
Fourth Workshop on the Implementation of
Logics

Boris Konev
Renate Schmidt (eds.)

Collocated with LPAR 2003
Almaty, Kazakhstan, September 2003

Preface

Following a series of successful workshops held in conjunction with the LPAR confer-
ence, the Fourth Workshop on the Implementation of Logics was held in conjunction
with the Tenth International Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR 2003), in Almaty, Kazakhstan, in September 2003.

Nine submissions were received of which seven were selected for presentation at the
workshop. An invited talk was given by Stephan Schulz from the Technische Universität
München and RISC Linz.

We thank the program committee who performed the task of reviewing the sub-
missions. We also thank the organisers of LPAR without whom this workshop would
certainly not exist.

September 2003 Boris Konev and Renate Schmidt
Liverpool, Manchester

Workshop Organisation

Program Committee

Elvira Albert Universidad Complutense de Madrid
Bart Demoen Catholic University of Leuven
Thom Frühwirth Universität Ulm
Ullrich Hustadt University of Liverpool
Boris Konev (co-chair) University of Liverpool
William McCune Argonne National Laboratory
Gopalan Nadathur University of Minnesota
Alexandre Riazanov University of Manchester
Kostis Sagonas Uppsala University
Renate Schmidt (co-chair) University of Manchester
Mark Stickel SRI International
Hantao Zhang University of Iowa

Previous events

Reunion Workshop (held in conjunction with LPAR’2000 on Reunion Island),
Second Workshop in Cuba (together with LPAR’2001 in Havana, Cuba),
Third workshop in Tbilisi (together with LPAR’2002 in Tbilisi, Georgia).

Table of Contents

Invited talk

Simplicity, Measuring, and Good Engineering - One Way to Build a World
Class Automated Deduction System . 1
S. Schulz

Extended abstracts

KAT-ML: An Interactive Theorem Prover for Kleene Algebra with Tests 2
K. Aboul-Hosn, D. Kozen

MUltlog and MUltseq Reanimated and Married . 13
M. Baaz, C.G. Fermüller, A. Gil, G. Salzer, N. Preining

A Syntactic Approach to Satisfaction . 18
G. Bittencourt, J. Marchi, R. S. Padilha

Thoughts about the Implementation of the Duration Calculus with Coq 33
S. Colin, V. Poirriez, G. Mariano

The Termination Prover AProVE . 46
J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke

On the Implementation of a Rule-Based Programming System and Some of
its Applications . 55
M. Marin, T. Kutsia

Implementing the Clausal Normal Form Transformation with Proof Generation . 69
H. de Nivelle

Author Index . 84

1

Simplicity, Measuring, and Good Engineering

One Way to Build a World Class Automated Deduction System

Stephan Schulz1,2

1 Institut für Informatik, Technische Universität München
2 RISC-Linz, Johannes Kepler Universität Linz?

schulz@informatik.tu-muenchen.de

Abstract

Most published papers on implementation aspects of automated reasoning sys-
tems cover only a small set of new techniques. Overview papers are rare, and
usually describe the fixed state of a system at a given point in the development
process. Moreover, they often have to trade depth for generality. This is par-
ticularly true for system descriptions, which often are relegated to second-class
status and allowed only a view pages at many major conferences.

In my talk, I will try to shed some lights into the practical aspects of building
a complex high-performance theorem prover. I will give an overview on our
equational theorem prover E [Sch02]. However, instead of giving a purely static
view, I will describe the process that has resulted in a useful and resilient code
base which has, up to now, survived at least three major changes without serious
problems. I will also discuss some of the design decisions that later turned out
to be wrong, and how they have either been fixed or still burden us.

Finally, I will describe some of the engineering tricks and tools we use to make
sure that our code remains stable, mostly bug free, and, most of all, maintainable.

References

[Sch02] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002.

This talk has been supported by the EU CALCULEMUS Human Potential Pro-

gramme.

? Currently visiting at the University of Edinburgh.

2

KAT-ML: An Interactive Theorem Prover
for Kleene Algebra with Tests

Kamal Aboul-Hosn and Dexter Kozen

Department of Computer Science
Cornell University

Ithaca, New York 14853-7501, USA
{kamal,kozen}@cs.cornell.edu

Abstract. KAT-ML is an interactive theorem prover for Kleene algebra with
tests (KAT). The system is designed to reflect the natural style of reasoning with
KAT that one finds in the literature. We describe the main features of the system
and illustrate its use with some examples.

1 Introduction

Kleene algebra with tests (KAT), introduced in [13], is an equational system for pro-
gram verification that combines Kleene algebra (KA) with Boolean algebra. KAT has
been applied successfully in various low-level verification tasks involving communica-
tion protocols, basic safety analysis, source-to-source program transformation, concur-
rency control, compiler optimization, and dataflow analysis [1, 3–6, 13, 15]. The system
subsumes Hoare logic and is deductively complete for partial correctness over relational
models [14].

Much attention has focused on the equational theory of KA and KAT. The axioms
of KAT are known to be deductively complete for the equational theory of language-
theoretic and relational models, and validity is decidable in PSPACE [7, 16]. But be-
cause of the practical importance of premises, it is the universal Horn theory that is of
more interest; that is, the set of valid sentences of the form

p1 = q1 ∧ · · · ∧ pn = qn → p = q, (1)

where the atomic symbols are implicitly universally quantified. Typically, the premises
pi = qi are basic assumptions regarding the interaction of atomic programs and tests,
and the conclusion p = q represents the equivalence of an optimized and unoptimized
program, a partial correctness assertion, or the equivalence of an annotated and unan-
notated program. The necessary premises are obtained by inspection of the program
and their validity may depend on properties of the domain of computation, but they
are usually quite simple and easy to verify by inspection, since they typically only
involve atomic programs and tests. Once the premises are established, the proof of
(1) is purely propositional. This ability to introduce premises as needed is one of the
features that makes KAT so versatile. By comparison, Hoare logic has only the as-
signment rule, which is much more limited. In addition, this style of reasoning al-
lows a clean separation between first-order interpreted reasoning to justify the premises

3

p1 = q1 ∧ · · · ∧ pn = qn and purely propositional reasoning to establish that the con-
clusion p = q follows from the premises.

We have implemented an interactive theorem prover KAT-ML for Kleene algebra
with tests. The system is designed to reflect the natural style of reasoning with KAT that
one finds in the literature. In this paper we describe the main features of the system and
illustrate its use with some examples.

KAT-ML allows the user to develop a proof interactively in a natural human style,
keeping track of the details of the proof. An unproven theorem will have a number of
outstanding tasks in the form of unproven Horn formulas. The initial task is the theorem
itself. The user applies axioms and lemmas to simplify the tasks, which may introduce
new (presumably simpler) tasks. When all tasks are discharged, the proof is complete.

As the user applies proof rules, the system constructs an independently verifiable
proof object in the form of a λ-term. The proof term of an unproven theorem has free
task variables corresponding to the undischarged tasks. The system can import and
export proofs in XML format.

We have used KAT-ML to verify formally several known results in the literature,
some of which had previously been verified only by hand, including the KAT translation
of the Hoare partial correctness rules [14], a verification problem involving a Windows
device driver [2], and an intricate scheme equivalence problem [1].

The system is implemented in Standard ML and is easy to install and use. Source
code and executable images for various platforms can be downloaded from [10]. Several
tutorial examples are also provided with the distribution.

The PSPACE decision procedure for the equational theory has been implemented
by Cohen [4–6]. Cohen’s approach is to try to reduce a Horn formula to an equivalent
equation, then apply the PSPACE decision procedure to automatically verify the result-
ing equation. This reduction is possible in many cases, but not always. Moreover, the
decision procedure does not produce an independently verifiable proof object.

2 Preliminary Definitions

2.1 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions [11, 8]. The axiomatization
used here is from [12]. A Kleene algebra is an algebraic structure (K, +, ·, ∗, 0, 1)
that satisfies the following axioms:

(p+ q) + r = p+ (q + r) (2) (pq)r = p(qr) (3)
p+ q = q + p (4) p1 = 1p = p (5)
p+ 0 = p+ p = p (6) 0p = p0 = 0 (7)

p(q + r) = pq + pr (8) (p+ q)r = pr + qr (9)
1 + pp∗ ≤ p∗ (10) q + pr ≤ r → p∗q ≤ r (11)
1 + p∗p ≤ p∗ (12) q + rp ≤ r → qp∗ ≤ r (13)

This a universal Horn axiomatization. Axioms (2)–(9) say that K is an idempotent
semiring under +, ·, 0, 1. The adjective idempotent refers to (6). Axioms (10)–(13)

4

say that p∗q is the ≤-least solution to q + px ≤ x and qp∗ is the ≤-least solu-
tion to q + xp ≤ x, where ≤ refers to the natural partial order on K defined by
p ≤ q

def
⇐⇒ p+ q = q.

Standard models include the family of regular sets over a finite alphabet, the family
of binary relations on a set, and the family of n × n matrices over another Kleene
algebra. Other more unusual interpretations include the min,+ algebra, also known as
the tropical semiring, used in shortest path algorithms, and models consisting of convex
polyhedra used in computational geometry.

There are several alternative axiomatizations in the literature, most of them infini-
tary. For example, a Kleene algebra is called star-continuous if it satisfies the infinitary
property pq∗r = supn pq

nr. This is equivalent to infinitely many equations

pqnr ≤ pq∗r, n ≥ 0 (14)

and the infinitary Horn formula

(
∧

n≥0

pqnr ≤ s) → pq∗r ≤ s. (15)

All natural models are star-continuous. However, this axiom is much stronger than the
finitary Horn axiomatization given above and would be more difficult to implement,
since it would require meta-rules to handle the induction needed to establish (14) and
(15).

The completeness result of [12] says that all true identities between regular expres-
sions interpreted as regular sets of strings are derivable from the axioms. In other words,
the algebra of regular sets of strings over the finite alphabet P is the free Kleene algebra
on generators P. The axioms are also complete for the equational theory of relational
models.

See [12] for a more thorough introduction.

2.2 Kleene Algebra with Tests

A Kleene algebra with tests (KAT) [13] is just a Kleene algebra with an embedded
Boolean subalgebra. That is, it is a two-sorted structure (K, B, +, ·, ∗, , 0, 1) such
that

– (K, +, ·, ∗, 0, 1) is a Kleene algebra,
– (B, +, ·, , 0, 1) is a Boolean algebra, and
– B ⊆ K.

Elements ofB are called tests. The Boolean complementation operator is defined only
on tests. In KAT-ML, variables beginning with an upper-case character denote tests, and
those beginning with a lower-case character denote arbitrary Kleene elements.

5

The axioms of Boolean algebra are purely equational. In addition to the Kleene
algebra axioms above, tests satisfy the equations

BC = CB BB = B

B + CD = (B + C)(B +D) B + 1 = 1
B + C = B + C BC = B + C

B +B = 1 BB = 0

B = B

The while program constructs are encoded as in propositional Dynamic Logic [9]:

p ; q
def
= pq

if B then p else q def
= Bp+Bq

while B do p def
= (Bp)∗B.

The Hoare partial correctness assertion {B} p {C} is expressed as an equation BpC =
0, or equivalently, Bp = BpC. All Hoare rules are derivable in KAT; indeed, KAT

is deductively complete for relationally valid propositional Hoare-style rules involving
partial correctness assertions [14] (propositional Hoare logic is not).

The following simple example illustrates how equational reasoning with Horn for-
mulas proceeds in KAT. To illustrate the use of our system, we will give a mechanical
derivation of this lemma in Section 3.4.

Lemma 1. The following equations are equivalent in KAT:

(i) Cp = C

(ii) Cp+ C = 1
(iii) p = Cp+ C.

Proof. We prove separately the four Horn formulas (i) → (ii), (i) → (iii), (ii) → (i), and
(iii) → (i).

For the first, assume that (i) holds. Replace Cp by C on the left-hand side of (ii) and
use the Boolean algebra axiom C + C = 1.

For the second, assume again that (i) holds. Replace the second occurrence of C on
the right-hand side of (iii) by Cp and use distributivity law Cp+ Cp = (C + C)p, the
Boolean algebra axiom C + C = 1, and the multiplicative identity axiom 1p = p.

Finally, for (ii) → (i) and (iii) → (i), multiply both sides of (ii) or (iii) on the left by
C and use distributivity and the Boolean algebra axioms CC = 0 and CC = C.

See [13, 14, 17] for a more detailed introduction to KAT.

3 Description of the System

KAT-ML is an interactive theorem prover for Kleene algebra with tests. It is written
in Standard ML. The system has a command-line interface that works on any platform
and a graphical user interface that works on any UNIX-based operating system. A user

6

can create and manage libraries of KAT theorems that can be proved and cited by name
in later proofs. A few standard libraries containing the axioms of KAT and commonly
used lemmas are provided.

At the core of the KAT theorem prover are the commands publish and cite. Pub-
lication is a mechanism for making previous constructions available in an abbreviated
form. Citation incorporates previously-constructed objects in a proof without having to
reconstruct them. All other commands relate to these two in some way.

3.1 Representation of Proofs

KAT-ML represents a proof as a λ-term abstracted over the individual variables p, q, . . .
and test variables B,C, . . . that appear in the theorem and proof variables P0, P1, . . .

for the premises. If the proof is not complete, the proof term will also contain free task
variables T0, T1, . . . for the undischarged tasks. All proof terms are well-typed, and the
type is the theorem, according to the Curry-Howard isomorphism [18]. The theorem
and its proof can be reconstructed from the proof term.

For instance, consider a universal Horn formula

∀x1 . . . ∀xm ϕ1 → ϕ2 → · · · → ϕn → ψ,

where ϕ1, . . . , ϕn are the premises, ψ is the conclusion, and x1, . . . , xm are all of the
individual variables that appear in the ϕi or ψ. Viewed as a type, this theorem would be
realized by a proof term representing a function that takes an arbitrary substitution for
the variables xi and proofs of the premises ϕj and returns a proof of the conclusion ψ.
Initially, the proof is represented as the λ-term

λx1 . . . λxm.λP1 . . . λPn.(TP1 · · ·Pn),

where T is a free variable of type ϕ1 → ϕ2 → · · · → ϕn → ψ representing the
main task. Publishing the theorem results in the creation of this initial proof term; as
proof rules are applied, the proof term is expanded accordingly. Citing a theorem ϕ as a
lemma in the proof of another theorem ψ is equivalent to substituting the proof term of
ϕ for a free task variable in the proof term of ψ. The proof of ϕ need not be complete
for this to happen; any undischarged tasks of ϕ become undischarged tasks of ψ.

3.2 Citation

The system allows two forms of citation, focused and unfocused. Citations are applied to
the current task. One may cite a published theorem with the command cite or a premise
of the current task with the command use.

In unfocused citation, the conclusion of the cited theorem is unified with the con-
clusion of the current task, giving a substitution of terms for the individual variables.
This substitution is then applied to the premises of the cited theorem, and the current
task is replaced with several new (presumably simpler) tasks, one for each premise of
the cited theorem. Each specialized premise of the cited theorem must now be proved
under the premises of the original task.

For example, suppose the current task is

7

T6: p < r, q < r, r;r < r |- p;q + q;p < r

indicating that one must prove the conclusion pq + qp ≤ r under the three premises
p ≤ r, q ≤ r, and rr ≤ r (in the display, the symbol < denotes less-than-or-equal-to
≤). The proof term at this point is

\p,q,r.\P0,P1,P2.(T6 (P0,P1,P2))

(in the display, \ represents λ). Here T6 is a task variable representing a function that
returns a proof of pq + qp ≤ r when given proofs P0, P1, P2 for the three premises.

To prove pq + qp ≤ r, it suffices to prove pq ≤ r and qp ≤ r separately. Thus an
appropriate citation at this point would be the lemma

sup: x < z -> y < z -> x + y < z

The conclusion of sup, namely x + y ≤ z, is unified with the conclusion of the task
T6, giving the substitution x = pq, y = qp, z = r. This substitution is then applied to
the premises of sup, and the old task T6 is replaced by two new tasks

T7: p < r, q < r, r;r < r |- p;q < r
T8: p < r, q < r, r;r < r |- q;p < r

This operation is reflected in the proof term as follows:

\p,q,r.\P0,P1,P2.(sup [x=p;q y=q;p z=r] (T7 (P0,P1,P2),
T8 (P0,P1,P2)))

This new proof term is a function that returns a proof of pq + qp ≤ r when sup is
provided with proofs of its premises, which are the incomplete proofs T7(P0,P1,P2)
and T8(P0,P1,P2) of pq ≤ r and qp ≤ r, respectively. The arguments of T7 and
T8 are the proofs P0,P1,P2 of the premises of the original task T6.

A premise can be cited with the command use just when the conclusion is identical
to that premise, in which case the corresponding task variable is replaced with the proof
variable of the cited premise.

Focused citation is used to implement the proof rule of substitution of equals for
equals. In focused citation, a subterm of the conclusion of the current task is specified;
this subterm is called the focus. The system provides a set of navigation commands
to allow the user to focus on any subterm. When there is a current focus, any citation
will attempt to unify either the left- or the right-hand side of the conclusion of the
cited theorem with the focus, then replace it with the specialized other side. As with
unfocused citation, new tasks are introduced for the premises of the cited theorem. A
corresponding substitution is also made in the proof term. In the event that multiple
substitutions are possible, the system prompts the user with the options and applies the
one selected.

For example, suppose that the current task is

T0: p;q = 0 |- (p + q)* < q*;p*

The axiom

8

R: x;z + y < z -> x;y < z

is a good one to apply. However, the system will not allow the citation yet, since there
is nothing to unify with y. If the task were

T1: p;q = 0 |- (p + q)*;1 < q*;p*

then y would unify with 1. We can make this change by focusing on the left-hand side
of the conclusion of T0 and citing the axiom

id.R: x;1 = x

Focusing on the desired subterm gives

T0: p;q = 0 |- (p + q)* < q*;p*

where the focus is underlined. Now citing id.R unifies the right-hand side with the
focus and replaces it with the specialized left-hand side of id.R, yielding

T1: p;q = 0 |- (p + q)*;1 < q*;p*

Many other commands exist to facilitate the proving of theorems. The cut rule
adds a new premise σ to the list of premises of the current task and adds a second task
to prove σ under the original premises. Starting from the task ϕ1, . . . , ϕn ` ψ, the
command cut σ yields the two new tasks

ϕ1, . . . , ϕn, σ ` ψ ϕ1, . . . , ϕn ` σ.

For a list of other commands, see the README file in the KAT-ML distribu-
tion [10].

3.3 Heuristics

KAT-ML has a simple set of heuristics to aid in proving theorems. The heuristics can
automatically perform unfocused citation with premises or theorems in the library that
have no premises (such as reflexivity) that unify with the current task.

The system also provides a list of suggested citations from the library, both focused
and unfocused, that unify with the current task and focus. Currently, the system does
not attempt to order the suggestions, but only provides a list of all possible citations.
Eventually, the system will attempt to order the list of suggested citations according to
some learned priority determined by usage statistics.

3.4 An Extended Example

The following is an example of the system in use. It is the proof of the first and last Horn
formulas in Lemma 1. The proof demonstrates basic publication and citation, focus, and
navigation. For more examples of varying complexity, see the Examples directory in the
KAT-ML distribution [10].

9

>pub C p = C -> C p + ˜C = 1
L0: C;p = C -> C;p + ˜C = 1 (1 task)

current task:
T0: C;p = C |- C;p + ˜C = 1

>proof
\C,p.\P0.(T0 P0)

current task:
T0: C;p = C |- C;p + ˜C = 1

>focus

current task:
T0: C;p = C |- C;p + ˜C = 1

C;p + ˜C = 1

>down

current task:
T0: C;p = C |- C;p + ˜C = 1

C;p + ˜C = 1

>use A0 l
cite A0

current task:
T1: C;p = C |- C + ˜C = 1

C + ˜C = 1
-

>unfocus

current task:
T1: C;p = C |- C + ˜C = 1

>cite compl+
cite compl+
task completed

no tasks

>proof
\C,p.\P0.(subst [0,0,1] (C;p + ˜C = 1)

L P0 (compl+ [B=C]))

no tasks

>heuristics theorem on

no tasks

>heuristics prem on

no tasks

>pub p = ˜C p + C -> C p = C
L1: p = ˜C;p + C -> C;p = C (1 task)

current task:
T2: p = ˜C;p + C |- C;p = C

>proof
\C,p.\P1.(T2 P1)

current task:
T2: p = ˜C;p + C |- C;p = C

>focus

current task:
T2: p = ˜C;p + C |- C;p = C

C;p = C

>r

current task:
T2: p = ˜C;p + C |- C;p = C

C;p = C
-

>cite id+L r
cite id+L

current task:
T3: p = ˜C;p + C |- C;p = 0 + C

C;p = 0 + C

>d

current task:
T3: p = ˜C;p + C |- C;p = 0 + C

C;p = 0 + C
-

>cite annihL r
cite annihL
x=? p

current task:
T4: p = ˜C;p + C |- C;p = 0;p + C

C;p = 0;p + C

>d

current task:
T4: p = ˜C;p + C |- C;p = 0;p + C

C;p = 0;p + C
-

>cite compl. r
cite compl.
B=? C

current task:
T5: p = ˜C;p + C |- C;p = C;˜C;p + C

C;p = C;˜C;p + C

10

>u r

current task:
T5: p = ˜C;p + C |- C;p = C;˜C;p + C

C;p = C;˜C;p + C
-

>cite idemp. r
cite idemp.

current task:
T6: p = ˜C;p + C |- C;p = C;˜C;p + C;C

C;p = C;˜C;p + C;C

>u

current task:
T6: p = ˜C;p + C |- C;p = C;˜C;p + C;C

C;p = C;˜C;p + C;C

>cite distrL r
cite distrL

current task:
T7: p = ˜C;p + C |- C;p = C;(˜C;p + C)

C;p = C;(˜C;p + C)

>unfocus

current task:
T7: p = ˜C;p + C |- C;p = C;(˜C;p + C)

>cite cong.L
cite cong.L
cite A0
task completed

no tasks

>proof
\C,p.\P1.(subst [1,1] (C;p = C) R (id+L [x=C]) (subst [1,0,1] (C;p = 0 + C) R
(annihL [x=p]) (subst [1,0,0,1] (C;p = 0;p + C) R (compl. [B=C])
(subst [1,1,1] (C;p = C;˜C;p + C) R (idemp. [B=C])
(subst [1,1] (C;p = C;˜C;p + C;C) R (distrL [x=C y=˜C;p z=C])
(cong.L [x=C y=p z=˜C;p + C] P1))))))

no tasks

>

4 Conclusions and Future Work

We have described an interactive theorem prover for Kleene algebra with tests (KAT).
We feel that the most interesting part of this work is not the particular data structures
or algorithms we have chosen—these are fairly standard—but rather the design of the
mode of interaction between the user and the system. Our main goal was not to auto-
mate as much of the reasoning process as possible, but rather to provide support to the

11

user for developing proofs in a natural human style, similar to proofs in KAT found
in the literature. KAT is naturally equational, and equational reasoning pervades every
aspect of reasoning with KAT. Our system is true to that style. The user can introduce
self-evident equational premises describing the interaction of atomic programs and tests
and reason under those assumptions to derive the equivalence of more complicated pro-
grams. The system performs low-level reasoning tasks and bookkeeping and facilitates
sharing of lemmas, but it is up to the user to develop the main proof strategies.

Our current focus is to extend the system with first-order constructs, including ar-
rays. Here atomic programs are assignments x := t, where x is a program variable
and t a first-order term ranging over a domain of computation of a particular first-order
signature. There are only a few extra equational axioms needed for most schematic
(uninterpreted) first-order reasoning and a single rule for introducing properties of the
domain of computation [1, 3]. The first-order axioms are typically used to establish the
correctness of premises; once this is done, reasoning reverts to the purely propositional
level. A short-term goal is to implement enough first-order infrastructure to support the
mechanical derivation of various proofs in first-order KAT appearing in the literature
[1, 3].

