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Abstract. As Dag Normann has recently shown, the fully abstract
model for PCF of hereditarily sequential functionals is not ω-complete
and therefore not continuous in the traditional terminology (in con-
trast to the old fully abstract continuous dcpo model of Milner). This
is also applicable to a wider class of models such as the recently con-
structed by the author fully abstract (universal) model for PCF+ =
PCF+ parallel if. Here we will present an outline of a general approach
to this kind of “natural” domains which, although being non-dcpos, al-
low considering “naturally” continuous functions (with respect to exist-
ing directed “pointwise”, or “natural” least upper bounds) and also have
appropriate version of “naturally” algebraic and “naturally” bounded
complete “natural” domains. This is the non-dcpo analogue of the well-
known concept of Scott domains, or equivalently, the complete f-spaces
of Ershov. In fact, the latter version of natural domains, if considered un-
der “natural” Scott topology, exactly corresponds to the class of f-spaces,
not necessarily complete.

1 Introduction

The goal of this paper is to present a first brief outline of the so-called “nat-
ural” version of domain theory in the general setting, where domains are not
necessary directed complete partial orders (dcpos). As Dag Normann has re-
cently shown [6], the fully abstract model of hereditarily-sequential finite type
functionals for PCF [1, 3, 5, 10]1 is not ω-complete (hence non-dcpo) and there-
fore not continuous in the traditional terminology. This is also applicable to a
potentially wider class of models such as the fully abstract model of (heredi-
tarily) wittingly consistent functionals for PCF+ (i.e. PCF + parallel if) [10].
Note that until the above mentioned negative result in [6] and further positive
results in [10] the domain theoretical structure of such models was essentially
unknown. The point of using the term “natural” for these kinds of domains is
1 As to the language PCF for sequential finite type functionals see [4, 7, 9, 11]. Note

also that the technical part of [10] — the source of considerations of the present
paper — is heavily based on [8, 9].
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that in the case of non-dcpos, the ordinary definitions of continuity and finite
(algebraic) elements via arbitrary directed least upper bounds (lubs) prove to
be inappropriate. A new, restricted concept of “natural” lub is necessary, and it
leads to a generalized theory applicable also to non-dcpos. More informally, if
some directed least upper bounds do not exist in a partial ordered set D then
this can serve as an indication that even some existing least upper bounds can
be considered as “unnatural” in a sense. Although “natural” lubs for functional
domains can also be characterised technically as “pointwise” (in the well-known
sense), using the latter term for the concepts of continuous functions or finite
elements as defined in terms of pointwise lubs is, in fact, somewhat misleading.
The term “pointwise continuous” is in this sense awkward and of course not
intended to be considered as “continuous for each argument value”, but rather
as “continuous with respect to the pointwise lubs” which is lengthy. Thus, the
more neutral and not so technical term “natural” is used instead of “pointwise”.
Moreover, for general non-functional non-dcpo domains the term “pointwise”
does not seem to have the straightforward sense. However we should also note
the terminological peculiarity of the term “natural”. For example, the existence
of “naturally finite but not finite” elements in such “natural” domains is quite
possible (see Hypotheses 2.8 in [10] concerning sequential functionals). Although
the main idea of the current approach has already appeared in [10], it was ap-
plied there only in a special situation of typed non-dcpo models with “natural”
understood as (hereditarily) “pointwise”. Here our goal is to make the first steps
towards a general non-dcpo domain theory of this kind.

2 Natural Domains

A non-empty partially ordered set (poset) 〈I,≤〉 is called directed if for all i, j ∈ I
there is a k ∈ I such that i, j ≤ k. By saying that a (non-empty) family of
elements xi in a poset 〈D,v〉 is directed, we mean that I, the range of i, is a
directed poset, and, moreover, the map λi.xi : I → D is monotonic in i, that is,
i ≤ j ⇒ xi v xj . However in general, if it is not said explicitly or does not follow
from the context, xi may denote a not necessarily directed family. Moreover, we
will usually omit mentioning the range I of i, relying on the context. Different
subscript parameters i and j may range, in general, over different index sets I
and J . As usual

⊔
X denotes the ordinary least upper bound (lub) of a subset

X ⊆ D in a poset D which may exist or not. That is, this is a partial map⊔
: 2D →̇ D with 2D denoting the powerset of D. If D has a least element, it is

denoted as ⊥D or ⊥ and called undefined.

Definition 1.

(a) Any poset 〈D,vD〉 (not necessarily a dcpo) is also called a domain.
(b) Recall that a directly complete partial order (or dcpo domain) is required

to be closed under taking directed least upper bounds
⊔

xi.2 (We omit the
usual requirement that a dcpo should contain a least element ⊥.)

