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Abstract
1 We examine properties of a model of resource allocation in which several agents ex-

change resources in order to optimise their individual holdings. The schemes discussed re-
late to well-known negotiation protocols proposed in earlier work and we consider a number
of alternative notions of “rationality” covering both quantitative measures, e.g. cooperative
and individual rationality and more qualitative forms, e.g. Pigou-Dalton transfers. While
it is known that imposing particular rationality and structural restrictions on the form of
exchanges may render these unable to realise every reallocation of the resource set, in this
paper we address the issue of the number of restricted rational exchanges that may be
required to implement a particular reallocation when it is possible to do so. We construct
examples showing that this number may be exponential (in the number of resources m),
even when all of the agent utility functions are monotonic. We further show that k agents
may achieve in a single exchange a reallocation requiring exponentially many rational ex-
changes if at most k − 1 agents can participate, this same reallocation being unrealisable
by any sequences of rational exchanges in which at most k − 2 agents are involved.

1. Introduction

Mechanisms for negotiating allocation of resources within a group of agents form an im-
portant body of work within the study of multiagent systems. Typical abstract models
derive from game-theoretic perspectives in economics and among the issues that have been
addressed are strategies that agents use to obtain a particular subset of the resources avail-
able, e.g. [14, 18, 21], and protocols by which the process of settling upon some allocation
of resources among the agents involved is agreed, e.g. [5, 6, 7, 15].

The setting we are concerned with is encapsulated in the following definition.

Definition 1 A resource allocation setting is defined by a triple 〈A,R,U〉 where

A = {A1,A2, . . . ,An} ; R = {r1, r2, . . . , rm}

are, respectively, a set of (at least two) agents and a collection of (non-shareable) resources.
A utility function, u, is a mapping from subsets of R to rational values. Each agent Ai ∈ A
has associated with it a particular utility function ui , so that U is 〈u1, u2, . . . , un〉. An
allocation P of R to A is a partition 〈P1,P2, . . . ,Pn〉 of R. The value ui(Pi) is called the
utility of the resources assigned to Ai .

Two major applications in which the abstract view of Definition 1 has been exploited are
e-commerce and distributed task realisation. In the first R represents some collection of
commodities offered for sale and individual agents seek to acquire a subset of these, the

1. This report is a revised and extended version of ULCS-04-001 which it subsumes.
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“value” an agent attaches to a specific set being described by that agent’s utility function.
In task planning, the “resource” set describes a collection of sub-tasks to be performed in
order to realise some complex task, e.g. the “complex task” may be to transport goods
from a central warehouse to some set of cities. In this example R describes the locations
to which goods must be dispatched and a given allocation defines those places to which an
agent must arrange deliveries. The utility functions in such cases model the cost an agent
associates with carrying out its alloted sub-tasks.

Within the very general context of Definition 1, a number of issues arise stemming from
the observation that it is unlikely that some initial allocation will be seen as satisfactory
either with respect to the views of all agents in the system or with respect to divers global
considerations. Thus, by proposing changes to the initial assignment individual agents
seek to obtain a “better” allocation. This scenario raises two immediate questions: how to
evaluate a given partition and thus have a basis for forming improved or optimal allocations;
and, the issue underlying the main results of this paper, what restrictions should be imposed
on the form that proposed exchanges may take.

We shall subsequently review some of the more widely studied approaches to defining
conditions under which some allocations are seen as “better” than others. For the purposes
of this introduction we simply observe that such criteria may be either quantitative or
qualitative in nature. As an example of the former we have the approach wherein the
“value” of an allocation P is simply the sum of the values given by the agents’ utility
functions to the subsets of R they have been apportioned within P , i.e.

∑n
i=1 ui(Pi): this

is the so-called utilitarian social welfare, which to avoid repetition we will denote by σu(P).
A natural aim for agents within a commodity trading context is to seek an allocation under
which σu is maximised. One example of a qualitative criterion is “envy freeness”: informally,
an allocation, P , is envy-free if no agent assigns greater utility to the resource set (Pj ) held
by another agent than it does with respect to the resource set (Pi) it has actually been
allocated, i.e. for each distinct pair 〈i , j 〉, ui(Pi) ≥ ui(Pj ).

In very general terms there are two approaches that have been considered in treating
the question of how a finite collection of resources might be distributed among a set of
agents in order to optimise some criterion of interest: “contract-net” based methods, e.g.
[8, 10, 11, 20, 21] deriving from the work of [25]; and “combinatorial auctions”, e.g. [16, 17,
22, 24, 26] amongst others. In this article our concerns focus on the first of these, however,
before discussing it in greater depth we compare the two approaches.

One may view the strategy underlying combinatorial auctions as investing the computa-
tional effort into a “pre-processing” stage following which a given allocation is determined.
Thus a controlling agent (the “auctioneer”) is supplied with a set of bids – pairs 〈Sj , pj 〉
wherein Sj is some subset of the available resources and pj the price agent Aj is prepared
to pay in order to acquire Sj . The problem faced by the auctioneer is to decide which bids
to accept in order to maximise the overall profit subject to the constraint that each item
can be obtained by at most one agent. By imposing restrictions on the structure of bids
some efficient algorithmic methods that can identify optimal or near-optimal2 allocations
have been discovered, e.g. [26]. In general, however, this optimisation problem is np–hard,
even if only a good approximate solution is sought, cf. [23]. In addition to these compu-

2. By “near-optimal” we mean in the sense of being “good” approximations.
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tational problems, one further difficulty that can arise in implementations of combinatorial
auction protocols is their potential vulnerability to manipulation by agents. For example,
agents may assume multiple identities in order to submit several bids: so-called “false-
name” bids concerning which the susceptibility of various protocols together with possible
defence mechanisms have been studied in depth, e.g. [19, 28, 29].

What we shall refer to as “contract-net schemes” typically eschew the precomputation
stage and subordination to a controlling arbiter employed in auction mechanisms, seeking
instead to realise a suitable allocation by an agreed sequence of exchanges. The contract-
net (in its most general instantiation) for scenarios of m resources distributed among n
agents, is the complete directed graph with nm vertices (each of which is associated with
a distinct allocation). In this way a possible exchange 〈P ,Q〉 is represented as an edge
directed from the vertex labelled with P to that labelled Q . Viewed thus, identifying a
sequence of exchanges can be interpreted as a search process which, in principle, individual
agents may conduct in an autonomous fashion. We defer a discussion of why a sequence of
exchanges may be needed, noting only that some mechanism for dealing with combinatorial
problems may be used so that the number of “legal” exchanges described in the contract-
net graph is reduced: for any given agent and allocation, P , the number of new allocations
“reachable” in a single exchange from P becomes bounded by some polynomial function of
the number of resources. As a result at any stage each agent has only a relatively small
number of possibilities to consider, so in principle allowing better allocations to be identified
by a sequence of local improvements.

While it is known that contract-net schemes have a number of computationally unde-
sirable aspects some of which we review subsequently, we argue that the capability to move
from an initial allocation to some notionally better one via a sequence of local adjustments
offers significant benefits. In discussing these we stress it is not our intention to promote the
superiority (or otherwise) of contract-net approaches over auction mechanisms, but rather
to indicate that such schemes may provide a more suitable model in some arenas. It is, of
course, equally true that in other environments the algorithmic advantages resulting from
suitable auction mechanisms render these a more appropriate optimisation technique.

We have suggested one potential benefit in our earlier introductory description, namely,
the capability for agents to negotiate independently of a central arbiter. Thus, whether some
allocation of the resources is actually effected depends not on the bid ranking algorithm em-
ployed by an auctioneer but solely on the desires and intentions of the participating agents.
This capability for independent action raises a number of interesting issues. Although we
have outlined auction mechanisms as shifting the computational burden in choosing an al-
location to a pre-processing stage handled by the controlling agent charged with resolving
competing bids, it is, of course, the case that this does not obviate the requirement for
(potentially significant) computational effort on the part of the bidding agents. It is well-
known assuming a “pure” scenario in which each agent can only submit a limited number
of bids – an environment which methods aiming to detect false-name bidding seek to ensure
– that an agent is faced with a highly non-trivial strategic issue: deciding which set(s) of
resources and prices are “most likely” to bring about a desired outcome. Notice that we
are faced with two extremes in such cases: a fully competitive situation where bids are
formulated independently of consultation with other agents; and a fully cooperative one
whereby the agents locally agree a partition of the resources and bid accordingly. In this
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latter case, assuming agents behave honestly and enter bids only for the resource subsets
they have agreed, the auctioneer is presented with a fait accompli: accept every bid (or
be prepared to make a sub-optimal profit). In total, by allowing collusion between agents
prior to submitting bids, appropriate contract-net schemes provide a means of undermining
the role of the auctioneer. One can interpret such collusion as a rather extreme form of
“strategic manipulation” in which a coalition of all agents forms to bring about a partition
of resources with which each is satisfied.

This example of how carrying out a sequence of “local negotiations” may be used ex-
ternally to manipulate the outcome of an auction process raises the question of the extent
to which regimes without a controlling auctioneer could be internally manipulated to the
advantage of particular agents. While a detailed analysis of such possibilities is outside the
scope of this article, we mention one very basic way in which a coalition of agents, C could
act collectively in their own interests against the interests of other agents. Thus it may
be that for some subset, S say, of the available resources, were C collectively to acquire S ,
two outcomes would result: every agent in C could achieve an allocation that it viewed as
optimal; and no agent outside C would be able to realise a similarly regarded allocation
from those resources remaining, i.e. R \ S . A very preliminary study of such coalitional
issues is presented in [9], where such S are termed critical sets for a coalition. One result of
interest as regards such manipulative processes, is that without even considering the strate-
gic complexities that arise for C in obtaining a critical set the problem of recognising if such
a resource set exists is already of significant complexity: [9] showing it to be Σp

2–complete
even if C comprises only two members out of a society of four agents. While this is only a
very basic class of manipulative behaviour, the level of complexity involved suggests that
identifying critical sets is unlikely to be a productive investment of computational effort.

The preceding discussion has identified general criteria that may apply in assessing the
worth of a specific allocation and presented an overview of two approaches that have been
studied in terms of optimising quantitative measures. Henceforward we consider contract-
net schemes with particular emphasis on their properties when limits are imposed on the
form that sequences of exchanges can assume in order to bring about better allocations.

Before proceeding with the precise matter of our results, however, we deal with a question
raised earlier: why a sequence of exchanges should be required. Suppose, for example, the
aims are to bring about an allocation, Popt , that maximises utilitarian social welfare (σu)
or to improve that of an initial allocation Pinit . It is certainly the case that the exchange
〈Pinit ,Popt〉 is a single exchange, i.e. described by a single directed edge in the contract-net
graph, and thus, all that any agent has to do is to identify those items in its possession that
are expendable and which agents should be given these, as well as those items it lacks and
the agents from whom these must be acquired. Now, even if we make the assumption that
every agent is aware of the allocation held by any other agent, such “single-shot” solutions
are not feasible approaches.

One difficulty is that just as determining optimal outcomes for combinatorial auctions
faces issues of computational intractability, so too, these arise in the context of identifying
allocations with various properties. Thus deciding if a given allocation could be improved
with respect to σu is np–complete, as is the problem of deciding if a given lower bound on
σu can be achieved, cf. [8]. We note that these results apply even in the case of scenarios
involving only two agents both of whom employ monotone utility functions, i.e. with the
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property that for any two sets, S and T , S ⊆ T implies u(S ) ≤ u(T ). This situation is
unchanged if one moves from quantitative measures such as σu to qualitative indicators. So,
again with two agents and monotone utility functions, [8] establish that it is co-np–complete
to decide whether an allocation is “Pareto optimal”, i.e. one such that any allocation under
which some agent’s utility improves does so at the expense of another agent’s decreasing.
Similarly, [9] has recently shown that deciding if a resource allocation setting admits an envy-
free distribution is np–complete in a two agent environment3. In summary, one problem
with single exchange solutions to obtain improved or optimal allocations is that from a given
initial point in the contract-net graph it is computationally hard for the agents to agree
if there are better allocations available at all. There are, however, other reasons why one
might regard single exchange solutions as infeasible. For example, even if a new allocation
Pfinal is agreed, this might differ quite radically from the initial state represented by Pinit : it
may not be possible to implement 〈Pinit ,Pfinal 〉 in a single exchange even if only two agents
are involved since the environment in which the trading process is implemented may not be
suited to handling exchanges with large numbers of resources; similarly the protocol used
for describing contracts may not allow arbitrarily large numbers of resources to be dealt
with.

In total, in order to proceed by way of local improvements some means of managing
the exponentially large search space is needed. To begin, we first formalise the concepts of
exchange and contract path.