Acknowledgments

This work was supported in part by NSF grant CCR-0105586 and ONR Grant N00014-
01-1-0968. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of these organizations or the US Government.

References

1. Allegra Angus and Dexter Kozen. Kleene algebra with tests and program schematology.
Technical Report 2001-1844, Computer Science Department, Cornell University, July 2001.

2. Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety properties
of interfaces. In Proceedings of the 8th International SPIN Workshop on Model Checking of
Software (SPIN 2001), volume 2057 of Lecture Notes in Computer Science, pages 103–122.
Springer-Verlag, May 2001.

3. Adam Barth and Dexter Kozen. Equational verification of cache blocking in LU decom-
position using Kleene algebra with tests. Technical Report 2002-1865, Computer Science
Department, Cornell University, June 2002.

4. Ernie Cohen. Lazy caching in Kleene algebra.
http://citeseer.nj.nec.com/22581.html.

5. Ernie Cohen. Hypotheses in Kleene algebra. Technical Report TM-ARH-023814, Bellcore,
1993. http://citeseer.nj.nec.com/1688.html.

6. Ernie Cohen. Using Kleene algebra to reason about concurrency control. Technical report,
Telcordia, Morristown, N.J., 1994.

7. Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with
tests. Technical Report 96-1598, Computer Science Department, Cornell University, July
1996.

8. John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, London,
1971.

12

9. Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979.

10. http://www.cs.cornell.edu/kozen/KAT-ML.zip.
11. Stephen C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shan-

non and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press,
Princeton, N.J., 1956.

12. Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput., 110(2):366–390, May 1994.

13. Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, 19(3):427–443, May 1997.

14. Dexter Kozen. On Hoare logic and Kleene algebra with tests. Trans. Computational Logic,
1(1):60–76, July 2000.

15. Dexter Kozen and Maria-Cristina Patron. Certification of compiler optimizations using
Kleene algebra with tests. In John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Ker-
ber, Kung-Kiu Lau, Catuscia Palamidessi, Luis Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Proc. 1st Int. Conf. Computational Logic (CL2000), volume 1861 of Lec-
ture Notes in Artificial Intelligence, pages 568–582, London, July 2000. Springer-Verlag.

16. Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decid-
ability. In D. van Dalen and M. Bezem, editors, Proc. 10th Int. Workshop Computer Sci-
ence Logic (CSL’96), volume 1258 of Lecture Notes in Computer Science, pages 244–259,
Utrecht, The Netherlands, September 1996. Springer-Verlag.

17. Dexter Kozen and Jerzy Tiuryn. Substructural logic and partial correctness. Trans. Compu-
tational Logic, 4(3):355–378, July 2003.

18. Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry–Howard isomorphism.
Available as DIKU Rapport 98/14, 1998.

13

MUltlog and MUltseq Reanimated and Married ?

M. Baaz1 C.G. Fermüller1 A. Gil2 G. Salzer1 N. Preining1

1Technische Universität Wien, Vienna, Austria
2Universitat Pompeu Fabra, Barcelona, Spain

1 Introduction

MUltlog is a logic engineering tool that produces descriptions of various sound
and complete logical calculi for an arbitrary finite-valued first-order logic from
a given specification of the semantics of such a logic (see [1]). MUltseq, on the
other hand, is a simple, generic, sequent based theorem prover for propositional
finite-valued logics (see [6]). From its very beginning, MUltseq was intended to
be a ‘companion’ to MUltlog. So far, however, MUltseq does not directly use the
representation of sequent rules as generated by MUltlog. Moreover (due to lack
of funding, personnel and time), further development and maintenance of both
system has been stalled for some time now. It is the purpose of this abstract to
shortly describe the two systems and the current efforts to integrate them.

2 A short description of MUltlog

A many-valued logic is characterized by the truth functions associated with its
propositional operators and quantifiers. More precisely, if W denotes the set of
truth values, then a total function θ̃:Wn 7→ W is associated with each n-ary
operator θ, and a total function λ̃: (2W−{∅}) 7→ W with each quantifier λ.1

For finitely-valued logics, θ̃ and λ̃ can be specified by finite tables. The size of
quantifier tables, however, grows exponentially with the number of truth values.
Fortunately, many operators and quantifiers are defined implicitly as greatest
lower or least upper bounds with respect to some (semi-)lattice ordering on
the truth values; conjunction and disjunction as well as universal and existen-
tial quantification fall into this class. For this reason MUltlog supports several
possibilities for specifying operators and quantifiers.

The kernel of MUltlog is written in Prolog. Its main task is to compute a
certain conjunctive normal form (CNF) for each combination of operators or
quantifiers with truth values. Once given the CNF, all calculi can be obtained
more or less by syntactic transformations. The problem is not to find any such
CNFs: one particular kind can be immediately obtained from the definition of

? Partially supported by the Austrian science foundation FWF, project P16539-N04.
1 Quantifiers defined this way are called distribution quantifiers. The intuitive meaning

is that a quantified formula (λx)A(x) takes the value λ̃(U) if the instances A(d) take
exactly the elements of U as their values. E.g., the universal quantifier in classical
logic can be defined as ∀̃({t}) = t and ∀̃({f}) = ∀̃({t, f}) = f .

14

operators and quantifiers. However, these CNFs are of a maximal branching de-
gree and therefore do not lead to feasible deduction systems. MUltlog computes
CNFs that are optimal regarding the number of conjuncts. For operators and
quantifiers referring to an ordering the matter is easy: provably optimal CNFs
are obtained by instantiating a schema. For all other operators and quantifiers
more complex computations are needed, which involve resolution and a spe-
cial inference rule called combination (for a detailed description and correctness
proofs of the employed algorithms see [8]).

The output consists of a style file containing LATEX definitions specific to the
input logic, which is included by a generic document when compiled with TEX.
The style file is generated by DCGs (definite clause grammars) on the basis of the
specification read by MUltlog and the minimized CNFs computed by MUltlog.

Users of MUltlog can choose among different interfaces. One is written in
Tcl/Tk and runs under Unix and X-Windows. A second one is written in C for
PCs under DOS. A third one is written in HTML and Perl, providing access to
MUltlog via WWW: the user fills in some HTML forms and gets the output of
MUltlog as a Postscript file, obviating the need to install it on her own machine.
All three interfaces communicate with MUltlog by an ordinary text file, which
can be viewed as a fourth interface. Moreover there exists JMUltlog, a Java
applet serving roughly the same purpose as the HTML/Perl interface.

3 A short description of MUltseq

In its core, MUltseq is a generic sequent prover for propositional finitely-valued
logics. This means that it takes as input the rules of a many-valued sequent
calculus as well as a many-sided sequent and searches – automatically or inter-
actively – for a proof of the latter. For the sake of readability, the output of
MUltseq is typeset as a LATEX document.

Though the sequent rules can be entered by hand, MUltseq is primarily in-
tended as a companion for MUltlog. Provided the input sequent calculus is sound
and complete for the logic under consideration – which is always the case when
the rules were computed by MUltlog – MUltseq serves as a decision procedure
for the validity of sequents and formulas. More interestingly, MUltseq can also
be used to decide the consequence relations associated with the logic and the
sequent calculus. The problem of deciding whether a particular formula φ is
true in all models satisfying a given set of formulas ∆, i.e., whether φ logically
follows from ∆, can be reduced to the problem of proving that certain sequent
that depends only on φ and ∆ is true. Similarly, as a consequence of the De-

duction Detachment Theorem for many-valued sequents [5, 7], the problem of
finding a derivation of a sequent σ from hypotheses Σ can be reduced to proving
a particular set of sequents.

From the algebraic point of view, it is an interesting problem to determine
whether an equation or a quasi-equation is valid in a finite algebra. If we consider
the algebra as a set of truth values and a collection of finitely-valued connectives,

15

and use an appropriate translation of equations and quasi-equations to sequents,
the problem again reduces to the provability of many-valued sequents [4].

The decision procedures implemented in MUltseq help to get a better intu-
ition and understanding of some theoretical problems. For instance, it is known
that each propositional logic between the implication-less fragment of Intuitionis-
tic Propositional Calculus and Classical Propositional Calculus has an algebraic
semantics. If we consider the algebraic semantics of all these logics, we obtain
a denumerable chain which corresponds to the chain of all subvarieties of the
variety of Pseudo-complemented Distributive Lattices [7]. Each of these subvari-
eties is generated by a finite algebra, so the study of the sequent calculi obtained
by MUltlog for each of these algebras and the decision procedures in MUltseq

might help to find algebraizable Gentzen systems for the original logics.

4 Availability

Further information on MUltlog as well as the latest version of the system (ver-
sion 1.10, dated 11/07/2001) is available at

http://www.logic.at/multlog .

MUltseq is currently is at version 0.6 (dated 13/09/2002). It is available at

http://www.logic.at/multseq .

5 The marriage agenda

The input for MUltseq, i.e. the description of sequent rules for the introduction
of connectives at the sequent-positions corresponding to the truth values, is
currently prepared by hand. In principle, such a description could and should be
extracted from the output of MUltlog. Moreover, the intended use of the systems
is to investigate and compare the forms of logical rules that can be computed
from truth tables and to check simple logical statements by using these rules.
This calls for an explicit integration of MUltlog and MUltseq. The corresponding
agenda is as follows:

1. Write a conversion program that takes the output of MUltlog, as described
above, as input and generates the corresponding sequent rules in the format
used for the input of MUltseq.

2. Prepare an integrated distribution package that contains properly updated
versions of MUltlog, MUltseq and the conversion tool just described.

3. Design and maintain a joint internet page, that not only just refers to the
already available seperate pages for the two systems, but describes and il-
lustrates the intended use of the integrated system.

16

6 Future developments

Argueably, a happy marriage should result in common offspring. We list some
goals for future developments of MUltlog and MUltseq; in particular ones that
serve the aim of a better integration of the two systems.

– First order theorem proving: MUltseq should be extended to include the
application of rules for distribution quantifiers as computed by MUltlog.

– Model construction: Augmentation of MUltseq with features for the explicit
construction of (descriptions of) counter models for non-valid formulas and
invalid statements involving different versions of consequence relations.

– Extension to projective logics: In [2] the systematic construction of special
sequent calculi for projective logics, an extension of the class of finite val-
ued logics, has been described. We plan to integrate these algorithms into
MUltlog and, correspondingly, to enhance MUltseq to allow for the use of
the resulting sequent calculi in proof search.

– Cut elimination: A future version of MUltlog should construct specifica-
tions of cut elimination algorithms for finite-valued logics as described in [3].
The corresponding cut-reduction operators should then be integrated into
MUltseq, together with the possibility to apply appropriate cut rules, at
least in an interactive fashion.

References

1. M. Baaz, C. G. Fermüller, G. Salzer, and R. Zach. MUltlog 1.0: Towards an expert
system for many-valued logics. In M. A. McRobbie and J. K. Slaney, editors, 13th
Int. Conf. on Automated Deduction (CADE’96), LNCS 1104 (LNAI), pp. 226–230.
Springer-Verlag, 1996.

2. M. Baaz and C. G. Fermüller. Analytic Calculi for Projective Logics. In Neil V.
Murray (Ed.), Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX’99, Saratoga Springs, NY, USA, June 1999, LNAI 1617, Springer-
Verlag, 1999, pp. 36–50.

3. M. Baaz, C. G. Fermüller, G. Salzer, and R. Zach. Elimination of Cuts in First-
Order Finite-Valued Logics. Journal of Information Processing and Cybernetics,
EIK 29 (1993) 6, pp. 333-355.

4. A.J. Gil, J. Rebagliato, and V. Verdú. A strong completeness theorem for the
Gentzen systems associated with finite algebras. Journal of Applied non-Classical
Logics, vol. 9-1:9–36, 1999.

5. A.J. Gil, A. Torrens, and V. Verdú. On Gentzen Systems Associated with the Finite
Linear MV-algebras. Journal of Logic and Computation, 7:1–28, 1997.

6. A.J. Gil, G. Salzer. MUltseq: Sequents, Equations, and Beyond. Extended ver-
sion of an abstract presented at the Joint conference of the 5th Barcelona
Logic Meeting and the 6th Kurt Gödel Colloquium, June 1999; available at
http://www.logic.at/multseq

7. J. Rebagliato and V. Verdú. Algebraizable Gentzen systems and the Deduction
Theorem for Gentzen systems. Mathematics Preprint Series 175, Universitat de
Barcelona, June 1995.

17

8. G. Salzer. Optimal axiomatizations for multiple-valued operators and quantifiers
based on semi-lattices. In M. A. McRobbie and J. K. Slaney, editors, 13th Int.
Conf. on Automated Deduction (CADE’96), LNCS 1104 (LNAI), pages 688–702.
Springer-Verlag, 1996.

9. G. Salzer. Optimal Axiomatizations of Finitely-valued Logics. Information and
Computation, 162:185–205, 2000.

18

A Syntactic Approach to Satisfaction

Guilherme Bittencourt, Jerusa Marchi, and Régis S. Padilha

Departamento de Automação e Sistemas
Universidade Federal de Santa Catarina
88040-900 - Florianópolis - SC - Brazil
{ gb | jerusa | regis }@das.ufsc.br

Abstract. Most of the research on propositional logic satisfiability fol-
lows the Davis-Putnam approach, which is based on a semantic view
that all the possible assignments of true values to propositional symbols
should be tested. This paper proposes an algorithm that is based on a
syntactic view, that explores the properties of the normal forms of a given
theory to verify its satisfiability. Any propositional theory can be repre-
sented either by its conjunctive normal form (CNF) or by its disjunctive
normal form (DNF). The proposed algorithm, given a propositional the-
ory represented by a CNF, calculates, using a specially designed represen-
tation, the minimal DNF, where minimal is defined as the smallest set of
non contradictory, non subsumed dual clauses. Each one of the minimal
dual clauses represents (minimally) a set of semantic assignments that
satisfy the theory. Therefore, if we generate all minimal dual clauses, we
have a syntactic description of all possible assignments. The main idea
is that the number of minimal dual clauses is always less (or in the worst
case equal) than the number of assignments and this is especially true for
difficult theories. The paper also presents some preliminary experimental
results, obtained with a Common Lisp implementation.

1 Introduction

The importance of the propositional logic satisfiability problem (SAT) can be
hardly overemphasized: it is the first (and the prototype) NP-complete problem
[5], it presents very interesting properties with respect to its complexity behavior
[14], analogous, in mathematical terms, to phase transitions in physical systems
[11], and it has a wide range of applications, e.g., computer aided design of
integrated circuits, logic verification, timing analysis. One of the first Artificial
Intelligence problems [22], it has deserved increasing interest in recent years,
from science magazines [10] to the most important scientific journals [21].

Most of the research on SAT solving algorithms follows the Davis-Putnam [6]
approach, which is based on a semantic view that all the possible assignments of
truth values to propositional symbols should be tested. In this paper, on the other
hand, an algorithm is proposed which is based on a syntactic view that explores
the properties of the normal forms of a given theory to verify its satisfiability. Any
propositional theory can be represented either by its conjunctive normal form
(CNF) or by its disjunctive normal form (DNF). Given an ordinary formula

19

W , i.e., a well-formed expression of the full propositional logic syntax, there are
algorithms for converting it into a formula Wc, in CNF, and into a formula Wd,
in DNF, such that W ⇔ Wc ⇔ Wd (e.g., [25], [26], [27]). To transform a formula
from one clause form to the other, only the distributivity of the logical operators
∨ and ∧ is needed.

The proposed algorithm calculates, given a propositional theory represented
by a CNF Wc, the minimal representation of its DNF Wd, where minimal is
defined as the smallest set of non contradictory, non subsumed dual clauses. In
the literature, the non subsumed set is sometimes called condensed [9] and, when
inference is also taken into account, prime implicants [12, 13]. Each one of the
minimal dual clauses represents (minimally) a set of semantic assignments that
satisfy the theory. Therefore, if we generate all minimal dual clauses, we have
a syntactic description of all possible assignments. The main idea is that the
number of minimal dual clauses is always less (or in the worst case equal) than
the number of assignments and this is specially true for difficult theories, i.e.,
those near the complexity edge.

In particular, the proposed algorithm can be used to solve the satisfiability
problem, if it is terminated when the first minimal dual clause is found, but
we are also interested in the complete set of minimal dual clauses for knowledge
representation purposes [2]. The goal of this paper is to present the algorithm and
to analyze its performance properties. The knowledge representation applications
are just sketched and will be the subject of a future paper.

The paper is organized as follows. In Section 2, we introduce some notation
for normal forms that explicitly represents the relations between them. In Sec-
tions 3 and 4, we describe the proposed algorithm and give some examples. In
Section 5, we present some preliminary experimental results obtained with a
proof-of-concept Common Lisp implementation of the algorithm. In Section 6,
the application of the algorithm as a knowledge representation tool in the field of
autonomous agents is sketched. Finally, in Section 7, we conclude and comment
upon some ongoing and future work.

2 Theory Representation

Let P = {P1, . . . , Pn} be a set of propositional symbols and L = {φ1, . . . , φ2n}
the set of their associated literals, where φi = Pj or φi = ¬Pj . A clause C is a
generalized disjunction [8] of literals: C = [φ1, . . . , φkC

] ≡ φ1∨. . .∨φkC
and a dual

clause is a generalized conjunction of literals: D = 〈φ1, . . . , φkD
〉 ≡ φ1 ∧ ...∧φkD

.
A propositional theory L(P) can be represented by its conjunctive normal

form (CNF): Wc = 〈C1, . . . , Cm〉 defined as a generalized conjunction of clauses,
or by its disjunctive normal form (DNF): Wd = [D1, . . . , Dw] defined as a gen-
eralized disjunction of dual clauses.

The fundamental element in the algorithm is called a quantum and is defined
as a pair (φ, F), where φ is a literal and F ⊆ Wc is its set of coordinates that
contains the subset of clauses in Wc to which the literal φ belongs. A quantum
is noted φF , to remind us that F can be seen as a function F : L → 2L.

20

During the presentation of the algorithm, it is frequently necessary to refer
to the set of negated literals, or quanta, of a given set of literals, or quanta1.
To simplify the notation, we introduce the notion of mirror. The mirror of a

quantum φF , noted φ
F

, is defined simply as the quantum associated with the
negation of its literal: φ = ¬φ. The quantum attribute mirror can also be seen
as function: : L → L and, from this point of view, F is the composition
F ◦ : L → 2L.

This notation is extended to clauses and dual clauses, such that the mirror
(dual) clause C of (dual) clause C is defined as the set of mirror literals associated
with the literals in C2.

Any dual clause in the DNF Wd is associated with a set of models, i.e., a set
of assignments to the propositional symbols in P , that satisfy it. To each dual
clause, we can associate a set of quanta: Φ = 〈φF1

1
, . . . , φFk

k 〉 such that ∪k
i=1

Fi =
Wc, i.e., a dual clause is always associated with a set of literals LΦ = 〈φ1, . . . , φk〉
that contains at least one literal that belongs to each clause in Wc, spanning a
path through Wc, and no pair of contradictory literals, i.e., if a literal belongs to
LΦ, its negation is excluded. To avoid the introduction of a new name, we call
indistinctly the sets Φ and LΦ dual clauses.

A set Φ represents a minimal dual clause, if the following condition is also
satisfied: ∀i ∈ {1, . . . , k}, Fi 6⊆ ∪k

j=1,j 6=iFj . This condition states that each literal
in LΦ should represent alone at least one clause in Wc, otherwise it would be
redundant and could be deleted. Given a theory, the set of all minimal Φ’s is
associated with the minimal representation of its DNF Wd.

Example 1. Consider the theory, whose CNF is given by:

0 : [¬P4, P2,¬P3] 5 : [¬P3, P2,¬P1]
1 : [P0,¬P2,¬P3] 6 : [¬P2,¬P1, P0]
2 : [P0,¬P3, P1] 7 : [P4, P0, P2]
3 : [¬P0,¬P2, P3] 8 : [¬P1, P4, P3]
4 : [¬P2,¬P3,¬P1] 9 : [¬P3,¬P1,¬P4]

Its minimal DNF has seven dual clauses that can be represented by the
following sets of quanta, according to the definitions above:

0 : 〈¬P
{0,9}
4

, P
{1,2,6,7}
0

,¬P
{4,5,6,8,9}
1

,¬P
{1,3,4,6}
2

〉

1 : 〈¬P
{4,5,6,8,9}
1

, P
{1,2,6,7}
0

,¬P
{0,1,2,4,5,9}
3

,¬P
{1,3,4,6}
2

〉

2 : 〈P
{7,8}
4

,¬P
{0,1,2,4,5,9}
3

,¬P
{1,3,4,6}
2

〉

3 : 〈P
{0,5,7}
2

, P
{3,8}
3

, P
{1,2,6,7}
0

,¬P
{4,5,6,8,9}
1

〉

4 : 〈¬P
{0,9}
4

, P
{3,8}
3

, P
{1,2,6,7}
0

,¬P
{4,5,6,8,9}
1

〉

5 : 〈P
{7,8}
4

,¬P
{3}
0

,¬P
{4,5,6,8,9}
1

,¬P
{0,1,2,4,5,9}
3

〉

6 : 〈¬P
{3}
0

, P
{0,5,7}
2

,¬P
{4,5,6,8,9}
1

,¬P
{0,1,2,4,5,9}
3

〉

1 Although clauses, dual clauses and sets of quanta are treated as sets, we note them
using [] and 〈 〉 according to their class.

2 It should be noted that, differently from the literal case, the mirror of a clause is not
the negation of this clause.

21

where each quantum is represented in the form: φF , with F its set of coordinates.
For legibility reasons, the clauses in the sets F are represented by their numbers.

3 Simply a Search

The basic idea of the proposed algorithm is, given a propositional theory L
represented by a CNF Wc, calculate the set of all Φ that represent the dual
clauses in the minimal DNF Wd. If L is unsatisfiable then this set will be empty.

This problem can be seen as a search in a state space where each state is
represented by an incomplete set Φ, associated with an incomplete dual clause
in the minimal DNF Wd, and successor states are generated by adding a new
quantum to the set, i.e., a new literal in the dual clause. Each incomplete set Φ

has an associated gap, defined as the set of clauses to which none of its associated
literals belong: GΦ = Wc − ∪k

i=1
Fi.

Any quantum, associated with literals that belong to the clauses in GΦ, is, in
principle, a relevant quantum to be added to Φ in order to generate a successor.

A space state search should begin in one or more initial states. A possible
choice for these initial states is to select all quanta associated with the literals
that belong to one specific clause Ci ∈ Wc. The choice of this clause is a first
heuristic decision to be taken, e.g., for random theories choosing the clause that
contains the most frequent literal in Wc or the one that contains the literal
whose negated form is the most frequent literal in Wc, or some combination
of both, seems to be sensible options. Once an initial clause is adopted, the
problem reduces to a set of independent search problems, one for each literal in
this clause, because any path through Wc must pass through exactly one literal
in clause Ci.

Finally, the final states are defined as those that satisfies the condition to be
a dual clause, i.e., a path through Wc: ∪

k
i=1

Fi = Wc. To calculate the minimal
set Wd, a complete search should be done but, if the goal is only to determine
the satisfiability of L, then when the first final state is found, the search stops.

3.1 Avoiding Redundancy

To keep disjoint the searches associated with each literal in the chosen initial
clause Ci, it is necessary to restrict the simultaneous presence of two literals of
Ci in some LΦ to dual clauses Φ that originate from an initial state associated
with only one of them. This means that each state Φ must remember its origins,
in the form of a list of forbidden quanta XΦ.

