
On the Computational Complexity of
Designing Bounded Agents

Michael Laurence Paul E. Dunne Michael Wooldridge

Department of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom

{mikel, ped, mjw}@csc.liv.ac.uk

October 3, 2003

Abstract

In this paper, we determine the computational complexity of the agent design
problem for several classes of bounded agents. Agent design is the problem of
determining, for a given representation of an environment and representation of
a task to be carried out in this environment, whether it is possible to construct an
agent that can be guaranteed to accomplish the task in the environment. Previous
research has determined the complexity of the agent design problem for various
classes of environment and task, but where the agent was permitted perfect recall
of prior events. In this paper, we investigate the complexity of the problem for
agents that have various bounds placed on their memory. Specifically, we deter-
mine the complexity of the agent design problem for reactive agents, (which must
make a decision about what to do based solely on the current environment state),
k-reactive agents (which must make a decision based on the last k environment
states), and oblivious agents (which have no information about the environment
at all).

1 Introduction

In the literature on autonomous agents, there is a well-known distinction between
what are often called deliberative or cognitive agents [3], and behavioural or reac-
tive agents [1]. Deliberative agents are typically assumed to employ explicit symbolic
representations of their environments, and generally make decisions about what action
to perform by manipulating these representations, typically by means of symbolic rea-
soning. It is now widely accepted that both approaches have merits and drawbacks:
deliberative, logic-based approaches benefit from a clear theoretical underpinning, and
have an associated engineering methodology, but are computationally costly; in con-
trast, reactive agents tend to be economical in their use of computational resources, and
are frequently very robust, but often suffer from the lack of an engineering method-
ology. However, comparatively little research has addressed the relative merits of the
two approaches from a theoretical standpoint. In this paper, we do so, by using the
tools of computational complexity theory [5].

In previous research, the complexity of designing agents to accomplish tasks in
particular environments was investigated [9, 10, 2]. The agent design problem can be

1

crudely understood as follow: Given representations of a task to be carried out, and
an environment in which this task is to be carried out, determine whether or not there
exists an agent to carry out this task in this environment. If the answer is “yes”, then
the witness to this fact will be an agent that can carry out the task. In [9, 10, 2], this
problem was studied for a range of different environments (e.g., deterministic versus
non-deterministic, history dependent versus Markovian, finite versus infinite) and for
a range of different types of tasks (e.g., achievement tasks — “bring about this state of
affairs”, maintenance tasks — “maintain this state of affairs”, and Boolean combina-
tions of achievement and maintenance tasks). However, a common factor in this prior
research was that agents were permitted to have perfect recall, in that they were al-
lowed to remember the complete sequence of events via which the current state of the
environment was brought about. But of course, the fact that there exists such an agent
in principle that can accomplish some task in the environment does not imply that
there exists an agent that can be implemented in practice: an actual implementation of
a ‘perfect recall’ agent might require too much memory, or an intractable computation
to be carried out in constant time. (This is of course exactly the motivation behind
Russell’s notion of bounded optimality [7]).

For this reason, our aim in the present paper is to consider complexity issues for
agent design problems when it is required that the agent program be ‘ bounded’ or
‘concise’. More formally, rather than considering ‘perfect recall’ agents, which pre-
scribe an action for every possible run, we consider reactive agents that prescribe ac-
tions predicated on some constant length section of its current run: thus a k-reactive
agent’s action following r is determined solely by the final sequence of k state/action
pairs in r rather than its entirety. The primary virtue of k-reactive agents is that their
programs can always be implemented (at worst) by a look-up table of length O(nk)
where n is the number of state/action pairs.

In the next section we review the formal model of agents, environments, and tasks
from [10, 2] together with the distinct environment forms that agents may operate
in. In Section 3 the reactive agent design decision problems are formulated, and it is
proved that although markedly ‘easier’ than their non-reactive counterparts they re-
main intractable, being complete at the second level of the polynomial-time hierarchy.
We further introduce a natural development of k-reactive agents – oblivious agents –
whose chosen actions are determined solely by the length of time the agent has been
operating, i.e. independently of the current environment state. Conclusions and further
work are dealt with in the concluding section. Throughout, we assume some familiar-
ity with computational complexity theory [5].

