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Preface

Quam multafieri non posse priusquam suntfacta, judicantur?
Pliny TheElder

Historia Naturalis, VII, 1

From the early work of Gege Boole on the algebra of logic through

to the present, the study of discrete, particularly Boolean, functions
and their realisation has been wedyf pursued by numerous
researchers. Yet, despite the pioneeringestigations of Shannon,
Riordan and others in the 1940s, this subject wagellameglected as

a sparate mathematical discipline fovep two decades outside the
Soviet Union; there the distinguished contrilton of one generation of
theoreticians laid the foundations of Boolean comxipletheory It is

only in the last 15 years that this study has come to be widely recog-
nised as a fundamental concern within the realm of modern computa-
tional complexity theory

Since the appearance ofvage (1976), the first general saw
of Boolean function compkity, there hae been enormous adwces
in this theory coupled with the gath of nev topics. o aeas in
particular serg to ilustrate these delopments: the study of bounded-
depth netwrks, which has led to important results in the domain of
structural complexity; and the theory of monotone woeks, which
belov occupies a significant portion of thexte The albundance of



new results in the latter field, most notably therkw of Razbore and
Berkowitz, has strengthened the argument that w heok taking
account of these and other advances is required.

My aim in writing this monograph was originally tovgi a
comprehense survey d all major results, relant to the sphere of
Boolean network compkity, up to he end of 1987. Unfortunately
considerations of space ‘e nmade it impossible to include detailed
presentations of very pertinent topic. It has thus been necessary to
omit a number of subjects either on the grounds that tlelonger
have the significance the once did, e.g synchronous combinational
complity; or because the could not be treated adequately in the
contxt of a general wrk. The main victim of the second pglics
the graving field of uniform circuit complexity; this, | belie, is sub-
stantial enough to merit a book to itself.

As far as possible | ka tied to malke the material self-con-
tained, havever some familiarity with discrete mathematical topics;
sets, relations, probability theory and combinatorics, is assumed.

The opening rhetorical question is quoted not out of immodest
pride on haing completed the text, rather out of a sense of relief that
30 months wrk is finished; that this occasion should arise often
seemed, while writing, to be one of theulta fieri non possejudi-
cantur! All too often is it left unsaid that a book of this nature is the
work of the author only in the namwo sense that he chooses the
words and is responsible for the errors. It is therefore a pleasure to
thank the may individuals who hee relped me in the preparation of
the text; in particular Mig Paterson, for imaluable comments on the
first drafts and for contributing a number ofwn@roofs of eisting
results; Sacha Razbatofor pointing out some misconceptions in the
original draft of Chapter(3); Ingo ¥gener who generously supplied a
copy of his own (excellent) recent volume waing similar topics;



Stassys Jukna who kept me informed of andvideml seeral, other
wise unobtainable, significant papers whiclvehapeared recently in
Soviet technical journals; first Rosemary Altoft and later Amdi@ar-

rick of Academic Press for tolerating the wgloprogress of the
manuscript and the frequentlyviged "final" dates of completion; and
finally my colleagues in the Computer Science department \c#-Li
pool Unwersity for mary thought preoking discussions on xéfor-
matting, complgity theory and other matters too numerous to men-
tion.

PE.D
Liverpool, June 1988

- - - the reader who has got as far as theeface and been
discouaged by that, has spent mopeon the book; he
wishes to know how he is to be compensated for xpiene
diture. 1 @n only remind him that he knows oWveml ways

of using a book without actualleadingit: he can use it to

fill a space in his library wher, reatly bound, it is ser o
look good; or he may leave it lying upon a table to be seen
by erudite friends. Or finally he carevew it; this must
surely be the best option- -

Arthur Sdopenhauer

Preface to the 1st Edition of
Die Welt als Wille und Vorstellung



Chapter 1

Introduction

---they hadbuilt their hope of heaven orthe
binary systemand thecomputer, 1 and O, Yes andNo- - -

Norman Mailer

The Armies of the Night

1.1) Complexity Theory

In very broad terms complity theory is that field of Computer
Science concerned with formally reasoning abowv Hdifficult” spe-
cific problems are to solve. In order to realhis rather general
description more precise one must consider the following questions.

