

Web Structure Analysis for Information Mining

Lakshmi Vijjappu1, Ah-Hwee Tan2, and Chew-Lim Tan1

1 School of Computing, National University of Singapore, 10 Kent Ridge Crescent,
Singapore 119260

vijjappu,tancl@comp.nus.edu.sg
2 Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613, ahhwee@krdl.org.sg

Abstract

Our approach to extracting information from the

web analyzes the structural content of web pages
through exploiting the latent information given by
HTML tags. For each specific extraction task, an
object model is created consisting of the salient fields
to be extracted and the corresponding extraction
rules based on a library of HTML parsing functions.
We derive extraction rules for both single-slot and
multiple-slot extraction tasks which we illustrate
through two sample domains.

1. Introduction

Information extraction (IE) as defined by
Message Understanding Conferences (MUC) refers
to the task of, given a document, automatically
finding the essential details in the text. For example,
given a web page on a seminar announcement, an IE
system would extract salient information such as
topic, speaker, date, venue, and abstract. A key
element of IE systems is the set of text extraction
rules that identify the relevant information to be
extracted.

IE systems have been built with different levels
of success on several kinds of text domains. CRYS-
TAL [1] was a learning-based IE system that took
parsed annotated sentences and found patterns for
extraction in novel sentences. Webfoot [2] was an
attempt at general IE that processed fragments by
looking at Hyperlink Markup Language (HTML)
tags. SRV [3] was another learning architecture for
IE. It took a user-defined feature set together with a
set of hand tagged training documents and learned
rules for extraction. Craven et al. [4] reported that
greater accuracy could be achieved by representing
each web page as a node in graph and each hyperlink
an edge. Cardie [5] provided a list of learning-based
IE problems, including the difficulty of obtaining
enough training data and the lack of corpora
annotated with the appropriate semantic and domain-
specific supervisory information. The generation of

training examples is complicated because the IE
process often requires the output of earlier levels of
analysis such as tagging and partial parsing.
DiPasquo [6] argued that there was inherent
information in the layout of each page. Hannes and
Tom [7] describe WebL, and then show its usage by
implementing a meta-search engine that combines
search results from the AltaVista and HotBot public-
search services. WebL is a high level, object-oriented
scripting language that incorporates two novel
features: service combinators and a markup algebra.
The markup algebra extracts structured and
unstructured values from pages for computation, and
is based on algebraic operations on sets of markup
elements. Un Yong [8] describes a system called
DiscoTEX that combines IE and KDD methods to
perform a text-mining task, discovering prediction
rules from natural-language corpora. Hence by pars-
ing the HTML formatting, one can improve upon
traditional text processing.

Recently, the use of wrappers for IE from the
web has been popular. A typical wrapper application
extracts the data from Web pages that are generated,
based on predefined HTML templates. The systems
generate delimiter-based rules that use linguistic
constraints. Wien [9] uses only delimiters that
immediately precede and follow the actual data.
SoftMealy [10] is a wrapper induction algorithm that
generates extraction rules expressed as finite-state
transducers. World Wide Web Wrapper Factory [11]
does extraction by using an HTML parser to
construct a parse tree following a Document Object
Model. In general, HTML tags can help in many
tasks involving natural language processing on the
web. In this paper, we consider the more specific
problem of exploiting HTML tags for IE from the
Web. The motivation of the work stems from a need
for a simpler tool to facilitate the writing of
extraction rules for our own applications.

We adopt an object model approach to extracting
information from HTML pages. An object model,
consisting of the salient fields of the web pages and
their extraction rules based on an HTML parsing
library, represents a projection of a user’s interests

mailto:ahhwee@krdl.org.sg

and requirement on a group of web pages. We derive
object models for both single-slot extraction, wherein
the extracted fields are independent; and multiple-slot
extraction, wherein the extracted field are related. We
present object models and experimental results for
two sample domains, namely news extraction model
based on single-slot extraction rules and link
extraction based on multiple-slot extraction rules.

2. Object Model and Extraction Rules

As depicted in figure 1, the proposed system
comprises the following main components.

• HTML Parsing Library: A library of HTML

parsing functions serves as the basic building
block of writing object models. Functions are
provided to manipulate attributes of HTML tags,
including text, tables, and links. A variety of text
extraction tasks exist ranging from extracting the
contact email address, the list of products to
complex sequential pattern from the page. A text
extraction task could thus consist of identifying
certain text fragments based on single criteria or
multiple criteria or continuously check for
patterns. Hence based on the nature of extraction,
IE systems are characterized as single-slot or
multi-slot. Single-slot locates and extracts
isolated texts from the text; multi-slot locates a
sequential pattern and recursively searches for
similar patterns in the web page. Hence parsing

functions have been drafted to accommodate
single-slot as well as multi-slot/pattern functions.
A subset of the single-slot functions is listed in
Table 1. Multi-slot functions would be prefixed
by pat_. A simple user-interface for writing
extraction rules has been developed.

