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Abstract

The mechanism design problem in economics is
about designing rules of interaction for market
games which aim to yield a globally desirable re-
sult in the face of self-interested agents who may at-
tempt to take advantage of the mechanism in order
to maximize their own individual outcomes. This
problem can be extremely complex. Traditionally,
economists have used game theory and other for-
mal methods to construct mechanism rules. In this
paper, we report on an alternative approach which
we hope will eventually yield more robust solu-
tions than the present analytical counterparts. Our
methodology views mechanism design as a multi-
objective optimisation problem and addresses the
problem using genetic programming. This paper
reports on preliminary work in this direction where
we evolve an auction-pricing rule for a continuous
double auction using a multi-objective fitness func-
tion.

1 Introduction
The auction mechanism design problem has attracted much
interest in recent years, and economists have had consider-
able success in applying techniques from game theory to the
design of auction-based markets for deregulated commodity
markets (e.g., California’s deregulated electricity market [2;
9]) and the sale of government assets (e.g., auctions of elec-
tromagnetic spectrum for mobile phones [11; 10]). Alvin
Roth [16] has suggested that this is akin to an engineer-
ing process in which economists design the rules of a mar-
ket mechanism in order to meet particular socio-economic
requirements (e.g., maximising the efficiency of allocating
commodities in a market).

The engineering of auction mechanisms is of particular
importance to agent-based electronic commerce and multi-
agent systems in general. E-commerce has enabled con-
sumers to act as price-makers instead of just price-takers in
large auction-based markets and has stimulated the use of per-
sonalised bidding agents to empower those consumers even
more. In addition, auction mechanisms are seen as a promis-
ing means of solving many distributed resource-allocation
problems in multi-agent systems and grid technology.

One approach to computational economics is to use tech-
niques from machine learning to explore the space of possible
ways in which agents might act in particular markets. For ex-
ample, reinforcement learning has been used to explore bid-
ding patterns in auctions [13; 16]. Another approach is to use
techniques from evolutionary computing, e.g., from genetic
programming (GP) [8]. Earlier work has explored the use
of co-evolutionary GP to determine auction mechanism rules
automatically [14; 15].

In that work, mechanism rules and bidding strategies were
encoded and co-evolved in ways that sought to maximise
overall market efficiency and the profits of individual agents.
Here, we extend this work by focusing on the multi-objective
optimisation issues inherent in the mechanism design prob-
lem.

The rest of the paper is as follows. In Section 2, we de-
scribe the standard view of n-player games and introduce the
perspective we will take in this paper. Then in Section 3, we
discuss in detail the scenario that we have been investigating.
We present two sets of data: first, an attempt to map the fit-
ness landscape using a standard class of auction pricing rules
— the k-double auction (see section 4); and second, an exper-
iment in which we try to find alternative to the k-double auc-
tion results by using genetic programming to evolve auction
rules (section 5). We close with a discussion and summary.

2 Equilibria for n-player games
When evaluating a mechanism design, the designer must take
into account the set of trading strategies that are likely to be
played by agents trading in the mechanism under considera-
tion. Deriving the set of the strategies likely to be played for a
particular market game, that is “solving” the game, is a non-
trivial problem in the general case. This is because there is
often no clear dominant strategy which constitutes best play;
rather the best strategy to play depends entirely on the strate-
gies played by other agents. Nash defined a solution concept
in which the strategy adopted by any given agent is a best-
response to the best-response strategies adopted by all other
agents, and proved that all n-player, non-zero-sum games ad-
mitted solutions so defined.

Nash’s solution concept is widely adopted in theoretical
economics. Thus when evaluating an economic mechanism,
the designer computes the Nash equilibria of strategies for
the given mechanism; and this forms the basis of predictions



about how people will actually behave under the rules of this
mechanism. The designer can then analyse market outcomes
in equilibria and quantitively assess, for example, the likely
affect on overall market-efficiency that a given change in the
mechanism rules will yield. Thus the role of the designer is
to ensure that the Nash equilibria correspond to situations in
which high market efficiency is obtained.