2 In general, by
⊔

i zi we mean
⊔
{zi | i ∈ I}, and analogously for

⊎
below.
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(c) A natural pre-domain is a domain D (in general non-dcpo) with a partially
defined operator of natural lub

⊎
: 2D →̇ D satisfying the first of the fol-

lowing four conditions. It is called a natural domain if all these conditions
hold:
(
⊎

1)
⊎
⊆

⊔
. That is, for all sets X ⊆ D, if

⊎
X exists (i.e. X is in the

domain of
⊎

) then
⊔

X exists too and
⊎

X =
⊔

X.
(
⊎

2) If X ⊆ Y ⊆ D,
⊎

X exists, and Y is upper bounded by
⊎

X then
⊎

Y
exists too (and is equal to

⊎
X).

(
⊎

3)
⊎
{x} exists (and is equal to x).

(
⊎

4) Let {yij}i∈I,j∈J be an arbitrary non-empty family of elements in D
indexed by I and J . Then⊎

i

⊎
j

yij = (
⊎
j

⊎
i

yij =)
⊎
ij

yij =
⊎
i

yii

provided that:
1. Assuming all the required internal natural lubs

⊎
j yij in

⊎
i

⊎
j yij

and one of the external natural lubs
⊎

i

⊎
j yij or

⊎
ij yij exist, then

both exist and the corresponding equality above holds. (The case of⊎
j

⊎
i yij is symmetrical.3)

2. For the last equality to hold, the family yij is additionally required
to be directed (and monotonic) in each parameter i and j ranging
over the same I, and the existence of any natural lub in this equality
implies the existence of the other.

The second part of (
⊎

4) (directed case) evidently follows also from (
⊎

1), (
⊎

2),
and the following optional clause which might be postulated as well.

(
⊎

5) If X ⊆ Y ⊆ D,
⊎

Y exists, and X is cofinal with Y (i.e. ∀y ∈ Y ∃x ∈ X.
y v x) then

⊎
X exists too (and =

⊎
Y ).

But we will really use only (
⊎

1)–(
⊎

4). Evidently, any pre-domain with unre-
stricted

⊎



⊔
is a natural domain. As an extreme case any discrete D with

v coinciding with = and
⊎



⊔

is a natural domain. But, as in the case of
[10], it may happen that only under a restricted

⊎
v

⊔
a natural domain has

some additional nice properties such as “natural” algebraicity properties dis-
cussed below in Sect. 3. Note that a natural domain is actually a second-order
structure 〈D,vD,

⊎D〉 in contrast to the ordinary dcpo domains represented as
a first-order poset 〈D,vD〉 structure.

Definition 2. Direct product of natural (pre-) domains D ×E (or more gener-
ally,

∏
k∈K Dk) is defined by letting 〈x, y〉 vD×E 〈x′, y′〉 iff x vD x′ & y vE y′,

and additionally
⊎

i〈xi, yi〉 
 〈
⊎

i xi,
⊎

i yi〉 for any family 〈xi, yi〉 of elements
in D × E whenever each natural lub

⊎
i xi and

⊎
i yi exists.

3 It follows that for the equality
⊎

i

⊎
j yij =

⊎
j

⊎
i yij to hold it suffices to require

that all the internal and either one of the external natural lubs or the mixed lub⊎
ij yij exist.
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Proposition 1. The direct product of natural (pre-) domains is a natural (pre-)
domain as well. ut

The poset of all monotonic maps D → E between any domains ordered pointwise
(f v(D→E) f ′ 
 fx vE f ′x for all x ∈ D) is denoted as (D → E). We will
usually omit the superscripts to v.

Definition 3.

(a) A monotonic map f : D → E between natural pre-domains is called natu-
rally continuous4 if f(

⊎
i xi) =

⊎
i f(xi) for any directed natural lub

⊎
i xi,

assuming it exists (that is, if
⊎

i xi exists then
⊎

i f(xi) is required to exist
and satisfy this equality). The set of all (monotonic and) naturally continu-
ous maps D → E is denoted as [D → E].

(b) Given an arbitrary family fi : D → E of monotonic maps between natural
pre-domains, define a natural lub f =

⊎
i fi : D → E pointwise, as

fx 

⊎
i

(fix),

assuming the latter natural lub exists for all x; otherwise
⊎

i fi is undefined.

Proposition 2. For the case of naturally continuous fi the resulting f in (b)
above is a naturally continuous map as well, assuming E is a natural domain.

Proof. Use the first part of (
⊎

4): f
⊎

j xj 

⊎

i(fi

⊎
j xj) =

⊎
i

⊎
j(fixj) =⊎

j

⊎
i(fixj) 


⊎
j fxj , for xj directed and having a natural lub (with all other

natural lubs evidently existing). ut

Moreover, for any non-empty set F of monotonic functions D → E and a family
fi ∈ F , if the natural lub