Q1) How is a "problem” specified?
Q2) Whatdoes a "solution" consist of?
Q3) How is "difficulty" being measured?

For our purposes anproblem can be viewed as associating a
particular result or output with eaclalid input, that is as a function
(f) from some domain of inputalues (I ) to some range of output
vaues (O). In this book we are »x@lusively concerned with func-
tions for which both input and output values are encoded as finite
strings of Boolean/binary values i.e 0 (cal$e) and 1 (or True). The
functions where the result is a single Booleatug will in this sec-
tion be referred to aglecision poblems. These correspond to
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problems which ask whether some property is true of the input, e.g is
a positive integer encoded in binarya prime number The size of a
problem instance is defined to be the length of its input. The class of
functions introduced alve will be considered in greater detail in Sec-
tion(1.2).

With this approach "solving a problem" is eglent to comput-
ing some functiorf, and by a solution or computation we mean a pre-
cisely specified sequence of instructions whickergisome input string
X returns the resuly such thatf =y. Such a sequence is called an
algorithm for f.

Computation is considered as performed on abstract machines or
models of computationvhich encapsulate intwg motions of com-
puter operation without reference toyaspecific realised architecture.
Undoubtedly the best kmm of such models is that proposed byr-T
ing (1936). The definition belo differs from it only in minor techni-
cal details.

Definition 1.1:A k-tape Turing Mabkine (TM) is defined by a 7-tuple:

M=(Q,I",B,0y9,0x0r)
where:
Q is a finite set of states.

I is a finite alphabet of tape symbols (we shall assume
r={0,1)

B 0T is the blank symbol.

0o U Q is the initial state.

5:Qx{r [ {B}** ~ Qx{r}*x{L,R,SK" is the state transi-
tion function.



Oa, O UQ are final statesg, is the accept state andgg the
reject state.

M has aninput tape and k work-tapes. Each tape is #ided
into infinitely mary cells numbered ...,-2,-1,0,1,2,... A cell can
record precisely one symbol at a tim&ach work-tape is scanned by
a two-way read-writehead,and the input tape by a dawvay read-only
head. The operation d¥l is supervised by dinite contol. (Figure
1.1) e

Figurel.1

M solves a decision problem as falle.

Initially all tape heads are positioned at cell 0 on their corre-
sponding tapes. Cells lh—1 of the input tape contain the input
data,x and all other cells contain the blank symbol. The initial state
iS qo-

In a single computation step (orove)the folloving actions are
performed.M reads the symbol at the head position on each tape. The
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current state and th&+1 symbols read are used to determine the
next state of the finite control according & The transition function
also determines which symbol is written to each of kheork-tapes
and whether a tape head vas oe cell left (), or one cell right R)

or remains stationarySj.

Operation ceases whévi enters one of the final statgg or gx.
In the former caseM is said toacceptx, corresponding tdf =1, in
the latterM is said toreject x, which corresponds tb= 0.

The set of input strings accepted by is often referred to as
the language recognisedoy M.

Note that we ha defined computation in terms of decision
problems and not arbitrary functionsThese can be catered for by
including an additional tape for printing outputhe modifications are
straightforvard and are left to the reader

The behaviour of the machine described in Defn(1.1) is deter
ministic since for ay given configuration of current state arkl+1
symbols scanned by the tape heads theredstly one mue that can
be made using. Another important model, in compig/ studies, is
the non-deterministicTuring machine. The definition of this is identi-
cal to Defn(1.1) except that is nov a function from

Q x {I [ B} _, subsets HbQ x {I'}* x {L,R,S}"*

The interpretation of this being that foryagngle configuration there
may be a choice of mgnmoves avallable. An input is accepted if
some sequence of wes terminates in the accept state.

These models pwide the basis for more rigorously defining
"difficulty”, namely thecompleity measuges (Non)-deterministic e
and (Non)-deterministic Space.