Definition 2 Let 〈A,R,U〉 be a resource allocation setting. An exchange is a pair 〈P ,Q〉
where P = 〈P1, . . . ,Pn〉 and Q = 〈Q1, . . . ,Qn〉 are distinct partitions of R. The effect of
implementing the exchange 〈P ,Q〉 is that the allocation of resources specified by P is replaced
with that specified by Q. Following the notation of [11] for an exchange δ = 〈P ,Q〉, we use
Aδ to indicate the subset of A involved, i.e. Ak ∈ Aδ if and only if Pk 6= Qk .

Let δ = 〈P ,Q〉 be an exchange. A contract path realising δ is a sequence of allocations

∆ = 〈P (1), P (2) , . . . , P (t−1), P (t)〉

in which P = P (1) and P (t) = Q. The length of ∆, denoted |∆| is t − 1, i.e. the number of
exchanges in ∆.

There are two methods which we can use to reduce the number of exchanges that a single
agent may have to consider in seeking to move from some allocation to another, thereby
avoiding the need to choose from exponentially many alternatives: structural and rationality
constraints. Structural constraints limit the permitted exchanges to those which bound the
number of resources and/or the number of agents involved, but take no consideration of the
view any agent may have as to whether its allocation has improved. In contrast, rationality
constraints restrict exchanges, 〈P ,Q〉 to those in which Q “improves” upon P according
to particular criteria. In this article we consider two classes of structural constraint: O-
contracts, defined and considered in [20], and what we shall refer to as M (k)-contracts.

Definition 3 Let δ = 〈P ,Q〉 be an exchange involving a reallocation of R among A.

3. The utility functions in this proof are not monotone, however, we conjecture that imposing such a
restriction will not result in any reduction in complexity.
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a. δ is a one contract (O-contract) if

O1. Aδ = {i , j}.
O2. There is a unique resource r ∈ Pi ∪Pj for which Qi = Pi ∪{r} and Qj = Pj \{r}

(with r ∈ Pj ) or Qj = Pj ∪ {r} and Qi = Pi \ {r} (with r ∈ Pi)

b. For a value k ≥ 2, the exchange δ = 〈P ,Q〉 is an M (k)-contract if 2 ≤ |Aδ| ≤ k and
∪i∈Aδ Qi = ∪i∈Aδ Pi .

Thus, O-contracts involve the transfer of exactly one resource from a particular agent to
another, resulting in the number of exchanges compatible with any given allocation being
exactly (n − 1)m: each of the m resources can be reassigned from its current owner to any
of the other n − 1 agents.

Rationality constraints arise in a number of different ways. For example, from the
standpoint of an individual agent Ai a given exchange 〈P ,Q〉 may have three different
outcomes: ui(Pi) < ui(Qi), i.e. Ai values the allocation Qi as superior to Pi ; ui(Pi) =
ui(Qi), i.e. Ai is indifferent between Pi and Qi ; and ui(Pi) > ui(Qi), i.e. Ai is worse
off after the exchange. When global optima such as utilitarian social welfare are to be
maximised, there is the question of what incentive there is for any agent to accept an
exchange 〈P ,Q〉 under which they are left with a less valuable resource holding. The
standard approach to this latter question is to introduce the notion of a pay-off function,
i.e. in order for Ai to accept an exchange under which it suffers a reduction in utility, Ai

receives some payment sufficient to compensate for its loss. Of course such compensation
must be made by other agents in the system who in providing it do not wish to pay in excess
of any gain. In defining notions of pay-off the interpretation is that in any transaction each
agent Ai makes a payment, πi : if πi < 0 then Ai is given −πi in return for accepting an
exchange; if πi > 0 then Ai contributes πi to the amount to be distributed among those
agents whose pay-off is negative.

This notion of “sensible transfer” is captured by the concept of individual rationality,
and is often defined in terms of an appropriate pay-off vector existing. It is not difficult,
however, to show that such definitions are equivalent to the following.

Definition 4 An exchange 〈P ,Q〉 is individually rational (IR) if and only if σu(Q) >
σu(P).

We shall consider alternative bases for rationality constraints later: these are primarily of
interest within so-called money free settings (so that compensatory payment for a loss in
utility is not an option).

The central issue of interest in this paper concerns the properties of the contract-net
graph when the allowed exchanges must satisfy both a structural and a rationality con-
straint. Thus, if we consider arbitrary predicates Φ on exchanges 〈P ,Q〉 – where the cases
of interest are Φ combining a structural and rationality condition – we have,

Definition 5 For Φ a predicate over distinct pairs of allocations, a contract path

〈P (1), P (2) , . . . , P (t−1), P (t)〉

6



realising 〈P ,Q〉 is a Φ-path if for each 1 ≤ i < t, 〈P (i),P (i+1)〉 is a Φ-exchange, i.e.
Φ(P (i),P (i+1)) holds. We say that Φ is complete if any exchange δ may be realised by a
Φ-path. We, further, say that Φ is complete with respect to Ψ-exchanges (where Ψ is a
predicate over distinct pairs of allocations) if any exchange δ for which Ψ(δ) holds may be
realised by a Φ-path.

The main interest in earlier studies of these ideas has been in areas such as identifying
necessary and/or sufficient conditions on exchanges to be complete with respect to particular
criteria, e.g. [20]; and in establishing “convergence” and termination properties, e.g. [10, 11]
consider exchange types, Φ, such that every maximal4 Φ-path ends in a Pareto optimal
allocation. In [20], Sandholm examines how restrictions e.g. with Φ(P ,Q) = > if and only
if 〈P ,Q〉 is an O-contract, may affect the existence of contract paths to realise exchanges.
Of particular interest, from the viewpoint of heuristics for exploring the contract-net graph,
are cases where Φ(P ,Q) = > if and only if the exchange 〈P ,Q〉 is individually rational.
For the case of O-contracts the following are known:

Theorem 1

a. O-contracts are complete.

b. IR O-contracts are not complete with respect to IR exchanges.

Of course one might question why paths combining both structural and rationality con-
straints should be of interest, particularly in view of Theorem 1: since it is possible to
move between any pair of allocations via O-contracts alone why impose further limits? To
illustrate the point that rationality constraints may also be needed, consider the example
now outlined.

Suppose the agents within a particular setting are observing the following protocol:

A reallocation of resources is agreed over a sequence of stages, each of which
involves communication between two agents, Ai and Aj . This communication
consists of Ai issuing a proposal to Aj of the form (buy , r , p), offering to purchase
r from Aj for a payment of p; or (sell , r , p), offering to transfer r to Aj in return
for a payment p. The response from Aj is simply accept (following which the
exchange is implemented) or reject .

This, of course, is a very simple negotiation structure, however consider its operation within
a two agent setting in which one agent, A1 say, wishes to bring about an allocation Pfin (and
thus can devise a plan – sequence of exchanges – to realise this from an initial allocation
Pinit) while the other agent, A2, does not know Pfin . In addition, assume that A1 is the only
agent that makes proposals and that a final allocation is fixed either when A1 is “satisfied”
or as soon as A2 rejects any offer.

While A2 could be better off if Pfin is realised, it may be the case that the only proposals
A2 will accept are those under which it does not lose, i.e. A2 is not prepared to suffer a
short-term loss even if it is suggested that a long-term gain will result. Thus if some

4. “Maximal” in the sense that if 〈P (1), . . . ,P (t)〉 is such a path, then for every allocation, Q , Φ(P (t),Q)
does not hold.
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agents are sceptical about the bona fides of others then they will be inclined to accept
only exchanges from which they can perceive an immediate benefit, i.e. those which are
individually rational. There are several reasons why an agent may embrace such attitudes
within the schema outlined: once an exchange has been implemented A2 may lose utility
but no further proposals are made by A1 so that the loss is “permanent”. We note that
even if we enrich the basic protocol so that A1 can describe Pfin to A2 before any formal
exchange of resources takes place, if the exchange is implemented by an O-contract path
(via the sequence of stages outlined), A2 may still reject offers under which it suffers a
loss, since it is unwilling to rely on the subsequent exchanges that would ameliorate its loss
actually being proposed5. Although the position taken by A2 in the setting just described
may appear unduly cautious, we would claim that it does reflect “real” behaviour in certain
contexts. Outside the automated allocation and negotiation models in multiagent systems
that we have been reviewing, there are many examples of actions by individuals where
promised long-term gains are insufficient to engender the acceptance of short term loss.
Consider “chain letter” schemes (or their more subtle manifestation as “pyramid selling”
enterprises): such have a natural lifetime bounded by the size of the population in which
they circulate, but may breakdown before this is reached. Faced with a request to “send
$10 to the five names at the head of the list and forward the letter to ten others after adding
your name” despite the possibility of significant gain after a temporary loss of $50, to ignore
such blandishments is not seen as overly sceptical and cautious: there may be reluctance to
accept that one will eventually receive sufficient recompense in return and suspicion that
the name order has been manipulated.

In total for the scenario we have described, if A1 wishes to bring about an allocation
Pfin then faced with the view adopted by A2 and the limitations imposed by the exchange
protocol, the only “effective plan” that A1 could adopt is to find a sequence of rational, i.e.
IR, exchanges to propose to A2. In the consideration of algorithmic and complexity issues
presented in [8] one difficulty with such plan formulation is already apparent, that is:

Theorem 2 Even in the case n = 2 and with monotone utility functions the problem of
deciding if an IR O-contract path exists to realise the IR exchange 〈P ,Q〉 is np–hard.

Thus deciding if any rational plan is possible is already computationally hard. In this article
we demonstrate that, even if an appropriate rational plan exists, in extreme cases, there
may be significant problems: the number of exchanges required could be exponential in
the number of resources, so affecting both the time it will take for the schema outlined to
conclude and the space that an agent will have to dedicate to storing it. Thus in his proof
of Theorem 1 (b), Sandholm observes that when an IR O-contract path exists for a given
IR exchange, it may be the case that its length exceeds m, i.e. some agent passes a resource
to another and then accepts the same resource at a later stage. The typical form of the
results that we derive can be summarised as:

For Φ a structural constraint (O-contract or M (k)-contract) and Ψ a rational-
ity constraint, e.g. Ψ(P ,Q) holds if 〈P ,Q〉 is individually rational, there are

5. We note that even if A1 attempts to construct an ordering of exchanges under which any “irrational”
exchange reduces the value of its own holding, there is one problem: A2 may reject subsequent offers
after the “irrational” exchanges so that A1 is worse off.
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resource allocation settings 〈An ,Rm ,U〉 in which there is an exchange 〈P ,Q〉
satisfying all of the following.

a. 〈P ,Q〉 is a Ψ-exchange.

b. 〈P ,Q〉 can be realised by a contract path on which every exchange satisfies
the structural constraint Φ and the rationality constraint Ψ.

c. Every such contract path has length at least g(m).

For example, we show that there are instances for which the shortest IR O-contract path
has length exponential in m.6

In the next section we will be interested in lower bounds on the values of the following
functions: we introduce these in general terms to avoid unneccesary subsequent repetition.

Definition 6 Let 〈A,R,U〉 be a resource allocation setting. Additionally let Φ and Ψ be two
predicates on exchanges. For an exchange δ = 〈P ,Q〉 the partial function Lopt(δ, 〈A,R,U〉,Φ)
is the length of the shortest Φ-contract path realising 〈P ,Q〉 if such a path exists (and is
undefined if no such path is possible). The partial function Lmax(〈A,R,U〉,Φ,Ψ) is

Lmax(〈A,R,U〉,Φ,Ψ) = max
Ψ-exchanges δ

Lopt(δ, 〈A,R,U〉,Φ)

Finally, the partial function ρmax(n,m,Φ,Ψ) is

ρmax(n,m,Φ,Ψ) = max
U=〈u1,u2,...,un 〉

Lmax(〈An ,Rm ,U〉,Φ,Ψ)

where consideration is restricted to those Ψ-exchanges δ = 〈P ,Q〉 for which a realising
Φ-path exists.

The three measures, Lopt, Lmax and ρmax distinguish different aspects regarding the length
of contract-paths. The function Lopt is concerned with Φ-paths realising a single exchange
〈P ,Q〉 in a given resource allocation setting 〈A,R,U〉: the property of interest being the
number of exchanges in the shortest, i.e. optimal length, Φ-path. We stress that Lopt is
a partial function whose value is undefined in the event that 〈P ,Q〉 cannot be realised by
a Φ-path in the setting 〈A,R,U〉. The function Lmax is defined in terms of Lopt, again in
the context of a specific resource allocation setting. The behaviour of interest for Lmax,
however, is not simply the length of Φ-paths realising a specific 〈P ,Q〉 but the “worst-case”
value of Lopt for exchanges which are Ψ-exchanges. We note the qualification that Lmax is
defined only for Ψ-exchanges that are capable of being realised by Φ-paths, and thus do
not consider cases for which no appropriate contract path exists. Thus, if it should be the
case that no Ψ-exchange in the setting 〈A,R,U〉 can be realised by a Φ-path then the value
Lmax(〈A,R,U〉,Φ,Ψ) is undefined, i.e. Lmax is also a partial function. We may interpret
any upper bound on Lmax in the following terms: if Lmax(〈A,R,U〉,Φ,Ψ) ≤ K then any
Ψ-exchange for which a Φ-path exists can be realised by a Φ-path of length at most K .