Another approach focuses on mechanism design as a multi-
objective optimization problem. We consider as a separate
dimension each problem variable we are interested in max-
imising (for example, market efficiency, seller revenue and so
on), and the difficulty lies in simultaneously maximising as
many dimensions as possible.

We view the mechanism design problem as a multi-
objective optimisation problem and the task is to choose
mechanism rules which pareto-optimise different market
variables when traders play Nash-equilibrium strategies.
However, there are a number of problems beginning with
computing the Nash equilibria:

1. Agents with limited computational power (i.e., “bound-
ed rationality” constraints) may be unable to compute
their Nash-equilibrium strategy;

2. Even with vast amounts of computational and analytic
power, many games defy solution; e.g., in the case of
the k-double-auction, analytical techniques have yet to
yield a solution;

3. Empirical evidence shows that human agents often fail
to coordinate on Nash-equilibria for very simple games
whose solution is easily derivable under bounded-ration-
ality assumptions [6]; and

4. Often a given game will yield a multitude of Nash
solutions and there is little guidance for practitioners
on choosing plausible subsets thereof as predicted out-
comes.

These difficulties with the standard theory of games have
led to the development of a field known as cognitive game
theory [4], in which models of learning play a central role in
explaining and predicting strategic behaviour. Erev and Roth
[17] show how simulations of agents equipped with a sim-
ple reinforcement learning algorithm can explain and predict
the experimental data observed when human agents play a
diverse range of trading games. Such multi-agent reinforce-
ment learning models form the basis of our solution concept
for optimising mechanism designs. Rather than computing
the theoretical equilibria for a given point in the mechanism
search space, we run a number of multi-agent simulations us-
ing agents equipped with a learning algorithm that determines
their bidding strategies.

Note that we are not attempting to find theoretically op-
timal strategies for our agents1. Rather, we are attempting
to predict how boundedly-rational agents, who have no prior
knowledge of an equilibrium solution nor the means to cal-
culate one, might actually play against the mechanism we
are (automatically) designing. For this reason, we chose to
use the Roth-Erev algorithm[17], since it forms the basis of

1In other words Nash equilibrium strategies

a cognitive model of how people actually behave in strategic
environments. In particular it models two important princi-
ples of learning psychology:

• Thorndike’s law of effect — choices that have led to
good outcomes in the past are more likely to be repeated
in the future; and

• The power law of practice — learning curves tend to be
steep initially, and then flatter.

It is also important to note that the Roth-Erev algorithm
models self-interested behavior. Agents’ strategies are not
explicitly chosen for globally desirable outcomes, such as
achieving high overall market efficiency. Rather, agents at-
tempt to maximise their own utility, under bounded-ration-
ality constraints, possibly at the expense of global profit. It is
only by adjusting the mechanism that we are able to improve
global outcomes. This is in contrast to the related work of
Cliff [1], in which both the mechanism and the strategies are
simultaneously adjusted according to a fitness function that
selects only for globally desirable outcomes.

3 Experimental setup
Our scenario stems from [13] (hereafter referred to as NPT).
A more detailed description of our interpretation can be found
in [14]. In this scenario, a number of traders buy and sell
electricity in a discriminatory-price2 continuous double auc-
tion [5]. Every trader assigns a value for the electricity that
they trade; for buyers this is the price that they can obtain in
a secondary retail market and for sellers this reflects the costs
associated with generating the electricity. Here this value is
considered private; because traders are always trying to make
a profit themselves, sellers are not willing to reveal how lit-
tle they might accept for units of electricity and buyers are
not willing to reveal how much they might pay for units of
electricity.

The key to the operation of the market is the auctioneer’s
job of matching buyers and sellers, based on their current bids
and asks, and setting the trade price at which units of capacity
are traded. In our work, the matching process is carried out
using the 4-heap algorithm [19]. The rule for determining the
trade price is what we are trying to evolve.