⊎
i fi exists and is also an element of F then it is

denoted as
⊎F

i fi; otherwise,
⊎F

i fi, is considered as undefined. When defined,⊎F
i fi =

⊔F
i fi =

⊔(D→E)
i fi. Here

⊔F denotes the lub relativized to the poset F
with the pointwise partial order v(D→E) restricted to F . Evidently, F ⊆ F ′ =⇒⊔F ′

i fi v
⊔F

i fi when both lubs exist. In contrast with
⊔F , the natural lub⊎F

i fi =
⊎

i fi is essentially independent on F , except it is required to be in F .
We will omit the superscript F when it is evident from the context. Further, it
is easy to show (by pointwise considerations) that

4 Using the adjective ‘natural’ here and in other definitions below is, in fact, rather
annoying. We would be happy to avoid it at all, but we need to distinguish all
these ‘natural’ non-dcpo versions of the ordinary definitions for dcpos relativized
to the natural lub

⊎
from similar definitions relativized to the ordinary lub

⊔
. In

principle, if the context is clear, we could omit ‘natural’, and use this term as well
as ‘non-natural’ only when necessary. Another way is to write ‘

⊎
-continuous’ vs.

‘
⊔

-continuous’, etc. to make the necessary distinctions.
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Proposition 3. For D and E natural pre-domains, any F ⊆ (D → E) is (triv-
ially) a natural pre-domain under

⊎F defined above. It is also a natural domain
if E is, and, in particular, (D → E) and [D → E] are natural domains in this
case with [D → E] closed under (existing, not necessarily directed) natural lubs
in (D → E).

Proof.

(
⊎

1) is trivial.
(
⊎

2) For a family of monotonic functions {fj ∈ F}j∈J and I ⊆ J , assume that⊎
i∈I fi ∈ F and fj v

⊎
i∈I fi for all j ∈ J . It follows that for all j ∈ J

and x ∈ D, fjx v
⊎

i∈I(fix). Therefore, by using (
⊎

2) for E,
⊎

j∈J(fjx)
exists for all x in the natural domain E, and hence

⊎
j∈J fj does exist too

in (D → E) and therefore coincides with
⊎

i∈I fi ∈ F , as required.
(
⊎

3) For any f , (
⊎
{f})x =

⊎
{fx} = fx. Thus,

⊎
{f} = f , as required.

(
⊎

4) For arbitrary family of functions fij ∈ F (
⊎

4) reduces to the same in E
for yij = fijx with arbitrary x ∈ D.
1. Indeed, assume all the required internal natural lubs

⊎
j fij and one of

the external natural lubs
⊎

i

⊎
j fij or

⊎
ij fij exist and belong to F .

Then for all x ∈ D the corresponding asertion holds for
⊎

j fijx and⊎
i

⊎
j fijx or

⊎
ij fijx, and therefore

⊎
i

⊎
j fijx =

⊎
ij fijx in E. This

pointwise identity implies both existence of the required natural lubs in
F and equality between them

⊎
i

⊎
j fij =

⊎
ij fij .

2. For directed fij , i, j ∈ I, and one of the natural lubs
⊎

j fij or
⊎

j fii

existing, we evidently have for all x ∈ D that fijx is directed in each
parameter i and j, and

⊎
j fijx =

⊎
j fiix holds in E, and therefore both

the required lubs exist in F and the equality
⊎

j fij =
⊎

j fii holds.
ut

If natural domains D and E are dcpos with
⊎

=
⊔

then the same holds both for
(D → E) and [D → E], and the latter domain coincides with that of all (usual)
continuous functions with respect to arbitrary directed lubs. This way natural
domain theory generalizes that of dcpo domains, and we will see that other
important concepts of domain theory over dcpos have natural counterparts in
natural domains with all the ordinary considerations extending quite smoothly
to the ‘natural’ non-dcpo case.

These considerations allow us to construct inductively some natural domains
of finite type functionals by taking, for each type σ = α → β, an arbitrary
subset Fα→β of monotonic (or only naturally continuous) mappings Fα → Fβ .
Of course, we can additionally require that these Fσ are sufficiently closed
(say, under λ-definability or sequential computability). This way, for example,
the λ-model of hereditarily-sequential finite type functionals can be obtained.
E.g. in [10] this was done inductively over level of types with an appropri-
ate definition of sequentially computable functionals in Qα1,...,αn→Basic-Type ⊆
(Qα1 , . . . , Qαn → QBasic-Type) (over the basic ‘flat’ domain QBasic-Type =
N⊥). It was proved only a posteriori and quite non-trivially that all sequential
functionals are naturally continuous by embeddings: Qα1,...,αn→Basic-Type ⊆
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[Qα1 , . . . , Qαn
→ QBasic-Type] and Qα→β ↪→ [Qα → Qβ ], and satisfy further

“natural” algebraicity properties discussed in Sect. 3. It was while determining
the domain theoretical nature of Qα that the idea of natural domains emerged;
and, although it proved to be quite simple, it was unclear at that moment
whether anything reasonable could be obtained. What is new here is a gen-
eral, abstract presentation of natural domains that does not rely, as in [10], on a
type structure like that of {Qα}. Unfortunately, it would take too much space to
consider here the construction of the λ-model {Qα} — the source of general con-
siderations of this paper. (See also [1, 3, 5] where the same model was defined in
a different way and where its domain theoretical structure was not described; it
was even unknown whether it is different from the older dcpo model of Milner [4]
which was shown later by Normann [6].)