Our main interest will centre on ρmax which is concerned with the behaviour of Lmax as
a function of n and m and ranges over all n-tuples of utility functions 〈u : 2R → Q〉n . Our

6. [20] gives an upper bound on the length of such paths which is also exponential in m, but does not
explicitly state any lower bound other than that already referred to.

9



approach to obtaining lower bounds for this function is constructive, i.e. for each 〈Φ,Ψ〉
that is considered, we show how the utility functions U may be defined in a setting with m
resources so as to yield a lower bound on ρmax(n,m,Φ,Ψ). In contrast to the measures Lopt

and Lmax, the function ρmax is not described in terms of a single fixed resource allocation
setting. It is, however, still a partial function: depending on 〈n,m,Φ,Ψ〉 it may be the case
that in every n agent, m resource allocation setting, regardless of which choice of utility
functions is made, there is no Ψ-exchange, 〈P ,Q〉 capable of being realised by Φ-path, and
for such cases the value of ρmax(n,m,Φ,Ψ) will be undefined7.

It is noted, at this point, that the definition of ρmax allows arbitrary utility functions
to be employed in constructing “worst-case” instances. While this is reasonable in terms
of general lower bound results, as will be apparent from the given constructions the utility
functions actually employed are highly artificial (and unlikely to feature in “real” application
settings). We shall attempt to address this objection by further considering bounds on the
following variant of ρmax:

ρmax
mono(n,m,Φ,Ψ) = max

U=〈u1,u2,...,un 〉 : each ui is monotone
Lmax(〈An ,Rm ,U〉,Φ,Ψ)

Thus, ρmax
mono deals with resource allocation settings within which all of the utility functions

must satisfy a monotonicity constraint.
The main results of this article are presented in the next section. We consider two

general classes of contract path: O-contract paths under various rationality conditions; and,
similarly, M (k)-contract paths for arbitrary values of k ≥ 2. Our results are concerned with
the construction of resource allocation settings 〈A,Rm ,U〉 for which given some rationality
requirement, e.g. that exchanges be individually rational, there is some exchange 〈P ,Q〉
that satisfies the rationality condition, can be realised by an O-contract path (respectively,
M (k)-contract path), but with the number of exchanges required by such paths being
exponential in m. We additionally obtain slightly weaker (but still exponential) lower
bounds for O-contract paths within settings of monotone utility functions, i.e. for the
measure ρmax

mono, outlining how similar results may be derived for M (k)-contract paths.
In the resource allocation settings constructed for demonstrating these properties with

M (k)-contract paths, the constructed exchange 〈P ,Q〉 is realisable with a single M (k +1)-
contract but unrealisable by any rational M (k − 1)-contract path. Conclusions and some
directions for further work are presented in the final section.

7. In recognising the possibility that ρmax(n,m, Φ, Ψ) could be undefined, we are not claiming that such
behaviour arises with any of the instantations of 〈Φ, Ψ〉 considered subsequently: in fact it will be clear
from the constructions that, denoting by ρmax

Φ,Ψ(n,m) the function ρmax(n.m, Φ, Ψ) for a fixed instantiation
of 〈Φ, Ψ〉, with the restricted exchange types and rationality conditions examined, the function ρmax

Φ,Ψ(n,m)
is a total function. Whether it is possible to formulate “sensible” choices of 〈Φ, Ψ〉 with which ρmax

Φ,Ψ(n,m)
is undefined for some values of 〈n,m〉 (and, if so, demonstrating examples of such) is, primarily, only
a question of combinatorial interest, whose development is not central to the concerns of the current
article.
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2. Lower Bounds on Path Length

2.1 Overview

The strategy employed in proving our results involves two parts: for a given class of re-
stricted contract paths we proceed as follows in obtaining lower bounds on ρmax(n,m,Φ,Ψ).

a. For the contract-net graph partitioning m resources among n agents, construct a path,
∆m = 〈P (1), P (2) , . . . , P (t)〉 realising an exchange 〈P (1),P (t)〉. For the structural
constraint, Φ′ influencing Φ it is then proved that:

a1. The contract path ∆m is a Φ′-path, i.e. for each 1 ≤ i < t , the exchange
〈P (i),P (i+1〉 satisfies the structural constraint Φ′.

a2. For any pair of allocations P (i) and P (i+j ) occurring in ∆m , if j ≥ 2 then the
exchange 〈P (i),P (i+j )〉 is not a Φ′-exchange.

Thus (a1) ensures that ∆m is a suitable contract path, while (a2) will guarantee that
there is exactly one allocation, P (i+1), that can be reached within ∆m from any given
allocation P (i) in ∆m by means of a Φ′-exchange.

b. Define utility functions Un = 〈u1, . . . , un〉 with the following properties

b1. The exchange 〈P (1),P (t)〉 is a Ψ-exchange.

b2. For the rationality constraint, Φ′′ influencing Φ, every exchange 〈P (i),P (i+1)〉 is
a Φ′′-exchange.

b3. For every allocation P (i) in the contract path ∆ and every allocation Q other
than P (i+1) the exchange 〈P (i),Q〉 is not a Φ-exchange, i.e. it violates either the
stuctural constraint Φ′ or the rationality constraint Φ′′.

Thus, (a1) and (b2) ensure that 〈P (1),P (t)〉 has a defined value with respect to the
function Lopt for the Ψ-exchange 〈P (1),P (t)〉, i.e. a Φ-path realising the exchange is
possible. The properties given by (a2) and (b3) indicate that (within the constructed
resource allocation setting) the path ∆m is the unique Φ-path realising 〈P (1),P (t)〉.
It follows that t − 1, the length of this path, gives a lower bound on the value of Lmax

and hence a lower bound on ρmax(n,m,Φ,Ψ).

Before continuing it will be useful to fix some notational details.
We useHm to denote the m-dimensional hypercube. Interpreted as a directed graph, Hm

has 2m vertices each of which is identified with a distinct m-bit label. Using α = a1a2 . . . am

to denote an arbitrary such label, the edges of Hm are formed by

{ 〈α, β〉 : α and β differ in exactly one bit position}

We identify m-bit labels α = a1a2 . . . am with subsets Sα of Rm , via ri ∈ Sα if and only if
ai = 1. Similarly, any subset S of R can be described by a binary word, β(S ), of length m,
i.e. β(S ) = b1b2 . . . bm with bi = 1 if and only if ri ∈ S . For a label α we use |α| to denote
the number of bits with value 1, so that |α| is the size of the subset Sα. If α and β are m-bit
labels, then αβ is a 2m-bit label, so that if Rm and Tm are disjoint sets, then αβ describes
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the union of the subset Sα of Rm with the subset Sβ of Tm . Finally if α = a1a2 . . . am

is an m-bit label then α denotes the label formed by changing all 0 values in α to 1 and
vice versa. In this way, if Sα is the subset of Rm described by α then α describes the set
Rm \ Sα. To avoid an excess of superscripts we will, where no ambiguity arises, use α both
to denote the m-bit label and the subset of Rm described by it, e.g. we write α ⊂ β rather
than Sα ⊂ Sβ.

For n = 2 the contract-net graph induced by O-contracts can be viewed as the m-
dimensional hypercube Hm : the m-bit label, α associated with a vertex of Hm describing
the allocation 〈α, α〉 to 〈A1,A2〉. In this way the set of IR O-contracts define a subgraph,
Gm of Hm with any directed path from β(P) to β(Q) in Gm corresponding to a possible IR
O-contract path from the allocation 〈P ,R \ P〉 to the allocation 〈Q ,R \Q〉.

2.2 O-contract paths

Our first result clarifies one issue in the presentation of [20, Proposition 2].

Theorem 3 Let Φ(P ,Q) be the predicate which holds whenever 〈P ,Q〉 is an IR O-contract
and Ψ(P ,Q) that which holds whenever 〈P ,Q〉 is IR. For m ≥ 7

ρmax(2,m,Φ,Ψ) ≥
(

77
256

)
2m − 2

Proof. Consider a path C = 〈α1, α2, . . . , αt〉 in Hm , with the following property8

∀ 1 ≤ i < j ≤ t (j ≥ i + 2 ⇒ (αi and αj differ in at least 2 positions) (SC)

e.g. if m = 4 then

∅, {r1}, {r1, r3}, {r1, r2, r3}, {r2, r3}, {r2, r3, r4}, {r2, r4}, {r1, r2, r4}

is such a path as it corresponds to the sequence 〈0000, 1000, 1010, 1110, 0110, 0111, 0101, 1101〉.
Choose C(m) to be a longest such path with this property that could be formed in Hm ,

letting ∆m = 〈P (1),P (2), . . . ,P (t)〉 be the sequence of allocations with P (i) = 〈αi , αi〉. We
now define the utility functions u1 and u2 so that for γ ⊆ Rm ,

u1(γ) + u2(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, α2, . . . , αt}

With this choice, the contract path ∆m describes the unique IR O-contract path realising
the IR exchange 〈P (1),P (t)〉: that ∆m is an IR O-contract path is immediate, since

σu(P (i+1)) = i + 1 > i = σu(P (i))

That it is unique follows from the fact that for all 1 ≤ i ≤ t and i +2 ≤ j ≤ t , the exchange
〈P (i),P (j )〉 is not an O-contract (hence there are no “short-cuts” possible), and for each
P (i) there is exactly one IR O-contract that can follow it, i.e. P (i+1).9

8. This defines the so-called “snake-in-the-box” codes introduced in [12].
9. In our example with m = 4, the sequence 〈0000, 1000, 1001, 1101〉, although defining an O-contract path

gives rise to an exchange which is not IR, namely that corresponding to 〈1000, 1001〉.
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From the preceding argument it follows that any lower bound on the length of C(m), i.e.
a sequence satisfying the condition (SC), is a lower bound on ρmax(2,m,Φ,Ψ). These paths
in Hm were originally studied by Kautz [12] in the context of coding theory and the lower
bound on their length of (77/256)2m − 2 established by Abbott and Katchalski [1]. 2

There are a number of alternative formulations of “rationality” which can also be considered.
For example

Definition 7 Let δ = 〈P ,Q〉 be an exchange.

a. δ is cooperatively rational if for every agent, Ai , ui(Qi) ≥ ui(Pi) and there is at least
one agent, Aj , for whom uj (Qj ) > uj (Pj ).

b. δ is equitable if mini∈Aδ ui(Qi) > mini∈Aδ ui(Pi).

c. δ is a Pigou-Dalton exchange if Aδ = {i , j}, ui(Pi) + uj (Pj ) = ui(Qi) + uj (Qj ) and
|ui(Qi)− uj (Qj )| < |ui(Pi)− uj (Pj )| (where | . . . | is absolute value).

There are a number of views we can take concerning the rationality conditions given in Def-
inition 7. One shared feature is that, unlike the concept of individual rationality for which
some provision to compensate agents who suffer a loss in utility is needed, i.e. individual ra-
tionality presumes a “money-based” system, the forms defined in Definition 7 allow concepts
of “rationality” to be given in “money-free” enviroments. Thus, in a cooperatively rational
exchange, no agent involved suffers a loss in utility and at least one is better off. It may be
noted that given the characterisation of Definition 4 it is immediate that any cooperatively
rational exchange is perforce also individually rational; the converse, however, clearly does
not hold in general. In some settings, an equitable exchange may be neither cooperatively
nor individually rational. One may interpret such exchanges as one method of reducing
inequality between the values agents place on their allocations: for those involved in an
equitable exchange, it is ensured that the agent who places least value on their current allo-
cation will obtain a resource set which is valued more highly. It may, of course, be the case
that some agents suffer a loss of utility: the condition for an exchange to be equitable limits
how great such a loss could be. Finally the concept of Pigou-Dalton exchange originates
from and has been studied in depth within the theory of exchange economies. This is one
of many approaches that have been proposed, again in order to describe exchanges which
reduce inequality between members of an agent society. In terms of the definition given,
such exchanges encapsulate the so-called Pigou-Dalton principle in economic theory: that
any transfer of income from a wealthy individual to a poorer one should reduce the dispar-
ity between them. We note that, in principle, we could define related rationality concepts
based on several extensions of this principle that have been suggested, e.g. [3, 4, 13].

