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Abstract. In this paper we define a new clausal class, called BU , which
can be decided by hyperresolution with splitting. We also consider the
model generation problem for BU and show that hyperresolution plus
splitting can also be used as a Herbrand model generation procedure for
BU and, furthermore, that the addition of a local minimality test allows
us to generate only minimal Herbrand models for clause sets in BU . In
addition, we investigate the relationship of BU to other solvable classes.

1 Introduction

In recent work [13, 14] we have considered the fragment GF1− of first-order logic
which was introduced by Lutz, Sattler, and Tobies [21]. GF1− is a restriction
of the guarded fragment which incorporates a variety of modal and description
logics via standard or non-standard translations, and can be seen as a generalisa-
tion of these logics. In contrast to the guarded fragment [1], GF1− allows for the
development of a space-efficient decision procedure. Under the assumption that
either (i) there is a bound on the arity of predicate symbols in GF1− formulae,
or (ii) that each subformula of a GF1− formula has a bounded number of free
variables, the satisfiability problem of GF1− is PSPACE-complete [21], while
under identical assumptions the satisfiability problem of the guarded fragment
is EXPTIME-complete [15]. Thus, GF1− has the same complexity as the modal
and description logics it generalises.

In [13] we have shown that hyperresolution plus splitting provides a decision
procedure for GF1−. One of the interesting features of GF1− is that it is one of
the few solvable classes where, during the deduction by the resolution decision
procedure, derived clauses can contain terms of greater depth than the clauses in
the initial set of clauses. In [14] we have shown that a modification of the main
procedure of a standard saturation based theorem prover with splitting can pro-
vide a polynomial space decision procedure for GF1−. We also describe several
solutions to the problem of generating minimal Herbrand models for GF1−.

? We thank the referees for helpful comments and suggestions. The work is supported
by research grants GR/M36700 and GR/R92035 from the EPSRC, UK.
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In [13, 14] we have used structural transformation (or definitional form trans-
formation, cf. e.g. [3, 18]), to transform GF1− formulae into clausal form. While
it is straightforward to give a schematic characterisation of the resulting sets of
clauses, it is much more difficult to state the conditions which an arbitrary set of
clauses needs to satisfy so that it shares most or all the properties of the clauses
sets we obtain from the definitional form transformation of GF1− formulae.

In this paper we define a new clausal class BU which generalises the set of all
clause sets we can obtain from GF1− via the definitional form transformation.
BU is defined such that hyperresolution plus splitting is still a decision procedure.
Since hyperresolution is implemented in many state-of-the-art theorem provers,
e.g. Otter, SPASS, and Vampire, this gives a practical decision procedure for
the class. We also show that if an input clause set from BU is not refuted, an
adequate representation of a model and of a minimal model of the clausal class
can be extracted from the information produced by the prover.

A main motivation for studying classes like GF1− and BU is that a variety of
expressive modal and description logics can be embedded into them. Expressive
modal and description logics have found applications in such varied areas as,
for example, verification, program analysis, knowledge representation, deductive
data bases and the semantic web. However, there are a number of alternative
solvable classes for which the same is true. We will discuss the relationship of
BU to some of these alternative classes.

The paper is organised as follows. Section 2 defines the notation used, some
basic concepts and a hyperresolution calculus with splitting. The clausal class
BU is defined in Section 3, and the relationship of BU to other solvable classes
is discussed in Section 4. The applicability of the hyperresolution calculus as
a decision procedure for the class, model building by hyperresolution and in
particular, minimal model building are investigated in Sections 5 and 6. The
final section is the Conclusion.

2 Fundamentals and hyperresolution

Notation. The notational convention is as follows. We use the symbols x, y, z
for first-order variables, s, t, u for terms, a, b for constants, f , g, h for functions,
P , Q for predicate symbols, A for atoms, L for literals, C for clauses, ϕ, φ, ψ,
for formulae, and N for sets of clauses.

An over-line indicates a sequence. An i-sequence is a sequence with i elements.
If s and t are two sequences of terms and X is a set of terms, then the notation
s ⊆ t (s ⊆ X) means that every term in s also occurs in t (X). By definition,
s = t (s = X) iff s ⊆ t and t ⊆ s (s ⊆ X and every term in X occurs in s). The
union of the terms in s and t is denoted by s ∪ t. Given a sequence s of terms,
fs(ui) denotes a sequence of terms of the form f1(u1), . . . , fk(uk), where ui ⊆ s

for every 1 ≤ i ≤ k.

Terms, literals, clauses and orderings. The term depth dp(t) of a term t, is
inductively defined as follows. (i) If t is a variable or a constant, then dp(t) = 1.
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(ii) If t = f(t1, . . . , tn), then dp(t) = 1 + max
{

dp(ti) | 1 ≤ i ≤ n
}

. The term
depth of a literal is defined by the maximal term depth of its arguments, and
the term depth of a clause is defined by the maximal term-depth of all literals
in it.