Definition 1.2:Let f:{0,}' - {0, 1} be a decision problem arg S
functions fromN to N. f is computable in deterministic timE (space
S(n)) if f can be computed by a deterministic TM which halts after at
most T moves (scans at mosS(n) cells on ay work-tape) for all
inputs of sizen.

f is computable in non-deterministic timie(spaceS(n)) if there
is a non-deterministic TMM, such that for ay input x of sizen with
f=1, x is accepted by some sequence of at mbsthoves (X is
accepted by some sequence ofvasowhich scan at mosg(n) cells
on ary work-tape). ¢

Since the input tape is not considered in measuring space one
can sensibly consider computations which use sgége< n.

For functionsT, S as abwe, the decision problems computable
in deterministic timeT (spaceS(n)) comprise thecompleity classes
DTIME(T(n)) (resp. DSPACHKES(n))). Analogously one has the
classesNTIME(T (n)) and NSPACHKS(n)) for non-deterministic com-
putation.

Abstract compleity theory is largely concerned with the proper
ties of and relations between conyile classes, e.g hierarghtheo-
rems dealing with which classes are properly contained in othexs. W
conclude this brief rgew by describing tvo of the important concerns
in this area.

Let:

P=[] DTIME(Y) ; NP=[] NTIME(Y)
k=1 k=1

P corresponds to the class of deterministic polynomial time
computable decision problems, which are usuallyated as being
the only problems with feasible algorithms. The cl&8 contains
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mary classical combinatorial and optimisation problems for which no
efficient deterministic solution is known; it can begaeled as the
class of polynomial timeverifiable problems. Br example the prob-
lem of deciding whether a\gin n-vertex graph is 3-colourable is in
NP, snce one may non-deterministically "guess" a 3-colouring and
(deterministically) check if it is correct. The "guessing" stageida

the combinatorial »@losion irvolved in checking ery individual
colouring in turn. No deterministic method of achieving this is
known.

It is clear thatP O NP, and although it seems probable that
P # NP this has yet to be pved. This could be shown byxkibiting
a cdecision problem in the clasdP - P. The seminal paper of Cook
(1971) introduced the concept diP-complete decision problems,
which are essentially the most difficult problemsN®. A decision
problemf is NP-complete if:

NP1)
fis in NP.

NP2)

[0g in NP there exists a deterministic polynomial time com-
putable function,r, which transforms instances of g to poly-
nomially larger instances dfin such a way thagj holds if and
only if f holds.

If such a transformationxests theng is said to bepolynomially
reducible to f(g<,f). This relation is transite, so to pove a aci-
sion problemNP-complete it is sufficient toxhibit a transformation
from a knavn NP-complete language. With these concepts NP if
and only if someNP-completef is not inP.

Another important containment issue concerns the relation
between space efficient computation &hdefine



DLOGSPACE= DSPACKogn + 10)

Note: All logarithms are to the base 2, unless otherwise stated.

Just asP corresponds to the set of decision problems for which
fast sequential algorithmsxist, so DLOGSPACE seems to embody
the class of decision problems for whicti@ént parallel time algo-
rithms eist. It is known thatDLOGSPACE P and again the inclu-
sion is thought to be propefCook (1974) introduced the class of
problems LOGSPACEcomplete for P via logspace transformation.
This is defined similarly to the propertyP-complete gcept that the
transformation must be computable PLOGSPACE The contain-
ment issue of P versus LOGSPACE can be formulated as
P # DLOGSPACEIf and only if someLOGSPACEcompletef is not
in DLOGSPACE

The classPSPACE consist of those decision problems com-
putable in polynomial space. By the result oVigh (1970), it is not
necessary to distinguish between deterministic and non-deterministic
machines  for  this class. It can be shown that
DLOGSPACE~ PSPACEand so at least one of the inclusions telo
is strict.