Using the same O-contract path constructed in Theorem 3, we need only vary the
definitions of the utility functions employed in order to obtain,

Corollary 1 For each of the cases below,

a. Φ(δ) holds if and only if δ is a cooperatively rational O-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φ(δ) holds if and only if δ is an equitable O-contract.
Ψ(δ) holds if and only if δ is equitable.
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c. Φ(δ) holds if and only if δ is a Pigou-Dalton O-contract.
Ψ(δ) holds if and only if δ Pigou-Dalton exchange.

ρmax(2,m,Φ,Ψ) ≥
(

77
256

)
2m − 2

Proof. We employ exactly the same sequence of allocations, ∆m described in the proof of
Theorem 3 but modify the utility functions 〈u1, u2〉 for each case.

a. Choose 〈u1, u2〉 with u2(γ) = 0 for all γ ⊆ R and

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}

The resulting O-contract path is cooperatively rational: the utility enjoyed by A2

remains constant while that enjoyed by A1 increases by 1 with each exchange. Any
deviation from this contract path (employing an alternative O-contract) will result in
a loss of utility for A1.

b. Choose 〈u1, u2〉 with u2(γ) = u1(γ) and

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}

The O-contract path is equitable: both A1 and A2 increase their respective utility
values by 1 with each exchange. Again, any O-contract deviating from this will result
in both agents losing some utility.

c. Choose 〈u1, u2〉 as

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}
; u2(γ) =

{
2m − k if γ = αk

2m if γ 6∈ {α1, . . . , αt}

To see that the O-contract path consists of Pigou-Dalton exchanges, it suffices to note that
u1(αi) + u2(αi) = 2m for each 1 ≤ i ≤ t . In addition, |u2(αi+1)− u1(αi+1)| = 2m − 2i − 2
which is strictly less than |u2(αi)−u1(αi)| = 2m−2i . Finally, any O-contract 〈P ,Q〉 which
deviates from this sequence will not be a Pigou-Dalton exchange since

|u2(Q2)− u1(Q1)| = 2m > |u2(P2)− u1(P1)|

which violates one of the conditions required of Pigou-Dalton exchanges. 2

The construction for two agent settings, easily extends to larger numbers.

Corollary 2 For each of the choices of 〈Φ,Ψ〉 considered in Theorem 3 and Corollary 1,
and all n ≥ 2,

ρmax(n,m,Φ,Ψ) ≥
(

77
256

)
2m − 2
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Proof. Fix allocations in which A1 is given α1, A2 allocated α1, and Aj assigned ∅ for each
3 ≤ j ≤ n. Using identical utility functions 〈u1, u2〉 as in each of the previous cases, we
employ for uj : uj (∅) = 1, uj (S ) = 0 whenever S 6= ∅ (〈Φ,Ψ〉 as in Theorem 3); uj (S ) = 0
for all S (Corollary 1(a)); uj (∅) = 2m , uj (S ) = 0 whenever S 6= ∅ (Corollary 1(b)); and,
finally, uj (S ) = 2m for all S , (Corollary 1(c)). Considering a realisation of the Ψ exchange
〈P (1),P (t)〉 the only Φ-contract path admissible is the path ∆m defined in the related proofs.
This gives the lower bound stated. 2

We note, at this point, some other consequences of Corollary 1 with respect to [11, Theo-
rems 1, 3], which state

Fact 1 We recall that a Φ-path, 〈P (1), . . . ,P (t)〉 is maximal if for each allocation Q, 〈P (t),Q〉
is not a Φ-exchange.

a. If 〈P (1), . . . ,P (t)〉 is any maximal path of cooperatively rational exchanges then P (t)

is Pareto optimal.

b. If 〈P (1), . . . ,P (t)〉 is any maximal path of equitable exchanges then P (t) maximises
the value σe(P) = min1≤i≤n ui(Pi), i.e. the so-called egalitarian social welfare.

The sequence of cooperatively rational exchanges in Corollary 1(a) terminates in the Pareto
optimal allocation P (t): the allocation for A2 always has utility 0 and there is no alloca-
tion to A1 whose utility can exceed t . Similarly, the sequence of equitable exchanges in
Corollary 1(b) terminates in the allocation P (t), for which σe(P (t)) = t the maximum that
can be attained for the instance defined. In both cases, however, the optima are reached
by sequences of exponentially many (in m) exchanges: thus, although Fact 1 guarantees
convergence of particular exchange sequences to optimal states, it may be the case, as
illustrated in Corollary 1(a–b) that the process of convergence takes considerable time.

We conclude our results concerning O-contracts by presenting a lower bound on ρmax
mono,

i.e. the length of paths when the utility functions are required to be monotone.
In principle one could attempt to construct appropriate monotone utility functions that

would have the desired properties with respect to the path used in Theorem 3. It is, however,
far from clear whether such a construction is possible. We do not attempt to resolve this
question here. Whether an exact translation could be accomplished is, ultimately, a question
of purely combinatorial interest: since our aim is to demonstrate that exponential length
contract paths are needed with monotone utility functions we are not, primarily, concerned
with obtaining an optimal bound.

Theorem 4 With Φ(P ,Q) and Ψ(P ,Q) be defined as in Theorem 3 and m ≥ 14

ρmax
mono(2,m,Φ,Ψ) ≥


(

77
128

)
2m/2 − 3 if m is even

(
77
128

)
2(m−1)/2 − 3 if m is odd

Proof. We describe the details only for the case of m being even: the result when m is
odd is obtained by a simple modification which we shall merely provide in outline.

15



Let m = 2s with s ≥ 7. For any path

∆s = 〈α1, α2, . . . , αt〉

in Hs (where αi describes a subset of Rs by an s-bit label), the path double(∆s) in H2s is
defined by

double(∆s) = 〈 α1α1, α2α2 , . . . , αiαi , αi+1αi+1 , . . . , αtαt 〉
= 〈β1, β3, . . . , β2i−1, β2i+1, . . . , β2t−1〉

(The reason for successive indices of β increasing by 2 will become clear subsequently)
Of course, double(∆s) does not describe an O-contract path10: it is, however, not dif-

ficult to interpolate appropriate allocations, β2i , in order to convert it to such a path.
Consider the subsets, β2i (with 1 ≤ i < t) defined as follows:

β2i =

{
αi+1αi if αi ⊂ αi+1

αiαi+1 if αi ⊃ αi+1

If we now consider the path, ext(∆s), within H2s given by

ext(∆s) = 〈β1, β2, β3 , . . . , β2(t−1), β2t−1〉

then this satisfies,

a. If ∆s has property (SC) of Theorem 3 in Hs then ext(∆s) has property (SC) in H2s .

b. If j is odd then |βj | = s.

c. If j is even then |βj | = s + 1.

From (a) and the bounds proved in [1] we deduce that ext(∆s) can be chosen so that with
P (i) denoting the allocation 〈βi , βi〉

d. ext(∆s) describes an O-contract path from P (1) to P (2t−1).

e. For each pair 〈i , j 〉 with j ≥ i + 2, the exchange 〈P (i),P (j )〉 is not an O-contract.

f. If ∆s is chosen as in the proof of Theorem 3 then the number of exchanges in ext(∆s)
is as given in the statement of the present theorem.

We therefore fix ∆s as the path from Theorem 3 so that in order to complete the proof
we need to construct utility functions 〈u1, u2〉 that are monotone and with which ext(∆s)
defines the unique IR O-contract path realising the IR exchange 〈P (1),P (2t−1)〉.

The choice for u2 is relatively simple. Given S ⊆ R2s ,

u2(S ) =


0 if |S | ≤ s − 2
2t + 1 if |S | = s − 1
2t + 2 if |S | ≥ s

10. In terms of the classification described in [20], it contains only swap exchanges (S -contracts): each
exchange swaps exactly one item in β2i−1 with an item in β2i−1 in order to give β2i+1.
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In this t is the number of allocations in ∆s . The behaviour of u2 is clearly monotone.
The construction for u1 is rather more complicated. Its main idea is to make use of

the fact that the size of each set βi occurring in ext(∆s) is very tightly constrained: |βi |
is either s or s + 1 according to whether i is odd or even. We first demonstrate that each
set of size s + 1 can have at most two strict subsets (of size s) occurring within ext(∆s):
thus, every S of size s + 1 has exactly 2 or 1 or 0 subsets of size s on ext(∆s). To see this
suppose the contrary. Let γ, β2i−1, β2j−1, and β2k−1 be such that |γ| = s + 1 with

β2i−1 ⊂ γ ; β2j−1 ⊂ γ ; β2k−1 ⊂ γ

Noting that β2i−1 = αiαi and that ∆s has the property (SC) it must be the case that (at
least) two of the s-bit labels from {αi , αj , αk} differ in at least two positions. Without loss
of generality suppose this is true of αi and αk . As a result we deduce that the sets β2i−1

and β2k−1 have at most s−2 elements in common, i.e. |β2i−1∩β2k−1| ≤ s−2: β2i−1 = αiαi

and β2k−1 = αkαk so in any position at which αi differs from αk , αi differs from αk at
exactly the same position. In total |β2i−1 \β2k−1| ≥ 2, i.e. there are (at least) two elements
of β2i−1 that do not occur in β2k−1; and in the same way |β2k−1 \ β2i−1| ≥ 2, i.e. there are
(at least) two elements β2k−1 that do not occur in β2i−1. The set γ, however, has only s +1
members and so cannot have both β2i−1 and β2k−1 as subsets: this would require

β2i−1 ∩ β2k−1 ∪ β2i−1 \ β2k−1 ∪ β2k−1 \ β2i−1 ⊆ γ

but, as we have just seen,

| β2i−1 ∩ β2k−1 ∪ β2i−1 \ β2k−1 ∪ β2k−1 \ β2i−1 | ≥ s + 2

One immediate consequence of the argument just given is that for any set γ of size s+1 there
are exactly two strict subsets of γ occurring on ext(∆s) if and only if γ = β2i−1∪β2i+1 = β2i

for some value of i with 1 ≤ i < t . We can now characterise each subset of R2s of size s +1
as falling into one of three categories.

C1. Good sets, given by {γ : γ = β2i}.

C2. Digressions, consisting of

{ γ : β2i−1 ⊂ γ and γ 6= β2i }

C3. Inaccessible sets, consisting of

{ γ : γ is neither Good nor a Digression}

Good sets are those describing allocations to A1 within the path defined by ext(∆s);
Digressions are the allocations that could be reached using an O-contract from a set of
size s on ext(∆s), i.e. β2i−1, but differ from the set that actually occurs in ext(∆s), i.e. β2i .
Finally, Inaccessible sets are those that do not occur on ext(∆s) and cannot be reached via
an O-contract from any set on ext(∆s).
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We now define u1 as

u1(γ) =



2i − 1 if γ = β2i−1

2i + 1 if γ = β2i

2i if |γ| = s + 1 and γ is a Digression
0 if |γ| ≤ s − 1
0 if |γ| = s and γ 6∈ ext(∆s)
2t − 1 if γ is Inaccessible or |γ| ≥ s + 2

It remains only to prove for these choices of 〈u1, u2〉 that the O-contract path 〈P (1), . . . ,P (2t−1)〉
defined from ext(∆s) is the unique IR O-contract path realising the IR exchange 〈P (1),P (2t−1)〉
and that u1 is monotone.

To show that 〈P (1), . . . ,P (2t−1)〉 is IR we need to demonstrate

∀ 1 ≤ j < 2t − 1 u1(βj ) + u2(βj ) < u1(βj+1) + u2(βj+1)

We have via the definition of 〈u1, u2〉

u1(β2i−1) + u2(β2i−1) = 2(t + i) + 1
< u1(β2i) + u2(β2i)
= 2(t + i) + 2
< u1(β2i+1) + u2(β2i+1)
= 2(t + i) + 3

Thus, via Definition 4, it follows that ext(∆s) gives rise to an IR O-contract path.
To see that this path is the unique IR O-contract path implementing 〈P (1),P (2t−1)〉,

consider any position P (j ) = 〈βj , βj 〉 and allocation Q other than P (j+1) or P (j−1). It may
be assumed that the exchange 〈P (j ),Q〉 is an O-contract. If j = 2i − 1 then σu(P (2i−1)) =
2(t + i) + 1 and |βj | = s. Hence |Q1| ∈ {s − 1, s + 1}. In the former case, u1(Q1) = 0 and
u2(Q2) = 2t + 2 from which σu(Q) = 2t + 2 and thus 〈P (j ),Q〉 is not IR. In the latter case
u1(Q1) = 2i since Q1 is a Digression and u2(Q2) = 2t + 1 giving σu(Q) = 2(t + i) + 1.
Again 〈P (j ),Q〉 fails to be IR since Q fails to give any increase in the value of σu . We are
left with the case j = 2i so that σu(P (2i)) = 2(t + i) + 2 and |βj | = s + 1. Since 〈P (j ),Q〉
is assumed to be an O-contract this gives |Q1| ∈ {s, s + 2}. For the first possibility Q1

could not be a set on ext(∆s): β2i−1 and β2i+1 are both subsets of β2i and there can be at
most two such subsets occurring on ext(∆s). It follows, therefore, that u1(Q1) = 0 giving
σu(Q) = 2t + 2 so that 〈P (j ),Q〉 is not IR. In the second possibility, u1(Q1) = 2t − 1 but
u2(Q2) = 0 as |Q2| = s − 2 so the exchange would result in an overall loss. We deduce that
for each P (j ) the only IR O-contract consistent with it is the exchange 〈P (j ),P (j+1)〉.