2 Agents, Environments, and Tasks

In this section, we present the abstract formal model of agents and the environments
they occupy from [10, 2]. We then use this model to frame the decision problems
studied in the present paper.

The systems of interest to us consist of an agent situated in some particular envi-
ronment; the agent interacts with the environment by performing actions upon it, and
the environment responds to these actions with changes in state. It is assumed that the
environment may be in any of a finite set E = {e0, e1, . . . , en} of instantaneous states.

2

Agents have a repertoire of possible actions available to them, which transform the
state of the environment. Letting Ac = {α0, α1, . . . , αk} be the (finite) set of actions,
the behaviour of an environment is defined by a state transformer function, τ . It is
often the case that τ is not simply a function from environment states and actions to
sets of environment states, but from runs and actions to sets of environment states.
This allows for the behaviour of the environment to be dependent on the history of the
system — the previous states of the environment and previous actions of the agent can
play a part in determining how the environment behaves.

Definition 1 An environment, Env, is a tuple 〈E, e0,Ac, τ〉, where E is a finite set of
environment states with e0 distinguished as the initial state; and Ac is a finite set of
available actions. Let SEnv denote all sequences of the form e0 ·α0 · e1 ·α1 · e2 · · · with
for each i, ei ∈ E, αi ∈ Ac, and SE be the subset of such sequences that end with a
state. The state transformer function τ is a total mapping

τ : SE × Ac → ℘(E)

We focus on the the set of runs in the environment. This is the set REnv = ∪∞
k=0R(k),

where
R(0) = {e0} and
R(k+1) =

⋃

r∈R(k)

⋃

{α∈Ac|τ(r,α)6=∅}{r · α · e | e ∈ τ(r, α)}

We denote by RAc the set {r · α | r ∈ REnv} so that we subsequently interpret τ as a
total mapping, τ : RAc → ℘(E), i.e., as describing the (possibly empty) set of states
which may result by performing the action α ∈ Ac after a run r ∈ REnv.

A run, r, has terminated if ∀α ∈ Ac, τ(r · α) = ∅. The subset of REnv comprising
all terminated runs is denoted TEnv. The length of a run, r ∈ REnv is the total number
of actions and states occurring in r and is denoted by |r|. Finally, for r ∈ REnv, last(r)
denotes the final state of the run r, i.e. r = s · last(r), for s ∈ RAc.

The state transformer function, τ , is encoded in an input instance by a deterministic
Turing machine description Tτ with the following characteristics: the input has the
form r#e, where r ∈ RAc, e ∈ E, and # is a separator symbol. The program Tτ
accepts r#e if and only if e ∈ τ(r). The number of moves made by Tτ is bounded by
a polynomial, p(|r|).1 Using Tτ , the set of states τ(r) can be constructed in |E|p(|r|)
steps.

We view agents as performing actions upon the environment, thus causing the state
of the environment to change. In general, an agent will be attempting to “control” the
environment in some way, in order to carry out some task. The agent, however, has at
best partial control over the environment.

Definition 2 An agent, Ag, in an environment Env = 〈E, e0,Ac, τ〉 is a mapping Ag :
REnv → Ac ∪ {⊗}. The symbol ⊗ is used to indicate that the agent has finished its
operation: an agent invokes this only on terminated runs, r ∈ TEnv, an event that is
referred to as the agent having no allowable actions. A system, Sys, is a pair 〈Env,Ag〉
comprising an environment and an agent operating in that environment. A sequence

1We adopt the convention that should Tτ fail to have halted after p(|r|) moves on input r#e then
e 6∈ τ (r)

3

s ∈ REnv ∪ RAc is called a possible run of the agent Ag in the environment Env if
s = e0 · α0 · e1 · α1 · · · satisfies