• Object Model: The library of basic HTML

parsing functions can be used to specify what’s
interesting or target object of the user and extract
the portions he/she is interested in. Some
general functions could be devised which can be
used across web pages in the same category. For
each task, a set of functions can be formulated
and this encapsulation of items of interests and
extraction algorithm forms an object model. For
e.g., an object model to extract a stock quote
from a web page could be written and this object
model could then be applied to any web site
offering stock quotes.

• Extraction Engine: An extraction engine,

central to this architecture, is basically a
compiler to the HTML parsing functions. A user
specifies the URL of the web page and the object
model, i.e., the fields of interests and a set of
rules written using the HTML parsing functions
to extract them. The extraction engine parses the
extraction rules and produces the results in XML
format.

.

Table 1: An illustrative list of HTML parsing functions.
HTML tag Function Comments
Tag
Contents

getTagContent (tag, n) Extracts the nth occurrence of the content enclosed within the start
and end tag.
E.g., getTagContent (, 2).

Tag
Attribute

getAttributeValue(tag, att,
n)

Retrieves the attribute att of the nth occurrence of the tag tag.
E.g., getTagAttribute (<a>, href, n).

Tag Position getTagPostion (tag, n) Returns the tag position or the line number of the nth occurrence of
the tag from the start of the page. E.g., getTagPosition (<a>, 3).

TagText

getText (term, n) Locates the nth occurrence of term term in the page.
E.g., getText (“College”, 1).

Table getTableData (col, m,
term, n)

Returns “m” elements from the column term from the nth table
E.g., getTableData (row, 1, “exchange”).

Web Page (in HTML)

Extraction Engine
Attributes

&
Extraction Rules

Output (in XML)

Object Model

Figure1: The extraction engine produces the key information in the form of XML from HTML web
pages according to the extraction rules of an object model.

3. News Article Extraction

An object model was manually derived by
referring to news articles obtained from ZDnet and
CNet. The news extraction model (Figure 2) is
described by a set of 4 variables using the library of
HTML parsing functions. The title of the article is
normally found in the <meta> tag of the web page
and its location indicates the start of the article. The
next few lines would contain the author’s name and
the date of the article. The author’s name is generally
prefixed by the keyword “by”. The dateline is in any
of the date formats such as mm-dd-yyyy or month-dd-
year. The content of the article, which follows, is
normally enclosed in the html <p> or tag.
This object model is then used to see how it may
extract the needed information from about 100 news
articles from ZDnet and CNet. The results are
tabulated in terms of precision and recall in Table 2.

Table 2: News extraction performance for
ZDNet and CNet.

Section Recall Precision
Title 98% 100%
Author 90% 100%
Dateline 93% 100%
Text 100% 90%

The program had 100% precision in finding the

title, dateline and author. When extracting the author,
the recall dropped due to the fact that some articles
did not have the keyword “By”. Initially the recall for
the dateline was 80%. The drop in the dateline was
due to the fact that the author and the date were found
in the same line and the program would extract the
whole line as the author’s name. So in cases where it
did find an author and not a date, we searched for
date patterns in the author which significantly
improved the recall to 93%. All the contents of the
article were retrieved but in most of the articles, some
extra lines towards the end like “More news articles”,
“Did you miss the news for a day? “etc. was also

retrieved. This object model when applied to articles
from Straits Times Interactive (STI) produced a
similar level of performance as shown in Table 3.

Table 3: News extraction performance for
STI news articles.

Section Recall Precision
Title 98% 100%
Author 90% 100%
Dateline 93% 100%
Text 98% 89%

4. Link Extraction

A typical web page returned by a search engine
consists of hyperlinks to the retrieved query. Each
link is characterized by an absolute URL, a caption
(hyperlinked text), and a summary describing it. The
HTML anchor tag is used to create
hyperlinks. To extract the above pattern, an object
model (Figure 3) is derived based on multi-slot
HTML parsing functions. The initial position of a
potential pattern would be any hyperlink text
obtained through pat_getHyperLinkPosition, which
contains the query terms. The position is then passed
to the other functions as an anchor for parsing. To
extract the URL, the parsing function
getAttributeValue is used. Summary is the text
between two consecutive hyperlinks obtained by the
function pat_getTagToTag.

The search pages may also contain hyperlinks to
the engine’s categories, shopping links, and
advertisements etc. These can be eliminated by the
fact that they normally do not have a summary or a
text describing them and also the Caption would not
contain the query terms. The extraction rules also
filter links to categories in the engine by identifying
relative URL’s. In addition, image hyperlinks are
ignored.