Example 2. Consider the theory of example 1, a possible best clause according

to the heuristic discussed above is: 4 : [¬P
{0,1,2,4,5,9}
3

,¬P
{4,5,6,8,9}
1

,¬P
{1,3,4,6}
2

],
where the literals are already sorted according to some quality criterion. States

that originate from the best initial state 〈¬P
{0,1,2,4,5,9}
3

〉 can be extended to

states that contain either ¬P
{4,5,6,8,9}
1

or ¬P
{1,3,4,6}
2

or both, but states that

originate from the second best initial state 〈¬P
{4,5,6,8,9}
1

〉 cannot be extended

22

to states that contain ¬P
{0,1,2,4,5,9}
3

and states that originate from 〈¬P
{1,3,4,6}
2

〉

can only be extended to states that do not contain neither ¬P
{0,1,2,4,5,9}
3

nor

¬P
{4,5,6,8,9}
1

.

The same strategy can be used to avoid the generation of duplicated states
in general. Usually, several quanta would qualify as possible extensions to some
given dual clause. We propose to sort them according to the same quality cri-
terion used to sort the quanta in the initial clause and to use the same method
to restrict which quanta can be added to its successors. Given a dual clause Φ

that can be extended by a set of different quanta, SΦ, already sorted according

to the adopted quality criterion, and two quanta, φFi

i and φ
Fj

j in SΦ, such that

φFi

i is better than φ
Fj

j , we allow Φ to be extended by adding first φFi

i and then

φ
Fj

j , or just by adding φ
Fj

j . This implies adding new quanta to the forbidden list
of each successor state, when it is generated.

The definition of the quality criterion used to sort the quanta is a second
heuristic decision to be taken. Just to avoid duplicated states, any fixed arbi-
trary total order among the literals in L would be enough, because all possible
combinations would be verified. But it is possible to find orders that are also
complete, but avoid the generation of some combinations, that would, themselves
or their successors, eventually be excluded by one of the pruning conditions (see
Section 3.2). The information available to support the construction of such an
order is: the gap of the dual clause, GΦ, the coordinates of the quanta in SΦ

and the coordinates of their associated mirror quanta. Let F G
i = Fi ∩ GΦ and

F
G

i = F i ∩ GΦ be the intersection of the quanta coordinates with the current
gap, and Fij = FG

i ∩FG
j , the intersection of the restricted coordinates of quanta

i and j. A tentative set of rules that such an order would have to satisfy is:

– If | FG
i − Fij |>| FG

j − Fij | then φi � φj else φj � φi.

– If | FG
i − Fij |=| FG

j − Fij | then, if | F
G

i − F ij |>

| F
G

j − F ij | then φi � φj else φj � φi.

The idea behind these rules is that a literal that covers alone more clauses in
the current gap should be tried first and, in the case there are two that cover the
same number of clauses, the one whose mirror literal covers the greater number
of clauses should be preferred. This seems to be a sensible choice for random
theories, but different or more elaborated conditions are surely possible.

The consequence of this redundancy avoiding mechanism is that each newly
generated dual clause can be seen as the initial state of a new independent search,
eliminating the necessity of backtracking.

3.2 Pruning the Search

Given a dual clause Φ, any new quantum to be included in it should satisfy the
following basic conditions:

23

– The relevance condition: a new quantum φF
φ should only be included in Φ

if Fφ ∩ GΦ 6= ∅. This condition restricts new quanta only to those that can
decrease the gap associated with Φ.

– The non contradiction condition: if φ ∈ LΦ then ¬φ 6∈ LΦ.
– The condensed condition: ∀i ∈ {1, . . . , k}, F ∗

i = Fi − ∪k
j=1,i6=jFj 6= ∅. This

condition restricts new quanta only to non-redundant ones. The clauses in
the set F ∗

i are called the exclusive coordinates associated with literal φi in
dual clause Φ.

Example 3. Consider the theory of example 1 and a possible incomplete dual

clause found during the search: Φ = {¬P
{4,5,6,8,9}
1

,¬P
{1,3,4,6}
2

,¬P
{0,1,2,4,5,9}
3

}.

The quantum P
{7,8}
4

qualify as a candidate to extend the dual clause Φ, be-
cause its coordinate set F = {7, 8} intersects the gap of the dual clause, GΦ =
{7}. But the exclusive coordinates associated with the quanta in Φ are: Φ =

{¬P
{8}∗

1
,¬P

{3}∗

2
,¬P

{0,2}∗

3
}

and the inclusion of P
{7,8}
4

would make ¬P1 redundant. Therefore, because of
the condensed condition, the dual clause Φ can not be extended by the quantum

P
{7,8}
4

.

The fact that including one literal in LΦ imply the impossibility of including
its negation leads to restrictions with respect to the clauses in GΦ, i.e., those
clauses that are not yet covered by Φ. These are the gap conditions:

– If there is a clause C ∈ GΦ such that C ⊆ LΦ, where LΦ is the set of the
mirror quanta of LΦ, then Φ contradicts one of the clauses in GΦ and cannot
represent a minimal dual clause.

– If there is a clause C ∈ GΦ such that | C − LΦ |= 1, i.e., LΦ contradicts
all literals in C except one, then the set LΦ must contain this remaining
literal, otherwise clause C would not be represented in Φ. Therefore, if this
remaining literal does not qualify as a valid successor of Φ, according to the
preceding conditions, then Φ cannot be extended to represent a minimal dual
clause.

– Analogous considerations applies to the case in which there is a clause C ∈
GΦ such that | C |>| C −LΦ |> 1. In this case, at least one of the remaining
literals in C−LΦ must qualify as a successor of Φ, according to the preceding
conditions, otherwise Φ cannot be extended to represent a minimal dual
clause.

The gap conditions can be described in a more principled way. Consider the
set: RΦ = {C − LΦ | C ∈ GΦ and C ∩ LΦ 6= ∅}.

This set of restrictions represents, in the form of a logical theory in CNF,
the gap conditions of the incomplete dual clause Φ. If the first gap condition is
verified, then the empty clause belongs to RΦ, which is, therefore, contradictory,
and Φ can not be extended to represent a minimal dual clause. In the case of
the second and/or third gap conditions, RΦ must be coherent with respect to
LΦ and internally coherent, i.e., RΦ should not contain a pair of contradictory

24

unitary clauses. Some elements of RΦ may also be redundant, i.e., if there are
clauses [φ] ∈ RΦ and C ∈ RΦ, such that φ ∈ C, then C is redundant. In order to
better detect dual clauses that would become eventually contradictory, because
of gap conditions, the minimal CNF of the theory RΦ should be calculated for
each newly generated dual clause Φ.

Example 4. Consider the search for dual clauses of the theory of example 1 at

the moment in which the quantum ¬P
{3}
0

is considered as a possible extension

of the incomplete dual clause Φ = 〈¬P
{4,5,6,8,9}
1

〉, that has gap {0, 1, 2, 3, 7} and

list of forbidden quanta {¬P
{0,1,2,4,5,9}
3

}. The negation of the literals associated

with the new set of quanta – 〈¬P
{3}
0

,¬P
{4,5,6,8,9}
1

〉 – appear in four clauses – 1,
2, 6 and 7 –, clause 6 is not in the gap, i.e., one or more of the literals in LΦ

occur in it. The remaining clauses are: 1 : [P0,¬P2,¬P3], 2 : [P0,¬P3, P1] and
7 : [P4, P0, P2].

In clause 1, ¬P0 imply that the dual clause must include ¬P2 or ¬P3. In
clause 2, ¬P0 and ¬P1 imply that the dual clause must include ¬P3. In clause 7,
¬P0 implies that the dual clause must include P2 or P4. The simplified clauses
are: 1 : [¬P2,¬P3], 2 : [¬P3] and 7 : [P4, P2].

The new clause 1 is subsumed by the new clause 2. Therefore, the theory RΦ

is given by RΦ = 〈[¬P
{0,1,2,4,5,9}
3

], [P
{7,8}
4

, P
{0,5,7}
2

]〉.
The fact that ¬P3 is in the forbidden list indicates that dual clause Φ can

not be extended with ¬P0, because of the gap conditions.

A third heuristic decision concerns the order in which these conditions should
be tested. The order they are presented already proposes a possible priority, but
the best order is clearly theory dependent. In the case of an implementation, the
computational cost associated with testing each condition should also be taken
into account.

3.3 Failure Propagation

The pruning conditions above are local conditions, in the sense that they depend
only on information associated with one dual clause Φ. Quanta not satisfying the
first two basic conditions can be easily avoided3, but the third basic condition
and the gap conditions are more complex. Failure that results from the condensed
condition is a consequence of the specific composition of the set of quanta in the
dual clause plus the new quantum and, according to section 3.1, this specific
combination occurs only once.

This is not the case of the failures that result from the gap conditions. In
this case, only a limited number of quanta (typically one or two) are responsible
for the failure, and whenever this combination occurs it will cause a failure. In
particular, all dual clauses that are generated from the same dual clause as the

3 The non contradiction condition test can also be implemented using the list of for-
bidden quanta, XΦ, it is only necessary to add to this list the mirror of each quantum
included in the dual clause.

25

one in which the failure was detected share this fatal combination. It is possible
to suitably update the forbidden list of this original dual clause to avoid testing
these future failures in its successors.

A further way of propagating failure is the following: given a dual clause Φ

and its set of possible extensions SΦ, a set of new dual clauses is generated by
including some of the quanta in SΦ into Φ, call this set of used quanta S ′

Φ. If the
quanta in SΦ − S′

Φ were refused as successors of Φ, they will also be refused as
successors of all its successors, therefore we can add them to the forbidden list
of all successors of dual clauses of Φ.

3.4 The Algorithm

In the beginning of this section, the problem was defined as a search in a state
space. This search is solved using a standard A* algorithm. To access the problem
the search algorithm needs three interface functions: the initial state, the final
state and the state successors. The initial state is defined as the best clause
Ci in the theory L, i.e., the clause whose literals coordinates cover the greatest
number of clauses in Wc. To start the search, the literals in the best clause are
sorted, i.e., the literals that represent more clauses in Wc are used first. A state
Φ is final if GΦ = ∅, i.e., the coordinates of the associated literals cover the set
Wc. The successor states are generated by the following algorithm:

Successors(Φ)
0. Initialize the successor list: Ω ← ∅.
1. Determine the set of possible extensions:

Θ ← {φF | φ ∈ C and C ∈ GΦ} −XΦ.
2. Sort Θ according to the quality criterion � (see Section 3.1).
3. Verify the satisfiability of the clauses in the set of restrictions:

if ∃C ∈ RΦ, Θ ∩ C = ∅ then return ∅.
4. Main loop: ∀φF ∈ Θ do, let Φ+ ← Φ ∪ {φF }

if ∀φFi
i
∈ Φ, F ∗

i 6⊂ F exclusive coordinates are compatible.
and ∅ 6∈ RΦ+ new restrictions are not contradictory.
and ∀C ∈ RΦ+ , C 6⊂ XΦ new restrictions are compatible with the forbidden list.

then Ω ← Ω ∪ {Φ+} create a new state.
5. return Ω.

Fig. 1. Successor Function

One important feature does not appear explicitly in the algorithm of figure
1: How the forbidden list to be associated with a new state – XΦ+ – is gener-
ated. The process is presented in Section 3.3. The algorithm is trivially correct
and complete, because it is an implementation of the dual transformation with
minimization, which is correct and complete by definition.

26

4 Failure Communication

Further improvement can be obtained if, besides propagating failure to succes-
sors, states “communicate” failure to all other active states in the search to which
this specific failure is relevant. To accomplish this, a communication channel is
necessary. We propose to add a new attribute to the quantum that contains,
at each moment, the set of incomplete dual clauses to which the quantum be-
longs. Using this information the active dual clauses in the search that share the
relevant quanta with the current dual clause can be identified.

Given a quantum φFφ , we define the attribute F d
φ as the set of incomplete

dual clauses, not still processed by the search algorithm, to which the quantum
belongs. When the search is completed, only minimal dual clauses remain and
the attribute F d

φ becomes the dual coordinates of the quantum, i.e., the set of
all dual clauses to which the quantum belongs.

We are yet studying the heuristic potential of the use of the attribute F d
φ ,

but, initially, we propose to use this information in two cases: when a failure
occurs because of the gap conditions and when a new minimal dual clause is
generated.

When a gap condition failure occurs in dual clause Φ, all the incomplete dual
clauses associated with its quanta are selected. Those dual clauses that share
the restriction associated with the gap condition, receive a communication that,
if the quanta that fire this specific gap condition appear as candidates to extend
the dual clause, a failure should occur. More formally, let C ∈ Wc be the clause
that fired the gap condition, this means that C − LΦ is not allowed in Φ. The
dual clauses selected to receive the communication are those that share this
restriction. The contents of the communication is the set of literals C ∩ LΦ and
its effect is that, whenever the last of these literals is considered to extend the
dual clause, the search branch fails.

When a new minimal dual clause is generated, it may be the case that it
has neighbors, i.e., other minimal dual clauses that differ from the one found by
only one quanta. The exclusive coordinates of the quanta in the dual clause can
be used to search for these neighbor solutions. The idea is, given one quantum
in the minimal dual clause, to find another quantum that does not belong to
the dual clause, is compatible with it and whose coordinates cover the exclusive
coordinates of the given quantum.

Once the set of new solutions is constructed, all incomplete dual clauses that
share quanta with them receive a communication that these specific combination
of quanta was already found and that any search should stop before reproducing
it.

5 Results

In order to test the relevance of the ideas discussed above, an experimental
system was developed in the programming language Common Lisp [28]. This
system includes a function that implements the proposed algorithm as defined

27

in Section 3, without the failure communication mechanism (see Section 4). The
algorithm was implemented with no optimization concerns, using Lisp structures
and plain lists as data structures.

To give an idea of the absolute performance of the algorithm, we used the
set of benchmark theories available at:
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/,
with 20, 50, 75 and 100 propositional symbols and 91, 218, 325 and 430 clauses,
respectively.

The algorithm was tested both as decision procedure, i.e., halting at the first
dual clause found, and as a generator of complete dual clause sets. Some of the
obtained results are shown in tables 1, 2, 3 and 4, where Time first corresponds
to the time until the first minimal dual clause is found, Time all the time needed
to calculate the complete set of minimal dual clauses, Calls first and Calls all are
the number of internal recursive calls for both the first and all clauses solutions
and | Wd | is the size of the minimal dual clause set. Each unit of time in these
tables corresponds to 0.01 seconds. It is interesting to note that roughly theories
with smaller dual clause sets are more difficult than theories with bigger ones,
in the sense of it takes more time to find the first dual clause.

Problem Time first Calls first Time all Calls all |Wd |
uf20-0110 9 327 31 1730 21
uf20-0111 8 301 19 819 5
uf20-0112 9 250 9 383 3
uf20-0113 7 260 8 330 1
uf20-0114 8 249 17 833 6
uf20-0115 8 229 16 693 4
uf20-0116 7 243 14 569 2
uf20-0117 7 218 7 255 1
uf20-0118 9 315 19 1342 14
uf20-0119 9 360 10 433 2

Table 1. Benchmark uf20-91

We also tested the program with some unsatisfiable theories of the benchmark
uuf50-218. The results are shown in table 5.

The obtained results, although the limited range of parameters and low sta-
tistical significance, seems to indicate that the approach is promising. All the
results were obtained with a compiled version of the system in the CMU Com-
mon Lisp [17] running on a Celeron 500MHz, 256Mb. The sources of the system
as well as the data files will be made available on the Internet when appropriate.

6 Knowledge Representation

We intend to use propositional logic theories to represent world knowledge of
autonomous robots. Autonomous systems should present some characteristics,

28

Problem Time first Calls first Time all Calls all |Wd |
uf50-0110 231 1547 1433 17928 27
uf50-0111 218 1759 310 3889 1
uf50-0112 215 1521 338 5576 4
uf50-0113 234 1518 549 6503 9
uf50-0114 477 5307 5372 80159 244
uf50-0115 361 3503 1935 25558 40
uf50-0116 232 2248 747 8891 15
uf50-0117 213 1656 3560 55777 191
uf50-0118 254 2165 377 4778 7
uf50-0119 242 1732 1345 17953 24

Table 2. Benchmark uf50-218

Problem Time first Calls first Time all Calls all |Wd |
uf75-010 1153 4141 122304 890578 1025
uf75-011 2377 10870 5940 39255 9
uf75-012 2111 16525 3029 28794 2
uf75-013 1915 8693 18028 113412 132
uf75-014 1154 6164 10131 96129 157
uf75-015 1673 12596 6301 49012 16
uf75-016 1648 7703 2596 20731 6
uf75-017 1032 3555 36273 256330 177
uf75-018 2154 12685 26104 258697 925
uf75-019 1712 10406 1714 10707 2

Table 3. Benchmark uf75-325

such as adaptation and self-organization, that allow them to deal with unex-
pected situations and to handle complex tasks, without human interference [7,
23]. To acquire and process information is one of the most important activities
to support these characteristics. In recent works in the mobile robotics domain,
it is possible to perceive a tendency towards hybrid approaches [1] that joins the
best features of the planning [16] and sensor-based approaches [3]. The hybrid
approach supplies an “intelligent” behavior to the robot, with human like ca-
pabilities, such as learning and adaptation. In this sense, Artificial Intelligence
techniques have been used in mobile robotics to provide robots with intelligent
behavior, mainly in navigation and map building problems [19, 29, 32]. There are
also some applications in sensor fusion and control [30, 15].

We intend to use propositional logic to represent the world knowledge nec-
essary to implement intelligent behavior in mobile robots [34, 33] in such a way
that they can be considered cognitive autonomous agents. These cognitive agents
should be able to learn characteristics of the world, to generalize their knowl-
edge and to draw inferences upon this knowledge in order to accomplish complex
tasks.

29

Problem Time first Calls first Time all Calls all |Wd |
uf100-0110 9866 48883 29554 153574 18
uf100-0111 2700 5903 43735 223867 140
uf100-0112 3388 10667 28655 125415 46
uf100-0113 13149 100660 15131 118886 3
uf100-0114 3948 14042 8782 56146 2
uf100-0115 3401 6458 46507 279033 424
uf100-0116 4132 8909 35260 165054 66
uf100-0117 9694 48348 29048 181519 47
uf100-0118 2788 5760 79995 403377 433
uf100-0119 3923 12283 244049 1484480 1835

Table 4. Benchmark uf100-430

Problem Time Calls

uuf50-0110 139 2342
uuf50-0111 190 4270
uuf50-0112 109 2176
uuf50-0113 86 1393
uuf50-0114 105 2365
uuf50-0115 112 1947
uuf50-0116 129 2872
uuf50-0117 69 1359
uuf50-0118 141 3006
uuf50-0119 203 3431

Table 5. Benchmark uuf50-218

The adopted model is derived from the generic model for a cognitive agent
presented in [2]. This model is based on three hypothesis: (i) Cognition is an
emergent property of a cyclic dynamic self-organizing process [20, 31] based on
the interaction of a large number of functionally independent units of a few
types [4]. (ii) Any model of the cognitive activity should be epistemologically [18]
compatible with the Theory of Evolution. That applies not only to the “hard-
ware” components of this activity but also to its “psychological” aspects [35].
(iii) Learning and cognitive activities are closely related and, therefore, the cogni-
tive modeling process should strongly depend on the cognitive agent’s particular
history [24].

The agents based on this model have three levels: reactive, instinctive and
cognitive. The cognitive level could be defined as a set of non-contradictory
propositional theories that represent the agent’s knowledge about the world. The
states of the world, relevant to a given theory, are defined as the possible truth
assignments to a set of primitive propositional symbols that occur in this theory.
We suppose that the world drifts along the possible states (i.e., assignments),
but changing only one primitive propositional symbol assignment at each mo-
ment. The primitive propositional symbols can be controllable or uncontrollable.

30

Roughly, uncontrollable symbols correspond to perceptions, controllable ones to
actions.

The agent is embodied in a mobile robot that wanders around the world and
perceives the primitive propositional symbols, through the reactive and instinc-
tive levels. It is important to note that the agent should recognize the situations
and abstract similar information, grouping them into concepts, represented by
propositional theories. Each concept is associated with a set of dual clauses that
are satisfied in the corresponding situations. Using the proposed algorithm we
can obtain the CNF associated with this set of dual clauses. This CNF is a
rule-based representation of the concept and can be used to control the agent
behavior.

Each theory can itself be interpreted as an abstract propositional symbol,
that may occur in other theories. The idea is that each theory represents some
concept, just to have a single word to mean either an object or a situation in
the world. From the agent point of view, these concepts are characterized by
some patterns of truth assignments, represented by its propositional theories.
Therefore, the agent could act in the world through the primitive propositional
symbols that it can control and update its internal states when the uncontrollable
primitive symbols propositional change.

The fact that each theory is represented by both, CNF and DNF, provides
the agent with a “holographic” representation of the world, where possible future
situations and relevant behavior rules are available simultaneously. The goal is
to demonstrate that this syntactical representation, it is suitable to implement
the necessary cognitive capabilities of a simple autonomous agent.

7 Conclusion

The paper has presented an algorithm to calculate the minimal dual form of
a theory and some preliminary results on its application to the random 3SAT
problem. The following characteristics of the proposed algorithm make it differ-
ent from most of the algorithms in the Davis-Putnam [6] thread: (i) The use of
an explicit representation of the relations between CNF and DNF. (ii) The use of
a syntactic property of the input theory, its set of minimal dual clauses, to guide
the search, instead of the possible semantic assignments. (iii) The use of a redun-
dancy avoiding mechanism that eliminates the need of backtracking. (iv) The
propagation of failure information from one search point to others search points,
in order to avoid useless search effort. Although some results were presented, the
main goal of the paper was to present what we believe to be a different approach
to the satisfiability problem and to motivate its application in the autonomous
agent knowledge representation task.

On going work includes the failure communication implementation and the
computational complexity analysis of the algorithm and a new implementation
in the C++ programming language, to allow experiments with larger theories
and comparisons with other systems. In the future, we also intend to develop a
concurrent implementation of the algorithm to explore the fact that each new

31

generated state of the search can be considered a new initial state of an inde-
pendent search.

Future work also includes the extension of the algorithm to the first-order
logic case and more investigation on the properties of the relation between the
two minimal dual forms of a theory. Although the algorithm was defined to cal-
culate the set of minimal dual clauses of a theory, it is absolutely symmetric and
it is possible to obtain the minimal CNF, and its associated quanta, just exe-
cuting the search in the other direction, beginning with the already calculated
DNF. We believe that the explicit representation of these “holographic” rela-
tions, through the coordinates and exclusive coordinates of the quanta in both
normal forms, has a high heuristic potential, specially in the first-order case.

References

1. R.C. Arkin. Towards the unification of navigational planning and reative control.
In AAAI Spring Symposium on Robot Navigation, 1989.

2. G. Bittencourt. In the quest of the missing link. In Proceedings of IJCAI 15,
Nagoya, Japan, August 23-29, pages 310–315. Morgan Kaufmann (ISBN 1-55860-
480-4), 1997.

3. Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):435–453, March 1986.

4. J.-P. Changeux. L’Homme Neuronal. Collection Pluriel, Librairie Arthème Fayard,
1983.

5. S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, ACM, New York, pages
151–158, 1971.

6. Martin Davis and Hilary Putnam. A computing procedure for quantification the-
ory. Journal of the Association for Computing Machinery, 7:201–215, 1960.

7. J.A. Fabro. Grupos neurais e sistemas fuzzy - aplicação à navegação autônoma.
Master’s thesis, UNICAMP - Universidade Estadual de Campinas, February 1996.

8. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer Verlag,
New York, 1990.

9. Georg Gottlob and Christian G. Fermüller. Removing redundancy from a clause.
Artificial Intelligence, 61:263–289, 1993.