1. e0 is the initial state of E, and α0 = Ag(e0);

2. ∀k > 0,
ek ∈ τ(e0 · α0 · e1 · α1 · · · ek−1 · αk−1) where
αk = Ag(e0 · α0 · e1 · α1 · · · ek)

It should be noted that, in general, the state transformer function τ (with domain RAc)
is non-deterministic, An agent may have a number of different possible runs in any
given environment. We will denote by R(Ag,Env) the set of possible runs of agent
Ag in environment Env and by T(Ag,Env) the subset of these that are terminated, i.e.,
belong to TEnv. An agent, Ag, must define some allowable action in Ac, for every run
in R(Ag,Env) \ TEnv, i.e., agents may not choose to halt arbitrarily.

We concentrate on the behaviour of agents which have some bound placed on the
number of actions performed. More precisely, given t : IN → IN, the set of t(n)-
critical runs of an agent Ag in the environment Env is the set C t(n)(Ag,Env) defined
by those runs of the agent in which exactly t(n) actions have been performed or which
have terminated after at most t(n) − 1 actions. Unless otherwise stated the bounding
function t(n) = n (with n = |E × Ac|) is used.

Study of agent design problems in this framework was initiated in [9] and extended
in [10, 2]. Important decision problems introduced with these are the finite achieve-
ment design (FAD) and finite maintenance design (FMD) problems.

Definition 3 An instance of the Finite Achievement Design problem (FAD) comprises
an environment 〈E, e0,Ac, τ〉 and a subset G of E. An instance is accepted if there is
an agent Ag for the environment such that,

∀r ∈ C|E×Ac|(Ag,Env) ∃g ∈ G : g occurs in r

An instance of the Finite Maintenance Design problem (FMD) comprises an environ-
ment 〈E, e0,Ac, τ〉 and a subset B of E. An instance is accepted if there is an agent Ag
for the environment such that,

∀r ∈ C|E×Ac|(Ag,Env) ∀b ∈ B : b does not occur in r

The analyses of [10, 9] consider these in settings where τ is non-deterministic, deter-
ministic, history-dependent, and history-independent, i.e. τ(r · α) depends only on
the state last(r). Denoting these cases by FMDY

X , FADY
X with X ∈ {det, non − det},

Y ∈ {h.d, h.i}, it has been shown that FADY
X has equivalent complexity to FMDY

X and
this varies from PSPACE-complete (FADh.d

non−det) through NP-complete (FADh.d
det) to P (in

the history-independent cases). In [2], similar results were established for the prob-
lems Ψ − FD where Ψ is a given Boolean function of k variables: each environment
state is associated with at most one variable, so that any run r induces an instantiation
of these via xi = > (should any state mapped to xi occur in r) and xi = ⊥ (if no
such state occurs in r). Thus FAD and FMD are the special cases corresponding to the
unary functions Ψ(x) = x and Ψ(x) = ¬x respectively. In history-dependent environ-
ments, [2] shows that whenever Ψ(x1, . . . , xk) is not a constant function, Ψ − FDh.d

X
has equivalent complexity to FADh.d

X .

4

e0

e1

e2

e3

e4

e5

α2

α2

α0

α2

α4

α0

α0, α1

α0, α1

α1
α2

Figure 1: The state transitions of an example environment: Arcs between environment
states are labelled with the sets of actions corresponding to transitions. Note that this
environment is history dependent, because agents are not allowed to perform the same
action twice. So, for example, if the agent reached state e2 by performing α0 then α2,
it would not be able to perform α2 again in order to reach e3.

3 Reactive Agent Design

While the intractability of FADh.d
non−det creates one drawback, a further difficulty arises

in that the length of program describing a successful agent may be exponential in
|E × Ac| unless some concise encoding of the action required on each relevant run
can be found. We can try and enforce a ‘short program’ regime, by limiting agents of
interest to those which are only required to specify actions predicated on some constant
length fragment of the agent’s recent history.

