
would be used in practice, and it could also happen that assessments of the prob-
lem complexity in terms of the instance size would result in apparent ‘polynomial’
time algorithms: such methods would, however, be polynomial only by virtue of
the infeasible nature of the instance representation. In order to circumvent these
difficulties it is necessary to adopt a convention for describingU andV that will
allow, in such cases were it is possible to do so, these elements to be described by
an encoding whose length is polynomial inn + m and which allows the relevant
functions to be evaluated efficiently (in terms of the encoding size). While there
are a wide range of possible schemes that could be employed, the one which will
be assumed in our subsequent development is the following: each utility function
ui is presented by acombinational logic networkover the basis of2-input Boolean
functions (i.e. a straight-line program) withm input bits andti output bits, this
network having the property that for eachS⊆ Rm if the inputs are instantiated by
the Boolean value(r i ∈ S) thenval(S) the ti-bit binary value induced at the output
will be such thatui(S) = val(S)/m. We employ a similar formalism for encoding
ρi , this time employing a network withnmBoolean inputs to encode allocations in
Πn,m. For further details on this widely-studied model of function computation we
refer the reader to any of the standard monographs such as [4].

Theorem 1 AP is NP–complete.

Proof. MembershipNP is immediate from the non-deterministic algorithm that
simply guesses an allocationP ∈ Πn,m and checks that∧n

i=1(ρi(P) ≤ ki) holds.
Recalling our convention for representingV each testρi(P) ≤ ki can be performed
in time polynomial (in fact, linear) in the length of the encoding ofρi .

For NP–hardness we will, in fact, prove a rather stronger result:AP is NP–hard
even when instances are restricted to 2 agents, with the profile〈k1, k2〉 = 〈0, 0〉 and
for a fixed pair of ranking functions〈ρ1, ρ2〉 whose definition, given an allocation
P = 〈P1, P2〉, is

ρ1(P) =
{

1 if u1(P2) > u1(P1)
0 if u1(P2) ≤ u1(P1)

ρ2(P) =
{

1 if u2(P1) > u2(P2)
0 if u2(P1) ≤ u2(P2)
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We employ a reduction from3-SAT, in which instancesΦ(Zt) = ∧r
i=1(yi,1 ∨ yi,2 ∨

yi,3), are limited to those for which the number of propositional variables,t, is
odd. It is a trivial matter to show that this restriction makes no difference to the
NP-complete status of3-SAT. Given such an instance, and the fact thatn = 2,
〈k1, k2〉 = 〈0, 0〉 with 〈ρ1, ρ2〉 as defined above, we need only specifyR and the
utility functions〈u1, u2〉 to be employed. FixR = {z1, z2, . . . , zt}, i.e. the resource
being divided is the set of propositional variables definingΦ(Zt). ForW ⊆ R, the
instantiationpos(W) is given byzi = > if zi ∈ W, zi = ⊥ if zi 6∈ W; similarly,
the instantiationneg(W) is given bypos(R/W). The utility functions,〈u1, u2〉 are
specified by,

u1(S) =
{

2t if Φ(pos(S)) = >
|S| if Φ(pos(S)) 6= >

u2(S) =
{

2t if Φ(neg(S)) = >
|S| if Φ(neg(S)) 6= >

We claim that the profile〈0, 0〉 is attainable in〈〈A2,R, 〈u1, u2〉〉, 〈ρ1, ρ2〉〉 if and
only if Φ(Zt) is satisfiable. Suppose first thatα = 〈a1, . . . , at〉 is an instantiation
of Zt that satisfiesΦ. Consider the subsetWα for which zi ∈ Wα if and only if
ai = >. For this,u1(Wα) = u2(R/Wα) = 2t, and since2t is the maximum
valueui can attain, it follows thatρ1(〈Wα,R/Wα〉) = ρ2(〈Wα,R/Wα〉) = 0 as
required. On the other hand, suppose that〈S,R/S〉 is an allocation which attains
the profile〈0, 0〉. Consider the instantiationpos(S) and suppose that this does
not satisfyΦ(Zt). In this case we have,u1(S) = |S| andu1(R/S) ∈ {t − |S|, 2t};
similarly u2(R/S) = t−|S| andu2(S) ∈ {|S|, 2t}. If u1(R/S) = 2t andu2(S) = 2t
then the profile of〈S,R/S〉 is 〈1, 1〉 – contradicting the assumption that〈0, 0〉 has
been attained. Noting thatu1(R/S) = 2t if and only if u2(S) = 2t this leaves
only the casesu1(S) = |S|, u1(R/S) = t − |S|, u2(R/S) = t − |S|, u2(S) = |S|.
Now we recall thatt is odd and therefore we cannot have|S| = t − |S|. We
thus obtain the contradiction shouldpos(S) fail to satisfyΦ(Zt) that the profile
〈ρ1(S), ρ2(R/S)〉 ∈ {〈0, 1〉, 〈1, 0〉, 〈1, 1〉}. It follows that Φ(Zt) is satisfiable if
and only the profile〈0, 0〉 is attainable in the constructed setting. 2