Proposition 4. Let D,E be natural pre-domains and F a natural domain. A
two place monotonic function f : D×E → F is naturally continuous iff it is so
in each argument.

Proof. “Only if” is trivial (and uses (
⊎

3) for F ). Conversely, for arbitrary di-
rected families xi and yi having natural lubs we have

f(
⊎
i

〈xi, yi〉) 
 f(〈
⊎
i

xi,
⊎
i

yi〉) =
⊎
i

⊎
j

f(〈xi, yj〉) =
⊎
ij

f(〈xi, yj〉)

=
⊎
i

f(〈xi, yi〉) ,

as required, by applying the natural continuity of f in each argument and using
(
⊎

4) for F . ut

Proposition 5. There are the natural (in the sense of category theory) order
isomorphisms over natural domains preserving additionally in both directions all
the existing natural lubs, not necessarily directed5,

(D × E → F ) ∼= (D → (E → F )) , (1)
[D × E → F ] ∼= [D → [E → F ]]. (2)

This makes the class of natural domains with monotonic, resp., naturally contin-
uous morphisms a Cartesian closed category (ccc) in two ways. Moreover, each
side of the second isomorphism is a subset of the corresponding side of the first,
with embedding making the square diagram commutative.

Proof. Indeed, the isomorphism (1) and its inverse are defined for any f ∈ (D×
E → F ) and g ∈ (D → (E → F )), as usual, by

f∗ 
 λx.λy.f(x, y) ∈ (D → (E → F )) ,

ĝ 
 λ(x, y).gxy ∈ (D × E → F ) .

5 and, of course, preserving the ordinary lubs
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Then λf.f∗ preserves (in both directions) all the existing natural lubs (
⊎

i fi)∗ =⊎
i f∗i :

(
⊎
i

fi)∗xy 
 (
⊎
i

fi)(x, y) 

⊎
i

fi(x, y) 

⊎
i

((f∗i x)y) 
 (
⊎
i

(f∗i x))y


 ((
⊎
i

f∗i )x)y 
 (
⊎
i

f∗i )xy

holds for all x ∈ D and y ∈ E where if the first natural lub exists then all the
others exist too, and conversely. Here we used only the definitions of ∗ and

⊎
for functions. The second isomorphism (2) is just the restriction of the first. For
its correctness we should check that f∗ (resp. ĝ) is naturally continuous if f
(resp. g) is:

f∗
⊎
i

xi 
 λy.f(
⊎
i

xi, y) = λy.
⊎
i

f(xi, y) 

⊎
i

λy.f(xi, y) 

⊎
i

f∗xi

by using additionally Proposition 4 in the second equality. Similarly,

ĝ(
⊎
i

xi,
⊎
i

yi) 
 g(
⊎
i

xi)(
⊎
i

yi) =
⊎
i

gxi(
⊎
i

yi) =
⊎
i

⊎
j

gxiyj

=
⊎
i

gxiyi 

⊎
i

ĝ(xi, yi)

by using (
⊎

4) for F . ut

Definition 4. An upward closed set U in a natural pre-domain D is called
naturally Scott open if for all directed families xi having the natural lub⊎

i

xi ∈ U =⇒ xi ∈ U for some i.

Such subsets constitute the natural Scott topology on D.

This is a straightforward generalization of the ordinary Scott topology on any
poset defined in terms of the usual lub

⊔
of directed families. Evidently, each

Scott open set (in the standard sense) is naturally Scott open, and therefore the
latter sets constitute a T0-topology.

Proposition 6.

(a) Any natural pre-domain 〈D,vD,
⊎D〉 is a T0-space under its natural Scott

topology whose standardly generated partial ordering coincides with the orig-
inal ordering vD on D.

(b) Continuous functions between pre-domains defined as preserving the existing
natural lubs are also continuous relative to the natural Scott topologies in the
domain and co-domain.
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(c) But the converse holds only in the weakened form: continuity of a map f
in the sense of natural Scott topologies implies f(

⊎
i xi) =

⊔
i f(xi) for any

directed family xi with existing
⊎

i xi.6

Proof.

(a) If x v y and x ∈ U for any naturally Scott open U ⊆ D then y ∈ U because
U is upward closed. Conversely, assume x 6v y, and define Uy 
 {z ∈ D |
z 6v y}. This set is evidently upward closed. Let

⊎
i xi ∈ Uy for a directed

family. Then it is impossible that all xi 6∈ Uy, i.e. xi v y, because then we
should have

⊎
i xi v y — a contradiction. Therefore Uy is a naturally Scott

open set (in fact, even Scott open in the standard sense) such that x 6v y,
x ∈ Uy but y 6∈ Uy, as required.