Example 1 To better understand our notion of reactive agent, consider the environ-
ment whose state transformer function is illustrated by the graph in Figure 1. In this
environment, an agent has just four available actions (α1 to α4 respectively), and the
environment can be in any of six states (e0 to e5). History dependence in this environ-
ment arises because the agent is not allowed to execute the same action twice. Arcs
between states in Figure 1 are labelled with the actions that cause the state transitions
— note that the environment is non-deterministic. Now consider the achievement task
with goal states {e2}. There is clearly a reactive agent to accomplish this task, defined
by the following rules:

e0 −→ α1

e1 −→ α0

e3 −→ α0

e5 −→ α2

Formally, we have the following.

Definition 4 An agent, Ag, is reactive if for all pairs r, r ′ ∈ R(Ag,Env) such that
last(r) = last(r′) it holds that Ag(r) = Ag(r′).

Thus, a reactive agent, considers only its current state in choosing which action to
perform, not the history leading to this. It is important to note that the state transi-
tion function, τ , continues to be history-dependent, and thus, the existence of an agent

5

solving FADh.d
not−det in a particular instance does not guarantee the existence of a reac-

tive agent doing so. While limiting attention to reactive agents has the disadvantage
that potentially successful agents may be overlooked, a significant gain is that the ‘pro-
gram’ for such agents requires (at most) |E| log |Ac| bits: the single action associated
with each state of E.

Assuming τ to be history-dependent, we denote by Q
(1)
X the decision problem QX

(for Q ∈ {FAD,FMD,Ψ − FD}) when solution agents are required to be reactive.
We recall that the complexity class Σp

2 comprises those languages, L, membership
in which is decidable by an NP program having (unit-cost) access to a CO-NP oracle.
Alternatively, L is defined via a ternary relation RL ⊆ W ×X ×Y for which 〈w, x, y〉 ∈
RL can be decided in deterministic polynomial-time and RL satisfies,

w ∈ L ⇔ (∃x ∈ X ∀y ∈ Y 〈w, x, y〉 ∈ RL)

Theorem 1 FAD
(1)
non−det is Σp

2-complete.

Proof: To show that FAD
(1)
non−det ∈ Σp

2 it suffices to observe that an instance 〈〈E, e0,Ac, τ〉,G〉
is accepted if and only if there exists a reactive agent Ag all of whose |E × Ac|-critical
runs pass through an element of G. A reactive agent, Ag is defined by a mapping
µAg : E → Ac. Let S be the ternary relation

(〈Env,G〉, µAg, r) ∈ S
⇔

r ∈ C|E×Ac|(Ag,Env) includes some g ∈ G

where Ag is the reactive agent defined by the mapping µAg. It is certainly the case that
(〈Env,G〉, µAg, r) ∈ S can be decided in P. Moreover, 〈Env,G〉 is a positive instance

of FAD
(1)
non−det if and only if

∃µAg:E → Ac ∀r ∈ Cn(Ag,Env) (〈Env,G〉, µAg, r) ∈ S

and hence decidable by a Σp
2 program.

To show that the problem is Σp
2-hard, we give a reduction from the Σp

2-complete
problem QSAT2. An instance of this is a Boolean formula ϕ(X,Y) over disjoint variable
sets X,Y with |X| = |Y| which is accepted if ∃αX∀βYϕ(αX , βY) holds, i.e. there is
some instantiation (αX) of X under which all instantiations (βY) of Y render ϕ(X,Y)
true. The Σp

2-completeness of QSAT2 was demonstrated by Wrathall[11].
Given an instance, ϕ(x1, . . . , xn, y1, . . . , yn) of QSAT2, we construct an instance

〈Envϕ,Gϕ〉 of FAD
(1)
non−det as follows. For Envϕ = 〈E, e0,Ac, τ〉 we set,

E = {x1, . . . , xn, y>1 , . . . , y
>
n , y

⊥
1 , . . . , y

⊥
n ,>,⊥}

Ac = {>,⊥,→, eval}
e0 = x1

Gϕ = {>}

6

The transition function τ(r · α) is

{y>i , y
⊥
i } if last(r) = xi and α ∈ {>,⊥}

{xi+1} if last(r) = y>i ,i < n and α =→
{xi+1} if last(r) = y⊥i , i < n and α =→
> if last(r) ∈ {y>n , y

