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Abstract. This paper develops and compares two tableaux-style proof
systems for Peirce algebras. One is a tableau refutation proof system,
the other is a proof system in the style of Rasiowa-Sikorski.

1 Introduction

The purpose of this paper is twofold. First, we develop two proof systems for
the class of Peirce algebras, namely a Rasiowa-Sikorski-style system and tableau
system. Second, we present in a formal way a principle of duality between these
proof systems.

Procedurally, the two systems are very similar. They both use a top-down
approach. Their rules are of the form

X
X1 | . . . | Xn

(1)

where both the numerator X and the denominators X1, . . . , Xn (n ≥ 1) are
finite sets of formulae. Given a formula of a logic, the decomposition rules of the
systems enable us to decompose it into simpler formulae, or the specific rules
enable us to modify a set of formulae. Some sets of formulae have the status of
axioms and are used as closure rules. Applying the rules to a given formula we
form a tree (or tableau) whose nodes consist of finite sets of formulae. We stop
applying the rules to a node of the tree (i.e., we close the corresponding branch)
whenever we eventually obtain an axiomatic set of formulae.

The main difference between the two systems is in their underlying seman-
tics. Rasiowa-Sikorski systems are validity checkers. The rules preserve and re-
flect validity of the sets of formulae which are their premises and conclusions
(i.e. branching is interpreted as conjunction), and the axiomatic sets are valid.
Validity of a set means first-order validity of the disjunction of its formulae (i.e.,
comma is interpreted as disjunction). In order to verify validity of a formula,
we place it at the root of a tree and we apply the rules until all the branches
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close (i.e. we reached a valid set of formulae) or there is an open branch that is
complete. Completeness of a branch means that all the rules that can be applied
have been applied. A formula is valid if there is a proof tree for it, that is, a tree
where all the branches close.

Tableau systems are unsatisfiability checkers. In tableau systems the rules
preserve and reflect unsatisfiability of sets of formulae which are their premises
and conclusions, axiomatic sets are unsatisfiable, and satisfiability of a set means
first order satisfiability of the conjunction of its formulae (i.e., comma is inter-
preted as conjunction). Equivalently, a rule of the form as above is admissible
wheneverX is satisfiable iff either of Xi, (1 ≤ i ≤ n), is satisfiable (i.e. branching
is interpreted as disjunction). In order to verify unsatisfiability of a formula, we
place it at the root of a tree and we apply the rules until all the branches of the
tree close (i.e. we reached an unsatisfiable set of formulae) or there is an open
branch that is complete. As before, completeness of a branch means that all the
rules that can be applied have been applied. A formula is unsatisfiable if there
is a proof tree for it, where all the branches close. Clearly, applying the tableau
proof procedure to the negation of a formula we can check validity of the formula
itself.

We formalise a duality between Rasiowa-Sikorski and tableau systems in
terms of a classification of the rules. It follows that the duality can be observed
at the syntactic level. Clearly, its justification is based on semantic features of
the two systems.

Since Peirce algebras are, in a sense, a join of a Boolean algebra and a relation
algebra, the proof systems presented in the paper inherit many features, on the
one hand, from the proof systems for first-order logic [18, 23, 7] and, on the other
hand, from the proof systems for relation algebras [25, 10, 22, 14, 9, 4, 17, 6, 13].

2 Peirce algebra

Peirce algebra, introduced in Britz [3] and refined in Brink, Britz and Schmidt [2],
formalises the properties of binary relations and sets, and their interactions. Al-
though these can also be formalised in relation algbera (see remarks at the end
of the section), our interest in Peirce algebra is motivated by practical con-
siderations. Peirce algebra provides a natural algebraic framework for various
branches of computer science. Applications include the modelling of program-
ming constructs [2], natural language analysis [19, 20], and the interpretation of
description logics which are used for knowledge representation and reasoning [2,
19]. Also, the algebraic semantics of modal logics and extended modal logics, such
as Boolean modal logic [8] and dynamic modal logic [5] can be studied in the
framework of Peirce algebra. It is not difficult to see that all these applications
can be modelled in relation algebra. Of particular interest to these applications
is the fact that Peirce algebra has more interesting and well-behaved reducts
than relation algebra. For instance, many decidable description logics and ex-
tended modal logics (see [21] for an overview of the latter) correspond directly
to reducts of Peirce algebra. By following the ideas of [17] and exploiting results



in [2], problems in these description or modal logics can of course be translated
into relation algebra statements. However, experiments with the first-order logic
theorem prover mspass [11] show that the performance is superior on the first-
order encodings of Peirce algebra statements than relation algebra statements
corresponding to problems belonging to decidable description and modal logics.
This kind of behaviour is not particular to mspass; it is also expected from other
first-order logic theorem provers. A simple explanation is that generally, in first-
order logic provers, unary literals, which correspond to the Boolean elements,
can be handled much more effectively than binary predicates.