A literal is an atomic formula A (a positive literal) or the negation ¬A of an
atomic formula A (a negative literal). We regard a clause as a multiset of literals
and consider two clauses C and D to be identical if C can be obtained from D

by variable renaming. A multiset over a set L is a mapping C from L to the
natural numbers. We write L ∈ C if C(L) > 0 for a literal L. We use ⊥ to denote
the empty clause. A positive (negative) clause contains only positive (negative)
literals. The positive (negative) part of a clause is the subclause of all positive
(negative) literals. A split component of a clause C ∨ D is a subclause C such
that C and D do not have any variables in common, i.e. are variable disjoint. A
maximally split (or variable indecomposable) clause cannot be partitioned (or
split) into subclauses which do not share variables.

A clause C is said to be range restricted iff the set of variables in the positive
part of C is a subset of the set of variables of the negative part of C. A clause
set is range restricted iff it contains only range restricted clauses. This means
that a positive clause is range restricted only if it is a ground clause.

A strict partial ordering � on a set L (i.e. an irreflexive and transitive rela-
tion) can be extended to an ordering �mul on (finite) multisets over L as follows:
C �mul D if (i) C 6= D and (ii) whenever D(x) > C(x) then C(y) > D(y), for
some y � x. �mul is called the multiset extension of �.

Given an ordering � on literals we define a maximal literal in a clause in the
standard way: A literal L in a clause C is maximal in C, if there is no literal
L′ in C, for which L′ � L. A literal L is strictly maximal in C if it is the only
maximal literal in C.

A term, an atom, a literal or a clause is called functional if it contains a
constant or a function symbol, and non-functional, otherwise.

A hyperresolution calculus with splitting. We denote the calculus by R
hyp. Infer-

ences are computed with the following expansion rules:

Deduce:
N

N ∪ {C}
where C is a resolvent or a factor.

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}
where C1 and C2 are variable disjoint.

The resolution and factoring inference rules are:

Hyperresolution:
C1 ∨ A1 . . . Cn ∨ An ¬An+1 ∨ . . . ∨ ¬A2n ∨D

(C1 ∨ . . . ∨ Cn ∨D)σ
where (i) σ is the most general unifier such that Aiσ = An+iσ for every i,
1 ≤ i ≤ n, and (ii) Ci ∨ Ai and D are positive clauses, for every i, 1 ≤ i ≤ n.
The rightmost premise in the rule is referred to as the negative premise and all
other premises are referred to as positive premises.

Factoring:
C ∨A1 ∨ A2

(C ∨ A1)σ
where σ is the most general unifier of A1 and A2.
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A derivation in R
hyp from a set of clauses N is a finitely branching, ordered

tree T with root N and nodes which are sets of clauses. The tree is constructed
by applications of the expansion rules to the leaves. We assume that no hyper-
resolution or factoring inference is computed twice on the same branch of the
derivation. Any path N(= N0), N1, . . . in a derivation T is called a closed branch
in T iff the clause set

⋃

j≥0Nj contains the empty clause, otherwise it is called
an open branch. We call a branch B in a derivation tree complete (with respect
to R

hyp) iff no new successor nodes can be added to the endpoint of B by R
hyp,

otherwise it is called an incomplete branch. A derivation T is a refutation iff
every path N(= N0), N1, . . . in it is a closed branch, otherwise it is called an
open derivation.

In general, the calculus R
hyp can be enhanced with standard simplification

rules such as tautology deletion and subsumption deletion, in fact, it can be en-
hanced by any simplification rules which are compatible with a general notion of
redundancy [4, 5]. A set N of clauses is saturated up to redundancy with respect
to a particular refinement of resolution if the conclusion of every inference from
non-redundant premises in N is either contained in N , or else is redundant in N .
A derivation T from N is called fair if for any path N(= N0), N1, . . . in T , with
limit N∞ =

⋃

j≥0

⋂

k≥j Nk, it is the case that each clause C which can be de-
duced from non-redundant premises in N∞ is contained in some Nj . Intuitively,
fairness means that no non-redundant inferences are delayed indefinitely. For a
finite complete branch N(= N0), N1, . . . Nn, the limit N∞ is equal to Nn.

Theorem 1 ([5]). Let T be a fair R
hyp derivation from a set N of clauses.

Then: (i) If N(= N0), N1, . . . is a path with limit N∞, then N∞ is saturated (up
to redundancy). (ii) N is satisfiable if and only if there exists a path in T with
limit N∞ such that N∞ is satisfiable. (iii) N is unsatisfiable if and only if for
every path N(= N0), N1, . . . the clause set

⋃

j≥0 Nj contains the empty clause.