The following Corollaries of Theorem 1 are easily proved, following directly from
the reduction used or by minor modifications to it.

Corollary 1 The following all hold even when|A| = 2:

a. SI is NP–complete.

b. OI is NP–complete.

c. PO is CO-NP–complete.
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d. Deciding if a resource allocation setting〈An,Rm,U〉 admits anenvy-free
allocation isNP–complete.

e. Deciding if an agent within a PRAS has an ideal allocation isNP–complete.

f. Deciding if a PRAS has an ideal consensus with respect toAn is NP–complete.

Proof. Omitted. 2

Theorem 1 and its corollaries, although couched in terms of prioritised settings,
have analogous phrasings in the standard setting of Definition 1. Our remaining re-
sults, however, consider questions which have no natural counterpart in this arena,
i.e. they arise specifically in the treatment of context dependent schemes. We first
consider determining whether a coalition has the capability to obstruct another by
identifying an obstructive set of resources.

Theorem 2 OC is Σp
2–complete.

Proof. For membership inΣp
2 it suffices to observe that〈〈〈An,Rm,U〉,V〉, C,D〉

is accepted as an instance ofOC if and only if: ∃ 〈Pi1 , . . . , Pik〉 ∀ Q ∈ Πn,m, should
it be the case that∧i j∈CPi j = Qi j then∧

i j∈C
ρi j (Q) = µi j ∧

∧
ik∈D

ρik(Q) > µik


To establish thatOC is Σp

2–hard, we give a reduction fromQSATΣ
2 instances of

which comprise aCNF formula Φ(Xt, Yt) defined over 2 disjoint sets of proposi-
tional variables. An instance ofQSATΣ

2 is accepted if there is an instantion,αX of
Xt under which for all instantiations,βY of Yt we haveΦ(αX, βY) = ⊥.

GivenΦ(Xt, Yt) we construct the following instance ofOC.
The set of agents contains three members{A1, A2, A3} while R contains the

2t elements{x1, . . . , xt, y1, . . . , yt}. We may fixui(S) = 0 for eachi, since we
only need to define each ranking function appropriately. This we do as follows.
Using Xi and Yi to denote the setsPi ∩ {x1, . . . , xt} and Pi ∩ {y1, . . . , yt}, for
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P = 〈P1, P2, P3〉 ∈ Π3,2t

ρ1(P) =


0 if Y1 = ∅ andΦ(pos(X1), pos(Y2)) = ⊥

andΦ(pos(X1), pos(Y3)) = ⊥
1 otherwise

ρ2(P) =
{

0 if Y1 6= ∅ or Φ(pos(X1), pos(Y2)) = >
1 otherwise

ρ3(P) =
{

0 if Y1 6= ∅ or Φ(pos(X1), pos(Y3)) = >
1 otherwise

wherepos(S) is are as defined in the proof of Theorem 1 with respect to the sets
Xt andYt. We complete the construction of the instance by settingC = {A1} and
D = {A2, A3}.

We claim that our construction is accepted as an instance ofOC if and only if
Φ(Xt, Yt) is accepted as an instance ofQSATΣ

2 . Suppose thatΦ(Xt, Yt) is a positive
instance ofQSATΣ

2 and letαX = 〈a1, a2, . . . , at〉 be the witnessing instantiation
of Xt. Consider the allocationP1 = {xi : ai = >}. Then for any allocation,
Q ∈ Π3,2t for whichQ1 = P1 we haveρ1(Q) = 0 sinceYt is distributed amongA2

andA3 and, from the definition ofαX, we get

Φ(αX, pos(Y2)) = Φ(αX, pos(Y3)) = ⊥

and thus, in addition,ρ2(Q) = ρ3(Q) = 1 > µ2 = µ3 = 0. We note that the
condition onY1 means that there are allocations for whichρ2(Q) = ρ3(Q) = 0.
We deduce that〈〈〈A3,R,U〉,V〉, {A1}, {A2, A3}〉 is accepted as an instance ofOC.