⊥
n }, α = eval and ϕ(π(r))

⊥ if last(r) ∈ {y>n , y
⊥
n }, α = eval and ¬ϕ(π(r))

∅ otherwise,

where π(r) is the instantiation of 〈X,Y〉 defined from

x1 · α1 · yβ1
1 · → ·x2 · α2 · · · yβk

k · → ·xk+1 · · ·αn · yβn
n · eval

through xi = αi, yi = βi for each 1 ≤ i ≤ n.
Suppose 〈Envϕ, {>}〉 is a positive instance of FAD

(1)
non−det , i.e. there is a reac-

tive agent, Ag, whose every critical run reaches the state >. Consider the mapping
µAg : E → Ac defining this agent. It is certainly the case that, µAg(xi) ∈ {>,⊥}
for each xi ∈ E. Furthermore, µAg(y>i) = µAg(y⊥i) =→ for each 1 ≤ i < n, and
µAg(y>n) = µAg(y⊥n) = eval, being the only allowable actions in these states. If we
consider any critical run, r, of this agent then it ends in the state >, and hence the in-
stantiation of 〈X,Y〉 induced by π(r) satisfies ϕ(X,Y). Thus setting xi = µAg(xi) yields
an instantiation of αX of X for which ∀βYϕ(αX , βY) holds. On the other hand if ϕ(X,Y)
is a positive instance of QSAT2, witnessed by a setting αX = 〈α1, . . . , αn〉 ∈ 〈>,⊥〉n

of X, then the reactive agent defined by

µAg(e) =

αi if e ∈ {x1, . . . , xn}
→ if e ∈ {y>1 , y

⊥
1 , . . . , y

>
n−1, y

⊥
n−1}

eval if e ∈ {y>n , y
⊥
n }

always achieves the state > and hence witnesses a positive instance of FAD
(1)
non−det . 2

Theorem 1 indicates that deciding if a reactive agent exists is, under the usual complexity-
theoretic assumptions, significantly ‘easier’ (Σp

2-complete) in non-deterministic cases
than deciding if an agent given the freedom to determine actions by its entire history
can be used (PSPACE-complete). In contrast, our next result shows that for determinis-
tic environments, there is no difference in complexity for these cases.

Theorem 2 FAD
(1)
det is NP-complete.

Proof: Membership in NP is obvious: given an instance 〈Env,G〉 of FAD
(1)
det simply

non-deterministically guess an action for each state of Env, to define a reactive agent.
Since Env is deterministic, this agent determines a unique run so it suffices to check
whether this contains a state in G.

To prove NP-hardness, we give a reduction from SAT. Let ψ(x1, . . . , xn) be an

instance of SAT. We define an instance 〈Envψ,G〉 of FAD
(1)
det with Envψ having state

set {x1, . . . , xn,>,⊥}, initial state x1, and actions {>,⊥}. The transition function is
given by τ(r · α) = xi+1 if last(r) = xi and i < n; if last(r) = xn then

τ(x1 · α1 · x2α2 · · · xn · αn) = ψ(α1, . . . , αn)

7

It is easy to see that 〈Envψ , {>}〉 is a positive instance of FAD
(1)
det if and only if the

formula ψ(x1, . . . , xn) is satisfiable, proving the theorem. 2

We note the following easy corollaries of Theorems 1, 2.

Corollary 1 For Q ∈ {FMD,Ψ − FD},

a) Q
(1)
non−det is Σp

2-complete.

b) Q
(1)
det is NP-complete.