3 The clausal class BU

The language of BU is that of first-order clausal logic. Additionally, each predi-
cate symbol P is uniquely associated with a pair (i, j) of non-negative integers,
such that if the arity of P is n then i+ j = n. The pair is called the grouping of
the predicate symbol. Sometimes the grouping (i, j) of a predicate symbol P will
be made explicit by writing P (i,j). The notion of grouping is extended to literals
in the following way. A literal L is said to satisfy the grouping condition with
respect to the sequences x and s, if L = (¬)P (i,j)(x, s) or L = (¬)P (j,i)(s, x),
where x is an i-sequence of variables, and s is either a j-sequence of variables
disjoint from x or a j-sequence of terms of the form f(z) where z ⊆ x, and
x is non-empty. Repetitions of variables and terms in any of the sequences are
allowed.

Furthermore, an acyclic relation �d, called an acyclic dependency relation, is
defined over the predicate symbols. Let �+

d be the transitive closure of �d. Then
�+

d is an ordering on predicate symbols. This ordering extends to atoms, literals
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and clauses by the following definitions. Given two literals L1 = (¬)P1(s) and
L2 = (¬)P2(t), L1 �D L2 iff P1 �+

d P2. The multiset extension of the ordering
�D, also denoted by �D, defines an ordering on ground clauses. The acyclicity
of �d implies that �D is also acyclic.

Given a finite signature Σ such that (i) any predicate symbol has a unique
grouping, and (ii) there is an acyclic dependency relationship �d on the predicate
symbols in Σ, we define the class BU of clausal sets over Σ as follows.

A clausal set N belongs to BU if any clause C in N satisfies one of the three
conditions below as well as the following. If C is a non-ground and non-positive
clause then C is required to contain a strictly �D-maximal literal, which is
negative and non-functional. This literal is called the main literal of the clause.
The predicate symbol P of the main literal must either have the grouping (0, i)
or (i, 0), where i is the arity of P .

Condition 1: C is a non-positive, non-ground and non-functional clause and
the following is true.
(a) The union of the variables of the negative part can be partitioned into

two disjoint subsets X and Y , at least one of which is non-empty.
(b) For every literal L in C, either the variables of L are (i) subsets of X , or

(ii) subsets of Y , or (iii) there are non-empty sequences x, y, such that
x ⊆ X , y ⊆ Y and L satisfies the grouping condition with respect to x
and y.

(c) Either the main literal contains all the variables of the clause, or it
contains all the variables from one of the sets X and Y , and there is a
negative literal L whose arguments satisfy (b.iii) and which contains all
the variables from Y if the main literal contains all the variables from X ,
or all the variables from X if the main literal contains all the variables
from Y .

Condition 2: C is a non-positive and non-ground functional clause and the
following is true.
(a) The main literal of C contains all the variables of C.
(b) Every other literal L in C satisfies the grouping condition with respect

to two disjoint sequences of variables x and y, or with respect to two
sequences x and fx(ui), where x is a sequence of variables and fx(ui) is
a sequence of terms fi(ui) such that ui ⊆ x.

Condition 3: C is a positive ground unit clause, its arguments are constants
and its predicate symbol has grouping (0, i) or (i, 0).

Consider the following clauses.

1. ¬P (x, y) ∨ ¬Q(x) ∨ ¬R(x, x, y, z) 5. ¬P (x, y) ∨Q(x, x, y, f(x, y))

2. ¬P (x, y, z) ∨ ¬Q(y, x) ∨ R(x, x, y, z) 6. ¬P (x, y) ∨Q(x, x, y, g(y))

3. ¬P (x, y) ∨ ¬Q(y, z) ∨ ¬R(x, x, y, z) 7. ¬P (x, y) ∨Q(x, x, g(y), y)

4. ¬P (x, y) ∨ ¬Q(y, z) ∨ ¬R(x, y, z, x) 8. ¬P (x) ∨ P (f(x))

It follows from the definition of BU that all non-positive clauses must contain a
covering negative literal which contains all the variables of the clause. This neg-
ative literal can be the main literal, or it is a literal satisfying Condition 1.(b.iii).
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In the latter case the clause must contain another negative literal which is the
main literal. In Clause 1 the literal ¬R(x, x, y, z) is the covering negative literal.
If R has the grouping (4, 0) or (0, 4) and R is maximal then it is the main lit-
eral. Another possibility is that R has the grouping (3, 1) and ¬P (x, y) is the
main literal (hence P �D R,Q). ¬Q(x) cannot be the main literal. In Clause 2
there is one covering negative literal, namely ¬P (x, y, z), which must also be the
main literal. Hence P is maximal and has grouping (3, 0) or (0, 3). The grouping
of Q and R are immaterial; and the signs of the Q and R literals are also im-
material. But observe that in Clause 3, if ¬P (x, y) is the main literal then the
grouping condition must hold for the Q and R literals, i.e. the grouping of Q
and R must be (1, 1) and (3, 1), respectively. In Clause 4, if ¬P (x, y) is the main
literal then the sequence (x, y, z, x) cannot be divided into disjoint non-empty
subsequences, because the variable x would appear in both of the subsequences.
Clauses 5 and 6 are examples of clauses which satisfy Condition 2, provided P