10. Brian Hayes. Can’t can no satisfaction. American Scientist, 85(2):108–112, March-
April 1997.

11. Tad Hogg, Bernardo A. Huberman, and Colin Williams (eds.). Frontiers in problem
solving: Phase transitions and complexity. A special issue of Artificial Intelligence,
81(1-2), March 1996.

12. P. Jackson. Computing prime implicants. In Proceedings of the 10th International
Conference on Automatic Deduction, Kaiserslautern, Germany, Springer Verlag
LNAI No. 449, pages 543–557, 1990.

13. A. Kean and G. Tsiknis. An incremental method for generating prime impli-
cants/implicates. Journal of Symbolic Computation, 9:185–206, 1990.

14. Scott Kirkpatrick and Bart Selman. Critical behavior in the satisfiability of random
boolean expressions. Science, 264:1297–1301, 1994.

15. B.J.A. Kröse and Eecen M. A self-organizing representation of sensor space for
mobile robot navigation. In Proceedings of the IEEE/RSJ/GI International Con-
ference on Intelligent Robots and Systems IROS’94, pages 9–14, 1994.

32

16. J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,
1991.

17. R.A. MaClachlan. CMU Common Lisp User’s Manual. Carnegie Mellon University,
Pittsburgh,PA, 1992.

18. J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In D. Michie and B. Meltzer, editors, Machine Intelligence
4, pages 463–502. Edinburgh University Press, Edinburgh, GB, 1969.

19. J.R Millán. Reinforcement learning of goal-directed obstacles-avoiding reaction
strategies in an autonomous mobile robot. Robotics and Autonomous Systems,
15:275–299, 1995.

20. E. Morin. La Méthode 4, Les Idées. Editions du Seuil, Paris, 1991.
21. M. Mzard, G. Parisi, and R. Zecchina. Analitic and algorithmic solution of random

satisfiability problems. Science, 297:812–815, August 2002.
22. A. Newell and H.A. Simon. The logic theory machine. IRE Transactions on

Information Theory, 3:61–79, September 1956.
23. D. Pagac, E.M. Nebot, and H. Durrant-Whyte. An evidential approach to proba-

bilistic map-building. In IEEE International Conference on Robotics and Automa-
tion, pages 745–750, Minneapolis, Minnesota, April 1996.

24. J. Piaget. The Origins of Intelligence in Children. Norton, New York, 1963.
25. W.V.O. Quine. On cores and prime implicants of truth functions. American

Mathematics Monthly, 66:755–760, 1959.
26. J.R. Slagle, C.L. Chang, and R.C.T. Lee. A new algorithm for generating prime

implicants. IEEE Transactions on Computing, 19(4):304–310, 1970.
27. R. Socher. Optimizing the clausal normal form transformation. Journal of Auto-

mated Reasoning, 7(3):325–336, 1991.
28. G.L. Steele Jr. Common LISP, the Language. Digital Press, Burlington, 1984.
29. S. Thrun. An approach to learning mobile robot navigation. Robotics and Au-

tonomous Systems, 15:301–319, 1995.
30. J.W.M. van Dam, B.J.A. Kröse, and D.C.A. Groen. Neural network applications

in sensor fusion for an autonomous mobile robot. in Reasoning with Uncertainty
in Robotics, (Dorst, L. and Lambalgen, M. van and Voorbraak, F., ed.), Springer,
pp. 263-277, 1996.

31. F.J. Varela. Autonomie et Connaissance: Essai sur le Vivant. Editions du Seuil,
Paris, 1989.

32. Jerusa M. VAZ and João FABRO. Snnap - sistema neural de navegação em am-
bientes pré-mapeados. In IV Congresso Brasileiro de Redes Neurais (CBRN), São
José dos Campos, SP, 19 a 22 de Julho 1999.

33. P.F.M.J. Verschure. Minds, brains and robots: Explorations in distributed adaptive
control. In Second Brazilian-International Conference on Cognitive Science, pages
14–17, 1996.

34. P.F.M.J. Verschure, B.J.A. Kröse, and R. Pfeifer. Distributed adaptative control:
The self-organization of strutured behavior. Robotics and Autonomous Systems,
9:181–196, 1992.

35. R. Wright. The Moral Animal. Vintage Books, New York, 1994.

33

Thoughts about the implementation of
the Duration Calculus with Coq

Samuel Colin1,2 Samuel.Colin@inrets.fr,
Vincent Poirriez2 Vincent.Poirriez@univ-valenciennes.fr,

Georges Mariano1 Georges.Mariano@inrets.fr

1 INRETS?, 20, rue Elisée RECLUS, BP 317 F-59666 Villeneuve d’Ascq Cedex, France
2 LAMIH??, Le Mont Houy, 59313 Valenciennes Cedex 9, France

Abstract. This work is a derivative of studies about the duration calculus , aim-
ing at deciding whether it is sound to use it as an extension logic for a formal
method (namely, the “B method”). Indeed, we wanted to know the feasability
and the usability, of such a modal logic implemented in a proof assistant. In this
paper, two complementary implementations are described, as well as problems
inherited from both sides : the proof system for itself, and the tweaking of the
proof assistant.

1 Introduction

We will present the reasons that drove us to the writing of Coq libraries for DC (duration
calculus), and to that end we’ll do a quick presentation of the B method.

The B method, a formal method, allows the development of safe software, from
abstract, mathematical specifications, to computer code that is proved correct with re-
gard to those specifications. The steps going from specifications to code are called re-
finements. The abstract specifications and the refinements have to be proved correct,
through the proof of so-called proof obligations, that are formulas expressed with pred-
icate calculus and set theory, generated from the specifications and the refinements.

While this method has convinced the industrial world, it still has limits, e.g. when
dealing with problems having temporal constraints. Some examples of application of
the B method to time-constrained problems exist (see for example [1, 2]), but the com-
plexity of the generated proof obligations can easily become confusing for both the
automatic theorem prover and the operator who must read the formulas having failed
with this prover.

Methods involving the extension of the B method also exist ([3]), and we have
chosen to study the extension of the logic used by B to Duration Calculus. To do so, we
needed a proof tool able to handle both normal B logical formulas, and DC formulas.
Coq having several set theory libraries at disposal, we chose it to build a library for DC.

In the section 2 we’ll present the duration calculus, then in section 3 the Coq proof
assistant. In section 4 we will highlight interesting points about the implementation of
DC with Coq, and we’ll conclude in sections 5 and 6.

? Institut National de REcherche sur les Transports et leur Sécurité
?? Laboratoire d’Automatique, de Mécanique, et d’Informatique industrielles et Humaines

34

2 Duration Calculus

This section won’t present an in-depth description of the Duration Calculus, we will
rather focus on peculiar properties, which will be of interest in the other sections.

2.1 History

The Duration Calculus was first presented in [4], as a temporal logic based on IL (Inter-
val Logic) [5]. Ever since, numerous extensions were proposed for DC ([6, 7]), allowing
to express more and more complex properties of real-time systems. An in-depth survey
of DC and its properties can be found in [8].

2.2 Syntax

Let Xi be a propositional temporal letter (interpreted as a boolean function over time
intervals), Pi a state variable (interpreted as a boolean-valued function over time), x,y, . . .
global variables (interpreted as real numbers), fi functions and Ri relation symbols.
Usually the functions are the standard arithmetic ones (+,∗) and the relations also are
the usual ones (=,≤). The syntax of DC formulas is (functions and relations might be
noted with prefix or infix notation, as syntax is not our main concern) :

formula ::= Atom | ¬ formula | formula ∨ formula | formula_formula | ∃x.formula
Atom ::= true | X | R(term,. . . , term)
term ::= x | ` |

∫

state | f(term,. . . , term)
state ::= 0 | 1 | P | state ∨ state | ¬ state

The additions of IL to predicate calculus are the special variable ` and the chop
connector _. This connector chops a formula into two formulas representing the valid
predicates on the first part of the time interval and the second part, respectively. The `

variable represents the length of the current time interval, i.e. the value of ` is influenced
by the chop connector.

The additions of DC to IL are represented by the duration operator
∫

and the state
expressions. These have the expressive power of propositional logic, and the duration
operator allows to express properties on these states and on logical relations between
them.

2.3 Semantics

The most direct way to interpret DC formulas is to do so over time intervals. Let the
following interpretations functions and definitions domains be:

– Time, usually represented by the real numbers R

– TimeInterval = {(b,e)|b,e ∈ Time∧b ≤ e}
– Val = term → TimeInterval → R

– ValState = state → Time →{0,1}
– T : ValState

35

– V : Val
– I : formula → ((Val×ValState)×TimeInterval) →{true, f alse}

For readability reasons, in the description of I , V and T are implied. The same remark
applies for the description of V and T .

I (X)([b,e]) = XI ([b,e])
I (R(θ1, . . . ,θn))([b,e]) = R(c1, . . . ,cn) where ci = V (θi)([b,e])
I (¬φ)([b,e]) = ¬I (φ)([b,e])
I (φ1 ∨φ2)([b,e]) = I (φ1)([b,e])∨ I (φ2)([b,e])
I (∃x.φ)([b,e]) = I (φV ′)([b,e]) where V (y) = V ′(y) for y 6=

x
I (φ1

_φ2)([b,e]) = ∃m.(I (φ1)([b,m])∧ I (φ2)([m,e])) for m ∈
[b,e]

I (true)([b,e]) = true

V (x)([b,e]) = x
V (`)([b,e]) = e−b
V (f (θ1, . . . ,θn))([b,e]) = f (c1, . . . ,cn) where ci = V (θi)([b,e])
V (

∫

S)([b,e]) =
∫ e

bT (S)(t)dt

T (0)(t) = 0
T (1)(t) = 1

T (S∨T)(t) =

{

0 if T (S)(t) = 0 and T (S)(t) = 0
1 otherwise

T (¬S)(t) = 1−T (S)(t)
T (P)(t) = PT (t)

A proviso is added for the state variables, which are interpreted as functions over
time : for the functions to be integrable, they need to be finitely variable over the con-
sidered time interval. For example, the function :

PT (t) =

{

0 if t is irrational
1 otherwise

2.4 Examples

Some examples are inspired from [8]:

1. Let the state variables Gas and Flame be the expressions of the event “gas is pro-
duced” and “flame exists”, respectively. Then this DC formula states that during
the non-zero time interval, each time gas is produced, the flame must be present :

∫

(Gas ⇒ Flame) = `∧ ` > 0

2. The formula ` = 10_` = 5 states that in the first part of the time interval is 10 time
units long, and the second part 5 time units long.

36

3. true_(φ_true) states that the φ formula is valid in some sub-interval. This special
construction is also noted 3φ, and is comparable with the 3 one can find in other
temporal logics.

4. Similarly, the formula ¬3(¬φ) is noted 2φ, and is interpreted as : “for any time
sub-interval, the φ formula is valid”.

Now an example of the semantics of DC, over a given time interval [b,e], with e > b:

Example 1. Let’s suppose that Gas is a state whose value is 1 all over the interval, and
Flame a state whose value is 0 in the first half of the [e,b] time interval, 1 in the second.
Intuitively, it means that the gas is leaking, before it is set on fire :

I (
∫

(Gas ⇒ Flame) = `∧ ` > 0)([b,e])
≡ I (

∫

(Gas ⇒ Flame) = `)([b,e])∧ I (` > 0)([b,e])
≡ V (

∫

(Gas ⇒ Flame))([b,e]) = V (`)([b,e])∧V (`)([b,e]) > V (0)([b,e])
≡

∫e
bT ((Gas ⇒ Flame)(t)dt)([b,e]) = e−b∧ e−b > 0

≡
∫e

bT ((¬Gas∨Flame)(t)dt)([b,e]) = e−b∧ true
≡ e−b

2 = e−b

Because ¬Gas and Flame are both 0 in the first half of the interval. The obtained
formula is false, as e > b. So the given states Gas and Flame don’t fulfil the require-
ment.

2.5 Proof system

We will only underline in this section some hard points of the proof system of [8],
on which we have based the implementation described in section 4. Now for some
definitions beforehand:

Definition 2. A DC formula is called rigid if it doesn’t contain any state variable,
propositional letter or ` symbol. It is otherwise called flexible

Definition 3. A DC formula is called chop free if the _ doesn’t occur in the formula

Definition 4. The term θ is free for x in φ if x doesn’t occur freely in φ within the scope
of the quantified variable y, y occurring in θ

This last definition is used later in a side-condition to address the problem of vari-
able instanciation.

The axioms of the proof system are distributed between the ones coming from IL,
and the ones coming from DC. For example:

Example 5. Some IL axioms:

` ≥ 0 The length of a time interval can’t be nega-
tive

φ_ψ ⇒ φ if φ is rigid If a rigid formula is valid on a part of an in-
terval, it is also valid on the whole interval,
as it is not influenced by temporal variables
or symbols

37

Example 6. Some DC axioms:
∫

1 = ` The “always true” state lasts the whole time
interval

∫

S1 =
∫

S2 if S1 ⇔ S2
holds in propositional
logic

Equivalent states have the same duration

Some inference rules are added, and the ones inherited from predicate calculus are
modified.

Two noticeable things about the proof system is that:

1. Side-conditions might require non-trivial analysis of the involved formulas
2. Inference rules doesn’t hold hypotheses, as in sequent calculus, for example. Thus

some of them won’t be valid if coded “as is” in a prover (these problems have
already been solved in [9], see section 4 for more information).

For example:

Example 7. Some DC inference rules (inherited from IL inference rules):

∀x.φ(x)

φ(θ)
if θ is free for x in φ(x) and

{

either θ is rigid
or φ(x) is chop free

φ ⇒ ψ

(φ_Φ) ⇒ (ψ_Φ)

3 The Coq proof assistant

3.1 Presentation

Paraphrasing the Coq reference manual (see [10]), “Coq is a proof assistant for higher-
order logic, allowing the development of computer programs consistent with their for-
mal specification”.

Coq’s logical language is based on the Calculus of Inductive Constructions, a va-
riety of type theory, which allows manipulations of higher order terms in a consistent
framework, ensured by type-checking of formulas. Still citing the Coq reference man-
ual, “It is possible to understand the Calculus of Inductive Constructions at a higher
level, as a mixture of predicate calculus, inductive predicate definitions presented as
typed PROLOG, and recursive function definitions close to the language ML”.

One of the noticeable properties of Coq (even if not useful for the comprehension
of next section) is its ability to extract programs from proofs, endorsing hereby the
Curry-Howard isomorphism.

3.2 Description

Coq may be used interactively, in a console toplevel or in an editor with a dedicated
mode (e.g. ProofGeneral for Emacs), or with the Coq compiler (producing a compiled
file containing the proved theorems and the corresponding lambda-terms, to speed up
the development of complex proofs requiring lots of lemmas).

38

Syntax As Coq is first meant to be used interactively, it provides a natural feeling for
building proofs. The allowed terms of Coq can be subdivided into three categories:

1. The vernacular terms : these are the commands that allow one to add definitions,
telling Coq we want to prove a theorem, or changing Coq’s behaviour.

Example 8. Some vernacular commands :
– Theorem ModusPonens:(A,B:Prop)(A /\ (A -> B)) -> B. tells Coq we

want to prove the formula ∀A,B(A∧ (A ⇒ B) ⇒ B).
– Definition excluded_middle := (A:Prop) A \/ ~A. allows to asso-

ciate the excluded middle formula to a variable named excluded_middle.
– Quit. allows to quit Coq’s toplevel

2. The tactics : these are the commands used during the proof of a theorem, to specify
what kind of rule we want to use, e.g. introduction rules, elimination rules, ap-
ply a theorem,etc. There are also higher level tactics used to describe complex but
repetitive proof commands.

Example 9. Some tactics commands :
– Intros x P. tells Coq to apply introduction rules to the current goal, and

naming the obtained hypotheses x and P.
– Repeat Left. allows to choose in a goal the leftmost innermost term. For

example it would produce the goal P1 if applied to the goal ((...(P1 ∨P2)...∨
Pn−1)∨Pn).

3. The grammar redefinition language : it allows the user to define its own grammar
for new terms or definitions he introduced, and even for complex tactics. There are
example of it in section 4

3.3 Examples

Let’s show a proof example with Coq :

Example 10. This example is a possible proof for the formula (A,B,C being proposi-
tions) : ∀A,B,C(A∧B)∨ (A∧C) ⇒ A

Theorem easyproof:(A,B,C:Prop)(A /\ B) \/ (A /\ C) -> A.
Intros.
Elim H.
Intros.
Elim H0.
Intros.
Assumption.
Intros.
Elim H0.
Intros.
Assumption.
Qed.

39

The proofs are done the top-down way. This corresponds to the following proof tree
(where inference steps are annotated with the tactics commands) :

Assumption.
H,H0,H1 : A,H2 : B ` A

Intros.
H,H0 ` A ⇒ B ⇒ A

Elim H0.
H,H0 : A∧B ` A

Intros.
H ` A∧B ⇒ A

Assumption.
H,H0,H1 : A,H2 : C ` A

Intros.
H,H0 ` A ⇒C ⇒ A

Elim H0.
H,H0 : A∧C ` A

Intros.
H ` A∧C ⇒ A

Elim H.
H : (A∧B)∨ (A∧C) ` A

Intros
` (A∧B)∨ (A∧C) ⇒ A

(x:sort), /\, \/,
->, ~

These are the symbols for universal quantification (for a vari-
able x of sort sort), conjunction, disjunction, implication,
negation respectively. More generally connectors of the usual
logic are represented by visually similar ASCII symbol.

Intros Put the premisses of the goal in the hypotheses
Elim H Apply an elimination rule for the given formula H
Assumption Attempts to solve the current goal by telling Coq the goal is

also present in the current hypotheses
Qed Ends the proof and saves the generated proof term.

An additional reason that made us choose Coq, was the disponibility of a library of
definitions and theorems for real numbers, as DC can be used as well in the domain of
integers as in the domain of real numbers.

4 Two paths towards an implementation of DC with Coq

The proof system of DC presented in [8] isn’t a sequent-style system, and the ` variable
is context-dependent w.r.t. the _ connector. Thus the inference rules and axioms of
this proof system might raise incompatibilities with the ones already present in Coq
(see section 4.2). That’s why we have defined two approaches so as to implement DC’s
proof system in Coq.

Despite those different approaches, in each case grammar redefinitions had been
done, in order to ease the proof process. For example, the diamond meaning “for some
sub-interval” (see 2.4) has been given the ASCII symbol <>.

Side-conditions involving the analysis of the formula, also had been coded with
inductive definitions or functions.

We will focus in the following, on the IL part of the DC implementations, as DC-
specific axioms and inference rules didn’t bring much problems.

Also notice that problems we’ll speak about have been solved in [9], but Is-
abelle/HOL being a meta-logic, it’s thus easier to build a full logic in it than coping
peculiarities of already existent logic one can base the implementation on. In this point
of view, the shallow-embedded Coq implementation of DC in section 4.1 is comparable
to the Isabelle/HOL one.

40

4.1 Shallow-embedded implementation

In this implementation, we simply added the missing connectors of DC with their cor-
rect type, and defined the properties of these connectors through axioms and inference
rules, as described in [8].

The development libraries have been divided by logical system and by functionality
: there are an IL axioms library, an IL syntax definition and an IL theorems library, and
based on that, a DC axioms library, a DC syntax definition library and a DC theorems
library. Hence we can say that the shallow-embedded implementation is modular, as
one can develop a DC extension (e.g. [11]) without having to know the internals of the
DC library.

Example 11. Here are the definitions of the connectors, along with grammar and syntax
redefinitions. R is the type of real numbers, Prop the type of propositions, and the quotes
around the definition of point helps Coq’s parser knowing that it requires the axioms
and definitions of the real numbers library.

Parameter l:R.
Parameter chop:Prop->Prop->Prop.
Definition point:=‘‘l == R0‘‘.
Definition sometime:=[P:Prop](chop True (chop P True)).
Definition always:=[P:Prop]~(sometime ~P).

Grammar constr constr5:=
chop [constr5($c1) "^^" constr5($c2)] -> [(chop $c1 $c2)].

Syntax constr level 5 :
chop [$t1 ^^ $t2] -> [[<v 0> $t1:L "^^" $t2:L]].

Grammar constr constr2:=
timepoint ["[[]]"] -> [point]

|sometime ["<>" constr2($c)] -> [(sometime $c)]
|always ["[]" constr2($c)] -> [(always $c)].

Syntax constr level 2 :
timepoint [point] -> [[<v 0> "[[]]"]]

|sometime [(sometime $t)] -> [[<h 0> "<>" $t:L]]
|always [(always $t)] -> [[<h 0> "[]" $t:L]].

With these syntax redefinitions, we can write axioms two ways, for example:

Axiom chop_assoc:(p,q,r:Prop)(chop (chop p q) r) <-> (chop p (chop q r)).

which is equivalent to:

Axiom chop_assoc:(p,q,r:Prop)((p ^^ q) ^^ r) <-> (p ^^ (q ^^ r)).

41

As Coq inference rules are hard-coded in its core, the inference rules for DC are
defined through axioms.

Example 12. For example, the necessitation rule of DC. After having defined the ax-
ioms, we also define tactics so the user has the impression to use an inference rule
instead of a simple axiom.

Axiom necessitation_left:(p,q:Prop)p -> ~(~p ^^ q).
Axiom necessitation_right:(p,q:Prop)p -> ~(q ^^ ~p).

Tactic Definition NecessitationLeft:=Apply necessitation_left.
Tactic Definition NecessitationRight:=Apply necessitation_right.

The specific side-conditions of DC are coded by inductive definitions:

Example 13. The rigidity side-conditions is (not all the induction cases are repre-
sented):

Inductive rigid:Prop->Prop:=
| rig_true : (rigid True)
| rig_false : (rigid False)
| rig_chop : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (chop p q))
| rig_imp : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (p -> q))
| rig_and : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (p /\ q))
...

The cases when a formula is not rigid do not belong to the inductive definition, so
as when trying to prove the rigidity of a formula, the inference system will be blocked.
Then axioms involving rigidity are written e.g. as follows:

Axiom rigid_chop_left:(p,q:Prop)(rigid p)->(p ^^ q)->p.

Then the theorems are proved the normal way in Coq.

Example 14. The Coq proof of 2(A ⇒ B) ⇒ (2A ⇒ 2B)

Theorem always_distr_implies:(A,B:Prop)[](A->B) -> ([]A -> []B).
Unfold always; Unfold sometime.
Intros A B alw_A_B alw_A.
Unfold not; Intros som_nB.
Apply alw_A_B.
Monotony; Intros nB__True.
Monotony; Intros nB.
Unfold not; Intros A_B.
Apply alw_A.
Monotony; Intros nB__True2.
Monotony; Intros nB2.
Tauto.
Qed.

42

Note that the proviso of term freedom for variables (“The term θ is free for x in φ”
in the section 2.5) wasn’t necessary to define, as this proviso actually prevents abusive
scoping of newly introduced variables. Indeed Coq is aware of variables bindings at any
level.

Unfortunately, problems that can be easily solved in [9] can’t have an easy solution
here : as we don’t define the whole logical system “from scratch”, we are forced to deal
with the already present logical connectors and inference rules.

Let’s take for example the problem of equality, described in [9, p.21]. Usually one
term can be replaced by another if they are equal. But this is not true for Duration
calculus, for example:

Example 15.

` = 3, ` = 3 ⇒ ` = 2_` = 1 ` 3 = 3 ⇒ 3 = 2_3 = 1

This problem is addressed by constraining the equality with an “always” operator,
but this can’t be done for the shallow-embedded DC in Coq : the equality is already de-
fined (this is Leibniz’s one), and redefining it would be contrary to a shallow-embedding
approach.

Other similar problems involve the _ operator and ` (and, by extension, the duration
operator, as one of the axioms states that

∫

1 = `).
One way to solve such a problem, is to exploit the ability of Coq to allow one to

define “plugins” so to redefine tactics and inference rules through the language Coq is
written in, but this solution is a difficult one, and makes us lose the advantages deep-
embedding could offer us (i.e. using already present logical connectors and inference
rules without worrying).