(b) Assume monotonic f : D → E preserves natural directed lubs and U ⊆ E is
naturally Scott open in E. Then f−1(U) is evidently upward closed in D as
U is such in E. Further, let

⊎
i xi ∈ f−1(U), i.e. f(

⊎
i xi) =

⊎
i f(xi) ∈ U and

hence f(xi) ∈ U and xi ∈ f−1(U) for some i. Therefore f−1(U) is naturally
Scott open. That is, f is continuous in the sense of natural Scott topologies
in D and E.

(c) Conversely, assume f : D → E is continuous in the sense of natural Scott
topologies in D and E, and

⊎
i xi exists in D for a directed family. Let

us show that f(
⊎

i xi) =
⊔

i f(xi). The inequality f(
⊎

i xi) w f(xi) follows
by monotonicity of f . Assume y is an upper bound of all f(xi) in E but
f(

⊎
i xi) 6v y. Define like above the Scott open set Vy 
 {z ∈ E | z 6v y}.

Then f−1(Vy) is naturally Scott open containing
⊎

i xi and therefore some
xi, implying f(xi) ∈ Vy, i.e. f(xi) 6v y — a contradiction. This means that
f(

⊎
i xi) =

⊔
i f(xi). ut

3 Naturally Finite Elements

Definition 5. A naturally finite element d in a natural pre-domain D is such
that for any directed natural lub (assuming it exists) if d v

⊎
X then d v x for

some x in X. If arbitrary directed lubs
⊔

X are considered then d is called just
finite.

The last part of the definition is most reasonable in the case of dcpos. Otherwise
(assuming

⊎
6=

⊔
), ‘finite’ means rather ‘non-natural finite’.

Definition 6. A natural pre-domain D is called naturally (ω-) algebraic if (it
has only countably many naturally finite elements and) each element in D is a
natural lub of a (non-empty) directed set of naturally finite elements.

6 In the special case of
⊎



⊔

and standard Scott topologies we have, as usual, the
full equivalence of the two notions of continuity of maps with f(

⊎
i xi) =

⊎
i f(xi).

We will see below that the full equivalence of these two notion of continuity holds
also for naturally algebraic and naturally bounded complete natural pre-domains.
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If D is dcpo with
⊎

=
⊔

then the above reduces to the traditional concept of
(ω-) algebraic dcpo. It follows, assuming additionally (

⊎
2), that

x =
⊎

x̂ (3)

where x̂ 
 {d v x | d is naturally finite} for any x ∈ D.

Definition 7. If any two upper bounded elements c, d have least upper bound
c t d in D then D is called bounded complete, and it is called finitely bounded
complete if, in the above, only finite c, d (and therefore c t d) are considered.

This is the traditional definition adapted to the case of an arbitrary poset D.
If D is an algebraic dcpo then it is bounded complete iff it is finitely bounded
complete. In fact, for dcpos bounded completeness means existence of a lub for
any bounded set, not necessarily finite. Algebraic and bounded complete dcpos
with least element ⊥ are also known as Scott domains or as the complete f0-
spaces of Ershov [2] (or just Scott-Ershov domains). For the ‘natural’, non-dcpo
version of these domains we need

Definition 8. A natural pre-domain D is called naturally bounded complete if
any two naturally finite elements upper bounded in D have a lub (not necessarily
natural lub, but evidently naturally finite element).

In such domains any set of the form x̂ is evidently directed, if non-empty. (It is
indeed non-empty in naturally algebraic pre-domains.)

Proposition 7. For a naturally algebraic natural domain D the natural lub of
an arbitrary family xi can be represented as⊎

i

xi =
⊎ ⋃

i

x̂i (4)

where both natural lubs either exist or not simultaneously.

Proof. Indeed, let x0
i v xi denote an arbitrarily chosen naturally finite approxi-

mation of xi, and let j range over naturally finite elements of D. Define xij 
 j
if j v xi, and 
 x0

i otherwise. Then
⊎

i xi =
⊎

i

⊎
x̂i =

⊎
i

⊎
j xij =

⊎
ij xij =⊎ ⋃

i x̂i by (3) and the first part of (
⊎

4). ut

Therefore, any naturally algebraic natural domain D is, in fact, defined by the
quadruple 〈D,D[ω],vD,L〉 where D[ω] ⊆ D consists of naturally finite elements
in D and L is the set of all sets of naturally finite elements having a natural lub.
Indeed, we can recover

⊎
i xi 


⊔ ⋃
i x̂i by (4) whenever

⋃
i x̂i ∈ L. Moreover, in

the case of naturally algebraic and naturally bounded complete natural domains
D their elements x can be identified, up to the evident order isomorphism, with
the ideals x̂ ∈ L (non-empty directed downward closed sets of naturally finite
elements ordered under set inclusion and having a natural lub). In particular,

x v y ⇐⇒ x̂ ⊆ ŷ . (5)
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Note 1. The above definition via naturally finite elements and ideals does not
always work in practice. Thus, in the real application of this theory to the λ-
model of hereditarily sequential finite type functionals {Qα} [10] we do not
have naturally finite elements Q[ω]

α ⊆ Qα as given. We only have a priori that
Qα are partial ordered sets with ⊥α and with monotonic application operators
Appα,β : Qα→β × Qα → Qβ . That they are, in fact, naturally ω-algebraic,
naturally bounded complete natural domains with Appα,β naturally continuous
requires quite complicated considerations (using appropriate theory of sequential
computational strategies) for its proof. Even the fact that the natural (in fact,
quite simply defined as pointwise) lub

⊎α on Qα is fruitful notion to use here
was not self-evident at all.