In our experiments, the number of sellers, NS, is 30, the
number of buyers, NB, is also 30, and there is one auction-
eer. All traders have a capacity of 10 units. Traders are
equipped with the modified version of the Roth-Erev learn-
ing algorithm reinforcement learning algorithm (MRE) de-
scribed in [13]. The MRE algorithm is calibrated with four
parameters: a scaling parameter s(1), a recency parameter r,
an experimentation parameter e and a parameter k represent-
ing the number of possible actions that can be taken by the
learner. Each action represents a possible mark-up over the
agent’s limit price. In these experiments actions are scaled by
a factor of 100 and then either added to, or subtracted from,
the agent’s private value in order to arrive at a bid or an ask

2In uniform price auctions, all trades in any given auction round happen at the same
price. In discriminatory price auctions of the kind we have here, different trades in the
same auction round occur at different prices.



Parameter value
k 10
r 0.1
e 0.2

s(1) 1

Table 1: Parameters for the modified Roth-Erev learning al-
gorithm

depending on whether the agent is a buyer or seller respec-
tively. Table 1 summarises the parameter values used in our
experiments.

As the basis of our multi-objective optimisation problem,
we have adopted the three variables used in NPT , namely:
market efficiency, seller market-power and buyer market-
power. Here we present a brief summary of these variables
(refer to [13] for details). Market efficiency, EA, is defined
as the ratio (expressed as a percentage) of the total profits
earned by all traders in the market, PBA+PSA, to the prof-
its theoretically available to them in competitive equilibrium,
PBE + PSE.

EA = 100

(
PBA+ PSA

PBE + PSE

)
(1)

Buyer market-power, MPB, is defined as the difference be-
tween the actual profits of buyers, PBA, and the potential
equilibrium profits PBCE for buyers, expressed as a ratio of
the equilibrium profits.

MPB =
PBA− PBE

PBE
(2)

Seller market-power is computed in the same way as buyer
market power:

MPS =
PBS − PSE

PSE
(3)

Market efficiency, EA, tracks how good our mechanism is at
generating global profit, whereas the market-power indices,
MPB and MPS track to what extent each group is better
or worse off compared to a theoretical ideal market where
traders bid truthfully, and an optimal allocation is made.

Our design objective is to increase market efficiency, whilst
simultaneously keeping the market-power of both buyers and
sellers to a minimum; we want to increase global profit but
without giving unfair advantage to either buyers or sellers.
We normalise each variable by mapping it onto the range
[0, 1], where 1 represents the optimal value of a variable and
0 represents the worst value. Variables are mapped using the
following functions:

ÊA =
EA

100
(4)

M̂PB =
1

1 +MPB
(5)

M̂PS =
1

1 +MPS
(6)

Given these, our design objective is then to pareto-optimise
the vector:

~F = (ÊA, M̂PB, M̂PS) (7)

by adjusting the auction mechanism. For the experiments in
this paper, we weight market-power and efficiency equally
and combine the three objectives in a linear sum:

F =
M̂PB

4
+
M̂PS

4
+
ÊA

2
(8)

thus transforming the problem into an optimisation problem
where we attempt to maximise the single scalar F .

For now, we have restricted our search of the mecha-
nism design space to the transaction pricing rule, which sets
the price of any given transaction as a function of the bid
and ask prices submitted by buyers and sellers respectively.
NPT uses a discriminatory-price k-double-auction transac-
tion pricing rule [18], in which a different transaction price is
awarded for each matched bid-ask pair in the current auction
round. The price is set according to the following function:

pt = kpa + (1− k)pb (9)

where pt is the transaction price, pa is the ask price, pb is
the bid price and k is a parameter that can be adjusted by the
auction designer. In the originalNPT experiments k is taken
to be 0.5.

Our ultimate aim is to investigate if there are alternatives
to the k-double-auction rule that perform well, not necessar-
ily under equilibrium conditions, but when agents play Roth-
Erev derived strategies; that is, adaptive strategies derived
from a cognitive model of human game playing.

In our experiments, we consider the space of all possi-
ble pricing rules that are functions of pa and pb. We repre-
sent each function as a Lisp s-expression, and we use Koza
genetic-programming [8] to search this space.