4.2 Deep-embedded

In this implementation, all operators involved in the logic (even the ones coming
from predicate calculus) are redefined. One could compare this approach to the Is-
abelle/HOL’s one [9], as we here use Coq mostly as an inference engine. The main
advantage of this approach is the absence of conflict between the implemented proof
system and the proof system of the tool itself.

Example 16. Definition of a formula:

Inductive Formula:Type :=
| FTrue : Formula
| FLetter : Name -> Formula
| FNot : Formula -> Formula
| FOr : Formula -> Formula -> Formula
| FExists : (DCTerm -> Formula) -> Formula
| FChop : Formula -> Formula -> Formula
| Flt : DCTerm -> DCTerm -> Formula
| Feq : DCTerm -> DCTerm -> Formula
.

43

Then the validity of a formula, is stated by proving : plvalid f ormula. plvalid is
an interpretation function defined by axioms. One could write an interpretation function
using the original semantic of DC, i.e. interval numbers.

Then with the help of syntax redefinition allowed by Coq, one can write the formu-
las two ways:

Example 17. 1. Axiom pos_interval:%‘‘l>=0‘‘%.
2. Axiom pos_interval:(plvalid (Fge length (RVal R0))).

The special functions needed for the checking of some side-conditions are also
coded inductively, but with functions this time:

Example 18. In this example, due to the nature of the existencial quantification, we do
an instanciation so we can analyse further the formula.

Fixpoint chop_free [f:Formula]:Prop:=
Cases f of
| FTrue => True
| (FLetter _) => True
| (FNot g) => (chop_free g)
| (FOr g h) => (chop_free g) /\ (chop_free h)
| (FExists z) => (chop_free (z (RVal R0)))
| (FChop _ _) => False
| (Flt u v) => True
| (Feq u v) => True
end.

Then, when a proof requires to state the rigidity of a formula, one simply has to
make a simplification to find out if the formula is rigid or not (True of False after the
simplification, respectively).

So, even if the deep embedded approach is still at early stages, we already have
positive results for this implementation:

1. The inductive definitions of formulas gives us an easier definition of side-conditions
2. The grammar and syntax redefinitions help us to have a readable system
3. The ability to interpret formulas over miscellaneous paradigms gives us the possi-

bility to prove all the modifications of the proof system we could make for e.g. the
deep-embedded implementation

But there are also drawbacks:

1. The system is not easy to extend : there are many flavours of DC out there (e.g.
[6, 7, 11]), and having a static definition for the shape of formulas makes a slight
modification having repercussions all over the system, grammar redefinitions and
side-condition functions.
Contrary to the shallow-embedded implementation, extending DC here requires
adding the new connectors in the inductive definition above, adding axioms and

44

modifying interpretation functions possibly all over the library, making this deep-
embedded implementation a much less modular one than the shallow-embedded
one.
Note that this remark would also be true for any implementation “from scratch”
(see [9]).

2. Having to define all axioms and inference rules for well-known logical operators
from the beginning can be a source of bugs. Indeed, in a shallow-embedded im-
plementation, we can make the decision to trust the definition of already present
connectors. Moreover building such an implementation is time-consuming.

5 Perspectives

What made us stop our work, besides other developments, in each one of the imple-
mentation is:

– The conflicts caused by the temporal logical connector _ and the special variable `

with the inference rules of the proof system, for the shallow-embedded implemen-
tation

– The time-consuming task of defining the whole proof system from the beginning,
for the deep-embedded implementation

In [9], the former is solved by the modification of the axioms and rules causing those
conflicts : the equality is redefined, the DC-specific inference rules are modified to take
in account that the inference system is a sequent-style one. Moreover, those modifica-
tions are not proved with pen and paper, but are proved with an earlier implementation
of DC with PVS [12]. In short, modifications for the implementation of a proof system
in a proof tool are proved with another proof tool.

This is where the deep-embedded implementation can help us : we can use it to
prove modifications of the proof system that would solve the problems of the shallow-
embedded implementation.

An interesting track to solve those problems, is to consider ` no more as a variable
(because of its peculiar properties), but rather as predicates over values of the chosen
numeric domain (real numbers usually) with the adequate axioms.

Example 19. E.g., with interval_le stating that the current time interval is lower than or
equal to some value, we define the axioms relating this predicate with “normal” order
relations:

interval_le(x)∧ x ≤ y ⇒ interval_le(y)

6 Conclusion

As explained in section 1, this work is an effort to have a proof tool for both normal
logic and DC at disposal.

We built two implementations, a shallow-embedded and a deep-embedded one, hav-
ing in mind different uses for them : the former would be used as a proof tool allowing

45

one to reason on formulas and specifications made with DC, and the latter would al-
low one to reason on the DC proof system itself, e.g. to prove the equivalence of two
interpretations of DC, or find decidability results.

The shallow-embedded implementation has shown us problems already faced in [9]
with solutions that are not easy to apply with Coq, and the deep-embedded implemen-
tation, whereas long to define, can help us modify the proof system so as to solve these
problems. So the same proof tool is used both to implement a proof system and to prove
properties of this proof system.

7 Thanks

I would like to thank Vincent Poirriez for his enlightening remarks, Georges Mariano,
the team of the Coq project for making such a powerful proof tool.

References

1. Lano, K.: Specifying reactive systems in B AMN. LNCS 1212 (1997) 242–275
2. Treharne, H., Schneider, S.: Capturing timing requirements formally in AMN. Technical

Report CSD-TR-99-06, Royal Holloway, Department of computer science, Egham, Surrey
TW20 0EX, England (1999)

3. Hammad, A., Julliand, J., Mountassir, H., Okalas Mossami, D.: Expression en B et raffine-
ment des systèmes réactifs temps réel. In: AFADL’2003. (2003) 211–225

4. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. In: Information Processing Letters.
Volume 10(5). (1991) 269–276

5. Dutertre, B.: On first order interval temporal logic. Technical Report CSD-TR-94-3, Uni-
versity of London, Department of computer science, Egham, Surrey TW20 0EX, England
(1995)

6. Zhou, C., Wang, J., Ravn, A.: A duration calculus with infinite intervals. In Reichel, H.,
ed.: Fundamentals of Computing Theory. Volume 965 of LNCS. Springer-Verlag, Lübeck,
Germany (1995) 16–41

7. Zhou, C., Guelev, D., Naijun, Z.: A higher-order duration calculus. Technical Report 167,
UNU/IIST, P.O.Box 3058, Macau (1999)

8. Hansen, M., Zhou, C.: Duration calculus, logical foundations. In: Formal Aspects of Com-
puting. Volume 9. (1997) 283–330

9. Heilmann, S.T.: Proof Support for Duration Calculus. Phd-thesis, Department of Information
Technology, Technical University of Denmark (1999)

10. : Coq (1989-2003) http://coq.inria.fr.
11. Guelev, D., Hung, D.: Completeness and decidability of a fragment of duration calculus with

iteration. Technical Report 163, UNU/IIST, P.O. Box 3058, Macau (1999)
12. Skakkebæk, J.U.: A Verification Assistant for a Real-Time Logic. Phd-thesis, Department

of Computer Science, Technical University of Denmark (1994) Also available as Technical
Report ID-TR: 1994-150.

46

The Termination Prover AProVE

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{giesl—thiemann}@informatik.rwth-aachen.de
{nowonder—spf}@i2.informatik.rwth-aachen.de

Abstract. We describe the system AProVE, an automated prover to
verify (innermost) termination of term rewrite systems (TRSs), func-
tional programs, and logic programs. For this system, we have developed
and implemented efficient algorithms based on classical simplification
orders (recursive path orders with status, Knuth-Bendix orders, polyno-
mial orders), dependency pairs, and the size-change principle. In AProVE,
termination proofs can be performed with a user-friendly graphical in-
terface and the system is currently among the most powerful termination
provers available.

1 Introduction

The system AProVE (Automated Program Verification Environment) can be
used for automated termination and innermost termination proofs of (condi-
tional) term rewrite systems, as well as for termination proofs of functional and
logic programs. AProVE offers a variety of techniques for automated termination
proofs: First of all, it provides efficient implementations of classical simplifica-
tion orders to prove termination “directly” (such as recursive path orders possi-
bly with status [7, 19], Knuth-Bendix orders [20], and polynomial orders [22]), cf.
Sect. 2. To increase the power of automated termination proofs, we implemented
the dependency pair technique [2, 15] in AProVE which allows the application of
classical simplification orders to many examples where automated termination
analysis would fail otherwise (Sect. 3). In contrast to most other implementa-
tions of dependency pairs, we integrated refinements such as narrowing, rewrit-
ing, and instantiation of dependency pairs [14] and we improved the dependency
pair technique further (e.g., by integrating the generation of argument filterings
with the computation of usable rules) [16] to increase both the efficiency and
the power of the approach. Due to these extensions and improvements, AProVE

succeeds on many examples where all other automated termination provers fail.
Thus, the principles used in the implementation of AProVE are also very help-
ful for other tools based on dependency pairs ([1], CiME [6], TTT [18]) and we
conjecture that they can also be used in other recent approaches for termination
of TRSs [5, 11] which have several aspects in common with dependency pairs.
Apart from direct termination proofs and dependency pairs, as a third termi-
nation technique, AProVE offers the size-change principle [9, 23] and it is also
possible to combine this principle with dependency pairs [27] (Sect. 4). The tool

47

is written in Java and proofs can be performed both in a fully automated or in
an interactive mode via a graphical user interface (Sect. 6), as shown in Fig. 1.

Fig. 1. Screenshot of the AProVE system

2 Direct Termination Proofs

In this section we describe the base orders available in AProVE which can be used
for direct termination proofs, but also for proofs with preprocessing techniques
like dependency pairs or the size-change principle.

In a direct termination proof of a TRS, the system tries to find a reduction
order such that all rules of the TRS are decreasing. Currently, the following
path orders are implemented in AProVE: the embedding order (EMB), the lexi-
cographic path order (LPO, [19]), the LPO with status which compares subterms

48

lexicographically according to arbitrary permutations (LPOS), the recursive path
order which compares subterms as multisets (RPO, [7]), and the RPO with status
which is a combination of LPOS and RPO (RPOS).

Path orders may be parameterized by a precedence on function symbols and
a status which determines how the arguments of function symbols are compared.
To explore the search space for these parameters, the system leaves the prece-
dence and the status as unspecified (or “minimal”) as possible. The user can
decide whether to perform a depth-first or a breadth-first search (where in the
latter case, all possibilities for a minimal precedence and status are computed
which satisfy the current constraints). Moreover, the user can configure the path
orders by deciding whether different function symbols may be equivalent ac-
cording to the precedence used in the path order (“non-strict precedence”).
It is also possible to restrict potential equivalences to certain pairs of function
symbols. When attempting termination proofs with path orders in AProVE, the
precedence found by the system is displayed as a graph (in case of success) and
in case of failure in the breadth-first search, the system indicates the problematic
constraint.

In addition to the above path orders, AProVE offers Knuth-Bendix orders
(KBO, [20]) using the polynomial-time algorithm of [21]. In this algorithm, one
has to compute the degenerate subsystem of a system of homogeneous linear
inequalities. This is done using the technique of [10].

The last class of orders available in AProVE are polynomial orders [22] where
every function symbol is associated with a polynomial with natural coefficients.
Here, the user can specify three parameters: the degree of the polynomials, the
range of the coefficients, and the search algorithm that is used to find suitable
coefficients in the given range. Apart from these global options, the user can also
provide individual polynomials for some function symbols manually. To prove
termination afterwards, AProVE generates a set of polynomial inequalities which
state that left-hand sides of rules should be greater than the corresponding right-
hand sides. Using the method of partial derivation [13, 22], these inequalities are
transformed into a set of inequalities only containing coefficients, but no variables
anymore. At that point, a search algorithm has to determine suitable coefficients
that satisfy the resulting inequalities. The user can choose between four different
search algorithms: we offer brute force search, greedy search, a genetic algorithm,
and a constraint-based method based on interval arithmetic.

3 Termination Proofs With Dependency Pairs

The dependency pair approach [2, 14–16] increases the power of automated ter-
mination analysis significantly, since it permits the application of simplifica-
tion orders for non-simply terminating TRSs. Instead of comparing left- and
right-hand sides of rules, in this approach one compares the left-hand sides with
those subterms of right-hand sides that correspond to recursive calls. More pre-
cisely, the root symbols of the left-hand sides are called defined symbols and
for each defined symbol f we introduce a fresh tuple symbol F . For each rule

49

f(s1, . . . , sn) → r and each subterm g(t1, . . . , tm) of r with defined root symbol
g, we build a dependency pair F (s1, . . . , sn) → G(t1, . . . , tm). In order to prove
termination one now has to find a weakly monotonic order � such that s � t

for all dependency pairs s → t and l % r for all rules l → r. When proving
innermost termination, l % r is only required for the usable rules of the defined
symbols occurring in the dependency pairs. Here, the usable rules for a symbol
f are the f -rules together with the usable rules for all defined symbols occurring
in right-hand sides of f -rules. In AProVE, the user can select whether to use the
dependency pair approach for termination or for innermost termination proofs.
The system can also check whether a TRS is non-overlapping (then innermost
termination already implies termination).

To search for a suitable order �, the user can select any of the base orders
from Sect. 2. However, while most of these orders are strongly monotonic, the
dependency pair approach only requires weak monotonicity. (For polynomial
orders, a weakly monotonic variant can be obtained immediately by permitting
the coefficient 0 in polynomials. But lexicographic or recursive path orders as
well as Knuth-Bendix orders are always strongly monotonic.) For that reason,
before searching for a suitable order, some of the arguments of the function
symbols in the constraints can be eliminated using an argument filtering π [2].
For example, a binary function symbol f can be turned into a unary symbol by
eliminating the first argument of f . Then π replaces all terms f(t1, t2) in the
constraints by f(t2). Thus, we can obtain a weakly monotonic order �π out of
a strongly monotonic order � and an argument filtering π by defining s �π t iff
π(s) � π(t). For innermost termination proofs, we developed an improvement
such that the argument filtering is also used for reducing the set of constraints
[16, Thm. 11].

Since there are exponentially many argument filterings, a crucial problem
for any implementation of dependency pairs is to explore this search space ef-
ficiently. In AProVE, we use a depth-first algorithm [16] to determine suitable
argument filterings by treating the constraints one after another. We start with
the set of argument filterings possibly satisfying the first constraint. Here we use
the idea of [17] to keep argument filterings as “undefined” as possible. Then this
set is reduced further to those filterings which can possibly satisfy the second
constraint as well. This procedure is repeated until all constraints have been
investigated. By inspecting the constraints in a suitable order, already after the
first constraint the set of possible argument filterings is rather small and in this
way, one only inspects a small subset of all potential argument filterings. More-
over, one can also combine the search for the argument filtering with the search
for the base order by choosing the option “consider order parameters”. If
the user selects this option, then the system additionally stores for each possible
argument filtering a minimal set of precedences and stati as described in Sect.
2. This option is only available for path orders.

(Innermost) termination proofs with dependency pairs can be performed in a
modular way by constructing an estimated (innermost) dependency graph and by
regarding its cycles separately [2, 15]. For each cycle, only one dependency pair
must be strictly decreasing, whereas all others only have to be weakly decreasing.

50

As shown in [17], one should not compute all cycles, but only maximal cycles
(strongly connected components (SCCs)). The reason is that the the chosen ar-
gument filtering and base order may make several dependency pairs in an SCC
strictly decreasing. In that case, subcycles of the SCC containing such a strictly
decreasing dependency pair do not have to be considered anymore. So after solv-
ing the constraints for the initial SCCs, all strictly decreasing dependency pairs
are removed and one now builds SCCs from the remaining dependency pairs,
etc. To inspect estimated (innermost) dependency graphs, they can be displayed
in a special “Graph”-window. In order to benefit from all refinements on mod-
ularity of dependency pairs, we developed and implemented a technique which
permits the combination of recent results on modularity of Cε-terminating TRSs
[28] with arbitrary estimations of dependency graphs, cf. [16].

To increase the power of the dependency pair technique, in [2, 14, 16] three
different transformation techniques were suggested which transform a depen-
dency pair into several new pairs: narrowing, rewriting, and instantiation. These
transformations are often crucial for the success of the proof and in general,
their application can never “harm”: if the termination proof succeeds without
transformations, then it also succeeds when performing transformations, but not
vice versa. However, the problem is when to use these transformations, since in
general, they may be applicable infinitely often. AProVE automatically performs
these transformations in “safe” cases where their application is guaranteed to
terminate. There are two kinds of “safe” cases: despite the fact that applying
transformations can never prevent a termination proof that would have been
possible without transformations, these transformations may increase runtime,
since they can produce a large number of similar constraints. However, those
transformations which delete dependency pairs or cycles do not have a negative
impact on the efficiency and are called decreasing. The remaining transforma-
tions are called increasing. The system offers two switches where the user can
enable or disable both kinds of transformation. If turned on, the decreasing
transformations are applied before trying to solve the constraints for a cycle.
Increasing transformations are only used a limited number of times whenever a
proof attempt fails, and then the proof is re-attempted again.

In addition to the fully automated mode, (innermost) termination proofs with
dependency pairs can also be performed in an interactive mode. Here, the user
can specify which narrowing, rewriting, and instantiation steps should be per-
formed and for any cycle or SCC, the user can determine (parts of) the argument
filtering, the base order, and the dependency pair which should be strictly de-
creasing. Moreover, one can immediately see the constraints resulting from such
selections, such that interactive termination proofs are supported in a very com-
fortable way. This mode is intended for the development of new heuristics as
well as for the machine-assisted proof of particularly challenging examples.

4 Termination Proofs with the Size-Change Principle

A new size-change principle for termination of functional programs was pre-
sented in [23] and this principle was extended to TRSs in [27]. A similar prin-

51

ciple is also known for termination proofs of logic programs [9]. The main
idea is to build a corresponding size-change graph from each dependency pair
F (s1, ..., sn) → G(t1, ..., tm). This graph is bipartite where the nodes 1F , . . . , nF

on the left-hand side correspond to the arguments of the F -term and the nodes
1G, . . . ,mG on the right-hand side correspond to the arguments of the G-term.

We draw an edge iF
�
→ jG iff si � tj . Otherwise, there is an edge i

%
→ j if at

least si % tj holds. Furthermore, we add a label F → G to the whole size-change
graph.

We can concatenate two or more size-change graphs to a multigraph if the
labels of each two consecutive size-change graphs are compatible (where the
label F → G is compatible with G → H for all tuple symbols F and H).
Each path from a left node of the first size-change graph to a right node of the
last size-change graph leads to an edge in the multigraph. If there is at least

one
�
→- edge on the path, then the resulting edge in the multigraph is labelled

with �, otherwise it is labelled with %. We call a multigraph G maximal iff
the concatenation of G with G results in G again. The main theorem of the
size-change principle states that termination can be concluded if each maximal

multigraph contains an edge i
�
→ i.

In AProVE, the technique of [27, Thm. 11] for size-change termination of
TRSs is implemented, where we use the embedding order as underlying base
order.1 AProVE displays all size-change graphs as well as all maximal multigraphs
(in case of success) or one critical maximal multigraph without a decreasing edge
i

�
→ i (in case of failure).

AProVE also contains the new approach of [27] which combines the size-
change principle with dependency pairs in order to prove (innermost) termi-
nation. This combined approach has the advantage that it often succeeds with
much simpler argument filterings and base orders than the pure dependency
pair approach. For each SCC P of the estimated (innermost) dependency graph,
let CP be the constructors in P and let DP be a subset of the defined symbols
in P. Then the system builds the size-change graphs and the maximal multi-
graphs resulting from P using an argument filtering and the embedding order
on CP ∪ DP . Again, all these multigraphs must have an edge i

�
→ i and in case

of success, the system displays them all. Next, the argument filtering must be
extended such that all rules are weakly decreasing w.r.t. the selected base order.
When proving innermost termination, instead it suffices if just the usable rules
for the symbols DP are weakly decreasing. For reasons of efficiency, the user can
impose a limit on the maximal size of DP and one can restrict the number of
symbols in dependency pairs which may be argument-filtered.

In case of failure for some SCC, the dependency pairs are transformed by
narrowing, rewriting, or instantiation and the proof attempt is re-started. If the
user has selected the “hybrid” algorithm, then the pure dependency pair method

1 As shown in [27], only very restricted base orders are sound in connection with the
size-change principle. In addition to the results in [27], the full embedding order may
be used, where f(. . . , xi, . . .) � xi also holds for defined function symbols f .

52

is tried as soon as the limits for the transformations are reached. In this way,
the combined dependency pair and size-change method can be used as a very
fast technique which is checked first for every SCC. Only if this method fails,
the ordinary dependency pair approach is used on this SCC.

5 Design of AProVE

The techniques of the previous two sections share one common property: they
can be seen as SCC processors which transform one SCC into a set of new SCCs.
The dependency pair technique generates a set of constraints for each SCC. If
the constraints can be solved, then the SCC can be disregarded, while some new
SCCs of subgraphs may have to be examined. The transformations “narrowing”,
“rewriting”, and “instantiation” can also produce a set of new SCCs out of a
given one. Finally, the combination of dependency pairs with the size-change
principle processes the SCCs of the estimated (innermost) dependency graph
one by one, too. Hence, all these termination proving algorithms work according
to the following structure.

1. Compute the initial SCCs of the (estimated) innermost dependency graph.

2. While there are SCCs left and there is no failure:

(a) Remove one SCC P from the set of SCCs.

(b) Compute a new set of SCCs by processing P with an SCC processor.

(c) Add the new set of SCCs to the remaining SCCs.

Thus, the termination proving techniques above are implemented in AProVE

as modules which process one SCC and return a set of SCCs. Due to this modular
structure, procedures for termination proofs which combine different termination
techniques can easily be implemented within AProVE. One just has to configure
the system by determining which SCC processors with which parameters should
be used in Step 2(b). To obtain an efficient and powerful proof procedure, one
should first try to use fast SCC processors which benefit from successful heuris-
tics. In this way, SCCs that are easy to handle can be treated efficiently. Only for
SCCs where these fast SCC processors fail, one should use slower but more pow-
erful SCC processors afterwards. Examples for such termination procedures are
the hybrid algorithm described in the last section or the “meta combination”
algorithm of [16] that combines five different SCC processors. This algorithm is
particularly useful if one does not want to get involved with the details of ter-
mination proving, but one wants to use AProVE in a “black box”-mode. Similar
to the modular design of SCC processing, we have implemented the base orders
and suitable heuristics in a modular way such that they can be combined freely.
Up to now, to realize arbitrary combinations of several different SCC processors,
base orders, and heuristics, one has to modify the code of the system, but we are
working on a configuration language such that the user will be able to configure
new termination proof procedures.

53

6 Running AProVE

The system AProVE accepts four different input languages: logic and (first-order)
functional programs, conditional and unconditional TRSs. Functional programs
are translated into conditional TRSs regarding the special semantics of the pre-
defined conditional “if”. Logic programs are translated into conditional TRSs,
too, using the method of [4, 12]. Conditional TRSs are transformed further into
unconditional TRSs according to the techniques of [14, 24] to prove their (in-
nermost) quasi-decreasingness. For logic programs, these transformations corre-
spond to the approach of the termination prover TALP [25].

When performing termination proofs, a “system log” can be inspected to
examine all (possibly failed) proof attempts. The results of the termination proof
are displayed in html-format and can be stored in html- or LATEX-format. Any
termination proof attempt may of course be interrupted by a stop-button. In-
stead of running the system on only one term rewrite system or program, it
is also possible to run it on collections and directories of examples in a batch

mode. In this case, apart from the information on the termination proofs of the
separate examples, the “result” also contains statistics on the success and the
runtime for the examples in the collection.