Generalizing the case of dcpos we can improve an appropriate part in Proposi-
tion 6 (see also footnote 6):

Proposition 8.

(a) For D and E naturally algebraic and naturally bounded complete natural pre-
domains, a monotonic map f : D → E is naturally continuous (in the sense
of preserving directed natural lubs) iff for all x ∈ D and naturally finite
b v fx there exists naturally finite a v x such that b v fa. This means
that natural continuity of functions between such domains is equivalent to
topological continuity with respect the natural Scott topology because

(b) Naturally Scott open sets in such domains are exactly arbitrary unions of the
upper cones ǎ 
 {x | a v x} for a naturally finite.

Proof. (a) Indeed, for f naturally continuous, fx =
⊎

f(x̂), so b v fx implies
b v fa for some a v x for naturally finite a, b.
Conversely, assume f satisfies the above b-a-continuity property and x =⊎

i xi be a natural directed lub in D. Let us show that fx =
⊎

i fxi. The
inclusions fxi v fx hold by monotonicity of f and imply

⋃
i f̂xi ⊆ f̂x.

Now, it suffices to show, by (4) and (5) applied to E, the inverse inclusion
f̂x ⊆

⋃
i f̂xi. Thus, assume b v fx for a naturally finite b and hence b v fa

for some naturally finite a v x =
⊎

i xi and, therefore, a v xi for some i.
Then b v fa v fxi, as required.

(b) This follows straightforwardly from the definitions of naturally finite ele-
ments, naturally Scott open sets, and from the identity x =

⊎
x̂ (with x̂

directed). ut

Note 2. In fact, it can be shown that naturally algebraic and naturally bounded
complete natural (pre-) domains, if considered as topological spaces under the
natural Scott topology, are exactly f-spaces of Ershov [2] (i.e. all, not necessary
complete f-spaces). But here again we could apply the comments of Note 1.
Indeed, Qα do not originally appear as f-spaces (represented as in [2] either
topologically or order theoretically with finite (or f-) elements as given). This
becomes clear only a posteriori, after complicated considerations based, in par-
ticular, on the general concept of natural domains (and on a lot of other things).
That is why this concept is important in itself.
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Further generalizing the traditional dcpo case and working in line with the theory
of f-spaces [2], we can show

Proposition 9. If natural domains D and E are naturally (ω-)algebraic and
naturally bounded complete then so are D×E and [D → E], assuming addition-
ally in the case of [D → E] that E contains the least element ⊥E. Then such
a restricted class of domains with ⊥ and with naturally continuous morphisms
constitute a ccc.

Proof. For D × E this is evident. Let us show this for [D → E]. Indeed, let
a0, . . . , an−1 ∈ D and b0, . . . , bn−1 ∈ E be two arbitrary lists of naturally finite
elements satisfying the

Consistency condition: for any x ∈ D the set {bi | ai v x, i < n} is upper
bounded in E, and hence its lub exists and is naturally finite.

(In general, assume that a, b, c, d, . . ., possibly with subscripts, range over natu-
rally finite elements.) Then define a tabular function

[
b0,...,bn−1
a0,...,an−1

]
∈ [D → E] by

taking for any x ∈ D[
b0,...,bn−1
a0,...,an−1

]
x 


⊔
{bi | ai v x, i < n} (6)

because this lub does always exist. (Here we use the fact that E contains the
least element ⊥E needed to get the lub defined if the set on the right is empty.)
In particular,

[
b0,...,bn−1
a0,...,an−1

]
is the least monotonic function f : D → E for which

bi v fai for all i < n, that is,[
b0,...,bn−1
a0,...,an−1

]
v f ⇐⇒ bi v fai for all i < n. (7)

Moreover, this is also a naturally continuous function. Indeed, for any directed
family {xk}k∈K in D with the natural lub existing[

b0,...,bn−1
a0,...,an−1

] ⊎
k

xk =
⊔
{bi | ai v

⊎
k

xk} =
[

b0,...,bn−1
a0,...,an−1

]
xk0

for some k0 ∈ K (due directedness of {xk}k∈K) so that, in fact,
[

b0,...,bn−1
a0,...,an−1

]
xk v[

b0,...,bn−1
a0,...,an−1

]
xk0 for all k ∈ K and hence, by (

⊎
2) and (

⊎
3) for E,[

b0,...,bn−1
a0,...,an−1

] ⊎
k

xk =
⊎
k

[
b0,...,bn−1
a0,...,an−1

]
xk .