One might ask why we are using genetic-programming to
search such a vast space, when we could simply restrict at-
tention to the k-double-auction pricing rule, and search for
pareto-optimal values of k. The reason we use genetic-
programming, is that we see this as a general method of repre-
senting arbitrary mechanism rules, not just those that can be
neatly parameterised. In this particular case, we have cho-
sen an aspect of the auction design that can be so simply
parameterised, so that we can compare the performance of
the genetic-programming search against a brute-force search
of different values of k. In the following section we use a
brute-force search of k to get an approximate view of the fit-
ness landscape that our genetic-programming search will en-
counter. In future work, we will use genetic-programming
to search for additional rules governing the auction mecha-
nism, for example rules governing allowable bids, and rules
governing the matching mechanism.

4 Mapping the landscape
We ran the auction with particular values of k for 100 rounds
with 10,000 different supply and demand schedules con-
structed by assigning each agent a random private value from
a uniform distribution in the range [30, 1000]. The market
variables under observation are averaged over these 10,000
different schedules. We carried out these 100 rounds with
10,000 different supply and demand schedules for 100 values
of k at increments of 0.01. Figure 1 shows the mean fitness
for each k value.
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Figure 1: Mean fitness plotted against k for a large market
with 60 traders
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Figure 2: Mean fitness plotted against k for a small market
with only 6 traders.

This mapping of our optimisation variables at different val-
ues of k gives us an idea of the fitness landscape in which the
genetic programming technique is evolving the auction rule.
A qualitative interpretation of this data would suggest that
pricing rules corresponding to values of k close to 0.5 should
be selected by the GP experiment.

5 Evolving pricing rules
We represented each function as a Lisp s-expression, and
we used Koza’s basic genetic programming [8] with the pa-
rameters given in Table 2 to search this space. We made
use of a Java-based evolutionary computation system called

Parameter value
Population size 4000

Selection Parsimony Binary
Tournament

Cross-over probability 0.9
Reproduction probability 0.1

Parsimony size probability 0.005
Cross-over maximum tree depth 17

Grow maximum tree depth 5
Grow minimum tree depth 5

Table 2: Koza GP parameters

ECJ.3 ECJ implements a strongly-typed GP [12] version of
Koza’s [8] original system. For the GP experiments in this
paper, the standard Koza parameters were used in combina-
tion with the standard Koza GP operators, with the addition
of a small amount of parsimony pressure (applied with prob-
ability 0.005) in order to counter the effects of GP code bloat.

Our function-set consisted of the terminals ASKPRICE
and BIDPRICE, representing pa and pb respectively, to-
gether with the standard arithmetic functions, + - * /, and
a terminal representing a double-precision floating point
ephemeral random constant in the range [0, 1]. Our fitness
function is given by equation 8.

As in Section 4, market outcomes for each pricing rule
were computed by simulating agents equipped with the Roth-
Erev learning algorithm. We used the same parameters and
the same numbers of buyers, 30, and sellers, 30, and 100
auction rounds, but with only 100 different supply and de-
mand schedules, constructed by assigning agents different
private values drawn randomly from a uniform distribution
in the range [30, 1000] each time an individual pricing rule
was evaluated.

Figure 3 shows the actual pricing rule that was evolved af-
ter 100 generations (where ASKPRICE is pa and BID-
PRICE is pb). This has been algebraically-simplified4, but
as can be seen it is still far from straightforward, some-
thing that is not surprising given the way that standard ge-
netic programming approaches handle the evolution of the
s-expressions that make up a program. Plotting the surface
of the transaction price as a function of pb and pa, given in
Figure 4, and comparing it with the surface for:

0.5pa + 0.5pb

given in Figure 5 shows that these two functions are approxi-
mately equal apart from a small variation when the ask price
is very small or when the ask price is equal to the bid price.
Thus the GP experiment has effectively evolved a pricing rule
for a discriminatory-price k-CDA with k = 0.5—exactly the
rule we used when establishing the fitness landscape.