Proof: For FMD simply choose the set B as {⊥} in the reductions from QSAT2 and
SAT. One minor modification is required to the definition of τ : since a reactive agent
could simply associate a disallowed action with each state, e.g. → as the action in state
x1, instead of τ(r · α) = ∅, we set τ(r · α) = ⊥ for such cases. The proof for Ψ-FD

derives from the constructions in [2]: we omit the details. 2

4 k-Reactive Agent Design

By requiring agents to specify a single (re)action for each state, we gain a guaranteed
‘short program’ if an appropriate agent exists, but at a potential cost of missing al-
ternative solutions when no reactive agent is possible. It might be the case, however,
that while an agent reacting to its current state only cannot be found, there are agents
solving a specified design problem that, need only specify actions predicated on the
last k action/state pairs in a run, without having to examine their whole history. Such
‘k-reactive’ agents can be described by programs of at O(|E × Ac|k log |Ac|) bits, and
thus are realistic for ‘small’ values of k. We now consider this generalisation of the
concept of reactivity to encompass ‘k-reactive’ agents.

Definition 5 Given an environment Env and a positive integer k, an agent Ag is k-
reactive if for all r, r′ ∈ R(Ag,Env) with

r = s · · · el · αl · · · el+k−1

r′ = s′ · · · el · αl · · · el+k−1

it holds that Ag(r) = Ag(r′).

We denote by Q
(k)
X the agent design problem QX in which solution agents are required

to be k-reactive.

Theorem 3 For each k ≥ 1, and X ∈ {non − det, det}, FAD
(1)
X ≡log FAD

(k)
X .

Proof: We first show that FAD
(1)
X ≤log FAD

(k)
X . An instance of the former consists of

an environment Env and subset G of E. We define a new environment Env′ as follows.
The basic idea is that every state in Env corresponds to a sequence of k states in Env ′.
For every state e of Env, the new environment Env′ has states e(1), . . . , e(k). The
initial state of Env′ is e0(1), where e0, as usual, is the initial state of Env. Env′ has
an action µ in addition to all the actions of Env, and its set of legal runs is defined

8

as follows. Suppose that Env has a run e0 · α0 · e1 · · ·αn−1 · en, then Env′ has a run
e0(1) · µ · e0(2) · · · µ · e0(k) · α0 · e1(1) · · · αn−1 · en(1) · · · en(k). Observe that Env′ is
deterministic if and only if Env is. It is easy to see that a reactive agent for Env exists
whose runs pass contain a state in G if and only if a k-reactive agent for Env′ exists
whose runs contain a state in {g(1) . . . g(k)|g ∈ G}.

To show that FAD
(k)
X ≤log FAD

(1)
X , given an instance 〈Env,G〉 of the former, we can

create an instance 〈Env′,G′〉 of the latter in which each state of Env′ corresponds to
each distinct seqeunce of at most k− 1 actions and k states in Env. We omit the details
of the straightforward simulation establishing that a k-reactive agent solves 〈Env,G〉 if
and only if a reactive agent solves 〈Env′,G′〉. 2

Corollary 2 For Q ∈ {FAD,FMD,Ψ − FD},

a) Q
(k)
non−det is Σp

2-complete.

b) Q
(k)
det is NP-complete.

Proof: Immediate from Theorems 1–3 above. 2

5 Oblivious Agent Design

The concept of k-reactive (k ≥ 1) agent offers one mechanism by which ‘concise’
solutions to agent design tasks may be described in history-dependent environments.
We can also, however, consider a superficially similar idea - that of an ‘oblivious’ agent
solution. Informally, an oblivious agent is one which takes no account of its current
state in choosing an action only of the number of actions its has performed so far: thus
one might regard an oblivious agent (with respect to our concept of reactivity) as being
‘0-reactive’.

Example 2 Recall again the example presented earlier. In this environment, there is
an oblivious agent to accomplish the achievement task with goal states {e1, e2}, by
simply performing α1.

More formally, we have the following.

Definition 6 An agent, Ag, is oblivious if for all pairs r, r ′ ∈ R(Ag,Env) if |r| = |r′|
then Ag(r) = Ag(r′).