It is also follows from (7) that
[

b0,...,bn−1
a0,...,an−1

]
=

⊔
i<n

[
bi
ai

]
. Moreover, this is a

naturally finite element in [D → E]. Thus, in the simplest case of
[

b
a

]
[

b
a

]
v

⊎
j

fj
(7)⇐⇒ b v

⊎
j

fja ⇐⇒ ∃j.b v fja ⇐⇒ ∃j.
[

b
a

]
v fj
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for any directed family of naturally continuous functions fj with
⊎

j fj and there-

fore
⊎

j fja existing. If
[

b0,...,bn−1
a0,...,an−1

]
v f and

[
d0,...,dm−1
c0,...,cm−1

]
v f then evidently[

b0,...,bn−1
a0,...,an−1

] ⊔ [
d0,...,dm−1
c0,...,cm−1

]
=

[
b0,...,bn−1,d0,...,dm−1
a0,...,an−1,c0,...,cm−1

]
v f . Thus, the set f̂ of tab-

ular approximations to any monotonic function f is directed. Moreover, any
naturally continuous f is, in fact, the natural lub of this set:

f =
⊎

f̂ =
⊎
{ϕ | ϕ v f & ϕ tabular} (8)

because

fx =
⊎

f̂x =
⊎
{b | b v fx} =

⊎
{b | ∃ naturally finite a v x (b v fa)}

=
⊎
{
[

b
a

]
x |

[
b
a

]
v f} =

⊎
{ϕx | ϕ v f & ϕ tabular}.

The last equality holds because, for tabular functions, ϕx =
[

b
a

]
x for some[

b
a

]
v ϕ (where, in accordance with (6),

[
b
a

]
does not necessary is one of the

columns of the tabular representation of ϕ). It also follows from (8) that tabular
elements of [D → E] are exactly the naturally finite ones. Moreover, this domain
is naturally (ω-)algebraic and naturally bounded complete. ut

Note 3. For any finite list of tabular elements ϕ1, . . . , ϕk in [D → E], they are
upper bounded in [D → E] iff the union of tables representing ϕi is consistent
in the above sense. This reduces, essentially algorithmically, the problem of up-
perboundedness for naturally finite elements in [D → E] to those in D and E.
But if we would consider a subset of F ⊆ [D → E] (say, of sequential or other
kind of restricted function(al)s as in [10]) then no such algorithmic reduction
for F is possible a priori, even if it is naturally algebraic and naturally bounded
complete and its naturally finite elements are represented in the tabular way as
above.

4 Semi-Formal Considerations on the More General Case
of F ⊆ [D → E] Induced by [4]7

Here most our of assertions will have a conditional character with intuitively ap-
pealing assumptions. Let F ⊆ (D → E) be an arbitrary natural domain of mono-
tonic functions (for appropriate natural domains D and E). (See Proposition 3.
For example, F could consist of naturally continuous sequential function(al)s
only.) While postulating the additional requirement of natural continuity and
ω-algebraicity property of a function domain F looks quite reasonable from the
computational perspective, the requirement of (natural) bounded completeness
might seem questionable in general. Why should the lub of two (naturally finite)
sequential functionals exist at all and be sequentially computable, even if they

7 Note that [4] was devoted only to the case of dcpos.
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have a joint upper bound? However the following intuitive, semi-formal and suf-
ficiently general argumentation in favour of natural bounded completeness can
be given (and easily formalised for the case of finite type functionals).

The simplest, ‘basic’ domains D like flat ones may be reasonably postulated
to be naturally bounded complete. Also, the greatest lower bound (glb) x u y
of any two elements can be considered computable/natural continuous. (Say, for
flat domains we need only conditional if and equality = to define u.) Then,
assuming that F has the most basic computational closure properties, we can
conclude that F is also closed under the naturally continuous operation glb
f u g = (λx ∈ D.fx u gx) ∈ F .

Moreover, it seems quite reasonable to assume that the set of naturally fi-
nite elements in any ‘basic’ D is a directed union, D[ω] =

⋃
k D[k], of some

finite sets D[k] of naturally finite objects which are suitably finitely restricted
for each k where k (say, 0, 1, 2, . . .) may serve as a measure of restriction. For
each D[k] ⊆ D we could expect that each x ∈ D has a best naturally finite lower
approximation x[k] = Ψ [k]x v x from D[k], assuming also Ψ [k](Ψ [k]x) = Ψ [k]x.
Thus, Ψ

[k]
D : D → D is just a monotonic projection onto its finite range D[k]. It

easily follows that the family {x[k]}k is directed for any x ∈ D. Also it is a rea-
sonable assumption that such Ψ

[k]
D , for the basic domains, are computable and

therefore naturally continuous.
Then the fact that each finitely restricted element x[k] is naturally finite can

even be deduced as follows: x[k] v
⊎

Z for a directed set Z implies x[k] v
⊎
{z[k] |

z ∈ Z} = z[k] v z for some z by natural continuity of Ψ [k] and because D[k] is
finite.