Formally, a Peirce algebra (as defined in Brink et al [2]) is a two-sorted
algebra (B,R, : ,c ) defined equationally by:

1. B = (B,+, ·,−, 0, 1) is a Boolean algebra,
2. R = (R,+, ·,−, 0, 1, ; ,`, e) is a relation algebra [24],
3. : is a mapping R×B −→ B satisfying (r, s ∈ R and a, b ∈ B):

M1 r : (a+ b) = r : a+ r : b
M2 (r + s) : a = r : a+ s :a
M3 r : (s : a) = (r ; s) : a
M4 e :a = a
M5 0 :a = 0
M6 r` : − (r : a) ≤ −a

4. c is a mapping B −→ R satisfying (a ∈ B and r ∈ R):
P1 ac : 1 = a
P2 (r : 1)c = r ; 1

The operation : is the Peirce product of Brink’s Boolean modules [1]; in fact,
M1–M6 are the axioms of Boolean modules which capture the interrelationship
of the operators, except c with the Peirce product. A Peirce algebra is therefore
an extension of a Boolean module (B,R, : ) with an operation c defined by 4.
The operation c is called the left cylindrification operation.

On the set-theoretic level the Peirce product multiplies a binary relation R
with a set A to give the set R :A = {x | ∃y (x, y) ∈ R and y ∈ A}. This gives
an algebraic interpretation of the multi-modal diamond operator. The intuitive
definition of the left cylindrification of a set A is Ac = {(x, y) |x ∈ A}, i.e.
the relation with domain A and the range consisting of all the elements of a
corresponding universe. There are other ways to formalise the relationship from
sets to relations. The test operator of propositional dynamic logic (PDL), domain
restriction and the cross product would be alternatives to the left cylindrification
operator [2].

Peirce algebras are expressively equivalent to relation algebras. This follows
from the observation in Brink et al [2] that the Boolean elements in a Peirce al-
gebra can be modelled as either right ideal elements or identity elements in the
underlying relation algebra. In a Peirce algebra (B,R, : ,c ), the Boolean algebra
of right ideal elements in the underlying relation algebra R and the Boolean
algebra of identity elements is isomorphic to the Boolean algebra B underlying
the Peirce algebra [2]. Peirce algebras therefore inherit various properties of re-
lation algebras. For example, it follows that the class of Peirce algebras is not



representable. This is a consequence of a well-known result for relation algebras
by Lyndon [12]. Consequently, there are properties of binary relations that can-
not be proved in the framework of Peirce algebra. Monk [15] has proved that
the class of representable relation algebras is not finitely axiomatisable by a set
of equational axioms. This means there is no finite equational proof system for
reasoning about the (equational) properties of relations. From an applications
perspective this is a disadvantage. Therefore, in order to express and derive every
property of sets and binary relations we restrict our attention to the reasoning
problem of the elementary theory of Peirce algebra as formalised in Peirce logic
which is defined next. That is, Peirce logic is intended to be the logic of the class
of representable Peirce algebras.

3 Peirce logic

There are different ways of defining Peirce logic. One is just as first-order logic
over one-place or two-place predicates augmented with the operations of Peirce
algebra, cf. Nellas [16]. Our definition is similar in style to the logical formalisa-
tion of Peirce algebras given by de Rijke [5].

The language L of Peirce logic consists of two syntactic types: (i) countably
many Boolean symbols, called atomic Boolean formulae and denoted by Ai, and
(ii) countably many relational symbols, called atomic relational formulae and
denoted by Ri. The logical connectives are the classical connectives, negation,
intersection and falsum (or bottom), here denoted by −, ∩ and 0, respectively, the
standard connectives of relational logics, ; (composition), ` (converse), Id (iden-
tity), the logical version of Peirce product : and left cylindrification c.