DLOGSPACEL P O NP O PSPACE

The model of computation we are concerned with in this text is
Boolean netwrks which will be formally introduced in Section(1.3).
The relations between TMs and this model will be considered in
detail in the next chapter
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1.2) Boolean Functions and Boolean Algebra

X, denotes am-tuple of Boolean ariables <x;, X, ...,X, >, i.e
variables taking &lues from {0,1} (equidently {False,Tue}). Any
function f(X,):{0,13" - {0,131 is called an n-input, m-output
Boolean functionover X,. For brevity the cases wheren=1 will
simply be referred to as-input Boolean functions or just Boolean
functions where there is no risk of ambiguitjhese correspond to the
decision problems of the pieus section, restricted to inputs of size
n. B, will denote the set of alh-input, m-output Boolean functions
and B,, the set ofn-input Boolean functions. It is easy to shohat
IBml = 2™ and henceB,| = 2°". Table(1.1) gies the 16 functions in
B, defined in terms of arithmeticver the 2 element fieldsF(2).

A quite frequently used representation of Boolean functions is a
truth-table, in which the value of the function for each possible input
assignment is gen explicitly. The examples in Table(1.2) are the
truth tables for the function8, O in B, and - (ngdion) in B;. In
general a truth table fof in B,,, has 2 rows, one for eery input
assignment, and + m columns,n for the values ofX,, and m for out-
put values.

X1 Xo 0 0 X1
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 0 0

Table(l. 2)



Symbol Name f
0 Constant 0
1 Constant 1
m Projection X1
oS Projection Xo
m Projection 1+ X
oS Projection 1+ X,
Conjunction (AND) X1 - Xo
Disjunction (OR) X1+ X + X1 . X
-0 NAND 1+X%.%
il NOR 1+ x). (1+x)
a Implication 1+ X + X1 . X
a Implication I+ X+ X . Xy
O Implication Xp + X1 . Xo
O Implication Xo + Xq . X9
M Equivalence I+ X + %
g Exclusie-or X + Xo

The 16 Functions InB,

Table (1. 1)

Given any a =< ay,...,a,> in {0,1", f is the result obtained
by fixing x; = a; for each 1<i<n. a is called anassignmento X,,.
An assignmentr is said tosatisfy fif f=1.

A partial assignment,r is an assignment of constants to some
subset ofX,. |7 denotes the number of variables fixed hbyand /"
the function inB,_,; obtained as a resultf'” is called asubfunction
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of f. f 0B, is said to benon-dgenerateif for all x OX,,, f*0 # fx=1
and degenerate otherwise. B, denotes the set of nongknerate
Boolean functions. It is easy to shahat |Bn—l_3>n | =0o(|By,]|)

Order relationss, < ae defined wer B, as follovs:

f<g @M Do 0{0,3"f=10 g=1

f<g O f<g and Oa O{0, "

for whichf=0but g=1
It is easy to erify that< is a partial order i.d<f, f<g, g<h
0 f<h f<g,g<sfO f=g.

(P1)-(P9) belw describe some of the fundamental properties of
the Boolean operations, [0 and -.f, g, and h are arbitrary Boolean
functions.

P1) i)f0g=gUf; (Commutativity
i) fOg=g0Of

P2) 1) (f Og) Oh=f0O(gOh); (Associativity
i (fOg)Oh=f0O(gOh)

P3) i)fO(g0Oh)=(f Og) O(g Oh); (Distributivity)
ifO(gOh)=(f Og) O(f Oh)

P4) i)fOf=0; (Complement
iyfOf=1

P5) i) fOf=f; (ldempotency
i) fof=f

P6) i) f0=0; (Constanj
ifdl=1
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P7) i)fO00=f (Identity)

iyfO1=f
P8) i) (f Og)=f0g; (De Morgan's Lawsg
iy (FOg) =f0g

P9) 1)fO(f Ug)=f; (Absorption

i fO(f Og)=f1

The correctness of (P1-P9) is easily established by inspecting
the truth-table for each relationAn easy induction on the number of
operations shows that De Myan’s Laws @an be generalised to arbi-
trarily long finite expressions.