has grouping (2, 0) or (0, 2), Q has grouping (3, 1), and P �D Q. Clause 7 on
the other hand violates Condition 2 because the Q literal does not satisfy the
grouping condition. Clause 8 violates Condition 2, because it does not contain
a strictly maximal negative literal, with respect to any acyclic dependency re-
lation. In general, this excludes clauses where the predicate symbol of the main
literal occurs both positively and negatively. Thus the transitivity clause and
the symmetry clause do not belong to any clausal set in BU . Also the reflex-
ivity clause and the seriality clause are excluded from BU clause sets, because
every non-ground clause must contain a negative main literal. Thus, other than
irreflexivity ¬R(x, x), none of the standard properties of relations except forms
of relational inclusion (e.g. ¬R(x, y) ∨ S(y, x)) can be formulated in BU . We
comment on this ‘apparent’ limitation in the next section.

4 Relationships to other solvable classes

One of the main motivations for studying BU is that a variety of modal and
description logics can be embedded into it. Simple examples are the basic multi-
modal logic K(m) and the corresponding description logic ALC [24]. For example,
if we translate formulae of K(m) into first-order logic and transform the resulting
formulae into clausal form using structural transformation, then the clauses we
obtain take one of the following forms [10, 17, 18].

Q1(a) ¬Q1(x) ∨Q2(x) ¬Q1(x) ∨Q2(x) ∨Q3(x)
¬Q1(x) ∨ ¬R(x, y) ∨Q2(y) ¬Q1(x) ∨ R(x, f(x)) ¬Q1(x) ∨Q2(f(x))

Furthermore, we can always define an acyclic dependency relation on the predi-
cate symbols in these clauses and associate groupings (0, 1) and (1, 1) with every
unary and binary predicate symbol, respectively, such that the clause set satis-
fies the conditions for clause sets in BU . Much more expressive logics like the
multi-modal logic K(m)(∩,∪,`) which is defined over families of relations closed
under intersection, union, and converse, and the corresponding extension of ALC
can also be embedded into BU .
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We have already mentioned in the previous section that clauses express-
ing most of the standard properties of binary relations like reflexivity, seriality,
symmetry, and transitivity cannot occur in BU clause sets. Consequently, the
standard translation of formulae in modal logics extending K(m) by one or more
of the axiom schemata T (reflexivity), D (seriality), B (symmetry) and 4 (tran-
sitivity) do not result in BU clause sets. However, for the extensions of K(m) by
any combination of the axiom schemata T, D, and B, a non-standard translation
proposed by De Nivelle [9] exists which together with structural transformation
allows us to translate formulae of these modal logics into BU in a satisfiability
equivalence preserving way. Although this non-standard translation also provides
an alternative approach for the modal logic K4(m), the resulting clause sets are
still not in BU , since it is in general impossible to define the required acyclic
dependency relationship. This negative result is not surprising, since tableau de-
cision procedures for K4(m) require an auxiliary loop checking mechanism besides
the tableau expansion rules to ensure termination.

Another example of a reasoning problem in description logics that can be
solved by embedding into the class BU is the satisfiability problem of ALC
concepts with respect to acyclic TBoxes. This problem has recently been shown
to be PSPACE-complete [20]. Here the acyclicity of a TBox T allows us to
define an acyclic dependency relation on predicate symbols occurring in the
translation of T such that the conditions for BU clause sets are satisfied. Note
that the standard translation of T , which contains closed first-order formulae,
is not in GF1−.

There are a number of other fragments of first-order logic and clausal classes
which would cover the same modal and description logics, including the guarded
fragment [1], the dual of Maslov’s class K [16], and fluted logic [23]. The clausal
classes corresponding to the guarded fragment [12] and the dual of Maslov’s class
K contain only clause sets where every non-constant functional term t contains
all the variables of the clause C it occurs in. Clause 6 on page 5 illustrates that
this is not the case for BU clause sets. Fluted logic requires a certain ordering
on variable occurrences which means that a clause like ¬R(x, y)∨Q(y, x) is not
fluted, but could occur in a BU clause set. On the other hand, we can also give
examples for each of these three classes showing that BU subsumes neither of
them. Thus, all four classes are distinct from each other. However, BU is the
only class among them for which a hyperresolution decision procedure is known.

Other syntactically defined clausal classes which are also decidable by hy-
perresolution include the classes PVD and KPOD [11, 19]. For PVD the syn-
tactic restrictions on the class imply that during a derivation by hyperreso-
lution the depth of a derived clause does not exceed the depth of its par-
ent clauses. An example of a clause set which is in BU but not in PVD is
{¬Q(x)∨¬R(x, y),¬P (x)∨R(x, f(x))}, while {¬R(x, y)∨R(y, x)} is an exam-
ple of a PVD clause set which is not in BU . For KPOD, like BU , the term depth
of derived clauses can increase during the derivation. Essential for KPOD is the
restriction of clauses to Krom form (|C| ≤ 2), while BU has no restriction on
the number of literals in a clause. On the other hand, KPOD does not require
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an acyclic dependency relation on predicate symbols or any grouping restriction.
Therefore, BU , PVD, and KPOD are all distinct from each other.