While the user can select between several different heuristics for performing
termination proofs, we also provided the meta combination algorithm from the
previous section which applies selected heuristics in a suitable way [16]. For ex-
ample, when running the meta combination algorithm on the example collections
of [3, 8, 26] (108 TRSs for termination, 151 TRSs for innermost termination),
AProVE succeeded on 96.6 % of the innermost termination examples (including
all of [3]) and on 93.5 % of the examples for termination. The automated proof
for the whole collection took 80 seconds for innermost termination and 27 sec-
onds for termination. These results also illustrate the power and efficiency of
AProVE. For more details and to download the system, the reader is referred to
the AProVE web-site http://www-i2.informatik.rwth-aachen.de/AProVE.

References

1. T. Arts. System description: The dependency pair method. In Proc. 11th RTA,
LNCS 1833, pages 261–264, 2000.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133–178, 2000.
3. T. Arts and J. Giesl. A collection of examples for termination of term rewriting

using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, Germany,
2001. Available from http://aib.informatik.rwth-aachen.de.

4. T. Arts and H. Zantema. Termination of logic programs using semantic unification.
In Proc. 5th LOPSTR, LNCS 1048, pages 219–233, 1996.

5. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path
orderings. In Proc. 17th CADE, LNAI 1831, pages 346–364, 2000.

6. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME version 2, 2000. Avail-
able from http://cime.lri.fr.

54

7. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–
116, 1987.

8. N. Dershowitz. 33 examples of termination. In Proc. French Spring School of

Theoretical Computer Science, LNCS 909, pages 16–26, 1995.
9. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general frame-

work for automatic termination analysis of logic programs. Applicable Algebra in

Engineering, Communication and Computing, 12(1,2):117–156, 2001.
10. J. Dick, J. Kalmus, and U. Martin. Automating the Knuth-Bendix ordering. Acta

Informatica, 28:95–119, 1990.
11. O. Fissore, I. Gnaedig, and H. Kirchner. Cariboo: An induction based proof tool

for termination with strategies. In Proc. 4th PPDP, pages 62–73. ACM, 2002.
12. H. Ganzinger and U. Waldmann. Termination proofs of well-moded logic programs

via conditional rewrite systems. In Proc. 3rd CTRS, LNCS 656, pages 113–127,
1993.

13. J. Giesl. Generating polynomial orderings for termination proofs. In Proc. 6th

RTA, LNCS 914, pages 426–431, 1995.
14. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Ap-

plicable Algebra in Engineering, Communication and Computing, 12(1,2):39–72,
2001.

15. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

16. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving dependency
pairs. In Proc. 10th LPAR, LNAI 2850, pages 165–179, 2003.

17. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In
Proc. 19th CADE, LNAI 2741, 2003.

18. N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In Proc. 14th RTA,
LNCS 2706, pages 311–320, 2003.

19. S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering.
Unpublished Manuscript, University of Illinois, IL, USA, 1980.

20. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon,
1970.

21. K. Korovin and A. Voronkov. Verifying orientability of rewrite rules using the
Knuth-Bendix order. In Proc. 10th RTA, LNCS 2051, pages 137–153, 2001.

22. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

23. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. In Proc. POPL ’01, pages 81–92, 2001.

24. E. Ohlebusch. Termination of logic programs: Transformational approaches re-
visited. Applicable Algebra in Engineering, Communication and Computing,
12(1,2):73–116, 2001.

25. E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination analysis
of logic programs. In Proc. 11th RTA, LNCS 1833, pages 270–273, 2000.

26. J. Steinbach. Automatic termination proofs with transformation orderings. In
Proc. 6th RTA, LNCS 914, pages 11–25, 1995. Full version appeared as Technical
Report SR-92-23, Universität Kaiserslautern, Germany.

27. R. Thiemann and J. Giesl. Size-change termination for term rewriting. In Proc.

14th RTA, volume LNCS 2706, pages 264–278, 2003.
28. X. Urbain. Automated incremental termination proofs for hierarchically defined

term rewriting systems. In Proc. IJCAR 2001, LNAI 2083, pages 485–498, 2001.

55

On the Implementation of a Rule-Based

Programming System and Some of its

Applications

Mircea Marin1 and Temur Kutsia2

1 Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

A-4040 Linz, Austria
mircea.marin@oeaw.ac.at

2 Research Institute for Symbolic Computation
Johannes Kepler University
A-4232 Hagenberg, Austria
tkutsia@risc.uni-linz.ac.at

Abstract. We describe a rule-based programming system where rules
specify nondeterministic computations. The system is called FunLog

and has constructs for defining elementary rules, and to build up complex
rules from simpler ones via operations akin to the standard operations
from abstract rewriting. The system has been implemented in Mathe-

matica and is, in particular, useful to program procedures which can be
encoded as sequences of rule applications which follow a certain reduc-
tion strategy. In particular, the procedures for unification with sequence
variables in free, flat, and restricted flat theories can be specified via a set
of inference rules which should be applied in accordance with a certain
strategy. We illustrate how these unification procedures can be expressed
in our framework.

1 Introduction

In this paper we describe a rule-based programming language and illustrate
its usefulness for implementing unification procedures with sequence variables
in free, flat and restricted flat theories. We have designed and implemented a
rule-based system called FunLog, which provides programming constructs to
define elementary rules and to build up complex rules from simpler ones. Our
programming constructs include primitives to compose rules, to group them
into a specification of a nondeterministic rule, to compute with their transitive
closure, and to define various evaluation strategies.

Such a programming style is very suitable for complex computations steps
which can be expressed as sequences of computation steps with the following
characteristics:

1. Each computation step is driven by the application of a rule chosen (nonde-
terministically) from a finite set of alternative rules.

56

2. The sequence of steps must match a certain specification. In FunLog, such
specifications can be built up via a number of operators which are similar to
the operators of abstract term rewriting.

We used Funlog to implement unification procedures in free, flat, and restricted
flat theories with sequence variables and flexible arity symbols. It was shown in
[8, 9] that these procedures can be specified via a set of inference rules which
should be applied in accordance with a certain strategy. Therefore, these proce-
dures are a good example to be programmed in FunLog.

The rest of this paper is structured as follows. In Section 2 we give a brief
description of the rule-based programming style supported by FunLog and
describe the programming constructs of our system. Section 3 explains some
details about the Mathematica implementation of FunLog. In Section 4 we
describe our FunLog implementation of unification procedures with sequence
variables. Section 5 concludes.

2 Programming with FunLog

FunLog is a rule-based system where

rule = specification of a partially defined, possibly nondeterministic
computation.

This paradigm makes our notion of rule very similar to the notion of strategy as
defined in the rule-based system Elan [4, 7]. There are, however, some notable
exceptions:

1. all rules can be nondeterministic. The nondeterministic application of basic
rules stems from the fact that we allow patterns which can match in more
than one way with a given expression.

2. the application of rules is not driven by a built-in leftmost-innermost rewrit-
ing strategy. Instead, rules are always applied at the root position of a term.
Rewriting behaviors can be attained by associating a new rule to a given rule,
and imposing a certain strategy to look up for the subterm to be rewritten.

We believe that these features make our rule-based system more flexible, mainly
because we can control the positions where rules should be applied.

In FunLog, each rule is characterized by a name and a code which describes
a partially defined, possibly nondeterministic, computation. Formally, a rule is
an expression

lbl :: patt → rhs (1)

where lbl is the rule name, patt is a pattern expression and rhs specifies the
computation of a result from the bindings of the variables which occur in patt .
The expression patt :> rhs is called the code of the rule lbl .

The main usage of rules is to act with them them on various expressions. The
attempt to apply a rule of type (1) on an expression expr proceeds as follows:

57

1. M := enumeration of all matchers between expr and patt .
2. If M = ∅ then fail else goto 3.
3. θ := first(M), M := rest(M), V := enumeration of all values of θ(rhs).
4. If V = ∅ then goto 3 else return first(V).

We write expr 6→lbl if the application of rule lbl to expr fails, and expr →lbl if it
succeeds.

There are two sources of non-determinism in FunLog: non-unique matches
and non-unique ways to evaluate a partially defined computation. Clearly, the
result of an application expr →lbl depends on the enumerations of matchers
(M) and values (V) which are built into a particular implementation. These enu-
meration strategies are relevant to the programmer and are described in the
specification of the operational semantics of our implementation.

In the sequel we write expr1 →lbl expr2 if we can identify two enumerations,
for M and V, which render the result expr 2 for the application expr1 →lbl .

Rules can be combined with various combinators into more complex rules.
The implementation of these combinators is compositional, i.e., the meaning
of each combination of rules can be defined in terms of the meanings of the
component rules.

2.1 Main Combinators

A rule with name lbl is applied to an expression expr 1 via the call

ApplyRule[expr1, lbl] (2)

which behaves as follows:

– If expr1 6→lbl then return expr1

– If expr1 →lbl then return the first expr2 for which expr1 →lbl expr2.

The call
ApplyRuleList[expr 1, lbl] (3)

returns the list of values {expr 2 | expr1 →lbl expr2}.
FunLog provides a number of useful constructs to build up rules. These

constructs are described in the remainder of this section.

Basic rules. A basic rule is a rule named by a string, whose code is given
explicitly as a Mathematica transformation rule. A basic rule lbl :: patt :> rhs
is declared by

DeclareRule[patt :> rhs, lbl] (4)

We recall that expr1 →lbl expr2 iff there is a matcher θ between expr 1 and patt
for which θ(rhs) evaluates to expr 2.

The enumeration strategy of basic rules depends only on the enumeration
strategy of matches.

58

Example 1. The rule ”split” introduced by the declaration

DeclareRule[{x , y }/; (Length[{x}] > Length[{y}]) :>{x}, “split”]

takes as input a list L of elements and yields a prefix sublist of L whose length
is larger than half the length of L. The outcome of the call

ApplyRule[{a, b, c, d}, “split”]
{a, b, c}

yields the instance {a, b, c} = θ({x}) corresponding to the matcher θ = {x 7→
pa, b, cq, y 7→ pdq}. Note that this is the first matcher found by the enumer-
ation strategy of the Mathematica interpreter, for which θ(Length[{x}] >
Length[{y}]) holds. ut

Choice. lbl1 | . . . | lbln denotes a rule whose applicative behavior is given by

expr1 →lbl1|...|lbln
expr2 iff expr1 →lbli

expr2 for some i ∈ {1, . . . , n}. (5)

The enumeration of the steps expr 1 →lbl1|...|lbln
starts with the enumeration of

the steps expr1 →lbl1
, followed by the enumeration of the steps expr 1 →lbl2

, and
so on up to the enumeration of the steps expr 1 →lbln

.

Example 2. Consider the declarations

DeclareRule[{x m , y , n , z } :> False/; (m > n), “test”];
DeclareRule[List :> True, “else”];

Here, List is a pattern variable which matches any list structure. Then

ApplyRule[L, “test” | “else”]

yields True iff L is a list with elements in ascending order. This behavior is
witnessed by the calls:

ApplyRule[{1, 2, 4, 5, 3}, “test” | “else”]
False

ApplyRule[{1, 2, 3, 4, 5}, “test” | “else”]
True

The first call yields False because {1, 2, 4, 5, 3} →“test” False with the matcher
θ = {x 7→ p1, 2q,m 7→ 5, y 7→ pq, n 7→ 4, z 7→ p3q}. The second call yields True

because {1, 2, 3, 4, 5} 6→“test” and {1, 2, 3, 4, 5} →“else” True. ut

Composition. lbl1 ◦ lbl2 denotes a rule whose applicative behavior is given by

expr1 →lbl1◦lbl2 expr2 iff expr1 →lbl1
expr →lbl2

expr2 for some expr . (6)

The enumeration of values expr 2 for which the relation expr1 →lbl1◦lbl2 expr2

holds, proceeds by enumerating all steps expr →lbl2
expr2 during an enumeration

of the steps expr1 →lbl1
expr .

59

Example 3 (Oriented graphs). The following rule declarations

DeclareRule[x :> x, “Id”];
DeclareRule[a :> b, “r1”]; DeclareRule[a :> c, “r2”];
DeclareRule[c :> b, “r3”]; DeclareRule[b :> d, “r4”];
DeclareRule[b :> e, “r5”]; DeclareRule[c :> f, “r6”];

define the edges of an oriented graph with nodes {a, b, c, d, e, f}. Then

a →Repeat[“r1”|“r2”|“r3”|“r4”|“r5”|“r6”,“Id”] v

iff there exists a (possibly empty) path from a to v. To find such a v we can call

ApplyRule[a, Repeat[“r1” | “r2” | “r3” | “r4” | “r5” | “r6”, “Id”]]

and FunLog will yield the value d corresponding to the derivation

a →“r1” b →“r4” d →“Id” d.

The call

ApplyRuleList[c, Repeat[“r1” | “r2” | “r3” | “r4” | “r5” | “r6”, “Id”]]

will yield the list {d, e, b} of all nodes reachable from b. ut

Reflexive-transitive closures. If lbl ∈ {Repeat[lbl 1, lbl2], Until[lbl2, lbl1]}
then

expr1 →lbl expr2 iff expr1 →∗
lbl1

expr →lbl2
expr2 for some expr (7)

where →∗
lbl1

denotes the reflexive-transitive closure of →lbl1
. These two con-

structs differ only with respect to the enumeration strategy of the possible re-
duction steps.

The enumeration of expr1 →Repeat[lbl1,lbl2] expr2 proceeds by unfolding the
recursive definition:

Repeat[lbl1, lbl2] = lbl1 ◦ Repeat[lbl1, lbl2] | lbl2,

whereas the enumeration of expr 1 →Until[lbl1,lbl2] expr2 proceeds by unfolding
the recursive definition:

Until[lbl2, lbl1] = lbl2 | lbl1 ◦ Until[lbl2, lbl1].

Example 4 (Sorting). Consider the declarations of basic rules

DeclareRule[x :> x, “Id”];
DeclareRule[{x m , y , n , z }/; (m > n) :>{x, n, y,m, z}, “perm”];

60

Then the enumeration strategy of Repeat[“perm”, “Id”] ensures that the ap-
plication of rule Repeat[“perm”, “Id”] to any list of integers yields the sorted
version if that list. For example

ApplyRule[{3, 1, 2}, Repeat[“perm”, “Id”]]

yields {1, 2, 3} via the following sequence of transformation steps

{3, 1, 2} →“perm” {1, 3, 2} →“perm” {1, 2, 3} →“Id” {1, 2, 3}.

ut

Rewrite rules. FunLog provides the following mechanism to define a rule
that rewrites with respect to a given rule:

RWRule[lbl1, lbl , Traversal → . . . , Prohibit → . . .] (8)

This call declares a new rule named lbl such that expr 1 →lbl expr2 iff there exists
a position p in expr1 such that expr1|p →lbl1

expr and expr2 = expr1[expr]p.
Here, expr1|p is the subexpression of expr at position p, and expr 1[expr]p is
the result of replacing the subexpression at position p by expr in expr 1. The
option Traversal defines the enumeration ordering of rewrite steps (see below),
whereas the option Prohibit restricts the set of positions allowed for rewriting.
If the option Prohibit → {f1, . . . , fn} is given, then rewriting is prohibited at
positions below occurrences of symbols f ∈ {f1, . . . , fn}. By default, the value
of Prohibit is {}, i.e., rewriting can be performed everywhere.

The enumeration strategy of rewrite steps can be controlled via the option
Traversal which has the default value ”LeftmostIn”. If the option Traversal →
“LeftmostOut” is given, then the rewriting steps are enumerated by traversing
the rewriting positions in leftmost-outermost order. If Traversal → “LeftmostIn”
is given, then the rewriting steps are enumerated by traversing the rewriting po-
sitions in leftmost-innermost order.

Example 5 (Pure λ-calculus). In λ-calculus, a value is an expression which has
no β-redexes outside λ-abstractions. We adopt the following syntax for λ-terms:

term ::= terms :
| x variable
| app[term1, term2] application
| λ[x, term] abstraction

β-redexes are eliminated by applications of the β-conversion rule, which can be
encoded in FunLog as follows:

DeclareRule[app[λ[x , t1], t2] :> repl[t1, {x, t2}], “β”]

61

where repl[t1, {x, t2}] replaces all free occurrences of x in t1 by t2. A straight-
forward implementation of repl in Mathematica is shown below3:

repl[λ[x , t], {x , }] := λ[x, t];
repl[x , {x , t }] := t;
repl[λ[x , t], σ] := λ[x, repl[t, σ]];
repl[app[t1 , t2], σ] := app[repl[t1, σ], repl[t2, σ]];
repl[t ,] := t;

The computation of a value of a λ-term proceeds by repeated reductions of the
redexes which are not inside abstractions. In FunLog, the reduction of such a
redex coincides with an application of the rewrite rule “β-elim” defined by

RWRule[“β”, “β-elim”, Prohibit → {λ}]

The following calls illustrate the behavior of this rule:

t := app[z, app[λ[x, app[x, λ[y, app[x, y]]]], λ[z, z]]];
t1 := ApplyRule[t, “β-elim”]
app[z, app[λ[z, z], λ[y, app[λ[z, z], y]]]]

t2 := ApplyRule[t1, “β-elim”]
app[z, λ[y, app[λ[z, z], y]]]

t3 := ApplyRule[t2, “β-elim”]
app[z, λ[y, app[λ[z, z], y]]]

Thus, t2 is a value of t. To compute the value of t directly, we could call

ApplyRule[t, Repeat[“β-elim”, “Id”]]
app[z, λ[y, app[λ[z, z], y]]]

ut

Normal forms. NF[lbl] denotes a rule whose applicative behavior is given by

expr →NF[lbl] expr2 iff expr1 →∗
lbl

expr2 and expr2 6→lbl . (9)

The enumeration strategy of NF[lbl] is obtained by unfolding the recursive defi-
nition

NF[lbl] = NFQ[lbl] | lbl ◦ NF[lbl] (10)

where NFQ[lbl] :: x :> x/; (x 6→lbl).

Abstraction. The abstraction principle is provided in FunLog via the con-
struct

SetAlias[expr , lbl] (11)

3 The Mathematica definitions are tried top-down, and this guarantees a proper
interpretation of the replacement operation.

62

where lbl is a fresh rule name (a string identifier) and expr is an expression built
from names of rules already declared with the operators |, ◦, Repeat and Until

described before. For example, the call

SetAlias[Repeat[“perm”, “Id”], “sort”]

declares a rule named “sort” whose applicative behavior coincides with that of
the construct Repeat[“perm”, “Id”].

3 Notes on Implementation

We have implemented a Mathematica package called FunLog which supports
the programming style elaborated above. We decided to implement FunLog

in Mathematica because Mathematica has very advanced pattern matching
constructs for specifying transformation rules. Moreover, Mathematica pro-
vides a powerful mechanism to control backtracking. More precisely, it allows to
specify transformation rules of the form

patt :> Block[{result, . . .}, result/; test with side effect]

which, when applied to an expression expr behave as follows:

1. If patt matches with expr , compute θ :=the first matcher and go to 2. Oth-
erwise fail.

2. Evaluate the condition test with side effect , in which we instantiate the pat-
tern variables with the bindings of θ.

3. If the computation yields True, it also computes result as a side effect. This
is possible because the Block construct makes the variable result visible
inside the calls of test with side effect .

4. If test with side effect yields False then the interpreter of Mathematica

backtracks by computing θ := next matcher and goto 2. If no matchers are
left, then fail.

We have employed this construct to implement the backtracking mechanism of
FunLog. For instance, the code for lbl 1 ◦ lbl2 is computed as follows:

– assume patt :> rhs is the code of lbl1. Then the code of lbl1 ◦ lbl2 will be of
the form

patt :> Block[{result, . . .}, result/; CasesQ[rhs, lbl 2]]

where CasesQ[rhs, lbl2] does the following:
• If rhs →lbl2

expr1, then it binds result to expr 1 and yields True.
• If rhs 6→lbl2

it yields False.
This decision step relies on the possibility to detect whether the code of
rule lbl2 accepts expr1 as input. In our implementation, the code of lbl 2 is
a Mathematica transformation rule of the form patt2 :> rhs2. The piece of
Mathematica code

ok = True; result = Replace[expr 1, {patt2 → rhs2, → (ok = False)}]

does the following:

63

• It sets the value of ok to True.
• It applies the rule patt2 → rhs2 to expr1 by assigning expr2 to result

if expr1 →lbl2
expr2.

• If expr1 6→lbl2
then it applies the Mathematica rule → (ok = False),

which assigns False to ok.
In this way we can simultaneously check whether the code of lbl 2 is defined
for expr1, and assign expr2 to result if expr1 →lbl2

expr2.
– variations of the same trick can be used for all the possible syntactic shapes

of the code of lbl1.

A similar trick can be used to implement the code for Repeat[lbl 1, lbl2].
In principle, our implementation of the combinators for rules is based on an

agreed-upon standard on how to represent the code of non-basic rules, which
enables to easily compute the code of the newly declared rule. We do not ex-
pose the details here because some of them require a deep understanding of the
evaluation and backtracking principles of Mathematica.

4 Applications – Implementing Unification Procedures

with Sequence Variables

We have implemented a library of unification procedures for free, flat and re-
stricted flat theories with sequence variables and flexible arity symbols [8] in
FunLog. The common characteristic features of the procedures is that they
are based on transformation rules, applied in a “don’t know” non-deterministic
manner. Each of the procedures is designed as a tree generation process.

A sequence variable is a variable that can be instantiated by an arbitrary
finite sequence of terms. Below we use x, y, z and w to denote sequence variables,
while x, y, z will denote individual variables. Sequence variables are used together
with flexible arity function symbols. Terms and equalities are built in the usual
way over individual and sequence variables, and fixed and flexible arity function
symbols, with the following restriction: sequence variable can not be a direct
argument of a fixed arity function, and sequence variable can not be a direct
argument of equality. Substitutions map individual variables to single terms
and sequence variables to finite, possible empty, sequences of terms. Application
of a substitution is defined as usual. For example, applying the substitution
{x 7→ a, y 7→ f(x), x 7→ pq, y 7→ pa, f(x), bq} to the term f(x, x, g(y, y), y) gives
f(a, g(f(x), f(x)), a, f(x), b). The standard notions of unification theory [3] can
be easily adapted for terms with sequence variables and flexible arity symbols.

4.1 Free Unification with Sequence Variables and Flexible Arity

Symbols

In [9] a minimal complete unification procedure for a general free unification
problem with sequence variables and flexible arity symbols was described. The
procedure consists of five types of rules: projection, success, failure, elimination

64

and split. They are given in Appendix. All three types of free unification with
sequence variables (elementary, with constants and general) are decidable, but
infinitary. We do not implement the decision procedure (it requires Makanin
algorithm [10] and the combination method [2]). Instead, we put a bound on
the unification tree depth and perform a depth-first search with backtracking.
Optionally, if the user sets the tree depth bound to infinity, FunLog performs
iterative deepening with the predefined depth (by default it is set to 20, but the
user can change it), and reports the solutions as they are found.

Nodes in the unification tree are pairs (u, σ), where u is a unification prob-
lem together with its context and σ is the substitution computed so far. The
successful nodes are labelled only with substitutions.