Obsene that the properties arewutiled into pairs in which the
second is obtained by interchangihgand [0, 0 and 1 in the first.
This is the so-callegrinciple of dualityand is a frequently applied
technique in deriving identities for Boolean functionBroperty(P9)
may be more generally stated as:

If f<g then:fOg=f andflg=g. This will be the form used
subsequently.

The dual of a Boolean functionf is the Boolean function:
f(Xn) = f (>_(l! )_(2! e !)_(n)
A function isself-dualif f =f.

f is affineif f may be expressed in the form:
n
a Oy
i=1

where g, is a constant ang is either a constant or thenablex;.

We row consider more concise methods of specifying Boolean func-
tions. A literal is either a wariable x; or its complements;. Let
Q ={wy, W,, ---,w,} O0B,. A Boolean Q-expression wer X, is ary
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expression constructed according to the rulesvielo

Cl) [Ox OX, X is anQ-expression.

C2) IfwlOQ ande,e,,...,e are Q-expressions thenv(e,,...,e)
is also anQ-expression.

Clearly aly Q-expression represents a uniqguenput Boolean
function.

Q is called alogical basis. A basis is said ta@over F, 00 B, if
evay f in F, is represented by son@-expression. Abasis iscom-
pleteif it covers B, for every n. A distinction is made between com-
plete bases which contain constant functions (weak-complete) and
those which do not (strong-completeYhe problem of characterising
complete bases was solved by Post (194Mhe result is stated belo
without proof:

Fact 1.1: Q is a complete basis if and only @ satisfies all of:
)] Ow in Q such thatw(0,0,...,0F 1.

i)  Owin Q such thatw®™ £ wk=! for somex, 1<i<k
i)  Ow in Q such thatw is non-afine.

iv) [Ow in Q such thatw is not self-dual.

v) Owin Q such thatw(1,1,...,1F0. O

Two other methods of representing Boolean functions Zige
junctive Normal Brm (DNF) andConjunctive Normal &rm (CNF).

A product is a function of the formy, Oy, O---0Oy,, where
{y1,....\} is a set of literals not containing bathandx; for ary i.

A sumis a function of the forny,[0---Oy,. Corventionally a
product (sum) containing no literals is defined to be the constant func-
tion 1 (0).



13

The associativity of] and [0 ensures that these expressions are
unambiguous. Hencefoesd we shall omit the explicit use af in
specifying products and gard [0 as having greater precedence than
to avoid excessve wse of brackts.

Now consider ag Boolean functiorf. Suppose{a®,...,a®} is
the (finite) set of assignments which sati&fClearly:

f=p, Op, O0---0Op,

wherep. =1 if and only if the assignment t¥,, is a¥. Eachp can
be represented as a product rofiterals, y,,...,y, wherey; is x if
a’ is 1 andy; is X otherwise.

Disjunctve Normal Form is the representation fohs a sum of
products. The method ab® dows that ag Boolean function may be
so expressed. CNFJalves writingf as a product of sums. By con-
sidering those assignments which malk =0, f may alays be
expressed in this ay.

There are in general mandifferent ways of xpressingf in
DNF or CNE Seveal methods of minimising the number of product
terms were desloped in the field of switching theoryfhese are cen-
tered around the concept of prime implicants and prime clauses.

A product of literals,p, is an implicant of f if p<f. pis a
prime implicantif p<f and no product of gnproper subset of the
literals definingp is an implicant off. Smilarly ary sum of literals,q,
for which f < g is animplicand of f, minimal implicands being called
prime clausef f.

For any f OB, PI(f) will denote the set of prime implicants of
f and PC(f) the prime clauses.