5 Deciding BU

To decide BU we use the calculus R
hyp, described in Section 2, which consists

of hyperresolution, factoring, and splitting (though factoring is optional). We
assume in the following that a hyperresolution inference cannot use a clause C
as a positive premise if the splitting rule or, if present, the factoring rule can be
applied to C. As usual we make a minimal assumption that no inference rule is
applied twice to the same premises during the derivation.

For the classes of clause sets we consider in the present paper the positive
premises are always ground, in particular, because we use splitting, the positive
premises are always ground unit clauses, and the conclusions are always positive
ground clauses. Crucial for termination is that the unit clauses are always ei-
ther uni-node or bi-node. These notions are adapted and extended from similar
notions in [21] and [13, 14].

A sequence t = (t1, . . . , tn) (or multiset {t1, . . . , tn}) of ground terms is called
a uni-node iff all terms in the sequence (or multiset) have the same depth, that
is, dp(ti) = dp(tj) for every 1 ≤ i, j ≤ n. If t and s are uni-nodes and t ⊆ s, we
say t is a uni-node defined over s. A sequence t = (t1, . . . , tm) (or multiset) is
called a direct successor of a sequence s = (s1, . . . , sn) (or multiset) iff for each
ti, 1 ≤ i ≤ m, there is a function symbol f such that ti is of the form f(u),
where u ⊆ s, and u is non-empty. A sequence (or multiset) of ground terms is
called a bi-node (over {X1, X2}) iff it can be presented as a union X1 ∪ X2 of
two non-empty disjoint uni-nodes X1 and X2 such that X2 is a direct successor
of X1.

A ground literal (unit clause) is a uni-node iff the set of its arguments is
a uni-node. The empty clause ⊥ is a special type of uni-node literal (with no
direct successors). A ground literal L (unit clause) is a bi-node iff the set of its
arguments is a bi-node over {s, t} and has the form L = (¬)P (i,j)(s, t), where
s is an i-sequence and t is a j-sequence of terms. If the latter is true we say L
satisfies the grouping condition with respect to s and t (this extends the definition
in Section 3 to ground literals). Subsequently, when we write (¬)P (i,j)(s, t) we
mean that this literal satisfies the grouping condition with respect to s and t.

The following table gives examples of uni-nodes and bi-nodes.

Uni-nodes: {a, a, b}, {g(a, b)}, {g(a, b), f(b, b)}

Bi-nodes: {a, b, f(b)}, {a, b, g(a, b), h(a, b, b)}, {a, b, f(b), h(b, a, b)}

The notions of uni-node and direct successor are more general than the notions
defined in [13, 14, 21]. For example, {a, b, f(b)} is not a bi-node (nor a uni-node)
under the previous definitions. The set {a, f(a, b)} is not a bi-node (or a uni-
node) under either definitions.
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In the rest of the section, assume N is a given (finite) clausal set in BU . The
aim is to show that any derivation from N by R

hyp terminates. The following
properties are characteristic about hyperresolution inferences for the class BU :

1. All conclusions are ground.
2. Each of the split components of the derived clauses are ground unit clauses

which are either uni-nodes or bi-nodes.
3. Each of the ground unit clauses used as a positive parent produces a bounded

number of different conclusions.

These properties are key to the termination proof given below. The first prop-
erty is easy to see, since any BU clause set is range restricted and if all posi-
tive premises of hyperresolution inference steps are ground, and all non-ground
clauses are range restricted, the conclusion of any inference step by R

hyp is ei-
ther the empty clause, or a positive ground unit clause, or a positive ground
clause which can be split into positive ground unit clauses. The second prop-
erty is established in Lemma 2.2. (This property is the reason for choosing the
name BU for the considered clausal class.) The third property is a consequence
of Lemma 1.

As factoring is applied only to positive clauses, and positive clauses in any
R

hyp derivation for BU clauses are always ground, factoring has the effect of
eliminating duplicate literals in ground clauses. For this reason no special con-
sideration is given to factoring inference steps in subsequent proofs.

Given a finite signature the following can be proved using the same argument
as in the corresponding lemma for GF1− in [13].

Lemma 1. 1. The cardinality of any uni-node set is finitely bounded.
2. Every uni-node has a bounded number of direct successors which are uni-

nodes.
3. For any given uni-node s, the number of the uni-nodes and bi-nodes that

have terms in s as elements is finitely bounded.

Lemma 2. In any R
hyp derivation from a clause set in BU:

1. At least one of the positive premises of any hyperresolution inference step is
a uni-node.

2. Maximally split conclusions are either uni-nodes or bi-nodes.
3. If P (s, t) is a bi-node over {s, t} and occurs in the derivation and t is a direct

successor of s, then all terms in s have the same depth d and all terms in t

have the same depth d+1.