For instance, the third and fourth elimination rules can be encoded in Fun-

Log as follows:

DeclareRule [{{({f [x ?SVarQ, s1], f [t , s2]} |
{f [t , s2], f [x ?SVarQ, s1]})/; Not[SVarQ[t]],
ctx }, σ }/; FreeQ[t, x] :>
{{{f[s1], f[s2]}, ctx}/.x → t,
ComposeSubst[σ, {x → t}], “Elim-svar-nonsvar-1”];

DeclareRule [{{({f [x ?SVarQ, s1], f [t , s2]} |
{f [t , s2], f [x ?SVarQ, s1]})/; Not[SVarQ[t]],
ctx }, σ }/; FreeQ[t, x] :>
{{{f[x, Apply[Sequence, {s1}/.x → seq[t, x]]],
f[s2]/.x → seq[t, x]}, ctx/.x → seq[t, x]},
ComposeSubst[σ, {x → seq[t, x]}], “Elim-svar-nonsvar-2”];

“Elim-svar-nonsvar-1” rule corresponds to the cases with the substitution σ1

of the third and fourth elimination rules in Fig. 1, and “Elim-svar-nonsvar-2”
corresponds to the cases with σ2 of the same rules. In this manner, we can declare
a finite set of FunLog rules that cover all the situations shown in Fig. 1. The
non-success rules can be grouped together via the FunLog construct

SetAlias[lbl1| · · · |lbln, “Non-success”]

where lbl1, . . . , lbln are labels of all non-success rules. Similarly, the success rules
can be grouped into a rule

SetAlias[lbl1| · · · |lblm, “Success”]

where lbl1, . . . , lblm are the names of all success rules encoded with FunLog.
We encode computation of one unifier into the following FunLog rule:

SetAlias[“Projection” ◦ Repeat[“Non-success”, “Success”], “Unify”].

After that, the computation of a unifier of a free unification problem Γ is
achieved by the call

ApplyRule[Γ, “Unify”]

65

whereas the list of all unifiers is produced by the call

ApplyRuleList[Γ, “Unify”].

Example 6. For the free unification problem f(x, b, y, f(x))'?
∅f(a, x, f(b, y)) the

procedure computes the solution {{x 7→ a, x 7→ pb, xq, y 7→ x}, {x 7→ a, x 7→
b, y 7→ pq}}. ut

Problems like word equations [1] or associative unification with unit element
[14] can be encoded as a particular case of free unification with sequence vari-
ables and flexible arity symbols. Similarly, associative unification [13] can be
translated into a particular case of free unification with sequence variables when
projection rules are omitted. Thus, as a side effect, our implementation also
provides unification procedures for those problems.

4.2 Flat Unification with Sequence Variables and Flexible Arity

Symbols

Flat theory with sequence variables is axiomatized by the equality f(x, f(y), z) '
f(x, y, z). This theory gives a precise characterization of evaluation behavior of
flat functions as it is implemented in the Mathematica system. It was the main
motivation to study the flat theory, but then it turned out to have some inter-
esting properties. Namely, it was shown that both matching and unification are
infinitary but decidable, and the unification procedure was designed. It should
be noted that flat pattern matching of Mathematica implements a restricted,
finitary case of matching in the flat theory with sequence variables and flexible
arity symbols.

The FunLog implementation of a general flat unification with sequence vari-
ables and flexible arity symbols goes along the procedure described in [8]. It
combines the rules specific for the flat theory with those specific for the free
theory. The implementation does not contain the decision procedure and uses
the depth-first search with bounded depth. Since the procedure does not enu-
merate directly the minimal complete set of unifiers, after answer generation a
certain minimization effort is required. As a result, the answer returned by the
procedure represents a minimal subset of the complete set of solutions (and not
a subset of minimal complete set of solutions).

Example 7. Let f(x)'?
F f(a) be a flat unification problem. It has infinitely many

solutions. Our implementation computes the subset

{{x 7→ a}, {x 7→ f(a)}, {x 7→ pa, f()q}, {x 7→ pf(a), f()q}, {x 7→ pf(), aq},
{x 7→ pf(), f(a)q}, {x 7→ pf(), a, f()q}, {x 7→ pf(), f(a), f()q},
{x 7→ pf(), f(), aq}, {x 7→ pf(), f(), f(a)q}, {x 7→ pa, f(), f()q},
{x 7→ pf(a), f(), f()q}}.

of the complete set of unifiers of the problem, with the tree depth set to 4. ut

Example 8. Let f(x, g(x))'?
F f(a, b, g(a, f(), b)) be a general flat unification prob-

lem, with f flat and g free. The the procedure computes the unique unifier
{x 7→ pa, f(), bq}. ut

66

4.3 Restricted Flat Unification with Sequence Variables and

Flexible Arity Symbols

The restricted flat theory with sequence variables is axiomatized by the equality
f(x, f(y, x, z), w) ' f(x, y, x, z, w). In this theory only nested terms with at least
one non-sequence variable argument can be flattened. Such a restriction makes
matching finitary, while other properties of the flat theory are retained.

Example 9. The restricted flat unification problem f(x)'?
RF f(a) has two solu-

tions: {x 7→ a}, {x 7→ f(a)}. ut

We have implemented in FunLog the restricted flat unification procedure
described in [8].

5 Conclusion and Future Work

FunLog is intended to be used in areas where problems can be specified con-
veniently as combinations of abstract rewrite rules. In particular, the package
turned out to be useful in implementations of procedures for E-unification.

Obviously, the range of problems which can be tackled with FunLog is
very large. We expect to identify more interesting problems which can be eas-
ily programmed with transformation rules. But we also expect that our future
attempts to solve new problems will reveal new programming constructs which
are desirable for making our programming style more expressive.

Currently, we investigate how these programming constructs can be employed
to implement provers in the Theorema system [5, 6]. We also believe that our
programming constructs could underlie a convenient tool to write reasoners by
Theorema users and developers.

Another direction of future work is to introduce control mechanisms for pat-
tern matching with sequence variables. The current implementation of FunLog

relies entirely on the enumeration strategy of matchers which is built into the
Mathematica interpreter. However, there are many situations when this enu-
meration strategy is not desirable. We have already addressed this problem in
[11, 12] and implemented the package Sequentica with language extensions
which can overwrite the default enumeration strategy of the Mathematica in-
terpreter. The integration of those language extensions in FunLog will certainly
increase the expressive power of our rule-based system. We are currently working
on integrating Sequentica with FunLog.

The current implementation of FunLog can be downloaded from

http://www.score.is.tsukuba.ac.jp/~mmarin/FunLog/

Acknowledgements. Mircea Marin has been supported by the Austrian Aca-
demy of Sciences. Temur Kutsia has been supported by the Austrian Science
Foundation (FWF) under Project SFB F1302.

67

References

1. H. Abdulrab and J.-P. Pécuchet. Solving word equations. J. of Symbolic Compu-
tation, 8(5):499–522, 1990.

2. F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. J. of Symbolic Computation, 21(2):211–244, 1996.

3. F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001.

4. P. Borovanský, C. Kirchner, H. Kirchner, and Ch. Ringeissen. Rewriting with
strategies in ELAN: a functional semantics. International Journal of Foundations
of Computer Science, 12(1):69–98, 2001. Also available as Technical Report A01-
R-388, LORIA, Nancy (France).

5. B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The Theorema project: A progress report. In M. Kerber and
M. Kohlhase, editors, Symbolic Computation and Automated Reasoning. Proc. of
Calculemus’2000, pages 98–113, St.Andrews, UK, 6–7 August 2000.

6. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.
A survey of the Theorema project. In W. Küchlin, editor, Proceedings of the In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC’97, pages
384–391, Maui, Hawaii, US, 21–23 July 1997. ACM Press.

7. The PROTHEO Group. http://www.loria.fr/equipes/protheo/softwares/elan/.
8. T. Kutsia. Solving and Proving in Equational Theories with Sequence Variables

and Flexible Arity Symbols. PhD thesis, Institute RISC-Linz, Johannes Kepler
University, Hagenberg, Austria, June 2002.

9. T. Kutsia. Unification with Sequence Variables and Flexible Arity Symbols and
its Extension with Pattern-Terms. In J. Calmet, B. Benhamou, O. Caprotti,
L. Henocque, and V. Sorge, editors, editor, Artificial Intelligence, Automated Rea-
soning and Symbolic Computation. Proceedings of Joint AICS’2002 - Calcule-
mus’2002 Conference, volume 2385 of LNAI, Marseille, France, 2002.

10. G. S. Makanin. The problem of solvability of equations on a free semigroup. Math.
USSR Sbornik, 32(2), 1977.

11. M. Marin. Functional Programming with Sequence Variables: The Sequentica
Package. In J. Levy, M. Kohlhase, J. Niehren, and M. Villaret, editors, Proceedings
of the 17th International Workshop on Unification (UNIF 2003), pages 65–78,
Valencia, June 2003.

12. M. Marin and D. Ţepeneu. Programming with Sequence Variables: The Sequen-
tica Package. In P. Mitic, P. Ramsden, and J. Carne, editors, Challenging the
Boundaries of Symbolic Computation. Proceedings of 5th International Mathemat-
ica Symposium (IMS 2003), pages 17–24, Imperial College, London, July 7–11
2003. Imperial College Press.

13. G. Plotkin. Building in equational theories. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 7, pages 73–90, Edinburgh, UK, 1972. Edinburgh
University Press.

14. A. F. Tiu. A1-unification. Technical Report WV-01-08, Knowledge Representation
and Reasoning Group, Department of Computer Science, Dresden University of
Technology, 2001.

68

A Rules for Free Unification

Projection: s '?
∅ t 〈〈sπ1 '?

∅ tπ1, π1〉, . . . , where

〈sπk '?
∅ tπk, πk〉〉 {π1, . . . , πk} = Π(s '?

∅ t).

Success: t'?
∅t 〈〈>, ε〉〉.

x'?
∅t 〈〈>, {x 7→ t}〉〉, if x /∈ vars(t).

t'?
∅x 〈〈>, {x 7→ t}〉〉, if x /∈ vars(t).

Failure: c1'
?
∅c2 ⊥, if c1 6= c2.

x'?
∅t ⊥, if t 6= x and x ∈ vars(t).

t'?
∅x ⊥, if t 6= x and x ∈ vars(t).

f1(t̃)'
?
∅f2(s̃) ⊥, if f1 6= f2.

f()'?
∅f(t1, t̃) ⊥.

f(t1, t̃)'
?
∅f() ⊥.

f(x, t̃)'?
∅f(s1, s̃) ⊥, if s1 6= x and x ∈ svars(s1).

f(s1, s̃)'
?
∅f(x, t̃) ⊥, if s1 6= x and x ∈ svars(s1).

f(t1, t̃)'
?
∅f(s1, s̃) ⊥, if t1'

?
∅s1 ⊥.

Eliminate: f(t1, t̃)'
?
∅f(s1, s̃) 〈〈g(t̃σ)'?

∅g(s̃σ), σ〉〉, if t1'
?
∅s1 〈〈>, σ〉〉.

f(x, t̃)'?
∅f(x, s̃) 〈〈f(t̃)'?

∅f(s̃), ε〉〉.

f(x, t̃)'?
∅f(s1, s̃) if s1 /∈ VSeq and x /∈ svars(s1),

〈〈f(t̃σ1)'
?
∅f(s̃σ1), σ1〉, where σ1 = {x 7→ s1},

〈f(x, t̃σ2)'
?
∅f(s̃σ2), σ2〉〉, σ2 = {x 7→ ps1, xq}.

f(s1, s̃)'
?
∅f(x, t̃) if s1 /∈ VSeq and x /∈ svars(s1),

〈〈f(s̃σ1)'
?
∅f(t̃σ1), σ1〉, where σ1 = {x 7→ s1},

〈f(s̃σ2)'
?
∅f(x, t̃σ2), σ2〉〉, σ2 = {x 7→ ps1, xq}.

f(x, t̃)'?
∅f(y, s̃) where

〈〈f(t̃σ1)'
?
∅f(s̃σ1), σ1〉, σ1 = {x 7→ y},

〈f(x, t̃σ2)'
?
∅f(s̃σ2), σ2〉, σ2 = {x 7→ py, xq},

〈f(t̃σ3)'
?
∅f(y, s̃σ3), σ3〉 〉, σ3 = {y 7→ px, yq}.

Split: f(t1, t̃)'
?
∅f(s1, s̃) if t1, s1 /∈ VInd ∪ VSeq and

〈〈f(r1, t̃σ1)'
?
∅f(q1, s̃σ1), σ1〉, . . . , t1'

?
∅s1 〈〈r1'

?
∅q1, σ1〉,

〈f(rk, t̃σk)'?
∅f(qk, s̃σk), σk〉〉 . . . , 〈rk'

?
∅qk, σk〉〉.

Fig. 1. t̃ and s̃ are possibly empty sequences of terms; Π(Γ) is the set of substitutions
{{x1 7→ pq, . . . , xn 7→ pq} | {x1, . . . , xn} ⊆ svars(Γ)}; svars(t) (vars(t)) is the set of
all seq. variables (all variables) in t; f, f1, f2 are free (fixed or flexible) symbols; g is a
new free flexible symbol, if in the same rule f is of the fixed arity, otherwise g is f .

69

Implementing the Clausal Normal Form

Transformation with Proof Generation

Hans de Nivelle

Max Planck Institut für Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany

nivelle@mpi-sb.mpg.de

Abstract. We explain how we intend to implement the clausal normal

form transformation with proof generation. We present a convenient data

structure for sequent calculus proofs, which will be used for representing

the generated proofs. The data structure allows easy proof checking and

generation of proofs. In addition, it allows convenient implementation of

proof normalization, which is necessary in order to keep the size of the

generated proofs acceptable.

1 Introduction

In [2], a method for generating explicit proofs from the clausal normal form
transformation was presented, which does not make use of choice axioms. It is
our intention to implement this method. In this paper we introduce the data
structure for the representation of proofs that we intend to use, and we give
a general algorithm scheme, with which one can translate formulas and obtain
correctness proofs at the same time.

In [2], natural deduction was used for showing that it is in principle possible to
generate explicit proofs. It is however in practice better to use sequent calculus,
because sequent calculus allows proof reductions that reduce the size of generated
proofs. In order to be able to keep the sizes of the resulting proofs acceptable,
it is necessary to normalize proofs in such a way that repeated building up of
contexts is avoided.

In the preceeding paper [1], which was still proposing to use choice axioms,
it was explained how to do this in type theory. An intermediate calculus was in-
troduced, called the replacement calculus, which allows for proof normalization.
After normalization, the resulting proof could be translated into type theory
through a simple replacement schema. If one uses sequent calculus instead of
natural deduction, the standard reductions of sequent calculus can do the proof
normalization. It turns out that proof normalization in the replacement calculus
corresponds to a restricted form of cut elimination in sequent calculus. There-
fore, if one uses sequent calculus instead of natural deduction, the replacement
calculus can be omitted alltogether.

In the next section we introduce sequent calculus. After that, we introduce
the data structure that we will use for representing sequent calculus proofs. Then

70

we will give a general scheme for translating formulas and generating proofs at
the same time. In the last section, we show that our sequent proof data structure
is convenient for implementing the kind of proof reduction that we need.

2 Sequent Calculus

Definition 1. A sequent is an object of form Γ ` ∆, where both Γ and ∆ are
multisets.

We give the rules of sequent calculus. We assume that α-equivalent formulas
are not distinguished. We also give equality rules, although equality plays no
rule in the CNF-transformation.

(axiom)
Γ,A ` ∆,A

(cut)
Γ,A ` ∆ Γ ` ∆,A

Γ ` ∆

Structural Rules:

(weakening left)
Γ ` ∆

Γ,A ` ∆
(weakening right)

Γ ` ∆

Γ ` ∆,A

(contraction left)
Γ,A,A ` ∆

Γ,A ` ∆
(contraction right)

Γ ` ∆,A,A

Γ ` ∆,A

Rules for the truth constants:

(>-left)
Γ ` ∆

Γ,> ` ∆
(>-right)

Γ ` ∆,>

(⊥-left)
Γ,⊥ ` ∆

(⊥-right)
Γ ` ∆

Γ ` ∆,⊥

Rules for ¬:

(¬-left)
Γ ` ∆,A

Γ,¬A ` ∆
(¬-right)

Γ,A ` ∆

Γ ` ∆,¬A

Rules for ∧,∨,←,↔:

(∧-left)
Γ,A,B ` ∆

Γ,A ∧B ` ∆
(∧-right)

Γ ` ∆,A Γ ` ∆,B

Γ ` ∆,A ∧B

(∨-left)
Γ, A ` ∆ Γ,B ` ∆

Γ,A ∨B ` ∆
(∨-right)

Γ ` ∆,A,B

Γ ` ∆,A ∨B

71

(→ -left)
Γ ` ∆,A Γ,B ` ∆

Γ,A→ B ` ∆
(→ -right)

Γ,A ` ∆,B

Γ ` ∆,A→ B

(↔ -left)
Γ,A→ B, B → A ` ∆

Γ,A↔ B ` ∆

(↔ -right)
Γ ` ∆,A→ B Γ ` ∆,B → A

Γ ` ∆,A↔ B

Rules for the quantifiers:

(∀-left)
Γ, P [x := t] ` ∆

Γ,∀x P ` ∆
(∀-right)

Γ ` ∆,P [x := y]

Γ ` ∆,∀x P

(∃-left)
Γ, P [x := y] ` ∆

Γ,∃x P ` ∆
(∃-right)

Γ ` ∆,P [x := t]

Γ ` ∆,∃x P

The t is an arbitrary term. The y is a variable which is not free in Γ,∆, P

Rules for equality:

(refl)
Γ ` ∆, t ≈ t

(repl-left)
t1 ≈ t2, Γ [t1] ` ∆

t1 ≈ t2, Γ [t2] ` ∆
(repl-right)

t1 ≈ t2, Γ ` ∆[t1]

t1 ≈ t2, Γ ` ∆[t2]
.

The last rules mean: If t1 ≈ t2 appears among the premisses, then an arbi-
trary occurrence of t1 can be replaced by t2. The replacement can take place
either on the left or on the right. Only one replacement at the same time is
possible.

3 Proof Trees

We introduce a concise sequent calculus format, which allows for easy proof
checking and implementation of proof reductions. It is closely related to the
embedding of sequent calculus in LF, which is introduced in [5].

We first prove a simple lemma that shows that one should avoid explicitly
mentioning the formulas occurring in the proof:

Lemma 1. Consider the sequents (¬¬)nA ` A, for n ≥ 0.
If one has a proof representation method that explicitly mentions the formulas

in a sequent, then the proofs have size O(n2).

72

Proof. Because one will have to represent all subformulas
A,¬A, (¬)2A, (¬)3A, . . . , (¬¬)nA.

Nevertheless, the proof has a length of only n steps. If one does not mention
the formulas, one can obtain a representation of size n. In our representation,
we avoid explicitly mentioning formulas by assigning labels to them. Whenever
a new formula is constructed, it will be clear what the new formula is, from the
way it is constructed, so that we will not have to mention it.

Definition 2. We redefine a sequent as an object of form Γ ` ∆, where both
Γ and ∆ are sets of labelled formulas. So we have Γ = {α1:A1, . . . , αp:Ap} and
∆ = {β1:B1, . . . , βq:Bq}, where αi = αj implies i = j and βi = βj implies i = j.

In case there is no A′, s.t. α:A′ ∈ Γ, the notation Γ +α:A denotes Γ ∪{α:A}.
Otherwise, Γ + α:A is undefined. (even when A = A′)

In case there is an A, s.t. α:A ∈ Γ, the notation Γ − α denotes Γ\{α:A}.
Otherwise Γ − α is not defined.

In case there is an A, s.t. α:A ∈ Γ, the notation Γ [α] denotes A. Otherwise
Γ [α] is not defined.

For ∆, we define ∆ + β:B, ∆− β, ∆[β] in the same way as for Γ.

Proofs are checked top-down, i.e. from the goal sequent towards the axioms.
For each node in the proof tree, the node states the label of the conslusion in
the derived sequent, and what labels the premisses should receive in the child
sequents. During checking, the conclusion is removed from the sequent (if it
exists, and has the right form), and replaced by the children, after which proof
checking continues.

Definition 3. We recursively define proof trees and when a proof tree accepts
a labelled sequent. In the following list, we implicitly assume that α, β are labels.
We will omit the definedness conditions. So we will assume that ∆[α] = ∆[β]
means: F [α] and F [β] are both defined and F [α] = F [β].

– ax(α, β) is a proof tree. It is a proof of Γ ` ∆, if Γ [α] is an α-variant of
∆[β].

– If π1, π2 are proof trees, and A is a formula, then cut(A, π1, α, π2, β) is also
a proof tree. It is a proof of Γ ` ∆ if π1 is a proof of Γ + α:A ` ∆ and π2

is a proof of Γ ` ∆ + β:A.

– If π is a proof tree, then weakenleft(α, π) is also a proof tree. It is a proof of
Γ ` ∆ if π is a proof of Γ − α ` ∆.

– If π is a proof tree, then weakenright(β, π) is also a proof tree. It is a proof
of Γ ` ∆ if π is a proof of Γ ` ∆− β.

– If π is a proof tree, then contrleft(α1, π, α2) is also a proof tree. It is a proof
of Γ ` ∆ if π is a proof of Γ + α1:A[α2] ` ∆.

– If π is a proof tree, then contrright(β1, π, β2) is also a proof tree. It is a proof
of Γ ` ∆ if π is a proof of Γ ` ∆ + β1:∆[β2].

– If π is a proof tree, then trueleft(α, π) is also a proof tree. It is a proof of
Γ ` ∆ if Γ [α] = >, and π is a proof of Γ − α ` ∆.

73

– trueright(β) is a proof tree. It is a proof of Γ ` ∆ if ∆[β] = >.
– falseleft(α) is a proof tree. It is a proof of Γ ` ∆ if Γ [α] = ⊥.
– falseright(β, π) is a proof tree. It is a proof of Γ ` ∆ if ∆[β] = ⊥ and π is a

proof of Γ ` ∆− β.
– If π is a proof tree, then negleft(α, π, β) is also a proof tree. It is a proof of

Γ ` ∆ if Γ [α] has form ¬A, and π is a proof of Γ ` ∆ + β:A.
– If π is a proof tree, then negright(β, π, α) is also a proof tree. It is a proof of

Γ ` ∆ if ∆[β] has form ¬A, and π is a proof of Γ + α:A ` ∆.
– If π is a proof tree and α1 6= α2, then andleft(α, π, α1, α2) is also a proof

tree. It is a proof of Γ ` ∆ if Γ [α] has form A ∧B, and
π is a proof of (Γ − α) + α1:A + α2:B ` ∆.

– If π1, π2 are proof trees, then andright(β, π1, β1, π2, β2) is also a proof tree.
It is a proof of Γ ` ∆ if ∆[β] has form A ∧B,

π1 is a proof of Γ ` (∆− β) + β1:A, and
π2 is a proof of Γ ` (∆− β) + β2:B.

– If π1, π2 are proof trees, then orleft(α, π1, α1, π2, α2) is also a proof tree. It
is a proof of Γ ` ∆ if ∆[α] has form A ∨B,

π1 is a proof of (Γ − α) + α1:A ` ∆, and
π2 is a proof of (Γ − α) + α2:B ` ∆.

– If π is a proof tree and β1 6= β2, then orright(β, π, β1, β2) is also a proof tree.
It is a proof of Γ ` ∆ if ∆[β] has form A ∨B, and

π is a proof of Γ ` (∆− β) + β1:A + β2:B.
– If π is a proof tree, then impliesleft(α, π1, β1, π2, α2) is also a proof tree. It

is a proof of Γ ` ∆ if Γ [α] has form A→ B, and
π1 is a proof of (Γ − α) ` ∆ + β1:A, and
π2 is a proof of (Γ − α) + α2:B ` ∆.

– If π is a proof tree and α1 6= β2, then impliesright(β, π1, α1, π2, β2) is also a
proof tree. It is a proof of Γ ` ∆ if ∆[β] has form A→ B,

π1 is a proof of Γ + α1:A ` (∆− β) + β2:B.
– If π is a proof tree and α1 6= α2, then equivleft(α, π, α1, α2) is also a proof

tree. It is a proof of Γ ` ∆ if Γ [α] has form A↔ B, and
π is a proof of (Γ − α) + α1: (A→ B) + α2: (B → A) ` ∆.