On the other hand suppose the constructed instance is a positive instance of
OC and consider a subsetP1 of R that witnesses this. It is certainly the case that
Y1 = ∅. It must also hold, however, that for every allocation,Q, with Q1 =
P1 and{y1, . . . , yt} distributed over〈Q2, Q3〉 we haveρ1(Q) = 0 andρ2(Q) =
ρ3(Q) = 1, i.e. Φ(pos(X1), pos(Y2)) = Φ(pos(X1), pos(Y3)) = ⊥. We deduce
that the instantiationpos(X1) witnessesΦ(Xt, Yt) as a positive instance ofQSATΣ

2

completing the proof thatOC is Σp
2–complete. 2

We obtain a similar classification for the decision problem Critical Set.

Theorem 3 CS is Σp
2–complete.

Proof. Membership inΣp
2 follows by the algorithm which on a given instance

〈〈〈An,Rm,U〉,V〉, C,D, P〉, guesses a subset,S, of ∪i 6∈CPi together with an allo-
cation,〈Pi1 , . . . , Pir 〉 of S ∪ ∪i∈C Pi amongC (noting that these can be combined
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in a singleΣp
1, i.e. NP, stage), followed by checking for eachQ ∈ Πn,m that should

Qi j = Pi j for each1 ≤ j ≤ r, thenρi(Q) = µi for eachAi ∈ C, while ρj(Q) > µj

for eachj ∈ D. The entire process is easily accomplished by aΣp
2 algorithm.

ForΣp
2–hardness we again employ a reduction fromQSATΣ

2 . Given an instance
Φ(Xt, Yt) of this we form an instance ofCS in which

A = {A1, A2, A3, A4}
R = {x1, . . . , xt, y1, . . . , yt}
C = {A1, A2}
D = {A3}
〈P1, P2, P3, P4〉 = 〈∅, ∅, ∅,R〉

We again may useui(S) = 0 for each agent. It remains to defineV = 〈ρ1, ρ2, ρ3, ρ4〉.
For Q ∈ Π4,2t, ρi(Q) is defined as below, where, as in Theorem 2, the notationsXi

andYi are used forPi ∩ {x1, . . . , xt} andPi ∩ {y1, . . . , yt}.

ρ1(Q) =


0 if Y1 = ∅ andX1 ∪ X2 = {x1, . . . , xt}

andΦ(pos(X1), pos(Y3)) = ⊥
1 if X1 ∪ X2 ⊂ {x1, . . . , xt} andY1 = ∅
2 otherwise

ρ2(Q) =


0 if Y2 = ∅ andX1 ∪ X2 = {x1, . . . , xt}

andΦ(neg(X2), neg(Y4)) = ⊥
1 if X1 ∪ X2 ⊂ {x1, . . . , xt} andY2 = ∅
2 otherwise

ρ3(Q) =


0 if Y1 = ∅ andX3 ∪ X4 = ∅

andΦ(pos(X1), pos(Y3)) = >
1 if X3 6= ∅ or X4 6= ∅
2 otherwise

ρ4(Q) =


0 if Y2 = ∅ andX3 ∪ X4 = ∅

andΦ(neg(X2), neg(Y4)) = >
1 otherwise

For the allocation
P = 〈∅, ∅, ∅,R〉

we get
〈ρ1(P), ρ2(P), ρ3(P), ρ4(P)〉 = 〈1, 1, 1, 1〉

Now suppose thatΦ(Xt, Yt) is accepted as an instance ofQSATΣ
2 , letting αX =

〈a1, . . . , at〉 be an instantiation witnessing this. ChoosingSto be the set containing
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exactly thosexi for which ai = >, gives a critical set for〈{A1, A2}, {A3}〉 with
respect to the allocation〈∅, ∅, ∅,R〉, simply by assigningQ1 = S, Q2 = Xt/S.
Then for any allocation〈Q3, Q4〉 of Yt among{A3, A4} we get,