These results suggest that the approach we are adopting is
a reasonable one — we have managed to evolve a rule which
in terms of the prices it sets, is close to a well established rule
from the economics literature. The results also support the

3
http://www.cs.umd.edu/projects/plus/ec/ecj/

4Using the MATLAB symbolic math toolbox



11913735914933551833672672699061
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182687704666362864775460604089535377456991567872

(
− 3437050858577137

18014398509481984
(pa − 2 pb . . .

Figure 3: The first terms of the derived pricing rule .
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Figure 4: The transaction price set by the evolved auction
rule.

existing k-double auction rule since our GP search through
the space of all functions of the bid and ask price has con-
verged on a version of the k-double auction rule. This is in
contrast to the results obtained by Cliff [1], which discovered
a new form of auction between classical buy-side and sell-
side auctions.

Although the fitness landscape for this benchmark problem
is very simple, we see this as a means of validating our design
technique before we move on to more complex scenarios. Fu-
ture work will investigate the use of this technique for more
complex market scenarios, and will include other aspects of
the auction design in the search space: for example, match-
ing rules, bid validation rules and so on. We have already be-
gun to map alternative market scenarios, for example where
we have a very small number of traders, using a brute-force
search of k; figure 2 shows the fitness landscape for a 6-trader
version of the design problem. Future work will analyse the
evolved rules for a number of different market scenarios, for
example where we have many more buyers than sellers and
visa versa.

6 Discussion
The work described here is part of a larger research ef-
fort aimed at creating techniques and methodologies for
computer-aided auction design. We have thus far identified
two promising techniques that could play a part in such a
technology: co-evolutionary mechanism design [14], and the
optimisation technique described in this paper. These ap-
proaches are not mutually exclusive; we envisage that they
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Figure 5: The transaction price set by the rule 0.5pa + 0.5pb.

will complement each other, and indeed complement stan-
dard analytic approaches to auction mechanism design.

For example, the optimisation approach might be used to
find a pareto-front of promising mechanisms that perform
well when agents play adaptive strategies. The auction de-
signer might then pick a few of these designs from the pareto
front that look as if they meet the criteria in hand, and then
subject them to standard game-theoretic equilibria analysis,
thus using the optimisation technique as a method of reduc-
ing the search-space for manual analysis. Once a mechanism
has passed equilibria criteria, it might then be subjected to
co-evolutionary experiments to probe it for “non-strategic”
weaknesses in the protocol.5

In this scenario the “prey” population would be pre-popu-
lated with our candidate mechanism, and the “predator”
population would be pre-populated with equilibrium bid-
ding strategies; the predator population might then find non-
strategic weaknesses in the auction population thus driving it
it to more robust areas of the design space. This whole pro-
cess of:

1. identify promising mechanisms through search;

2. pick and solve for equilibrium solutions; and

5By a non-strategic weakness we mean a weakness in the mechanism that occurs
when game-theoretic assumptions are violated due to unforeseen real-world circum-
stances. For example, the game-theoretic analysis of a sealed-bid auction assumes that
agents are not able to signal to each other, but the theory cannot account for features of
the auction protocol that enable agents to use the auction protocol itself to send covert
signals. It was just such a weakness in the German radio-spectrum auctions that seems
to have allowed Manesman and T-Mobile to use the low-order digits of their bids to
signal to each other and form a collusive price-fixing strategy[7]. Similar alleged occur-
rences were reported in the US spectrum auctions [3]



3. use co-evolutionary learning to identify non-strategic
weaknesses,

might then be iterated through until no further weaknesses
are discovered. At the end of the design process we hope to
have auction mechanisms that: perform well against adap-
tive, possibly non-equilibrium, strategies; that perform well
in equilibrium; and are robust against non-strategic predatory
behaviour.

7 Summary
In this paper we have reported the results of two experiments
in which we have examined the use of different pricing rules
in a discriminatory price double auction. In the part of this
work we used adaptive buyers and seller agents to evaluate
the effect of changing the parameter k in the k-double auc-
tion pricing rule. The second part of the work then success-
fully used genetic programming to automatically acquire a
transaction-pricing rule. The method we describe here could
be used to automatically generate a discriminatory pricing
rule for a continuous double auction to meet other specific
socio-economic requirements.
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