An atomic formula defined over the language L is any atomic Boolean or
relational formula in L. The set of Boolean formulae over L is very similar to
Boolean terms in Peirce algebras, similarly for relational formulae. In particular,
the Boolean and relational formulae are defined inductively by the following
BNF production rules.

A,B −→ Ai | 0 | −A | A ∩ B | R :ABoolean formulae:

R,S −→ Ri | 0 | −R | R ∩ S | R ;S | R` | Id | AcRelational formulae:

The symbols 0 and Id are nullary connectives which are interpreted as the empty
set (or relation) and the identity relation, respectively. The set of formulae of
Peirce logic is the smallest set of Boolean and relational formulae defined over L.
We assume two defined connectives: Peirce sum R ‡A = −((−R) : (−A)) and
relational sum R †S = −((−R) ; (−S)).

We now define the semantics of Peirce logic. A model for Peirce logic is a
system of the form M = (U,m), where U is a non-empty set, and m is a meaning
function subject to the following conditions:

1. If A is a Boolean symbol then m(A) ⊆ U and m extends to all the Boolean
formulae as follows, where A and B are arbitrary Boolean formulae over L.

m(0) = ∅ m(−A) = U \m(A) m(A ∩ B) = m(A) ∩m(B)



2. If R is a relational symbol then m(R) ⊆ U × U and m extends to all the
relational formulae as follows, for all relational formulae R and S over L.

m(0) = ∅ m(Id ) = IdU m(R ∩ S) = m(R) ∩m(S)

m(−R) = U × U \m(R) m(R`) = m(R)` m(R ;S) = m(R) ;m(S)

3. If A is a Boolean formula and R a relational formula then

m(R :A) = {x ∈ U | there is a y ∈ m(A) such that (a, b) ∈ m(R)}

m(Ac) = {(x, y) ∈ U × U |x ∈ m(A)}.

A formula F in L is said to be satisfiable in a model M iff one of the following
is true: (i) there is an element s in U such that s ∈ m(F ), if F is a Boolean
formula, and (ii) there is a pair of elements s and t in U such that (s, t) ∈ m(F ),
if F is a relational formula. In these cases we write M, s |= F or M, (s, t) |= F ,
respectively. A formula F in L is valid in a model M iff F is satisfiable with
respect to arbitrary elements in U or pairs of elements in U . In this case we
write M |= F . Observe that if F is valid in M then m(F ) = U , if F is a Boolean
formula, and m(F ) = U ×U , if F is a relational formula. A Peirce logic formula
is said to be satisfiable if there is a model M in which F is satisfiable. A Peirce
logic formula F is said to be valid, and we write |= F , if it is valid in all models of
Peirce logic. Let Γ be a set of Peirce logic formulae. A formula F is semantically
entailed by Γ , written Γ |= F , iff for all models M , whenever M |= G for all
G ∈ Γ then M |= F . In Peirce logic semantic entailment can be reduced to
validity:

Lemma 1. Let Γ ∪ {F} be a set of Peirce logic formulae. Suppose Γ is par-
titioned into two sets Γb and Γr of the Boolean and relational formulae in Γ ,
respectively. Then

Γ |= F iff −((1 ‡ ∩ Γb) ∩ (1 † ∩ Γr † 1) ∩ −F ) is valid

iff (1 ‡ ∩ Γb) ∩ (1 † ∩ Γr † 1) ∩ −F is unsatisfiable.

The proof systems we are going to describe for proving or refuting formulae of
Peirce logic manipulate labelled formulae defined over two extended languages.
One is the language tailored for refutation proofs using tableau and the other
is tailored for proofs of validity in the style Rasiowa-Sikorski. In the tableau
system the labels are constants and in the Rasiowa-Sikorski system the labels
are variables. Therefore, let the tableau language LT be an extension of the
language L with a countable set Con of individual constants, denoted by ai,
and the connective ⊥. Further, let the Rasiowa-Sikorski language LRS be an
extension of L with a countable set Var of individual variables, denoted by xi,
and the connective >. The set of formulae over LT, respectively over LRS, is
defined by

ψ −→ ⊥ | aA | aR bFormulae over LT:

ψ −→ > | xA | xR yFormulae over LRS:



where a and b denote individual constants in Con, and x and y denote individ-
ual variables in Var. Subsequently, we use the notation s and t for either both
constants or both variables, which will be clear from the context. An atomic
(labelled) formula over LT or LRS is a formula of the form sA or sR t are either
both individual constants of variables, in which the formula A or R is primitive,
i.e. is a Boolean or relational symbols or a nullary connective (0 or Id).