ρ1(〈Q1, Q2, Q3, Q4〉) = ρ2(Q1, Q2, Q3, Q4) = 0

andρ3(〈Q1, Q2, Q3, Q4〉) = 2.
On the other hand, suppose that our construction yields a positive instance

of CS and consider the setsS1, S2 allocated to{A1, A2} from the critical setS
witnessing acceptance. It must certainly hold thatS = {x1, . . . , xt} for any other
choice will result inρ1(Q) > 0 andρ2(Q) > 0 whenQ1 = S1 andQ2 = S2. It
follows that the resource subset{y1, . . . , yt} is distributed between{A3, A4} and
no matter how such a distribution is made, we getρ3(Q) = 2 andρ4(Q) = 1 (since
X3 = X4 = ∅). From this we see that, regardless of whichever choice ofY3 is
made, we haveΦ(pos(X1), pos(Y3)) = ⊥ and deduce thatΦ(Xt, Yt) is accepted as
an instance ofQSATΣ

2 by virtue of the instantiationpos(X1) of Xt. This completes
the proof thatCS is Σp

2–complete. 2

The4 agent setting employed in the proof of Theorem 3 raises a number of issues
of interest. Not least among these is the question of optimal strategies for the two
coalitions -{A1, A2} and{A3}. Given an arbitrary formula instanceΦ(Xt, Yt) the
resource set in the proof construction is, at first, held in its entirety byA4. We
may observe thatA4, since it is a member of neither coalition, could be regarded
as neutral to the interests of both, even though it can only achieve a most preferred
allocation if there are circumstances which allowA3 to do the same. As such
we might assume thatA4 has no reason to object to subsets of its orginal holding
being claimed by any of the other three agents: such largesse cannot render the
resulting allocationlesspreferred than its initial one. Consider now the situation
that the coalition{A1, A2} faces: certainly it can never be to its advantage for either
member to obtain elements of{y1, . . . , yt}. Thus the decision facing this coalition
is whether to obtainall of the resources in{x1, . . . , xt} to distribute among its
members or whether only to acquire aproper subsetof these: the first could allow
{A1, A2} to obstruct{A3} but may also letA3 devise allocations that are found
worsethan the initial one. On the other hand, the second choice prevents an ideal
state but can never leave{A1, A2} less content. Similar considerations impinge
upon the choices made byA3: if it elects to obtain some element of{x1, . . . , xt}
and retain it then it does so at the cost of never being able to achieve an ideal
allocation even if itwere possibleto do so. If, however,A3 avoids choosing any
element of{x1, . . . , xt}, there is a risk thatA3 ends up worse off.
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5 Conclusions

The principal contention of this paper is that the oft employed model for consid-
ered in the study of multiagent resource allocation is insufficiently expressive to
address arenas wherein the worth a single agent attributes to its alloted resource
is dependent on external factors. We have argued that importing a simple rank-
ing mechanism into the standard setting provides an approach flexible enough to
model such context dependent issues, illustrating this view with refererence to a
select number of natural decision questions whose computational complexity has
been classified. These include both problems that encompass related questions in
the standard setting, e.g. Subjective Improvement, as well as a number that arise
specifically in our prioritised variant, e.g. Obstructive Coalition.

Although we have chosen to present this model from the viewpoint of mul-
tiagent resource allocation and evaluation, we note that the issues motivating it
are also of great relevance to more general concerns arising from scenarios mod-
elled through some underlying set (R) divided among a finite set of participants
(A). Thus ifR is interpreted as a collection of beliefs, attitudes, and facts held
by members ofA then we have a framework for considering persuasive argument,
e.g. in the scheme of [10], where the force and acceptance of particular claims by
one agent depends not only on its own beliefs and attitudes but also on how these
relate to the views endorsed by other agents. Since, in principle abstract models
of argument and reasoning such as that of Dung [7] could be embedded within a
multi-party debate setting, the development of these to describe relative notions of
value preferences that has been initiated in the work of Bench-Capon [1, 2] may be
defined through our prioritised model.

Finally we note the potentially rich seam of problems that arise in formulating
strategies for coalitions to identify consensus allocations, critical sets, and obstruc-
tive possibilities. As we have outlined in the postlude to Theorem 3, even a setting
comprising only4 agents yields non-trivial strategic questions for the coalitions
involved when these seek either to improve their preference or avoid it degrading.
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