The final stage is to prove that the utility function u1 is indeed a monotone function.
Suppose S and T are subsets of R2s with S ⊂ T . We need to show that u1(S ) ≤ u1(T ). We
may assume that |S | = s, that S occurs as some set within ext(∆s), and that |T | = s + 1.
If |S | < s or |S | = s but does not occur on ext(∆s) we have u1(S ) = 0 and the required
inequality holds; if |S | ≥ s + 1 then in order for S ⊂ T to be possible we would need
|T | ≥ s + 2, which would give u1(T ) = 2t − 1 and this is the maximum value that any
subset is assigned by u1. We are left with only |S | = s, |T | = s + 1 and S on ext(∆s) to
consider. It has already been shown that there are at most two subsets of T that can occur
on ext(∆s). Consider the different possibilities:
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a. T = β2i so that exactly two subsets of T occur in ext(∆s): β2i−1 and β2i+1. Since
u1(β2i) = 2i + 1 and this is at least max{u1(β2i−1), u1(β2i+1)}, should S be either of
β2i−1 or β2i+1 then u1(S ) ≤ u1(T ) as required.

b. T is a Digression from S = β2i−1, so that u1(T ) = 2i and u1(S ) = 2i − 1 and, again,
u1(S ) ≤ u1(T ).

We deduce that u1 is monotone completing our lower bound proof for ρmax
mono for even values

of m.
We conclude by observing that a similar construction can be used if m = 2s + 1 is odd:

use the path ext(∆s) described above but modifying it so that one resource (rm) is always
held by A2. Only minor modifications to the utility function definitions are needed. 2

Example 1 For s = 3, we can choose ∆3 = 〈000, 001, 101, 111, 110〉 so that t = 5. This
gives double(∆3) as

〈000111, 001110, 101010, 111000, 110001〉

with the O-contract path being defined from ext(∆3) which is

〈000111, 001111, 001110, 101110, 101010, 111010, 111000, 111001, 110001〉

Considering the 15 subsets of size s + 1 = 4, gives

Good = {001111, 101110, 111010, 111001}
Digression = {010111, 100111, 101011, 110011, 110101, 011110, 11110}
Inaccessible = {011011, 011101, 101101, 110110}

Notice that we choose to view both of the sets in {110011, 110101} as a Digression: in
principle we could continue from β9 = 110001 using either, however, in order to simplify
the construction the path is halted at β9.

The monotone utility functions, 〈u1, u2〉, employed in proving Theorem 4 are defined so that
the path arising from ext(∆s) is IR: in the event of either agent suffering a loss of utility
the gain made by the other is sufficient to provide a compensatory payment. A natural
question that now arises is whether the bound obtained in Theorem 4 can be shown to
apply when the rationality conditions preclude any monetary payment, e.g. for cases where
the concept of rationality is one of those given in Definition 7. Our next result shows that
if we set the rationality condition to enforce cooperatively rational or equitable exchanges
then the bound of Theorem 4 still holds.

Theorem 5 For each of the cases below and m ≥ 14

a. Φ(δ) holds if and only if δ is a cooperatively rational O-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φ(δ) holds if and only if δ is an equitable O-contract.
Ψ(δ) holds if and only if δ is equitable.
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ρmax
mono(2,m,Φ,Ψ) ≥


(

77
128

)
2m/2 − 3 if m is even

(
77
128

)
2(m−1)/2 − 3 if m is odd

Proof. We again illustrate the constructions only for the case of m being even, noting the
modification to deal with odd values of m outlined at the end of the proof of Theorem 4.
The path ext(∆s) is used for both cases.

For (a), we require 〈u1, u2〉 to be defined as monotone functions with which ext(∆s) will
be the unique cooperatively rational O-contract path to realise the cooperatively rational
exchange 〈P (1),P (2t−1)〉 where P (j ) = 〈βj , βj 〉. In this case we set 〈u1, u2〉 to be,

〈u1(γ), u2(γ)〉 =



〈i , i〉 if γ = β2i−1

〈i + 1, i〉 if γ = β2i

〈i , i − 1〉 if |γ| = s + 1 and γ is a Digression
〈0, 2t − 1〉 if |γ| ≤ s − 1
〈0, 2t − 1〉 if |γ| = s and γ 6∈ ext(∆s)
〈2t − 1, 0〉 if γ is Inaccessible or |γ| ≥ s + 2

Since,
〈u1(β2i−1), u2(β2i−1)〉 = 〈i , i〉
〈u1(β2i), u2(β2i)〉 = 〈i + 1, i〉
〈u1(β2i+1), u2(β2i+1)〉 = 〈i + 1, i + 1〉

it is certainly the case that 〈P (1),P (2t−1)〉 and all exchanges on the O-contract path defined
by ext(∆s) are cooperatively rational. Furthermore if Q = 〈γ, γ〉 is any allocation other
than P (j+1) then the exchange 〈P (j ),Q〉 will fail to be a cooperatively rational O-contract.
For suppose the contrary letting 〈P (j ),Q〉 without loss of generality be an O-contract, with
Q 6∈ {P (j−1),P (j+1)} – we can rule out the former case since we have already shown such
an exchange is not cooperatively rational. If j = 2i −1 so that 〈u1(βj ), u2(βj )〉 = 〈i , i〉 then
|γ| ∈ {s − 1, s + 1}: the former case leads to a loss in utility for A1; the latter, (since γ is a
Digression) a loss in utility for A2. Similarly, if j = 2i so that 〈u1(βj ), u2(βj )〉 = 〈i + 1, i〉
then |γ| ∈ {s, s + 2}: for the first γ 6∈ ext(∆s) leading to a loss of utility for A1; the second
results in a loss of utility for A2. It follows that the path defined by ext(∆s) is the unique
cooperatively rational O-contract path that realises 〈P (1),P (2t−1)〉.

It remains only to show that these choices for 〈u1, u2〉 define monotone utility functions.
Consider u1 and suppose S and T are subsets of R2s with S ⊂ T . If |S | ≤ s − 1,

or S does not occur on ext(∆s) then u1(S ) = 0. If |T | ≥ s + 2 or is Inaccessible then
u1(T ) = 2t − 1 which is the maximum value attainable by u1. So we may assume that
|S | = s, occurs on ext(∆s), i.e. S = β2i−1, for some i , and that |T | = s + 1 and is either
a Good set or a Digression. From the definition of u1, u1(S ) = i : if T ∈ {β2i , β2i−2} then
u1(T ) ≥ i = u1(S ); if T is a Digression u1(T ) = i = u1(S ). We deduce that if S ⊆ T then
u1(S ) ≤ u1(T ), i.e. the utility function is monotone.

Now consider u2 with S and T subsets of R2s having S ⊂ T . If |T | ≥ s + 1 or
R2s \ T does not occur in ext(∆s) then u2(T ) = 2t − 1 its maximal value. If |S | ≤ s − 2
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or R2s \ S is Inaccessible then u2(S ) = 0. Thus we may assume that T = β2i−1 giving
u2(T ) = i and |S | = s − 1, so that R2s \ S is either a Digression or one of the Good sets
{β2i , β2i−2}. If R2s \ S is a Digression then u2(S ) = i − 1; if it is the Good set β2i−2 then
u2(S ) = i − 1 < u2(T ); if it is the Good set β2i then u2(S ) = i = u2(T ). It follows that
u2 is monotone completing the proof of part (a).

For (b) we use,

〈u1(γ), u2(γ)〉 =



〈2i − 1, 2i〉 if γ = β2i−1

〈2i + 1, 2i〉 if γ = β2i

〈2i , 2i − 1〉 if |γ| = s + 1 and γ is a Digression
〈0, 2t − 1〉 if |γ| ≤ s − 1
〈0, 2t − 1〉 if |γ| = s and γ 6∈ ext(∆s)
〈2t − 1, 0〉 if γ is Inaccessible or |γ| ≥ s + 2

These choices give ext(∆s) as the unique equitable O-contract path to realise the equitable
exchange 〈P (1),P (2t−1)〉, since

min{u1(β2i−1), u2(β2i−1)} = 2i − 1
min{u1(β2i), u2(β2i)} = 2i
min{u1(β2i+1), u2(β2i+1)} = 2i + 1

each exchange 〈P (j ),P (j+1)〉 is equitable. If Q = 〈γ, γ〉 is any allocation other than P (j+1)

then the exchange 〈P (j ),Q〉 is not an equitable O-contract. Assume that 〈P (j ),Q〉 is an
O-contract, and that Q 6∈ {P (j−1),P (j+1)}. If j = 2i − 1, so that P (j ) = 〈β2i−1, β2i−1〉
and min{u1(β2i−1), u2(β2i−1)} = 2i − 1 then |γ| ∈ {s − 1, s + 1}. In the first of these
min{u1(γ), u2(γ)} = 0; in the second min{u1(γ), u2(γ)} = 2i − 1 since γ must be a
Digression. This leaves only j = 2i with P (j ) = 〈β2i , β2i〉 and min{u1(β2i), u2(β2i)} = 2i .
For this, |γ| ∈ {s, s + 2}: if |γ| = s then min{u1(γ), u2(γ)} ≤ 2i − 1 (with equality when
γ = β2i−1); if |γ| = s + 2 then min{u1(γ), u2(γ)} = 0. In total these establish that ext(∆s)
is the unique equitable O-contract path realising the equitable exchange 〈P (1),P (2t−1)〉.

That the choices for 〈u1, u2〉 describe monotone utility functions can be shown by a
similar argument to that of part (a). 2

Discussion

That we can demonstrate similar extremal behaviours for contract path length with ratio-
nality constraints in both money-based (individual rationality) and money-free (cooperative
rationality, equitable) settings irrespective of whether monotonicity properties are assumed,
has some interesting parallels with other contexts in which monotonicity is relevant. In par-
ticular we can observe that in common with the complexity results already noted from [8]
– deciding if an allocation is Pareto optimal, or if an allocation maximises σu , or if an
IR O-contract path exists – requiring utility functions to be monotone does not result in
a setting which is computationally more tractable. In a related, but somewhat different
context, we have further indications that monotonicity may not suffice to ensure reasonable
computational properties. Thus, [27] present a multiagent coalitional model, in which the
feasibility of a particular set of outcomes with respect to a given set of agents is described
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by a propositional logic function.11 In this context a natural requirement to impose is that
if a set of outcomes is feasible for some coalition C then it is also feasible for any superset
of C: in informal terms, such “coalition monotonic” environments, require coalitions to be
capable of realising any set of goals that could be brought about by any of their subsets. In
[27] the computational complexity of a number of decision questions is studied, e.g. does a
given coalition have any feasible set of outcomes; does every coalition have a feasible set of
outcomes, etc. In the general setting, where no monotonicity requirement is imposed, the
problem complexity ranges from np–complete and co-np–complete to completeness for a
class thought strictly to contain Σp

2 ∪Πp
2 . It turns out, however, that even when considera-

tion is limited to coalition monotonic cases, such restrictions tend not to affect the problem
complexity: of the ten cases for which both general and coalition monotonic examples are
examined, only two yield a reduction in complexity for the restricted form.

2.3 M (k)-contract paths

We now turn to similar issues with respect to M (k)-contracts, recalling that in one respect
these offer a form of exchange that does not fit into the classification of [20] since M (k)-
contracts permit two agents to exchange resources. In one regard, however, M (k)-contracts
are not as general as the multiagent contracts (M -contracts) of [20] since a preset bound
(k) is specified for the number of agents involved.

Our main result on M (k)-contract paths is the following development of Theorem 3.

Theorem 6 Let Φk (P ,Q) be the predicate which holds whenever 〈P ,Q〉 is an IR M (k)-
contract. For all k ≥ 3, n ≥ k and m ≥

(
k
2

)
, there is a resource allocation setting

〈A,R,U〉 and an IR exchange δ = 〈P ,Q〉 for which,

Lopt(δ, 〈A,R,U〉,Φk ) = 1 (a)
Lopt(δ, 〈A,R,U〉,Φk−1) ≥ 2b2m/k(k−1)c − 1 (b)
Lopt(δ, 〈A,R,U〉,Φk−2) is undefined (c)

Before presenting the proof, we comment about the formulation of the theorem statement
and give an overview of the proof structure.