Proof. The proof is by induction. In the first step of any R
hyp derivation the only

possible positive premises are uni-nodes. Since all their arguments are constants,
they have the same depth. The induction hypothesis is that the above properties
are true for the premises and conclusions of the first n inference steps in any
derivation.

Now consider the different inference possibilities in step n+1. First, a general
observation. The grouping restriction on the main literal of any non-positive BU
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clause implies that the premise associated with the main literal, generally, we
call it the main premise, must be a unit clause whose literal has grouping (0, i)
or (i, 0). This means the main premise is a uni-node. This proves property 1.

Consider an inference step by hyperresolution involving a non-positive clause
C satisfying Condition 1, as negative premise. Assume the main premise is a uni-
node of the form Q(s). If the main literal contains all the variables of the clause
then each variable in C is unified with a term from s. It follows immediately
that all other premises and all maximally split conclusions are uni-nodes and
the depths of all arguments are the same, since by the induction hypothesis the
depth of all arguments in Q(s) are the same.

Let X and Y be as in Condition 1.(a). Assume the main literal does not
contain all the variables of C, instead it contains all the variables from X(6= ∅).
Then C has a negative literal that satisfies 1.(b.iii) of the definition of BU and
contains all the variables of Y . Suppose this literal has the form ¬P (i,j)(x, y),
where x ⊆ X and y = Y , and the corresponding premise has the form P (u, t).
The grouping restriction ensures that the sequences of variables x and y have
the same length as the sequences of terms u and t, respectively. Then u ⊆ s. If
P (u, t) is a uni-node then, as above, it is easy to see that all other premises and
all maximally split conclusions are uni-nodes and the depths of all arguments are
the same. If not, then P (u, t) is a bi-node over {u, t} (by the induction hypothesis
and because the grouping associated with a predicate symbol is unique). Hence,
u and t are distinct uni-nodes and u (and s) is a direct successor of t, or vice
versa. As X and y together cover all the variables of C, all other premises and
all maximally split conclusions are either uni-nodes defined over s or t (more
precisely, uni-nodes of the form P (w) where w ⊆ s or w ⊆ t), or they are bi-
nodes over {w, v}, where w ⊆ s and v ⊆ t. This proves property 2. As s is a
direct successor of t, or vice versa, the difference in depth between terms in u

(or s) and terms in t is one. Property 3 is evident.

The proof for inferences with a negative premise satisfying Condition 2 is by
a similar case analysis. ut

The analysis in the proof of the previous lemma allows us to conclude:

Lemma 3. In any R
hyp derivation, if C and D are uni-nodes, such that D is a

direct successor of C, then D is derived from C and a bi-node.

The importance of the acyclic dependency relationship on the predicate sym-
bols for decidability will become apparent in the proof of Lemma 4. By the def-
inition of BU the negative premise of a hyperresolution inference step always
contains a main literal, which is strictly maximal with respect to the order-
ing �D. Hence a non-empty conclusion is always smaller than the main premise
resolved with the main literal. However, for termination this property is not
sufficient. Instead, we need the following result.

Lemma 4. There is a bound on the term depth of any clause in a R
hyp derivation

from N belonging to BU.
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Proof. Define a complexity measure µ on non-empty, ground unit clauses by:

µ(C) =







Q if C = Q(s) and Q has grouping (0, i) or (i, 0),

P otherwise, where P is the predicate symbol of the main
premise with which C was derived.

Thus the complexity measure of any non-empty, ground unit clause is deter-
mined by a predicate symbol with grouping (0, i) or (i, 0). By definition these
complexity measures are related by �d. This is an acyclic relationship, which
can always be linearised. Suppose therefore that �c is an arbitrary total order-
ing on the (0, i) or (i, 0) type predicate symbols in N and �d⊆�c. The proof
is by induction with respect to the enumeration of the type (0, i) or (i, 0) pred-
icate symbols in N as determined by �c. Technically, let the enumeration be
Q1 �c Q2 �c · · · �c Qn where n is the number of type (0, i) or (i, 0) predicate
symbols in N . Let µ be a function from ground unit clauses to {1, . . . , n} such
that µ(C) = i, provided µ(C) = Qi. In a sense µ preserves µ, but reverses the
ordering. We prove the following property is true for every non-empty, ground
unit clause C derived from N .

dp(C) ≤

{

µ(C) if C = Q(s) and Q has grouping (0, i) or (i, 0),

µ(C) + 1 otherwise.
(†)

Initially the only ground unit clauses in N are those which have depth 1. For any
of these clauses C, dp(C) ≤ µ(C). Suppose the induction hypothesis is: Let D be
an arbitrary ground unit clause in the derivation and suppose (†) is true for all
ground unit clauses C in the derivation with larger measure, i.e. µ(C) �D µ(D).