Now we define the semantics of formulae over the extended languages LT

and LRS. Assume M = (U,m) is a model defined as above with the meaning
function m extended so that it provides also an interpretation of individual
constants, that is, for each a in Con, m(a) ∈ U . A valuation in M is a mapping
v from the set of variables and constants of the language to U such that if a is a
constant then v(a) = m(a). The satisfiability of formulae in a model M = (U,m)
by a valuation v in M is defined by (s and t either both denote constants or
variables):

M, v |= > M, v 6|= ⊥

M, v |= sA iff v(s) ∈ m(A) for any Boolean formula A

M, v |= sR t iff (v(s), v(t)) ∈ m(R) for any relational formula R.

Let ψ be any formula over LT (or LRS). ψ is satisfiable whenever there is a model
M and a valuation v in M such that M, v |= ψ. ψ is said to be unsatisfiable
whenever it is not satisfiable. Validity of a formula in a model is defined by:
A formula ψ is valid in a model M whenever M, v |= ψ for every v in M . A
formula is valid whenever it is true in all the models defined over the extended
languages.

Lemma 2. Let x and y be variables in Var, and let a and b be constants in Con.
(i) If F is a Boolean formula of Peirce logic then: F is valid iff xF is valid iff
¬F is unsatisfiable iff aF is unsatisfiable. (ii) If F is a relational formula of
Peirce logic then: F is valid iff xF y is valid iff ¬F is unsatisfiable iff aF b is
unsatisfiable.

In the definition of the inference rules we will be using the symbol ∼ which
is defined as follows: If F denotes a Boolean or relational formula then ∼F
denotes G, if F = ¬G, and ¬F otherwise.

4 A tableau refutation system

A tableau is a finitely branching tree whose nodes are sets of formulae. Given a
formula F of Peirce logic to be tested for satisfiability the root node is the set
{aF}, when F is a Boolean formula and {aF b}, when F is a relational formula.
Successor nodes are constructed in accordance with a set of expansion rules.
An expansion rule has the form (1), where X,Xi are sets of formulae over LT

(1 ≤ i ≤ n). The formulae in X are called premises and the formulae in Xi are
called conclusions.



Decomposition rules:

(∩)
aA ∩ B

aA, a B
(−∩)

a−(A ∩ B)

a∼A | a∼B
(−−)

a−− A

aA

( : )
a R : A

aR c, c A
where c is a new constant

(− : )
a−(R : A)

a∼R c | c∼A
where c is any constant

(∩)
a R ∩ S b

aR b, a S b
(−∩)

a−(R ∩ S) b

a∼R b | a∼S b
(−−)

a−− R b

aR b

(`)
aR` b

bR a
(−`)

a−(R`) b

b∼R a

(c)
aAc b

a A
(−c)

a−(Ac) b

a∼A

( ; )
a R ; S b

aR c, c S b
where c is a new constant

(− ; )
a−(R ; S) b

a∼R c | c∼S b
where c is any constant

Specific rules:

(sym)
a Id b

b Id a

(id1)
b A, a Id b

a A
(id2)

bR c, a Id b

aR c
(id3)

c R a, a Id b

c R b

Closure rules:

(cl1)
a A, a−A

⊥
(cl2)

a 0

⊥

(cl3)
a R b, a−R b

⊥
(cl4)

a 0 b

⊥
(refl)

a−Id a

⊥

Fig. 1. Tableau rules for Peirce logic.

Let T be the calculus for Peirce logic defined by the rules of Figure 1. The
specific rules express properties of the identity relation. (sym) expresses the
symmetry of Id and (id1)–(id3) express that Id :A ⊆ A, R ; Id ⊆ R and Id ;R ⊆
R. Reflexivity of Id is ensured by the reflexivity rule (refl), classified here as
a closure rule. The other closure rules reduce elementary contradictions to ⊥.
(Observe that the transitivity rule for identity is redundant in T because it is
an instance of both identity rules (id2) and (id3).)