We first note that the lower bounds (where defined) have been phrased in terms of
the function Lopt as opposed to ρmax used in the various results on O-contract paths in
Section 2.2. It is, of course, the case that the bound claimed for Lopt(δ, 〈A,R,U〉,Φk−1)
will also be a lower bound on ρmax(n,m,Φk−1,Ψ) when n ≥ k and Ψ(P ,Q) holds whenever
the exchange 〈P ,Q〉 is IR. The statement of Theorem 6, however, claims rather more than
this, namely that a specific resource allocation setting 〈A,R,U〉 can be defined for each
n ≥ k and each m, together with an IR exchange 〈P ,Q〉 in such a way that: 〈P ,Q〉 can
be achieved by a single M (k)-contract and cannot be realised by an IR M (k − 2)-contract
path. Recalling that Lopt is a partial function, the latter property is equivalent to the claim
made in part (c) for the exchange 〈P ,Q〉 of the theorem statement. Furthermore, this same
exchange although achievable by an IR M (k − 1)-contract path can be so realised only by
one whose length is as given in part (b) of the theorem statement.

11. These are termed “qualitative coalitional games” (qcgs) in [27]: the approach has some features in
common with, but differs from, the concept of “effectivity function” as discussed in [2].
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Regarding the proof itself, there are a number of notational complexities which we have
attempted to ameliorate by making some simplifying assumptions concerning the relation-
ship between m – the size of the resource set R – and k – the number of agents which
are needed to realise 〈P ,Q〉 in a single IR exchange. In particular, we shall assume that
m is an exact multiple of

(
k
2

)
. We observe that by employing a similar device to that

used in the proof of Theorem 4 we can deal with cases for which m does not have this
property: if m = s

(
k
2

)
+q for integer values s ≥ 1 and 1 ≤ q <

(
k
2

)
, we simply employ

exactly the same construction using m − q resources with the “missing” q resources from
Rm being allocated to A1 and never being reallocated within the M (k − 1)-contract path.
This approach accounts for the rounding operation (b. . .c) in the exponent term of the lower
bound. We shall also assume that the number of agents in A is exactly k . Within the proof
we use a running example for which k = 4 and m = 18 = 3×6 to illustrate specific features.

We first give an outline of its structure.
Given 〈A,R,U〉 a resource allocation setting involving k agents and m resources, our

aim is to define an IR M (k − 1)-contract path

∆ = 〈P (1),P (2), . . . ,P (t)〉

that realises the IR M (k) exchange 〈P (1),P (t)〉. We will use d to index particular allocations
within ∆, so that 1 ≤ d ≤ t .

In order to simplify the presentation we employ a setting in which the k agents are
A = {A0,A1, . . . ,Ak−1}. Recalling that m = s

(
k
2

)
, the resource set Rm is formed by

the union of
(

k
2

)
pairwise disjoint sets of size s. Given distinct values i and j with

0 ≤ i < j ≤ k−1, we use Ri ,j to denote one of these subsets with {r{i ,j}1 , r{i ,j}2 , . . . , r{i ,j}s }
the s resources that form R{i ,j}.

There are two main ideas underpinning the structure of each M (k − 1)-contract in ∆.
Firstly, in the initial and subsequent allocations, the resource set R{i ,j} is partitioned

between Ai and Aj and any reallocation of resources between Ai and Aj that takes place
within the exchange 〈P (d),P (d+1)〉 will involve only resources in this set. Thus, for every
allocation P (d) and each pair {i , j}, if h 6∈ {i , j} then P (d)

h ∩ R{i ,j} = ∅. Furthermore,
for δ = 〈P (d),P (d+1)〉 should both Ai and Aj be involved, i.e. {Ai ,Aj } ⊆ Aδ, then this
reallocation of R{i ,j} between Ai and Aj will be an O-contract. That is, either exactly one
element of R{i ,j} will be moved from P (d)

i to become a member of the allocation P (d+1)
j or

exactly one element of R{i ,j} will be moved from P (d)
j to become a member of the allocation

P (d+1)
i . In total, every M (k − 1)-contract δ in ∆ consists of a simultaneous implementation

of
(

k − 1
2

)
O-contracts: a single O-contract for each of the distinct pairs {Ai ,Aj } of agents

from the k − 1 agents in Aδ.
The second key idea is to exploit one well-known property of the s-dimensional hyper-

cube network: for every s ≥ 2, Hs contains a Hamiltonian cycle, i.e. a simple directed cycle
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formed using only the edges of Hs and containing all 2s vertices12. Now, suppose

S(v) = v (0), v (1), . . . , v (i), . . . , v (2s−1), v (0)

is a Hamiltonian cycle in the hypercube Hs and

S(w) = w (0),w (1), . . . ,w (i), . . . ,w (2s−1),w (0)

the Hamiltonian cycle in which w (i) is obtained by complementing each bit in v (i). As we
have described in the overview of Section 2.1 we can interpret the s-bit label v = v1v2 . . . vs

as describing a particular subset of R{i ,j}, i.e. that subset in which r{i ,j}k occurs if and only
if vk = 1. Similarly from any subset of R{i ,j} we may define a unique s-bit word. Now
suppose that P (d)

i is the allocation held by Ai in the allocation P (d) of ∆. The exchange
δ = 〈P (d),P (d+1)〉 will affect P (d)

i ∩ R{i ,j} in the following way: if i 6∈ Aδ or j 6∈ Aδ

then P (d+1)
i ∩ R{i ,j} = P (d)

i ∩ R{i ,j} and P (d+1)
j ∩ R{i ,j} = P (d)

j ∩ R{i ,j}. Otherwise we

have {i , j} ⊆ Aδ and the (complementary) holdings P (d)
i ∩ R{i ,j} and P (d)

j ∩ R{i ,j} define
(complementary) s-bit labels of vertices in Hs : if these correspond to places 〈v (h),w (h)〉 in
the Hamiltonian cycle, then in P (d+1)

i and P (d+1)
j the s-bit labels defined from P (d+1)

i ∩R{i ,j}

and P (d+1)
j ∩R{i ,j} produce the s-bit labels v (h+1) and w (h+1), i.e. the vertices that succeed

v (h) and w (h) in the Hamiltonian cycles. In total, for each j , Ai initially holds either
the subset of R{i ,j} that maps to v (0) or that maps to w (0) and, at the conclusion of the
M (k − 1)-path, holds the subset that maps to v (2s−1) (or w (2s−1)). The final detail is that
the progression through the Hamiltonian cycles is conducted over a series of rounds each
round comprising k M (k − 1)-exchanges.

We have noted that each M (k − 1)-contract, 〈P (d),P (d+1)〉 that occurs in this path ∆
can be interpreted as a set of

(
k − 1

2

)
distinct O-contracts. An important property of the

utility functions employed is that unless p ≥ k − 1 there will be no individually rational
M (p)-contract path that realises the exchange 〈P (d),P (d+1)〉, i.e. the

(
k − 1

2

)
O-contract

exchanges must occur simultaneously in order for the progression from P (d) to P (d+1) to
be IR. Although the required exchange could be realised by a sequence of O-contracts (or,
more generally, any suitable M (k − 2)-contract path), such realisations will not describe
an IR contract path. The construction of utility functions to guarantee such behaviour
provides the principal component in showing that the IR exchange 〈P (1),P (t)〉 cannot be
realised with an IR M (k − 2)-contract path: if Q is any allocation for which 〈P (1),Q〉 is an
M (k − 2)-contract then 〈P (1),Q〉 is not IR.

We now proceed with the proof of Theorem 6.

Proof. (of Theorem 6) Fix A = {A0,A1, . . . ,Ak−1}. R consists of
(

k
2

)
pairwise disjoint

sets of s resources
R{i ,j} = {r{i ,j}1 , r{i ,j}2 , . . . , r{i ,j}s }

12. This can be shown by an easy inductive argument. For s = 2, the sequence 〈00, 01, 11, 10, 00〉 defines a
Hamiltonian cycle in H2. Inductively assume that 〈α1, α2, . . . , αp , α1〉 (with p = 2s) is such a cycle in
Hs then 〈0α1, 1α1, 1αp , 1αp−1, . . . , 1α2, 0α2 . . . , 0αp , 0α1〉 defines a Hamiltonian cycle in Hs+1.

24



For k = 4 and s = 3 these yield A = {A0,A1,A2,A3} and

R{0,1} = {r{0,1}
1 , r{0,1}

2 , r{0,1}
3 }

R{0,2} = {r{0,2}
1 , r{0,2}

2 , r{0,2}
3 }

R{0,3} = {r{0,3}
1 , r{0,3}

2 , r{0,3}
3 }

R{1,2} = {r{1,2}
1 , r{1,2}

2 , r{1,2}
3 }

R{1,3} = {r{1,3}
1 , r{1,3}

2 , r{1,3}
3 }

R{2,3} = {r{2,3}
1 , r{2,3}

2 , r{2,3}
3 }

We use two ordering structures in defining the M (k − 1)-contract path.
a.

S(v) = v (0), v (1), . . . , v (i), . . . , v (2s−1), v (0)

a Hamiltonian cycle in Hs , where without loss of generality, v (0) = 111 . . . 11.

b.

S(w) = w (0),w (1), . . . ,w (i), . . . ,w (2s−1),w (0)

the complementary Hamiltonian cycle to this, so that w (0) = 000 . . . 00.

Thus for k = 4 and s = 3 we obtain

a. S(v) = 〈111, 110, 010, 011, 001, 000, 100, 101〉
b. S(w) = 〈000, 001, 101, 100, 110, 111, 011, 010〉

We can now describe the M (k − 1)-contract path.

∆ = 〈P (1),P (2), . . . ,P (t)〉

Initial Allocation: P (1).
Define the k × k Boolean matrix, B = [bi ,j ] (with 0 ≤ i , j ≤ k − 1) by

bi ,j =


⊥ if i = j
¬bj ,i if i > j
¬bi ,j−1 if i < j

We then have for each 1 ≤ i ≤ k ,

P (1)
i =

i−1⋃
j=0

{ R{j ,i} : bi ,j = >} ∪
k−1⋃

j=i+1

{ R{i ,j} : bi ,j = >}

Thus, in our example,

B =


⊥ > ⊥ >
⊥ ⊥ > ⊥
> ⊥ ⊥ >
⊥ > ⊥ >
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Yielding the starting allocation

P (1)
0 = R{0,1} ∪R{0,3} = 〈111, 000, 111〉 ⊆ R{0,1} ∪R{0,2} ∪R{0,3}

P (1)
1 = R{1,2} = 〈000, 111, 000〉 ⊆ R{0,1} ∪R{1,2} ∪R{1,3}

P (1)
2 = R{0,2} ∪R{2,3} = 〈111, 000, 111〉 ⊆ R{0,2} ∪R{1,2} ∪R{2,3}

P (1)
3 = R{1,3} = 〈000, 111, 000〉 ⊆ R{0,3} ∪R{1,3} ∪R{2,3}

The third column in P (1)
i indicating the 3-bit labels characterising each of the subsets of

R{i ,j} for the three values that j can assume.

Rounds: The initial allocation is changed over a series of rounds

Q1,Q2, . . . ,Qz

each of which involves exactly k distinct M (k − 1)-contracts. We use Qx ,p to indicate the
allocation resulting after stage p in round x where 0 ≤ p ≤ k − 1. We note the following:

a. The initial allocation, P (1) will be denoted by Q0,k−1.

b. Qx ,0 is obtained using a single M (k − 1)-contract from Qx−1,k−1 (when x ≥ 1).

c. Qx ,p is obtained from using a single M (k − 1)-contract Qx ,p−1 (when 0 < p ≤ k − 1).

Our final item of notation is that of the cube position of i with respect to j in an allocation
P , denoted χ(i , j ,P). Letting u be the s-bit string describing Pi ∩R{i ,j} in some allocation
P , χ(i , j ,P) is the index of u in the Hamiltonian cycle S (v) (when R{i ,j} ⊆ P (1)

i ) or the
Hamiltonian cycle S (w) (when R{i ,j} ⊆ P (1)

j ). When P = Qx ,p for some allocation in the
sequence under construction we employ the notation χ(i , j , x , p), noting that one invariant
of our path will be χ(i , j , x , p) = χ(j , i , x , p), a property that certainly holds true of P (1) =
Q0,k−1 since χ(i , j , 0, k − 1) = χ(j , i , 0, k − 1) = 0.