Thus, in settings where agents must cease their operations after some (maximum) num-
ber of actions, m say, an oblivious agent is specified by a mapping ω : {1, 2, . . . ,m} →
Ac describing what action is to performed at each stage i from the initial state (i = 1)
onwards. For the design problem FADX on which we have focused we can introduce
an oblivious variant as follows.

Definition 7 An instance of the oblivious achievement design problem (FAD
(0)
X) con-

sists of an environments Env = 〈E, e0,Ac, τ〉, a subset G of E, and a positive integer,

9

m. An instance is accepted if there is a mapping ω : {1, 2, . . . , t} → Ac such that
t ≤ m and for Agω the agent defined by

Agω(r) =

{

ω((|r| + 1)/2) if |r| ≤ 2t − 1
⊗ if |r| ≥ 2t

then every run r ∈ R(Agω,Env) contains some state of G.

An oblivious agent can be specified using at most m log2 |Ac| bits, and thus if m �
|E × Ac| may represent a significant saving over even 1-reactive agents.

From our earlier results, however, it turns out that deciding if oblivious agents exist
is ‘no easier’ than deciding if reactive ones do.

Theorem 4

a) FAD
(0)
non−det is Σp

2-complete.

b) FAD
(0)
det is NP-complete.

Proof: For (a) the reduction of Theorem 1 is used to construct a instance of FAD
(0)
non−det

in which m = 2n. It then suffices to observe that xi actions are determined on odd
indexed moves and the only applicable actions on even indexed moves are → and
(finally) eval. Thus an oblivious agent can be specified if and only if the instance
of QSAT2 from which 〈Envϕ,Gϕ, 2n〉 results would be accepted. The proof of (b) is
similar. 2

So far we have considered only agents that must realise their specified task (whether
achievement or maintenance) within some limited number of actions, i.e. with respect
to the critical runs of length |E × Ac|. Of course, within deterministic environments
even using oblivious agents, determining whether an agent that ‘eventually’ realises an
achievement tasks is easily shown to be undecidable. This situation changes when we
consider agents operating in history-independent environments, i.e. where the change
in environment state specified by τ depends only on its current state and the action
chosen. We conclude this section by presenting some results concerning oblivious
agent design tasks in history-independent non-deterministic environments.

Any environment of this form is naturally modeled by a directed graph H(E,A)
whose vertices correspond to the possible states and in which there is an edge 〈e i, ej〉
labelled α ∈ Ac whenever ej ∈ τ(ei, α). Oblivious agents in this setting may be
regarded simply as mappings Ag : IN → Ac ∪ {⊗}. Of course, in non-deterministic
environments, it could happen that such an reaches different states ei and ej after k
actions are performed, but these are such that

τ(ei,Ag(k + 1)) 6= ∅ ; τ(ej,Ag(k + 1)) = ∅

It is convenient to pre-empt this possibility by adding a ‘special’ dead state, e∅ to
the environment such that for each pair 〈e, α〉 ∈ E × Ac, should τ(e, α) = ∅, then
the directed graph H(E,A) contains an edge 〈e, e∅〉 labelled α; additionally there are
edges 〈e∅, e∅〉 labelled α for each α ∈ Ac. It is noted that we neither require nor
assume H(E,A) to be acyclic.

10

The most ‘general’ form of the oblivious agent design problem that we consider
in this context of history-independent, non-deterministic environments is that defined
below.

Definition 8 Let Ψ(x1, . . . , xt) be a (non-constant) propositional logic function of t
variables. An instance of the Ψ-Oblivious Agent Design problem (Ψ − OAD) consists
of: an edge-labelled directed graph H(E,A) as arising from a history-independent,
non-deterministic environment 〈E, e0,Ac, τ〉; and a partial mapping Π : E → {x1, . . . , xt}
associating each state with (at most) one variable xi of Ψ. An instance is accepted if
there is a value n ∈ IN and an oblivious agent Ag : IN → Ac ∪ {⊗} for which

Ag(m) ∈ Ac if m < n
Ag(m) = ⊗ if m ≥ n

and if r = e0 · s1 · s2 · · · sm is any sequence of m + 1 states traversed by Ag in H(E,A)
then Ψ(π(r)) = >, where Ψ(r) is the instantiation of 〈x1, . . . , xt〉 defined through:
xk = > if any state, e with Π(e) = xk occurs in r; xk = ⊥ if no such state does.