Concerning the rules for negated main connectives, consider for example
the rule (−∩). By the use of ∼ (defined above), we have chosen to elimi-
nate immediately the double negations normally introduced for a formula like



a−(−A ∩ B), where one of the conjuncts is a negated formula, had we used
the rule a−(A ∩B) /a−A | a−B instead. This does not make the (−−) rules
superfluous however.

A tableau derivation from a set N of formulae over LT is a finitely branching,
ordered tree T with root N and nodes which are sets of LT-formulae. The tree
is constructed by applications of the expansion rules to the leaves. Let N be a
leaf node in a (partially constructed) tableau derivation. A rule (1) is applicable
to N , if N contains formulae in the form X . Then an application of the rule
creates a new tree T ′ which is the same as T except that the node N has n
successor nodes Ni which are extensions of N with the formulae in Xi. That
is, Ni = N ∪ Xi (1 ≤ i ≤ n). It is assumed that on a branch in any tableau
derivation no instance of a rule is applied twice to the same instance of the
numerator.

For each rule application to a node N if the following is true, then the rule
is said to be (satisfiability) admissible.

∃a (
∧
X ∧

∧
N) is satisfiable iff

∨
i ∃a (

∧
Xi ∧

∧
N) is satisfiable,

where a denotes the sequence of constants occurring in the corresponding matrix.

Lemma 3. Each rule in T is (satisfiability) admissible.

That is, in the tableau system (as usual), sets of formulae are interpreted con-
junctively and the vertical bar is interpreted disjunctively.

Any path N0, N1, . . . in a derivation T , where N0 denotes the root node of
T , is called a closed branch in T iff the set

⋃
j≥0

Nj contains ⊥ (a contradiction
has occurred), otherwise it is called an open branch. We call a branch B in a
derivation tree complete (with respect to T) iff no new successor nodes can be
added to the endpoint of B by T, otherwise it is called an incomplete branch.
A derivation T is closed iff every path N(= N0), N1, . . . in it is a closed branch,
otherwise it is called an open derivation. A closed derivation tree is also called
a refutation (tree).

A derivation T from N is called fair iff for any path N(= N0), N1, . . . in
T , with limit N∞ =

⋃
j≥0

Nj , it is the case that each formula ψ which can
be deduced from premises in N∞ is contained in some Nj . Intuitively, fairness
means that no possible application of an inference rule is delayed indefinitely. It
also means that the γ rules, i.e. the rules (− : ) and (− ; ), are applied infinitely
often. For a finite complete branch N(= N0), N1, . . . Nn, the limit N∞ is equal
to Nn.

Theorem 1 (Soundness and completeness of tableau). Let T be a fair T

derivation from a set N of formulae in LT. Then: (i) If N(= N0), N1, . . . is a
path with limit N∞, then N∞ is closed under the rules of T. (ii) N is satisfiable
iff there exists a path in T with limit N∞ such that N∞ is satisfiable. (iii) N is
unsatisfiable iff for every path N(= N0), N1, . . . the limit N∞ contains ⊥.

This result follows immediately from the corresponding result for ground tableau
of first-order logic, cf. Fitting [7] for a cut-free tableau calculus and a complete-
ness proof. The reason is that the rules of T mirror the rules of the first-order logic



ground tableau calculus (cf. Nellas [16]). By ground first-order logic tableau we
mean a Smullyan-style tableau calculus [23], as opposed to free-variable tableau.

Corollary 1. A Peirce logic formula is unsatisfiable iff the rules of T can be
used to construct a closed tableau.

The decomposition rules very clearly reflect the semantics of the top most
connective in the premises. Because the decomposition rules are based on se-
mantic equivalences, the following is immediate.

Lemma 4. The decomposition rules of T are invertible.

Recall, a rule of the form (1) is invertible, if the following is satisfied: there is a
closed derivation for X iff there are closed derivations for each Xi (1 ≤ i ≤ n).

There are alternative ways of capturing the properties of the identity relation
in the calculus. In the presence of (sym), the following rule combines the rules
(id1)–(id3) and can be used instead.

(Id )
ψ, a Id b
ψ[b]λ

if ψ|λ = a

This rule corresponds to the familiar substitution axiom of equality in sentence
tableau for first-order logic [7]. If the formula a Id b is in a leaf node then the
substitution rule generates the formula ψ, in which the occurrence of the constant
a at position λ is replaced by b.