The sequence of allocations in ∆ is built as follows. Since Q1,0 is the immediate successor
of the initial allocation Q0,k−1, it suffices to describe how Qx ,p is formed from Qx ,p−1 (when
p > 0) and Qx+1,0 from Qx ,k−1. Let Qy,q be the allocation to be formed from Qx ,p . The
exchange δ = 〈Qx ,p ,Qy,q〉 will be an M (k − 1) contract in which Aδ = A \ {Aq}. For each
pair {i , j} ⊆ Aδ we have χ(i , j , x , p) = χ(j , i , x , p) in the allocation Qx ,p . In moving to Qy,q

exactly one element of R{i ,j} is reallocated between Ai and Aj in such a way that in Qy,q ,
χ(i , j , y , q) = χ(i , j , x , p)+1, since Ai and Aj are tracing complementary Hamiltonian cycles
with respect to R{i ,j} this ensures that χ(j , i , y , q) = χ(j , i , x , p) + 1, thereby maintaining
the invariant property.

Noting that for each distinct pair 〈i , j 〉, we either have R{i ,j} allocated to Ai in P (1)

or R{i ,j} allocated to Aj in P (1), the description just outlined indicates that the allocation
P (d) = Qx ,p is completely specified as follows.

The cube position, χ(i , j , x , p), satisfies,

χ(i , j , x , p) =



0 if x = 0 and p = k − 1
1 + χ(i , j , x − 1, k − 1) if x ≥ 1, p = 0, and p 6∈ {i , j}
χ(i , j , x − 1, k − 1) if x ≥ 1, p = 0, and p ∈ {i , j}
1 + χ(i , j , x , p − 1) if 1 ≤ p ≤ k − 1, and p 6∈ {i , j}
χ(i , j , x , p − 1) if 1 ≤ p ≤ k − 1, and p ∈ {i , j}
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For each i , the subset of R{i ,j} that is held by Ai in the allocation Qx ,p is,

v (χ(i ,j ,x ,p)) if R{i ,j} ⊆ P (1)
i

w (χ(i ,j ,x ,p)) if R{i ,j} ⊆ P (1)
j

(where we recall that s-bit labels in the hypercube Hs are identified with subsets
of R{i ,j}.)

The tables below illustrates this process for our example.

A0 A1 A2 A3

i j i j i j i j i j i j i j i j i j i j i j i j A〈P(d−1),P(d)〉

d x p 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 3 0 3 1 3 2
1 0 3 111 000 111 000 111 000 111 000 111 000 111 000 –
2 1 0 111 000 111 000 110 001 111 001 110 000 110 001 {A1,A2,A3}
3 1 1 111 001 110 000 110 001 110 001 010 001 110 101 {A0,A2,A3}
4 1 2 110 001 010 001 110 101 110 001 010 101 010 101 {A0,A1,A3}
5 1 3 010 101 010 101 010 101 010 101 010 101 010 101 {A0,A1,A2}
6 2 0 010 101 011 101 011 100 010 100 011 101 011 100 {A1,A2,A3}
7 2 1 010 100 001 101 011 100 011 100 001 100 011 110 {A0,A2,A3}
8 2 2 011 100 001 100 011 110 011 100 001 110 001 110 {A0,A1,A3}
9 2 3 001 110 001 110 001 110 001 110 001 110 001 110 {A0,A1,A2}
...

...
...

...
...

...
...

...
Subsets of R{i,j} held by Ai in Qx ,p (k = 4, s = 3)

A0 A1 A2 A3

i j i j i j i j i j i j i j i j i j i j i j i j A〈P(d−1),P(d)〉

d x p 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 3 0 3 1 3 2
1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 –
2 1 0 0 0 0 0 1 1 0 1 1 0 1 1 {A1,A2,A3}
3 1 1 0 1 1 0 1 1 1 1 2 1 1 2 {A0,A2,A3}
4 1 2 1 1 2 1 1 2 1 1 2 2 2 2 {A0,A1,A3}
5 1 3 2 2 2 2 2 2 2 2 2 2 2 2 {A0,A1,A2}
6 2 0 2 2 2 2 3 3 2 3 3 2 3 3 {A1,A2,A3}
7 2 1 2 3 3 2 3 3 3 3 4 3 3 4 {A0,A2,A3}
8 2 2 3 3 4 3 3 4 3 3 4 4 4 4 {A0,A1,A3}
9 2 3 4 4 4 4 4 4 4 4 4 4 4 4 {A0,A1,A2}
...

...
...

...
...

...
...

...
Cube Positions χ(i , j , x , p) (k = 4, s = 3)

It is certainly the case that this process of applying successive rounds of k exchanges could
be continued, however, we wish to do this only so long as it is not possible to go from some
allocation P (d) in the sequence to another P (d+r) for some r ≥ 2 via an M (k − 1)-contract.

Now if Qx ,p and Qy,q are distinct allocations generated by the process above then the
exchange δ = 〈Qx ,p ,Qy,q〉 is an M (k − 1)-contract if and only if for some Ai , Qx ,p

i = Qy,q
i .

It follows that if 〈P (d),P (d+r)〉 is an M (k −1)-contract for some r > 1, then for some i and
all j 6= i , P (d+r)

i ∩R{i ,j} = P (d)
i ∩R{i ,j}.
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To determine the minimum value of r > 1 with which P (d+r)
i = P (d)

i , we observe that
without loss of generality we need consider only the case d = i = 0, i.e. we determine the
minimum number of exchanges before P (1)

0 reappears. First note that in each round, Qx , if
χ(0, j , x − 1, k − 1) = p then χ(0, j , x , k − 1) = p + k − 2, i.e. each round advances the cube
position k − 2 places: χ(0, j , x − 1, k − 1) = χ(0, j , x , 0) and χ(0, j , x , j ) = χ(0, j , x , j − 1).
We can also observe that P (1)

0 = Q0,k−1
0 6= Qx ,p

0 for any p with 0 < p < k − 1, since

χ(0, 1, x , p) = χ(0, 2, x , p) = . . . = χ(0, k − 1, x , p)

only in the cases p = 0 and p = k − 1. It follows that our value r > 1 must be of the form
qk where q must be such that q(k − 2) is an exact multiple of 2s . From this observation we
see that,

min{ r > 1 : P (1)
0 = P (1+r)

0 } = min{ qk : q(k − 2) is a multiple of 2s}

Now, if k is odd then q = 2s is the minimal such value, so that r = k2s . If k is even then
it may be uniquely written in the form z2l + 2 where z is odd so giving q as 1 (if l ≥ s) or
2s−l (if l ≤ s), so that these give r = k and r = z2s + 2s−l+1, e.g. for k = 4 and s = 3, we
get k = 1 × 21 + 2 so that r = 23 + 23−1+1 = 16 and in our example P (1)

0 = P (17)
0 may be

easily verified. In total,

r ≥


k2s if k is odd
k if k = z2l + 2, z is odd, and l ≥ s
2s if k = z2l + 2, z is odd and l ≤ s

All of which immediately give r ≥ 2s (in the second case k ≥ 2s , so the inequality holds
trivially), and thus we can continue the chain of M (k − 1) contracts for at least 2s moves.
Recalling that m = s

(
k
2

)
, this gives the length of the M (k − 1)-contract path

∆ = 〈P (1),P (2), . . . ,P (t)〉

written in terms of m and k as at least13

2
m/

(
k
2

)
− 1 = 2

2m
k(k−1) − 1

It remains to define appropriate utility functions U = 〈u0, . . . , uk−1〉 in order to ensure that
∆ is the unique IR M (k − 1)-contract path realising the IR M (k)-exchange 〈P (1),P (t)〉. In
defining U it will be convenient to denote ∆ as the path

∆ = 〈Q0,k−1,Q1,0,Q1,1, . . . ,Q1,k−1, . . . ,Qx ,p , . . . ,Qr ,k−1〉

and, since rk ≥ 2s , we may without loss of generality, focus on the first 2s allocations in
this contract path.

Recalling that χ(i , j , x , p) is the index of the s-bit label u corresponding to Qx ,p
i ∩R{i ,j}

in the relevant Hamiltonian cycle – i.e. S(v) if R{i ,j} ⊆ Q0,k
i , S(w) if R{i ,j} ⊆ Q0,k−1

j – we
note the following properties of the sequence of allocations defined by ∆ that hold for each
distinct i and j .

13. We omit the rounding operation b. . .c in the exponent, which is significant only if m is not an exact

multiple of
(

k
2

)
, in which event the device described in our overview of the proof is applied.
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P1. ∀ x , p χ(i , j , x , p) = χ(j , i , x , p)

P2. If Qy,q is the immediate successor of Qx ,p in ∆ then χ(i , j , y , q) ≤ χ(i , j , x , p) + 1
with equality if and only if q 6∈ {i , j}.

P3. ∀ i ′, j ′ with 0 ≤ i ′, j ′ ≤ k − 1, χ(i , j , x , k − 1) = χ(i ′, j ′, x , k − 1).

The first two properties have already been established in our description of ∆. The third
follows from the observation that within each round Qx , each cube position is advanced by
exactly k − 2 in progressing from Qx−1,0 to Qx ,k−1.

The utility function ui is now given, for S ⊆ Rm , by

ui(S ) =

{ ∑
j 6=i χ(i , j , x , p) if S = Qx ,p

i for some 0 ≤ x ≤ r , 0 ≤ p ≤ k − 1
−2km otherwise

We claim that, with these choices,

∆ = 〈Q0,k−1,Q1,0,Q1,1, . . . ,Q1,k−1, . . . ,Qx ,p , . . . ,Qr ,k−1〉

is the unique IR M (k − 1)-contract path realising the IR M (k)-exchange 〈Q0,k−1,Qr ,k−1〉.
Certainly, ∆ is an IR M (k − 1)-contract path: each exchange δ = 〈Qx ,p ,Qy,q〉 on this path
has |Aδ| = k − 1 and since for each agent Ai in Aδ = A \ {Aq} the utility of Qy,q

i has
increased by exactly k −2, i.e. each cube position of i with respect to j whenever q 6∈ {i , j}
has increased, it follows that σu(Qy,q) > σu(Qx ,p) and hence 〈Qx ,p ,Qy,q〉 is IR.

We now show that ∆ is the unique IR M (k − 1)-contract path continuation of Q0,k−1

Suppose δ = 〈Qx ,p ,P〉 is an exchange that deviates from the contract path ∆ (having
followed it through to the allocation Qx ,p). Certainly both of the following must hold of P :
for each i , Pi ⊆ ∪j 6=iR{i ,j}; and there is a k -tuple of pairs 〈(x0, p0), . . . , (xk−1, pk−1)〉 with
which Pi = Qxi ,pi

i , for if either fail to be the case for some i , then ui(Pi) = −2km with the
consequent effect that σu(P) < 0 and thence not IR. Now, if Qy,q is the allocation that
would succeed Qx ,p in ∆ then P 6= Qy,q , and thus for at least one agent, Qxi ,pi

i 6= Qy,q
i .

It cannot be the case that Qxi ,pi
i corresponds to an allocation occurring strictly later than

Qy,q
i in ∆ since such allocations could not be realised by an M (k−1)-contract. In addition,

since Pi = Qxi ,pi
i it must be the case that |Aδ| = k − 1 since exactly k − 1 cube positions in

the holding of Ai must change. It follows that there are only two possibilities for (yi , pi):
Pi reverts to the allocation immediately preceding Qx ,p

i or advances to the holding Qy,q
i .

It now suffices to observe that an exchange in which some agents satisfy the first of these
while the remainder proceed in accordance with the second either does not give rise to a
valid allocation or cannot be realised by an M (k − 1)-contract. On the other hand if P
corresponds to the allocation preceding Qx ,p then δ is not IR. We deduce, therefore, that
the only IR M (k − 1) exchange that is consistent with Qx ,p is that prescribed by Qy,q .