Further, we could additionally assume that x =
⊎

k x[k] holds for all x. This
implies formally (from our assumptions) that naturally finite and finitely re-
stricted (i.e., of the form x[k]) elements in D are the same.

It follows that any two upper bounded finitely restricted elements d, e ∈
D[k] must have a (not necessarily natural) lub d t e in D which is also finitely
restricted. Indeed, it can be obtained as the greatest lower bound in D of a finite
nonempty set:

d t e = u{x[k] | x w d, e}. (9)

By induction, given any (not necessary ‘basic’) naturally ω-algebraic and
naturally bounded complete domains D and E with such projections, we should
conclude that the composition Ψ

[k]
E ◦ f ◦ Ψ

[k]
D , denoted as Ψ

[k]
F f or f [k] (f [k]x 


(fx[k])[k]), is computable/naturally continuous, assuming f ∈ F ⊆ [D → E] is
such. Assuming that F has minimal reasonable closure properties, we can con-
clude that this composition should belong to F as well. But, once all D[k] and
E[k] are finite sets consisting only of naturally finite elements, Ψ

[k]
F f is just a nat-

urally finite tabular function, which can be reasonably postulated as k-restricted
in F , and Ψ

[k]
F : F → F is the corresponding directed family of projections having

finite ranges F [k] consisting of some tabular k-restricted functions.
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These projections are naturally continuous and, moreover, preserve all exist-
ing natural lubs (not necessarily directed) assuming Ψ

[k]
D and Ψ

[k]
E do:

(Ψ [k]
E ◦ (

⊎
i

fi) ◦ Ψ
[k]
D )x = Ψ

[k]
E ((

⊎
i

fi)(Ψ
[k]
D x)) = Ψ

[k]
E (

⊎
i

(fi(Ψ
[k]
D x)))

=
⊎
i

Ψ
[k]
E (fi(Ψ

[k]
D x)) =

⊎
i

((Ψ [k]
E ◦ fi ◦ Ψ

[k]
D )x) = (

⊎
i

(Ψ [k]
E ◦ fi ◦ Ψ

[k]
D ))x .

Moreover, having that F consists of only naturally continuous functions, f =⊎
k f [k] should hold for all f . Indeed, this follows from the same property in

D and E: fx = f(
⊎

k x[k]) =
⊎

k(fx[k]) =
⊎

k

⊎
m(fx[k])[m] =

⊎
k(fx[k])[k] =⊎

k(f [k]x). Then we can conclude that the tabular functions (of the form f [k]

for any f ∈ F ) are exactly the naturally finite elements of the natural domain
F , and F is naturally ω-algebraic. Finally, having projections Ψ

[k]
F and naturally

continuous finite glb u in F (definable by induction like above and therefore
existing in F by the natural closure properties), natural bounded completeness
of F follows exactly as above in (9) for the case of ‘basic’ domains.

To define a naturally ω-algebraic and naturally bounded complete natural
domain F ⊆ [D → E], we can fix any (simply) bounded complete set F [ω] of
tabular elements in [D → E] containing ⊥[D→E], and take F to be any extension
of F [ω] by some (if exists in [D → E]) directed natural lubs of these tabular
elements. Then F [ω] is exactly the set of all naturally finite elements in F . Two
extreme versions of F are F [ω], and the set of all existing directed natural lubs
from F [ω]. Besides the fact that this construction looks quite natural in itself, it
follows from the above considerations that naturally finite elements in F cannot
be anything other than tabular elements, provided there are, as above, directed
families of naturally continuous projections Ψ

[k]
D and Ψ

[k]
E to finite elements such

that x =
⊎

k x[k] and y =
⊎

k y[k] hold for any x ∈ D and y ∈ E, and that F is
closed under projections Ψ

[k]
F defined from Ψ

[k]
D and Ψ

[k]
E .

5 Conclusion

Our presentation is that of the current state of affairs and has the peculiarity
that really interesting concrete examples of non-dcpo domains (such as those of
hereditarily sequential and wittingly consistent higher type functionals [10]) from
which this theory has in fact arisen require too much space to be presented here.
The theory is general, but the non-artificial and instructive non-dcpo examples
on which it is actually based are rather complicated and in a sense exceptional
(dcpo case being more typical and habitual). However we can hope that there
will be many more examples where this theory can be used, similarly to the case
of dcpos.

One important topic particularly important for applications which was not
considered here in depth and which requires further special attention is the possi-
bility of the effective version of naturally algebraic, naturally bounded complete
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natural domains. Unlike the ordinary dcpo version (Ershov-Scott domains), not
everything goes so smoothly here as is noted in connection with the model of
hereditarily sequential functionals in Sect. 2.4 of [10]; see also Note 3 above.
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