Assume D is a maximally split conclusion of an inference with the main
premise Q(s) and negative premise C. Then Q(s) �D D and the inductive hy-
pothesis applies to Q(s). (a) D can either have a predicate symbol with grouping
(0, i) or (i, 0). Then µ(Q(s)) < µ(D) as Q is larger than any other predicate sym-
bol in C. (b) Otherwise, by the definition of µ, µ(Q(s)) = Q = µ(D) as Q is the
predicate symbol of the main premise with which D is derived, and consequently,
µ(Q(s)) = µ(D). So, in either case, i.e. for any D, we have the property:

µ(Q(s)) ≤ µ(D).(‡)

Now suppose C is a clause which satisfies Condition 1. If the main literal
contains all the variables of C, then D is a uni-node, P ′(w), say, where w ⊆ s (by
the same argument as in the proof of Lemma 2). Thus, dp(D) = dp(Q(s)) since
dp(w) = dp(s), dp(Q(s)) ≤ µ(Q(s)) by the inductive hypothesis, and µ(Q(s)) ≤
µ(D) by (‡). Consequently, dp(D) ≤ µ(D). Hence, (†) holds for D in this case.

If the main literal in C does not contain all the variables, w.l.o.g. assume
the main literal contains all the variables from X(6= ∅) and there is a negative
literal in C which satisfies 1.(b.iii) and contains all the variables of Y , where X
and Y are defined as in 1.(a) of the definition of BU . Suppose this literal has
the form ¬P (i,j)(x, y) where x ⊆ X and y = Y , and the corresponding premise
is P (i,j)(u, t). Hence, u ⊆ s.

11



If P (u, t) is a uni-node then dp(u) = dp(s) = dp(t). D is an instance of a
positive literal L in C and by Condition 1.(b) all variables of D are in X∪Y . So,
all the arguments of D are among the arguments of Q(s) and P (u, t). Therefore,
dp(D) = dp(P (u, t)) = dp(Q(s)) ≤ µ(Q(s)) ≤ µ(D) (as above, by the inductive
hypothesis and (‡)). Hence, (†) holds in this case.

If P (i,j)(u, t) is a bi-node, and u is a direct successor of t, then dp(u) =
dp(t) + 1. By Condition 1.(b), if D is a uni-node, then all arguments of D are
either all among s or all among t. In the first case because dp(u) = dp(s),
dp(D) = dp(Q(s)) ≤ µ(Q(s)) ≤ µ(D) (again, by the inductive hypothesis
and (‡)). Similarly, when D is a uni-node over t, dp(D) = dp(Q(s)) − 1, be-
cause dp(s) = dp(u) = dp(t) + 1. Then dp(D) ≤ µ(Q(s)) − 1 ≤ µ(D) − 1.
This implies that dp(D) ≤ µ(D). Otherwise, D is a bi-node over {w, v} where
w ⊆ s and v ⊆ t (by the same argument as in the proof of Lemma 2). Then
dp(D) = dp(Q(s)) ≤ µ((Q(s)) ≤ µ(D). This proves (†).

If, on the other hand, t is a direct successor of u, then dp(t) = dp(u) + 1 =
dp(s)+1. Similarly as above,D is either a uni-node over s, a uni-node over t, or a
bi-node over {w, v} where w ⊆ s and v ⊆ t. Then dp(D) = dp(Q(s)) ≤ µ(Q(s)) ≤
µ(D) in the first case. In the second and third case, dp(D) = dp(Q(s)) + 1 ≤
µ(Q(s)) + 1 ≤ µ(D) + 1. This proves (†).

A similar case analysis is needed to prove the claim for conclusions of infer-
ences with a negative premise satisfying Condition 2. ut

Theorem 2 (Termination, soundness, completeness). Let N be a finite
set of BU clauses. Then:

1. Any R
hyp derivation from N terminates.

2. If T is a fair derivation from N then: (i) If N(= N0), N1, . . . is a path with
limit N∞, N∞ is saturated up to redundancy. (ii) N is satisfiable if and only
if there exists a path in T with limit N∞ such that N∞ is satisfiable. (iii) N
is unsatisfiable if and only if for every path N(= N0), N1, . . . the clause set
⋃

j Nj contains the empty clause.

This theorem subsumes corresponding results for GF1− [13] and the first-order
fragment encoding the extended modal logic K(m)(∩,∪,`) [10, 18].

The calculus R
hyp (with optional factoring) is the simplest calculus with which

the class BU can be decided. In practice, one wants to improve the efficiency.
For this purpose, the result permits the use of any refinements and simplification
rules based on the resolution framework of [4]. The result also permits the use of
stronger versions of the splitting rule which ensure the branches in a derivation
tree are disjoint. Such splitting rules cause branches to close earlier.

6 Minimal Herbrand model generation

It is well-known that hyperresolution, like tableaux methods, can be used to
construct models for satisfiable formulae [11] and minimal Herbrand models for
satisfiable formulae and clausal classes [2, 6].
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A Herbrand interpretation is a set of ground atoms. By definition a ground
atom A is true in an interpretation H if A ∈ H and it is false in H if A 6∈ H ,
> is true in all interpretations and ⊥ is false in all interpretations. A literal ¬A
is true in H iff A is false in H . A conjunction of two ground atoms A and B is
true in an interpretation H iff both A and B are true in H and respectively, a
disjunction of ground atoms is true in H iff at least one of A or B is true in the
interpretation. A clause C is true in H iff for all ground substitutions σ there is
a literal L in Cσ which is true in H . A set N of clauses is true in H iff all clauses
in N are true in H . If a set N of clauses is true in an interpretation H then H

is referred to as a Herbrand model of N . H is a minimal Herbrand model for a
set N of clauses iff H is a Herbrand model of N and for no Herbrand model H ′

of N , H ′ ⊂ H holds.