This completes the analysis needed for the proof of part (b) of the theorem. It is clear
that since the system contains only k agents, any exchange 〈P ,Q〉 can be effected with a
single M (k)-contract, thereby establishing part (a). For part (c) – that the IR exchange
〈P (1),P (t)〉 cannot be realised using an individually rational M (k − 2)-contract path, it
suffices to observe that since the class of IR M (k − 2)-contracts are a subset of the class
of IR M (k − 1)-contracts, were it the case that an IR M (k − 2)-contract path existed to
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implement 〈P (1),P (t)〉, this would imply that ∆ was not the unique IR M (k − 1)-contract
path. We have, however, proved that ∆ is unique, and part (c) of the theorem follows. 2

We obtain a similar development of Corollary 1 in

Corollary 3 For all k ≥ 3, n ≥ k, m ≥
(

k
2

)
and each of the cases below,

a. Φk (δ) holds if and only if δ is a cooperatively rational M (k)-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φk (δ) holds if and only if δ is δ is an equitable M (k)-contract.
Ψ(δ) holds if and only if δ is is equitable.

there is a resource allocation setting 〈A,R,U〉 and a Ψ-exchange δ = 〈P ,Q〉 for which

Lopt(δ, 〈A,R,U〉,Φk ) = 1 (a)
Lopt(δ, 〈A,R,U〉,Φk−1) ≥ 2b2m/k(k−1)c − 1 (b)
Lopt(δ, 〈A,R,U〉,Φk−2) is undefined (c)

Proof. As with the proof of Corollary 1 in relation to Theorem 3, in each case we employ
the contract path from the proof of Theorem 6, varying the definition of U = 〈u1, u2, . . . , uk 〉
in order to establish each result. Thus let

∆m = 〈P (1),P (2), . . . ,P (r), . . . ,P (t)〉
= 〈Q0,k−1,Q1,0, . . . ,Qx ,p , . . . ,Qz ,r 〉

be the M (k − 1)-contract path realising the M (k)-exchange 〈P (1),P (t)〉 described in the
proof of Theorem 6, this path having length t ≥ 2b2m/k(k − 1) − 1.

a. The utility functions U = 〈u0, . . . , uk−1〉 of Theorem 6 ensure that 〈P (1),P (t)〉 is
cooperatively rational and that ∆m is a cooperatively rational M (k − 1)-contract
path realising 〈P (1),P (t)〉: the utility held by Ai never decreases in value and there is
at least one agent (in fact exactly k −1) whose utility increases in value. Furthermore
∆m is the unique cooperatively rational M (k − 1)-contract path realising 〈P (1),P (t)〉
since, by the same argument used in Theorem 6, any deviation will result in some
agent suffering a loss of utility.

b. Set the utility functions U = 〈u0, . . . , uk−1〉 as,

ui(S ) =



−1 if S 6= Qx ,p
i for any Qx ,p ∈ ∆m

xk2 + k − i if S = Qx ,k−1
i

(x − 1)k2 + k + p if S = Qx ,p
0 , p < k − 1 and i = 0

(x − 1)k2 + k − i + p + 1 if S = Qx ,p
i , p < i − 1 and i 6= 0.

xk2 + 1 if S = Qx ,i−1
i = Qx ,i

i and i 6= 0.
xk2 + 1 + p − i if S = Qx ,p

i , p > i and i 6= 0

To see that these choices admit ∆m as an equitable M (k − 1)-contract path realising
the equitable exchange 〈Q0,k−1,Qz ,r 〉, we first note that

min
0≤i≤k−1

{ui(Q
z ,r
i )} > 1 = min

0≤i≤k−1
{ui(Q

0,k−1
i )}
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thus, 〈Q0,k−1,Qz ,r 〉 is indeed equitable. Consider any exchange δ = 〈Qx ,p ,Qy,q〉
occurring within ∆m . It suffices to show that

min
0≤i≤k−1

{ui(Q
x ,p
i )} 6= uq(Qx ,p

q )

since Aq 6∈ Aδ, and for all other agents ui(Q
y,q
i ) > ui(Q

x ,p
i ). We have two possibilities:

q = 0 (in which case p = k − 1 and y = x + 1); q > 0 (in which case p = q − 1).
Consider the first of these: u0(Q

x ,k−1
0 ) = xk2 + k , however,

min{ui(Q
x ,k−1
i )} = xk2 + 1 = uk−1(Q

x ,k−1
k−1 )

and hence every exchange 〈Qx ,k−1,Qx+1,0〉 forming part of ∆m is equitable.

In the remaining case, uq(Qx ,q−1
q ) = xk2 + 1 and

min{ui(Q
x ,q−1
i )} ≤ u0(Q

x ,q−1
0 )

= (x − 1)k2 + k + q − 1
< xk2 − (k2 − 2k + 1)
= xk2 − (k − 1)2

< xk2 + 1
= uq(Qx ,q−1

q )

and thus the remaining exchanges 〈Qx ,q−1,Qx ,q〉 within ∆m are equitable. By a
similar argument to that employed in Theorem 6 it follows that ∆m is the unique
equitable M (k − 1)-contract path realising 〈Q0,k−1,Qz ,r 〉.

2

Monotone Utility Functions and M (k)-contract paths

The device used to develop Theorem 3 to obtain the path of Theorem 4 can be applied
to the rather more intricate construction of Theorem 6, thereby allowing exponential lower
bounds on ρmax

mono(n,m,Φk ,Ψ) to be derived. We will merely outline the approach rather than
present a detailed technical exposition. We recall that it became relatively straightforward
to define suitable monotone utility functions once it was ensured that the subset sizes of
interest – i.e. those for allocations arising in the O-contract path – were forced to fall into
a quite restricted range. The main difficulty that arises in applying similar methods to the
path ∆ of Theorem 6 is the following: in the proof of Theorem 4 we consider two agents
so that converting ∆s from a setting with s resources in Theorem 3 to ext(∆s) with 2s
resources in Theorem 4 is achieved by combining “complementary” allocations, i.e. α ⊆ Rs

with α ⊆ Ts . We can exploit two facts, however, to develop a path multi(∆) for which
monotone utility functions could be defined: the resource set Rm in Theorem 6 consists of(

k
2

)
disjoint sets of size s; and any exchange δ on the path ∆ involves a reallocation of

R{i ,j} between Ai and Aj when {i , j} ⊆ Aδ. Thus letting Tm be formed by
(

k
2

)
disjoint

sets, T {i ,j} each of size s. Suppose that P (d)
i is described by

α
(d)
i ,0 α

(d)
i ,1 · · · α

(d)
i ,i−1 α

(d)
i ,i+1 · · · α

(d)
i ,k−1
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with α
(d)
i ,j the s-bit label corresponding to the subset of R{i ,j} that is held by Ai in P (d).

Consider the sequence of allocations,

multi(∆) = 〈C (1),C (2), . . . ,C (t)〉

in a resource allocation setting have k agents and 2m resources – Rm ∪ Tm for which C (d)
i

is characterised by
β

(d)
i ,0 β

(d)
i ,1 · · · β

(d)
i ,i−1 β

(d)
i ,i+1 · · · β

(d)
i ,k−1

In this, β
(d)
i ,j , indicates the subset of R{i ,j} ∪ T {i ,j} described by the 2s-bit label,

β
(d)
i ,j = α

(d)
i ,j α

(d)
i ,j

i.e. α
(d)
i ,j selects a subset of R{i ,j} while α

(d)
i ,j a subset of T {i ,j}.

It is immediate from this construction that for each allocation C (d) in multi(∆) and each
Ai , it is always the case that |C (d)

i | = (k − 1)s. It follows, therefore, that the only subsets
that are relevant to the definition of monotone utility functions with which an analogous
result to Theorem 6 for the path multi(∆) are those of size (k − 1)s: if S ⊆ Rm ∪ Tm has
|S | < (k − 1)s, we can fix ui(S ) as a small enough negative value; similarly if |S | > (k − 1)s
then ui(S ) can be set to a large enough positive value14.

Our description in the preceding paragraphs is merely intended to outline how Theorem 6
is developed to apply to monotone utility functions. Extending this outline to a formal
lower bound proof, is largely a technical exercise employing much of the analysis already
introduced: since nothing signifcantly new is required for such an analysis we shall not give
a detailed presentation of it.

3. Conclusions and Further Work

Our aim in this article has been to develop the earlier studies of Sandholm [20] concerning
the scope and limits of particular “practical” contract forms. While [20] has established
that insisting on individual rationality in addition to the structural restriction prescribed by
O-contracts leads to scenarios which are incomplete (in the sense that there are individually
rational exchanges that cannot be realised by individually rational O-contracts) our focus
has been with respect to exchanges which can be realised by restricted contract paths, with
the intention of determining to what extent the combination of structural and rationality
conditions increases the number of exchanges required. We have shown that, using a number
of natural definitions of rationality, for settings involving m resources, rational O-contract
paths of length Ω(2m) are needed, whereas without the rationality restriction on individual
exchanges, at most m O-contracts suffice to realise any exchange. We have also considered
a class of exchanges – M (k)-contracts – that were not examined in [20], establishing for
these cases that, when particular rationality conditions are imposed, M (k − 1)-contract

14. It is worth noting that the “interpolation” stage used in Theorem 4 is not needed in forming multi(∆):
the exchange 〈C (d),C (d+1)〉 is an M (k − 1)-contract. We recall that in going from ∆s of Theorem 3 to
ext(∆s) the intermediate stage – double(∆s) – was not an O-contract path.
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paths of length Ω(22m/k2
) are needed to realise an exchange that can be achieved by a

single M (k)-contract.
We note that our analyses have primarily been focused on worst-case lower bounds

on path length when appropriate paths exist, and as such there are several questions of
practical interest that merit further discussion. It may be noted that the path structures
and associated utility functions are rather artificial, being directed to attaining a path of a
specific length meeting a given rationality criterion. We have seen, however, in Theorems 4
and 5 as outlined in our discussion concluding Section 2.3 that the issue of exponential
length contract paths continues to arise even when we require the utility functions to satisfy
a monotonicity condition. We can identify two classes of open question that arise from these
results.

Firstly, focusing on IR O-contract paths, it would be of interest to identify “natural”
restrictions on utility functions which would ensure that, if an exchange 〈P ,Q〉 can be
implemented by an IR O-contract path, then it can be realised by one whose length is
polynomially bounded in m. We can interpret Theorem 4, as indicating that monotonicity
does not guarantee “short” IR contract paths. We note, however, that there are some
restrictions that suffice. To use a rather trivial example, if the number of distinct values
that σu can assume is at most mp for some constant p then no IR O-contract path can have
length exceeding mp : successive exchanges must strictly increase σu and if this can take at
most K different values then no IR contract path can have length exceeding K . As well
as being of practical interest, classes of utility function with the property being considered
would also be of some interest regarding one complexity issue. The result proved in [8]
establishing that deciding if an IR O-contract path exists is np-hard, gives a lower bound on
the computational complexity of this problem. At present, no (non-trivial) upper bound on
this problem’s complexity has been demonstrated. Our results in Theorems 3 and 4 indicate
that if this decision problem is in np (thus its complexity would be np–complete rather than
np–hard) then the required polynomial length existence certificate must be something other
than the path itself. We note that the proof of np–hardness in [8] constructs an instance
in which σu can take at most O(m) distinct values: thus, from our example of a restriction
ensuring that if such are present then IR O-contract paths are “short”, this result of [8]
indicates that the question of deciding their existence might remain computationally hard.

Considering restrictions on the form of utility functions is one approach that could be
taken regarding finding “tractable” cases. An alternative, would be to gain some insight
into what the “average” path length is likely to be. In attempting to address this question,
however, a number of challenging issues arise. The most immediate of these concerns,
of course, the notion of modeling a distribution on utility function given our definitions
of rationality in terms of the value agents attach to their resource holdings. In principle
an average-case analysis of scenarios involving exactly two agents could be carried out in
purely graph-theoretic terms, i.e. without the complication of considering utility functions
directly. It is unclear, however, whether such a graph-theoretic analysis obviating the need
for consideration of literal utility functions, can be extended beyond settings involving
exactly two agents. One difficulty arising with three or more agents is that our utility
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functions are context independent, i.e. given an allocation 〈X ,Y ,Z 〉 to three agents, u1(X )
is unchanged should Y ∪ Z be redistributed among A2 and A3

15.
As one final set of issues that may merit further study we raise the following. In our

constructions, the individual exchanges on a contract path must satisfy both a structural
condition (be an O-contract or involve at most k agents), and a rationality constraint.
Focusing on O-contracts we have the following extremes: from [20], at most m O-contracts
suffice to realise any rational exchange; from our results above, Ω(2m) rational O-contracts
are needed to realise some rational exchanges. There are a number of mechanisms we
can employ to relax the condition that every single exchange be an O-contract and be
rational. For example, allow a path to contain a some number of exchanges which are not
O-contracts (but must still be IR) or insist that all exchanges are O-contracts but allow
some to be irrational. Thus, in the latter case, if we go to the extent of allowing up to m
irrational O-contracts, then any rational exchange can be realised efficiently. It would be
of some interest to examine issues such as the effect of allowing a constant number, t , of
irrational exchanges and questions such as whether there are situations in which t irrational
contracts yield a ‘short’ contract path but t−1 force one of exponential length. Of particular
interest, from an application viewpoint, is the following: define a (γ(m),O)-path as an O-
contract path containing at most γ(m) O-contracts which are not individually rational. We
know that if γ(m) = 0 then individually rational (0,O)-paths are not complete with respect
to individually rational exchanges; similarly if γ(m) = m then (m,O)-paths are complete
with respect to individually rational exchanges. A question of some interest would be to
establish if there is some γ(m) = o(m) for which (γ(m),O)-paths are complete with respect
to individually rational exchanges and with the maximum length of such a contract path
bounded by a polynomial function of m.
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