– If π1, π2 are proof trees, then equivright(β, π1, β1, π2, β2) is also a proof tree.
It is a proof of Γ ` ∆ if ∆[β] has form A↔ B,

π1 is a proof of Γ ` (∆− β) + β1: (A→ B), and
π2 is a proof of Γ ` (∆− β) + β2: (B → A).

– If π is a proof tree and t is a term, then forallleft(α, π, α1, t) is also a proof
tree. It is a proof of Γ ` ∆ if Γ [α] has form ∀x P and π is a proof of
(Γ − α) + α1:P [x := t] ` ∆.

– If π is a proof tree and y is a variable, then forallright(β, π, β1, y) is also a
proof tree. It is a proof of Γ ` ∆ if ∆[β] has form ∀x P,

y is not free in Γ,∆ or P, and
π is a proof of Γ ` (∆− β) + β1:P [x := y].

– If π is a proof tree and y is a variable, then existsleft(α, π, α1, y) is also a
proof tree. It is a proof of Γ ` ∆ if Γ [α] has form ∃x P,

y is not free in Γ,∆ or P, and
π is a proof of (Γ + α) + α1:P [x := y] ` ∆

74

– If π is a proof tree and t is a term, then existsright(β, π, β1, t) is also a proof
tree. It is a proof of Γ ` ∆ if ∆[β] has form ∃x P and

π is a proof of Γ ` (∆− β) + β1:P [x := t].
– If t is a term, then eqrefl(β, t) is a proof tree. It is a proof of Γ ` ∆ if

∆[β] = (t ≈ t).
– If π is a proof tree and ρ is a position, then replleft(α1, α2, π, ρ, α3) is also

a proof tree. It is a proof of Γ ` ∆ if Γ [α1] has form t1 ≈ t2, if Γ [α2] has
form Aρ[t2], and π is a proof of (Γ − α2) + α3:Aρ[t1] ` ∆.

– If π is a proof tree and ρ is a position, then replright(α, β1, π, ρ, β2) is also a
proof tree. It is a proof of Γ ` ∆ if Γ [α] has form t1 ≈ t2, if ∆[β1] has form
Bρ[t1], and π is a proof of Γ ` (∆− β1) + β2:Bρ[t2].

As an example, consider the following proof:

α1:A, α2:B ` β1:B α1:A, α2:B ` β2:A

α1:A, α2:B ` β:B ∧A

α:A ∧B ` β:B ∧A

It can be represented by the following proof term:

andleft(α, andright(β, ax(α2, β1), β1, ax(α1, β2), β2), α1, α2).

Following [5], we consider a rule as a binder that binds the labels that it
introduces in the subproofs where the label is introduced. For example,
andleft(α, π, α1, α2) introduces the labels α1, α2 in π. Therefore, it can be viewed
as binding any occurrences of α1, α2 in π. Likewise, we consider
forallright(β, π, β1, y), as a binder that binds any occurrences of y in π.

Viewing the rules as binders makes it possible to define a notion of α-
equivalence of proofs. This has the advantage that label conflicts can be resolved
by renaming labels. Without α-equivalence, a rule introducing some formula with
label α cannot be applied on a labelled sequent already containing α. However,
if we use α-equivalence, we can rename α into a new label α′ and continue proof
checking. As an example, the proof tree given a few lines above would not be a
proof of α:A ∧B, α1:A ` β:B ∧A. Using α-equivalence, we can replace α1 in
the proof tree by some α′

1 and the sequent will be accepted. The main advantage
of this is that proof checking becomes monotone:

Lemma 2. If π is a proof tree, which is a proof of some labelled sequent Γ ` ∆,

and Γ ⊆ Γ ′, ∆ ⊆ ∆′, then π is also a proof of Γ ′ ` ∆′.

The following property is important for proof reductions. It is assumed that
substitution is capture avoiding:

Lemma 3. Let π a proof of labelled sequent Γ ` ∆ containing a free variable x.

Let t be some term. Then π[x := t] is a proof of (Γ ` ∆)[x := t].

75

The following property is important, because it makes it possible to use proof
terms as schemata, i.e. as objects that can be instantiated.

Theorem 1. Let π be a proof of a labelled sequent Γ ` ∆. Let A(x1, . . . , xn)
be an n-ary atom occurring in Γ ` ∆, s.t. x1, . . . , xn are its free variables. Let
F (x1, . . . , xn, y1, . . . , ym) be a formula having at least free variables x1, . . . , xn,

and with possible other free variables y1, . . . , ym. Assume that no occurrence of
A(x1, . . . , xn) in Γ ` ∆ is in the scope of a quantifier that binds one of the yj

and that no occurrence of A(x1, . . . , xn) in a cut formula occurring in π is in
the scope of a quantifier that binds one of the yj . Let π′ be obtained from π by
substituting A(x1, . . . , xn) := F (x1, . . . , xn, y1, . . . , ym) in every cut formula in
π. Then π′ is a proof of (Γ ` ∆)[A(x1, . . . , xn) := F (x1, . . . , xn, y1, . . . , ym)].

Note that when π is cut free, then π′ = π. The reason that Theorem 1 holds, is
the fact that the cut rule is the only rule that explicitly mentions formulas.

In case variables from y1, . . . , ym are caught, it is always possible to obtain
an α-variant of Γ ` ∆ and π, s.t. no capture takes place. The same holds for
any cut formula in π.

As an example, consider the sequent ∀x(A(x) ∧ B) ` (∀xA(x)) ∧ B, which
clearly has a cut free proof. Lemma 1 allows to substitute P (y, z) for B, (because
y and z are not caught), but it does not allow to substitute P (x, y, z) for B. The
sequent can be renamed into ∀x1(A(x1) ∧B) ` (∀x1A(x1)) ∧B.

4 The Negation Normal Form Transformation

We describe in detail how we intend to implement the negation normal form
transformation with proof generation.

Definition 4. Formula F is in negation normal form (NNF) if (1) F does not
contain → or ↔, (2) negation is applied only on atoms in F, (3) if F contains
> (or ⊥,) then F = >, (or ⊥).

A formula can be easily transformed into NNF by two rewrite systems. The
first rewrite system removes→ and↔, and it pushes the negations inwards. The
second rewrite system moves ⊥ and > upwards until they either disappear, or
reach the top of the formula. The rewrite systems could be combined into one
rewrite system, but that would be inefficient, because the two rewrite systems
are more efficient with different rewrite systems. The first rewrite system is given
by the following table:

A→ B ⇒ ¬A ∨B

A↔ B ⇒ (¬A ∨B) ∧ (A ∨ ¬B)

¬¬A ⇒ A

¬(A ∨B) ⇒ ¬A ∧ ¬B
¬(A ∧B) ⇒ ¬A ∨ ¬B
¬(∀x P (x))⇒ ∃x ¬P (x)
¬(∃x P (x))⇒ ∀x ¬P (x)

76

The following algorithm normalizes a formula under the set of rules.

Algorithm 1
formula nnf12(formulaF)
begin

while there are a rule A⇒ B and a substitution Θ, s.t.
AΘ = F do

F := BΘ

if F is an atom, A = ⊥ or A = >, then return F

if F has form ¬A, with A an atom, A = ⊥, or A = >, then return ¬A.

if F has form A ∧B, then return nnf12(A) ∧ nnf12(B)
if F has form A ∨B, then return nnf12(A) ∨ nnf12(B)
if F has form ∀x P (x), then return ∀x nnf12(P (x))
if F has form ∃x P (x), then return ∃x nnf12(P (x))

end

The algorithm implements a particular rewrite strategy, namely outside-
inside normalization. It assumes that the rewrite front starts at the outside
and then moves inward. When the formula has been normalized at one point,
then this point does not need to be reconsidered anymore. There second part of
the rewrite system needs exactly the opposite strategy, inside-outside normal-
ization. If one would combine the systems, one would have to look for possible
rewrites everywhere in the formula, which is less efficient.

Definition 5. A justified sequent is a pair of form (α:A ` β:B, π), s.t. α 6= β

and π is a proof of α:A ` β:B. A justified rewrite rule is a justified sequent
(α:A ` β:B, π), s.t. A⇒ B is a rewrite rule.

There is no formal distinction between a justified sequent and a justified rewrite
rule, but we give them different names because their roles are different.

We now modify the rewrite algorithm, so that it will output a proof at the
same time with its result. It will do this by returning a justified sequent.

Algorithm 2 Function nnf12(F, α) returns a justified sequent (α:F ` β:F ′, π),
s.t. F ′ = nnf12(F), and β is some new label.

77

justifiedsequent nnf12(formula F, label α)
begin

array of justifiedsequent Π;
Initialize Π to the empty (zero length) array.
while there are a justified rewrite rule (α′:A′ ` β′:B′, π′) and

a substitution Θ, s.t. A′Θ = F do
begin

Let γ be a new label, not occurring in Π, and distinct from α.

Assign π′ := π′[α′ := α, β′ := γ]. (so that π′ now proves α:A′ ` γ:B)
Append (α:A′Θ ` γ:B′Θ, π′) to Π. (the length of Π is increased by 1,

there is no need to modify π′ because of Theorem 1)
Assign F := BΘ.

Assign α := γ.

end
If F is an atom, F = ⊥ or F = >, then

return applycut(Π).
If F has form ¬A, where A is an atom, A = ⊥ or A = >, then

return applycut(Π).

If F has form A1 ∧A2, then
begin

Let α1, α2, β be new, distinct labels.
Assign B1, β1, π1 from (α1:A1 ` β1:B1, π1) := nnf12(A1, α1)
Assign B2, β2, π2 from (α2:A2 ` β2:B2, π2) := nnf12(A2, α2)
Append α:A1 ∧A2 ` β:B1 ∧B2,

andleft(α,

andright(β,

weakenleft(α2, π1), β1,

weakenleft(α1, π2), β2),
α1, α2)) to Π.

return applycut(Π)
end

If F has form A1 ∨A2, then
begin

Let α1, α2, β be new, distinct labels.
Assign B1, β1, π1 from (α1:A1 ` β1:B1, π1) := nnf12(A1, α1)
Assign B2, β2, π2 from (α2:A2 ` β2:B2, π2) := nnf12(A2, α2)
Append (α:A1 ∨A2 ` β:B1 ∨B2,

orright(β,

orleft(α,

weakenright(β2, π1), α1,

weakenright(β1, π2), α2),
β1, β2)) to Π.

return applycut(Π).
end

78

If F has form ∀x P (x), then
begin

Let α1 and β be a new, distinct labels.
Assign Q(x), β1, π1 from (α1:P (x) ` β1:Q(x), π1) := nnf12(P (x), α1)
Append (α:∀x P (x) ` β:∀x Q(x),

forallright(β, forallleft(α, π1, α1, x), β1, x)) to Π.

return applycut(Π)
end

If F has form ∃x P (x), then
begin

Let α1 and β be new, distinct labels.
Assign Q(x), β1, π1 from (α1:P (x) ` β1:Q(x), π1) := nnf12(P (x), α1)
Append (α:∃x P (x) ` β:∃x Q(x),

existsleft(α, existsright(β, π1, β1, x), α1, x)) to Π.

return applycut(Π)
end

end

Function applycut(Π) combines the proofs πi of αi:Ai ` βi:Bi into one proof
by using the cut rule. It must be the case that βi+1 = αi, and Bi+1 = Ai, for
1 ≤ i < |Π|.

(justifiedsequent) applycut(array of justifiedsequent Π)
begin

Σ is a variable of type labelled sequent.
π is a variable of type proof tree.
Assign (Σ, π) := Π1

for i := 2 to |Π| do
begin

Assign (α:A ` β:B) := Σ

Assign (β:B ` γ:C, ρ) := Πi

Assign Σ := α:A ` γ:C
Assign π := cut(B,weakenleft(α, ρ), β,weakenright(γ, π), β)

end
return (Σ, π)

end

We now come to the second part of the rewrite system that will ensure the
third condition of Definition 4.

79

A ∨ ⊥ ⇒ A A ∧ ⊥ ⇒ ⊥
A ∨ > ⇒ > A ∧ > ⇒ A

⊥ ∨A⇒ A ⊥ ∧A⇒ ⊥
>∨A⇒ > >∧A⇒ A

∀x ⊥ ⇒ ⊥ ∃x ⊥ ⇒ ⊥
∀x > ⇒ > ∃x > ⇒ >

In order to obtain a normal form, Algorithm 1 cannot be used, because the
outside-inside strategy does generally not result in a normal form. Instead, an
inside-outside rewrite strategy has to be used:

Algorithm 3
formula nnf3 (formula F)
begin

if F is an atom, A = ⊥ or A = >, then G := F

if F has form ¬A, with A an atom, A = ⊥, or A = >, then G := F

if F has form A ∧B, then G := nnf3(A) ∧ nnf3(B)
if F has form A ∨B, then G := nnf3(A) ∨ nnf3(B)
if F has form ∀x P (x), then G := ∀x nnf3(P (x))
if F has form ∃x P (x), then G := ∃x nnf3(P (x))

while there are a rule A⇒ B and a substitution Θ, s.t. AΘ = G do
G := BΘ

end

Algorithm 3 differs from Algorithm 1 only in the fact that rewriting on the
current level is attempted only after the subterms have been normalized.

Algorithm 2 can be easily modified correspondingly, by moving the while-
loop in the beginning towards the end. It can be also easily adopted to situations
where more complicated rewrite strategies are needed.

5 Subformula Replacement

Some steps in the clausal normal form transformation can cause exponential
blowup of the formula. The problematic steps are the replacement of A ↔ B

by (¬A ∨ B) ∧ (A ∨ ¬B), and the factoring of conjunctions over disjunctions
performed by the following rules: (A∧B)∨C ⇒ (A∨C)∧(B∨C), A∨(B∧C)⇒
(A ∨B) ∧ (A ∨ C).
Expansion of ↔ would cause exponential blowup on the following sequence of
formulas

(a1 ↔ (a2 ↔ · · · (an−1 ↔ an))), n > 0.

Factoring would cause exponential blowup on the following sequence of formulas

(a1 ∧ b1) ∨ · · · ∨ (an ∧ bn), n > 0.

80

In order to avoid this, it is possible to use subformula replacement. For example,
in the last formula, one can introduce new symbols x1, . . . , xn, and replace it by
the equisatisfiable set of formulas

x1 ∨ · · · ∨ xn, x1 ↔ (a1 ∧ b1), . . . , xn ↔ (an ∧ bn).

Subformula replacement as such is not first-order, but it can be easily dealt with
within first-order logic, by observing that the new names are abbreviations of
certain formulas. During the CNF-transformation, we allow to add premisses of
the following form to the set of premisses:

∀x1 · · ·xn X(x1, . . . , xn)↔ F (x1, . . . , xn).

X is a new symbol that does not yet occur in the premisses and also not in
F (x1, . . . , xn). When the resolution prover succeeds, one obtains a proof π of a
sequent Γ,D1, . . . , Dk ` ⊥, in which Γ is the set of original first-order formulas,
and D1, . . . , Dk are the introduced premisses, which are all of form

∀x1 · · ·xnj
Xj(x1, . . . , xnj

)↔ Fj(x1, . . . , xnj
), for 1 ≤ j ≤ k.

A new symbol Xj can occur in Fj′ only when j′ > j, and it cannot occur in
Γ. By substituting the Xj away and applying Theorem 1, the proof π can be
transformed into a proof π′ of Γ,E1, . . . , Ek ` ⊥ in which each Ej has form

∀x1 · · ·xnj
F (x1, . . . , xnj

)↔ F (x1, . . . , xnj
).

These are simple tautologies which can be proven and cut away.

6 Antiprenexing

The purpose of anti-prenexing (also called miniscoping) is to obtain smaller
Skolem terms. In many formulas, not everything that is in the scope of a quan-
tifier, does also depend on this quantifier. If one systematically factors such
subformulas out of the scope of the quantifier, one can often reduce dependen-
cies between quantifiers. For details, we refer to [4], here we give only a few
examples:

Example 1. Without anti-prenexing, ∀x ∃y[p(x) ∧ q(y)] skolemizes into
∀x [p(x)∧q(f(x))]. Antiprenexing reduces the formula to (∀x p(x))∧(∃y q(y)),
which Skolemizes into (∀x p(x)) ∧ q(c).

Without anti-prenexing, ∀x ∃y1y2 [p(y1) ∧ q(x, y2)] skolemizes into
∀x [p(f1(x)) ∧ q(x, f2(x))]. Antiprenexing reduces the formula to
∀x [∃y1 p(y1) ∧ ∃y2 q(x, y2)], which Skolemizes into ∀x [p(c1) ∧ q(f2(x))].

Without anti-prenexing, ∀x ∃y [p(x) ∧ q(y) ∧ r(x)] skolemizes into
∀x[p(x) ∧ q(f(x)) ∧ r(x)]. Antiprenexing can reduce the formula to
∀x [p(x) ∧ r(x) ∧ ∃y q(y)], which can be Skolemized into ∀x [p(x) ∧ r(x) ∧ q(c)].

81

As far as we can see, all replacements can be handled by the following ’rewrite
system’:

A ∨B ⇒ B ∨A A ∧B ⇒ B ∧A

A ∨ (B ∨ C) ⇒ A ∨B ∨ C A ∧ (B ∧ C) ⇒ A ∧B ∧ C

∀x (P (x) ∧Q)⇒ (∀x P (x)) ∧Q ∃x (P (x) ∧Q)⇒ (∃x P (x)) ∧Q

∀x (P ∧Q(x))⇒ P ∧ ∀x Q(x) ∃x (P ∧Q(x))⇒ P ∧ ∃x Q(x)
∀x (P (x) ∨Q)⇒ (∀x P (x)) ∨Q ∃x (P (x) ∨Q)⇒ (∃x P (x)) ∨Q

∀x (P ∨Q(x))⇒ P ∨ ∀x Q(x) ∃x (P ∨Q(x))⇒ P ∨ ∃x Q(x)

∀x P ⇒ P ∃x P ⇒ P

∀x∀y P (x, y) ⇒ ∀y∀x P (x, y) ∃x∃y P (x, y) ⇒ ∃y∃x P (x, y)

The system is not a rewrite system in the usual sense, because an additional
strategy is needed for deciding when a certain rule should be applied. Straight-
forward normalization would not terminate due to the presence of permuta-
tion rules. If one would remove the permutation rules, one would often not
obtain the best possible result. For example, in the last formula of the example,
(p(x)∧ q(y))∧ r(x) first has to be permuted into (p(x)∧ r(x))∧ q(y), before the
rule ∃x(P ∧Q(x))⇒ P ∧ ∃x Q(x) can be applied.

Despite the fact that the decision making is more complicated than was
the case for the NNF, Algorithm 2 can be still modified for anti-prenexing,
because the decision making plays no role in the proof generation. For the proof
generation, only correctness of the rules matters, and all rules can be easily
proven correct.

7 Proof Reductions

Proof reductions are important, because they make it possible to obtain modu-
larity and flexibility. For a detailed motivation, we refer to [1]. There, a special
calculus called replacement calculus was introduced which allows for certain re-
ductions that remove repeated building up of the same context in a proof. In
sequent calculus, the standard reductions of cut elimination correspond to the re-
ductions of the replacement calculus, so there is no need anymore for the replace-
ment calculus. For the purpose of proof simplification, one should implement all
standard reductions of cut elimination (see [3]), except for the permutation of a
cut with a contraction, because this permutation is the cause of increasement in
proof length.

The proof reductions are needed in order to combine the repeated building
up of contexts. Suppose that one has a big formula of form F [A1], that A1 is first
rewritten into A2, and after that into A3. Algorithm 2 lifts a proof of A1 ` A2

to a proof of F [A1] ` F [A2]. After that, it lifts a proof of A2 ` A3 to a proof of
F [A2] ` F [A3], which is then combined, using cut, into a proof of F [A1] ` F [A3].

82

However, it would be more efficient to first apply cut on A1 ` A2 and A2 ` A3,

resulting in A1 ` A3, and lift this proof to F [A1] ` F [A3].
Combination of context lifting can be done only if one knows in advance the

order in which the replacements will be made, and when they are near to each
other. This was the case for the NNF-transformation, and Algorithm 2 makes
use of this fact, both for the outside-inside strategy, and for the inside-outside
strategy.

If one does not know the order of replacements in advance, then Algorithm 2
will not avoid repeated lifting into the same context. This would be the case
for anti-prenexing. In that case, one has to rely on proof reductions. Using the
standard reductions of cut elimination, the cut on the top level can be permuted
with the rules that build up the context, until it either disappears, or reaches a
contraction.

Using proof terms, the reductions can be easily implemented by a rewrite
system on proof terms. We give a few examples of the reductions involved, and
give the corresponding rewrite rules:

Γ ` ∆, β1:A Γ ` ∆, β2:B Γ, α1:A, α2:B ` ∆

Γ ` ∆, β:A ∧B Γ, α:A ∧B ` ∆

Γ ` ∆

is replaced by
Γ ` ∆, β1:A Γ, α1:A, α2:B ` ∆

Γ ` ∆, β2:B Γ, α2:B ` ∆

Γ ` ∆.

The corresponding rewrite rule is

cut(A ∧B, andleft(α, π, α1, α2), α, andright(β, π1, β1, π2, β2), β)⇒

cut(B, cut(A, π, α1, π1, β1), α2, π2, β2).

The following proof fragment

Γ ` ∆, β1:P [x := y] Γ, α1:P [x := t] ` ∆

Γ ` ∆, β:∀x P (x) Γ, α:∀x P (x) ` ∆

Γ ` ∆

reduces into

83

Γ ` ∆, β1:P [x := t] Γ, α1:P [x := t] ` ∆

Γ ` ∆

The corresponding rewrite rule is

cut(∀x P (x), forallleft(α, π2, α1, t), α, forallright(β, π1, β1, y), β)⇒

cut(P [x := t], π2, α1, π1[y := t], β1).

8 Conclusions

We have shown that implementing the CNF-transformation with proof genera-
tion is possible. We have given a data structure (inspired by [5]) for the repre-
sention of sequent calculus proofs, which is concise, and which allows for imple-
mentation of proof reductions. We have given a general translation algorithm,
based on rewriting, that covers nearly all of the transformations involved.

Proof generation will not be feasible for formulas that are propositionally
complex. Such formulas will have exponentially large proofs, (because probably
NP 6= co-NP.)

References

1. Hans de Nivelle. Extraction of proofs from the clausal normal form transforma-

tion. In Julian Bradfield, editor, Proceedings of the 16th International Workshop
on Computer Science Logic (CSL 2002), volume 2471 of Lecture Notes in Artificial
Intelligence, pages 584–598, Edinburgh, Scotland, UK, September 2002. Springer.

2. Hans de Nivelle. Translation of resolution proofs into short first-order proofs without

choice axioms. In Franz Baader, editor, Proceedings of the 19th International Con-
ference on Computer Aided Deduction (CADE 19), volume 2741 of Lecture Notes
in Artificial Intelligence, pages 365–379, Miami, USA, July 2003. Springer Verlag.

3. Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

4. Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal

forms. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 6, pages 335–367. Elsevier Science B.V., 2001.

5. Frank Pfenning. Structural cut elimination. In Dexter Kozen, editor, Proceedings
10th Annual IEEE Symposion on Logic in Computer Science, pages 156–166. IEEE

Computer Society Press, 1995.

Author Index

Aboul-Hosn, K., 2

Baaz, M., 13
Bittencourt, G, 18

Colin, S., 33

de Nivelle, H., 69

Falke, S., 46
Fermüller, C.G., 13

Giesl, J., 46
Gil, A., 13

Kozen, D., 2

Kutsia, T., 55

Marchi, J., 18
Mariano, G., 33
Marin, M., 55

Padilha, R., 18
Poirriez, V., 33
Preining, N., 13

Salzer, G., 13
Schneider-Kamp, P., 46
Schulz, S., 1

Thiemann, R., 46