5 A Rasiowa-Sikorski proof system

Now we turn to a different style of proof system. Rasiowa-Sikorski proof systems
aim to prove validity. Given a candidate formula F they aim to prove its validity
or, if it is not valid, the aim is to construct a counter-model (i.e. a model for
the complement of the candidate formula). Starting with {xF} (or {xF y}),
this is done by systematic case analysis until fundamental validities are found.
Rasiowa-Sikorski expansion rules have the same form (1) as for tableau and are
also applied top-down. The definition of a Rasiowa-Sikorski derivations, and its
construction by application of rules, is the same as a tableau derivation with the
difference that the language is LRS instead of LT. Crucially the interpretation
of the rules is different. As above, X,Xi denote sets of formulae, but different
from above sets of formulae are interpreted as disjunctions of formulae, whereas
branching is interpreted conjunctively. A rule is (validity) admissible, if for any
application of the rule to a node N ,

∀x (
∨
X ∨

∨
N) is valid iff

∧
i ∀x (

∨
Xi ∨

∨
N) is valid,

where x is the sequence of variables occurring in the corresponding matrix.
Any path N0, N1, . . . in a Rasiowa-Sikorski derivation T , where N0 denotes

the root node of T , is called a closed branch in T iff the set
⋃

j≥0
Nj contains >



(an axiomatic set was found), otherwise it is called an open branch. A Rasiowa-
Sikorski derivation T is closed iff every path from the root in it is a closed branch,
otherwise it is called an open derivation. A closed Rasiowa-Sikorski derivation
is also called a proof (tree). The concepts of (in)complete branches, fairness and
invertible rules are the same as for tableau.

Let RS be the Rasiowa-Sikorski calculus for Peirce logic defined by the rules
of Figure 2. As for tableau we distinguish between three kinds of deduction rules:
decomposition rules, specific rules for identity and closure rules. The premises
of the closure rules are commonly referred to as axiomatic sets.

Lemma 5. Each rule in RS is (validity) admissible.

Lemma 6. Each decomposition rule in RS is invertible.

Theorem 2 (Soundness and completeness of Rasiowa-Sikorski). Let T
be a fair RS derivation from a set N of formulae in LRS. Then: (i) If N(=
N0), N1, . . . is a path with limit N∞, then N∞ is closed under the rules of RS.
(ii) N is valid iff there exists a path in T with limit N∞ such that N∞ is valid.
(iii) N is valid iff for every path N(= N0), N1, . . . the limit N∞ contains >.

Corollary 2. A Peirce logic formula is valid iff the rules of RS can be used to
construct a closed derivation tree.

We conclude this section with remarks relating our presentation to presenta-
tions of Rasiowa-Sikorski systems usually found in the literature. We assume the
rules are extension rules similar as for tableau which ignore the issue of repetition
by assuming all main premises are retained during an inference step. Another
difference is that we use sets instead of sequences of formulae. These differences
are logically insignificant, however, and largely a matter of taste, although when
developing an implementation of the calculus, the differences will need to be
taken into account. Our presentation was chosen for reasons of uniformity.

6 Duality

The two systems presented are clearly dual to each other. This section is a formal
discussion of this relationship between T and RS.

Suppose R1 and R2 are two expansion rules of the form (1). If R2 is obtained
from R1 (or vice versa) by interchanging the logical connectives and symbols in
accordance with the tables in Figure 3, then R2 is the dual rule to R1. I.e. all
occurrences of F1∩F2 are replaced with −(F1∩F2), all occurrences of −(F1∩F2)
are replaced with F1 ∩ F2, etc. Notice we assume that ∧ and ∨ refer to meta-
level conjunction and disjunction, i.e. ‘,’ and ‘|’ for tableau and ‘|’ and ‘,’ for
Rasiowa-Sikorski. Thus although the form of dual rules is the same the meta-
level interpretation is interchanged.

Lemma 7. The pair of rules in T and RS in each column of the table in Figure 4
are dual rules.