For reasons of limited space the following results are merely stated without proof.

Theorem 5 For all propositional functions Ψ(x1, . . . , xk), the problem Ψ-OAD is de-
cidable.

Theorem 6 (x1 ∧ (¬x2)) − OAD is PSPACE-hard.

Some remarks regarding the relationship between Theorem 6 and Theorem 4 may
seem in order: the former appearing to claim that the history-independent version of
a problem is rather more difficult that its history-dependent counterpart. The impor-
tant difference between these two cases is that, in contrast to Ψ-OAD, an instance of
FAD

(0)
non−det include a stated bound on the number of actions an oblivious agent is al-

lowed to perform: in Ψ-OAD whether any such bound exists has to be decided. As we
noted earlier, the ‘exact’ analgoue of Ψ-OAD for history-dependent environments is, in
fact, undecidable, hence the relevance of Theorem 5.

6 Conclusions and Related Work

In this paper, we have determined the computational complexity of designing agents
with various types of imperfect recall. In general, we show that the problem is ap-
parently easier than the corresponding setting in which agents have perfect recall (Σp

2-
complete, as opposed to PSPACE-complete), although in simpler types of the problem
setting (for example where the environment is deterministic) the complexity of the
problems in the perfect and imperfect recall case coincide.

To the best of our knowledge, this work represents the first attempt to apply the
tools of complexity theory to the comparative study of reactive and other types of
agents, although there is some related work in the literature. [4] argues against reactive
agents in general, (and the ‘Universal Plans’ approach of [8] in particular), by arguing
that the approach will not scale due to the size of the representation required; the
‘universal plans’ agents referred to here correspond almost precisely with our notion

11

of a reactive agent. [7] argue against the prevailing AI notion of ‘optimal’ agent as the
one that chooses the best action in principle, and argues forcefully that we must focus
on finding agents that can make the best choice given the computational (memory and
processor) constraints under which they must operate. [6] studies various bounds that
may be placed on the memory size of agents from a game theoretic point of view; the
intuition is exactly the same as ours, but no complexity-theoretic results are obtained.

References

[1] R. A. Brooks. Cambrian Intelligence. The MIT Press: Cambridge, MA, 1999.

[2] P. E. Dunne, M. Wooldridge, and M. Laurence. The computational complexity
of boolean and stochastic agent design problems. In Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), pages 976–983, Bologna, Italy, 2002.

[3] M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers: San Mateo, CA, 1987.

[4] M. L. Ginsberg. Universal planning: An (almost) universally bad idea. AI Mag-
azine, 10(4):40–44, 1989.

[5] C. H. Papadimitriou. Computational Complexity. Addison-Wesley: Reading,
MA, 1994.

[6] A. Rubinstein. Modeling Bounded Rationality. The MIT Press: Cambridge, MA,
1998.

[7] S. Russell and D. Subramanian. Provably bounded-optimal agents. Journal of AI
Research, 2:575–609, 1995.

[8] M. J. Schoppers. Universal plans for reactive robots in unpredictable environ-
ments. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence (IJCAI-87), pages 1039–1046, Milan, Italy, 1987.

[9] M. Wooldridge. The computational complexity of agent design problems. In
Proceedings of the Fourth International Conference on Multi-Agent Systems
(ICMAS-2000), pages 341–348, Boston, MA, 2000.

[10] M. Wooldridge and P. E. Dunne. The complexity of agent design problems: de-
terminism and history dependence. Technical Report ULCS-01-010, University
of Liverpool, Dept of Computer Science, 2001.

[11] C. Wrathall. Complete sets for the polynomial hierarchy. Theoretical Computer
Science, 3:23–24, 1976.

12