$TITLE = getTagContent (<meta>,"name=title","content",0) || getTagText (<title>,$tag_pos)
$attribute_line_no = getTagTextPosition (,"class=smhead",0)
$AUTHOR = searchKeyWord ($attribute_line_no,"by ",-1)
$DATE = getformat (DATE,"content start",$attribute_line_no,10)
$TEXT = getParaText () || getTagText (,"class=body",0)

Figure 2: An object model for news extraction.

<PATTERN>
 $pos = pat_getHyperLinkPosition (“Terms”,$pos)
 $CAPTION = pat_getTagText (<A>,$pos)
 $URL = pat_getTagAttribute (<A>,"href",$pos)
 $SUMMARY = pat_getTagToTag (<A>,$pos)
</PATTERN>

Figure 3: An object model for link extraction. Terms are the keywords for filtering irrelevant links.

Extraction rules were manually derived by
referring to search engines like Yahoo!, Google,
Altavista, and Lycos. When tested on Excite,
Netscape, LookSmart, AOL, and GO/InfoSeek, a
similar level of performance was obtained. Tables 4
and 5 show the system performance in terms of
precision and recall for each individual search
engine. GO/Infoseek had a poorer recall due to the
fact that some captions were linked to images.

Table 4: Link extraction performance
on the reference set.

 Search engine Precision Recall
1 Yahoo! 100% 85.33%
2 AltaVista 100% 100%
3 Google 100% 85.3%
4 Lycos 100% 95.33%

Table 5: Link extraction performance on

 other search engines.
 Search engine Precision Recall
1 Excite 100% 100%

2 Netscape 100% 100%

3 LookSmart 100% 90%
4 AOL 100% 100%
5 GO/Infoseek 100% 70%

5. Conclusion

This paper presents an object model approach to
extracting information from HTML pages. Our
object model may be considered a simplified version
of wrapper. Its objective is to serve as an easy to use
tool for the user to quickly write rules based on the
structure of some sample web pages to extract the
needed information. While the object model is also
delimiter based, it is geared towards HTML tags and
attributes. Furthermore, its looping construct through
the use of multi-slot extraction allows recursive
search of the relevant information.

Building on this architecture, object models for
different types of web pages can be formulated, say
for company pages, educational institution pages,
online shopping pages, etc. Once object models
spanning the various types of web pages are
formulated, it becomes easy to build an automatic
engine which, when given any web page, can extract

information and present it to the user in the format
desired by the user. A personalized search engine
can also be built by integrating all the object models.

References

[1] S. Soderland, D. Fisher, J. Aseltine and W. Lehnert.

Crystal: Inducing a conceptual dictionary".
Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI-95),
pp1314–1319, 1995.

[2] S. Soderland. Learning to extract text-based
information from the World Wide Web. Proceedings
of Third International Conference on Knowledge
Discovery and DataMining (KDD-97), pp251-254,
1997.

[3] D. Freitag. Information extraction from HTML:
Application of a general machine learning approach.
Proceedings of the 15th Conference on Artificial
Intelligence (AAAI-98), pp517–523, 1998.

[4] M. Craven, S. Slattery, and K. Nigam. First-Order
Learning for Web Mining. Proceedings, 10th
European Conference on Machine Learning, pp250-
255, 1998.

[5] C. Cardie. Empirical methods in information
extraction. AI magazine, pp55-79, 1997.

[6] D. DiPasquo. Using HTML Formatting to Aid in
Natural Language Processing on the World Wide
Web. Senior Honors Thesis, School of Computer
Science, CMU, 1998.

[7] Hannes Marais and Tom Rodeheffer. Automating the
Web with WebL. In Dr. Dobb's Journal, January 1999.

[8] Un Yong Nahm and J. Mooney. Using Information
Extraction to Aid the Discovery of Prediction Rules
from Text Proceedings of the Sixth International
Conference on Knowledge Discovery and Data
Mining (KDD-2000) Workshop on Text Mining,
pages 51 - 58, Boston, MA, August, 2000

[9] Kushmerick,, Weld, and Doorenbos, 1997. Wrapper
induction for information extraction. Proceedings of
the 15th International Conference on Artificial
Intelligence (IJCAI-97) 729–735

[10] C. Hsu and M. Dung, 1998. Generating finite-state
trans-ducers for semi-structured data extraction from
the web. J.of Information Systems 23(8):521–538

[11] Fabien Azavant and Arnaud Sahuguet. The World
Wide Web Wrapper Factory at
http://db.cis.upenn.edu/W4F/doc.html

http://db.cis.upenn.edu/W4F/doc.html

	Abstract
	Introduction
	Object Model and Extraction Rules
	3
	3. News Article Extraction
	Link Extraction
	Figure 2: An object model for news extraction.
	Figure 3: An object model for link extraction. Terms are the keywords for filtering irrelevant links.

	Conclusion
	References

	p: 15
	p2: 16
	p3: 17
	p4: 18