Decomposition rules:

(∩)
xA ∩ B

xA | xB
(−∩)

x−(A ∩ B)

x∼A, x∼B
(−−)

x−− A

xA

( : )
x R : A

xR z | z A
where z is any variable

(− : )
x−(R : A)

x∼R z, z ∼A
where z is a new variable

(∩)
xR ∩ S y

xR y | xS y
(−∩)

x−(R ∩ S) y

x∼R y, x∼S y
(−−)

x−− R y

xR y

(`)
x R` y

y R x
(−`)

x−(R`) y

y∼R x

(c)
x Ac y

xA
(−c)

x−(Ac) y

x∼A

( ; )
x R ; S y

xR z | z S y
where z is any variable

(− ; )
x−(R ; S) y

x∼R z, z ∼S y
where z is new variable

Specific rules:

(sym)
x−Id y

y−Id x

(id1)
y−A, x−Id y

x−A
(id2)

y−R z, x−Id y

x−R z
(id3)

z−R x, x−Id y

z −R y

Closure rules:

(cl1)
xA, x−A

>
(cl2)

x−0

>

(cl3)
xR y, x−R y

>
(cl4)

x−0 y

>
(refl)

x Id x

>

Fig. 2. Rasiowa-Sikorski rules for Peirce logic.



∩ −∩ : − : ` −` c −c ; − ; Id −Id A −A R −R 0 −0

−∩ ∩ − : : −` ` −c c − ; ; −Id Id −A A −R R −0 0

⊥ > x, y, z a, b, c

> ⊥ a, b, c x, y, z

∧ ∨

∨ ∧

Fig. 3. Dual connectives and symbols

T ∩ −∩ : − : ` −` c −c ; − ; sym idi clj refl

RS −∩ ∩ − : : −` ` −c c − ; ; sym idi clj refl

Fig. 4. Dual rules (1 ≤ i ≤ 3, 1 ≤ j ≤ 4)

Note the double negation rules are the only rules which do not appear in Figure 4.

Lemma 8. Let R be any satisfiability admissible rule in T. Then the dual of R
is a validity admissible rule in RS. Let R be any validity admissible rule in RS.
Then the dual of R is a satisfiability admissible rule in T.

Theorem 3. Let F be a Peirce logic formula. Then, starting with x∼F (or
x∼F y), every inference step I (i.e. every rule application) in a T derivation for
aF (or aF b) can be mimicked in RS by I itself, when I involves the application
of (−−), or it can be mimicked by the application of the dual rule. Similarly,
every RS inference step from xF (or xF y) can be mimicked by a corresponding
inference step in T starting from a∼F (or a∼F b).

It follows that the systems T and RS step-wise simulate each other in a dual
sense. They also p-simulate each other both with respect to derivations and
search in a dual sense. See Schmidt and Hustadt [21, §8] for definitions of the
notions of step-wise simulation and p-simulation.

It also follows that any prover for one of the systems can be used as a prover
for the other system; users only need to keep in mind the dual interpretation
of the formulae and rules. Clearly, optimisations compatible with one system
will also be compatible in the dual form with the other system. For example, the
tableau system admits that the γ rules can be restricted to constants occurring on
the current branch (and means that γ rules are not necessarily applied infinitely
often on a branch). This property carries over from ground tableau for first-order
logic with equality, cf. [7]. By duality this signature restriction of the γ rules is
compatible with RS.



7 Concluding remarks

We have presented two proof systems for Peirce logic. Both are tableaux-style
proof systems, with the difference that one is a refutation calculus and the other
is a calculus for proving validities of relations and sets. It is not difficult to see
that the duality between tableau and Rasiowa-Sikorski proof systems generalises
quite naturally to other logics, especially first-order logic.

An implementation of the tableau calculus for Peirce logic was developed by
Nellas [16]. By the duality result shown in this paper it can also be used as a
prover for the Rasiowa-Sikorski calculus for Peirce logic.

Can the presented calculi be used to prove validities of Peirce algebra? We
know that Maddux’s sequent calculus of relational logic can be used to prove
validities in relation algebra [14]. Maddux proved that an equation about re-
lations is true in every relation algebra iff its three-variable translation has a
four-variable proof in first-order logic. Because of the known connection between
sequent calculi and tableau calculi, we expect this result to carry over to Peirce
algebra and proofs or refutations constructed by the systems presented in this
paper. This would provide a method to prove validities in Peirce algebra by con-
sidering the validity, or satisfiability, of an equation (represented as a suitable
Peirce logic formula) and the proof, or refutation, of it in one of our systems. If
the proof of a Peirce logic formula corresponding to a validity in Peirce algebra
uses at most four variables then the equation would be valid in every Peirce
algebra. (Dually for the refutation of a Peirce logic formula.)
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