For BU (more generally, range restricted clauses), the procedure R
hyp im-

plicitly generates Herbrand models. If R
hyp terminates on a clause set N in BU

without having produced the empty clause then a model can be extracted from
any open branch in the derivation. The model is given by the set of ground unit
clauses in the limit of the branch, i.e. the clause set at the leaf of the branch.

Bry and Yahya [8] have proved the following even stronger result: For every
minimal model H of a satisfiable, range restricted clause set N , there exists
a branch in the R

hyp derivation tree for N , such that the set of ground unit
clauses in the limit of the branch coincides with the ground atoms in H . Since
by definition every clause set in BU is range restricted, this result also applies
to BU clause sets.

Consequently, if we want to turn R
hyp into a procedure which generates only

minimal models for satisfiable clause sets in BU , it is sufficient to modify the
calculus in a way that eliminates all those branches of a derivation that would
generate non-minimal models. In [14] we have discussed various ways of how this
can be achieved, including (i) an approach which extends R

hyp by a model con-
straint propagation rule, (ii) a modification of the extension of R

hyp by the model
constraint propagation rule which replaces the splitting rule by a complement
splitting rule and investigates the derivation tree in a particular order [8], and
finally, (iii) a variant of Niemelä’s groundedness test [22] which tests the min-
imality of a model locally for each branch by invoking another theorem prov-
ing derivation. We have compared the worst case space requirements of these
approaches for clause sets associated with GF1− formulae and concluded that
Niemelä’s groundedness test has the best worst case space requirement among
the three approaches [14]. This observation carries over to BU .

The groundedness test is based on the following observation. Given a (finite)
set H of ground atoms (or positive unit clauses) define: ¬H = {¬A | A ∈ H}
and H =

∨

A∈H ¬A. Let N be a set of clauses and U the set of all atoms over
the Herbrand universe of N . Let H be a finite Herbrand model of N . Then H

is a minimal Herbrand model of N iff MMT (N,H) = N ∪ ¬(U −H) ∪ {H} is
unsatisfiable. This model minimality test is called groundedness test. Thus, we
can use R

hyp to enumerate all models of a BU clause set N and also use R
hyp
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to test each model H for minimality by testing MMT (N,H) for unsatisfiability.
This approach has also been applied in [2, 7], for ground clause logic.

A problem in applying the groundedness test to BU is that the set U of
all atoms over the Herbrand universe of a BU clause set N is usually infinite.
Consequently, ¬(U − H) and MMT (N,H) are usually infinite sets of clauses.
However, in the case of an R

hyp derivation from MMT (N,H), we observe the
clauses in ¬(U − H) have only the effect of deriving a contradiction for any
clause set N ′ derivable from N which contains a positive unit clause not in H .
Since H itself is finite, this effect is straightforward to implement. A detailed
presentation of the approach and an algorithmic description is given in [14].

Theorem 3. Let N be a clausal set in BU . Let N∞ be the limit of any branch
B in an R

hyp derivation tree with root N and let H be the set of all positive
ground unit clauses in N∞. Then, the satisfiability of MMT (N,H) can be tested
in finite time and H is a minimal model of N iff MMT (N,H) is unsatisfiable.

7 Conclusion

The definition of the class BU attempts to capture characteristic properties for
ensuring decidability by hyperresolution (or if the reader prefers hypertableaux
or ground tableaux calculi, which are closely related, see [13, 14]), while permit-
ting term depth growth during the inference process. BU covers many familiar
description logics and the corresponding extended propositional modal logics, for
example the description logic ALC with inverse roles, conjunctions and disjunc-
tions of roles and the corresponding modal logics below K(m)(∩,∪,`). Although
recent results (see e.g. [10–12, 16–18,23]) show that ordered resolution is the
more powerful method when decidability is an issue, an advantage of hyperreso-
lution is that it can be used for Herbrand model generation without the need for
extra machinery, except when we want to generate minimal Herbrand models
for which a modest extension is needed (cf. Section 6).

An open question is the complexity of the decision problem of BU . One of
the advantages of GF1− compared to other solvable classes such as the guarded
fragment or fluted logic is the low complexity of its decision problem, which
is PSPACE-complete. Intuitively, due to the more restricted form of bi-nodes
in GF1− it is possible to investigate bi-nodes independently of each other. For
details see [14]. In contrast, the very general definition of bi-nodes given in
this paper makes it difficult to establish whether the same approach is possible
for BU .

References
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