Fact 1.2: O f OB,
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Vf= O p

p OPI(f)

iy t= qDPDC(f) g
Proof: i) From the definition of implicant it is clear that the right-
hand side i f. To show f < DH“) p, leta 0O{0, 3" such thatf =1

P

and consider the produaty, of literals {y,,...,y,} which is 1 if and
only if the assignment tdX, corresponds tax. Certainly m is an
implicant of f. The definition of prime implicant establishes that there
is some subset of the literals definimyg whose productm’ is in
PI(f). Sincem< nY this proves ().

ii) Follows by a dual argument since
PIf)= LJ{g:qOPC(f)} O

An important problem in switching theory is to construct a min-
imal (number of products) DNF representation fofrom its truth-
table. Karnaughmaps (Karnaugh, 1953) and the tabular method of
Quine (1952), (1955) and McClusk (1956) are techniques which are
feasible only for small alues ofn. The corresponding decision prob-
lem (i.e Doesf have a DNF representation which contains at mést
products, for some specified?) is known to beNP-complete as
shavn by Gimpel (1965) and Masek (1978).

Another normal form, first proposed by gatkin (1927) is the
ringsum e&pansion. This uses the weak-complete ba$is [J, (0} in
B, as opposed to the strong-complete b45is], =} employed in the
normal forms abee. The ringsum expansion can be constructed for
any f as follows.
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Let {a®,...,a} be the set of assignments which satisfnd
p;,...,p, the products of literals defined from these asviptesly.
Then:

f=p,0p, 0---0p (1.1)
since for ag assignment toX, at most one of these products is true.

Occurrences of mgted variables can be eliminated by using the
identity X =x [ 1. Finally using the fact thafl distributes @er [J,
(1.1) reduces to:

fz=aoOmOm0O---Om

where a, is a constant and each is a product of un-rggted \ari-
ables. Such a product will subsequently be referred to asr@om
and the dual construct for sums aslause. For a nonom m, var
will denote the set of variables X,, which occur inm; similarly var
will denote the set of variables in a clause

An important subset oB, is the class ofmonotoneBoolean
functions,M,,. f is monotone if and only if:

Ox OX, ROkt
Lemma 1.11f f OM, then no prime implicant of contains a ngeted

variable.

Proof: Let fOM, and without loss of generality suppose
m=%X; Op(X, —{X1}) is a pime implicant off. Sncex, Op<f andf

is monotone so Op <f (by considering an assignment which fies
all of the literals inp to 1). It follows thatx; p Ox; p <f but

X pOxp=(X 0Ox)Op=10p=p

and this contradicts the assumption thretvas a pime implicant. O
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A similar result holds for prime clauses of monotone Boolean
functions.

Corollary 1.1:

i) OfOM, DE(” p is the minimal DNF representation bf
P

i) dfdM, O qis the minimal CNF representation of
q OPC(f)

Proof:

i) Supposeh = __ﬁlmi is a DNF representation df which contains

fewer than PI(f)| products. From Lemma(l.1) it may be assumed
that no product ofh contains a ngeed variable. Since < |PI(f)]
there must be some prime implicant Hf p say which is not in
{m;,...,m}. Consider the assignment to X, which sets ractly var

to 1 andX,-var to 0. By the assumption thdt=f, h=1 and so
somem in {my,...,m} must equal 1 under, but thenvar O var and
now by changinga so that additionally theariables invar— var(m)
are all 0 a contradiction results sina@) = 1 but f(a) = 0.

ii) Duality. O

Lemma 1.2.Let Q ={00, [0, 0, 3 OB,. Any Q-expressione(X,) spec-
ifies a monotone Boolean function.

Proof: Since 0, 1,x are all monotone it is sufficient to m® that
fOg andf Og are both monotone if and g are monotone. Only the
former need be shown, the latter case following by a dgginzent.

Let h=f Og for ary monotonef and g. Consider ag X; in X,.
h [x=0 — f [x=0 0 g [x=0

From the definition of{], any assignment which satisfiels"=°
must satisfy at least one df*®, g*¥®. As f and g are both
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monotone, the same assignment must saft&fy 0g=*, and so:

thi:O < flxi:l D g|Xi=l — thi:1 O

Corollary 1.2: fOM, (O f OM,

Proof: Easily dewed from Lemma(l.1l), DeMgan’'s Laws and
Lemma(1.2)O

Combining Lemma(1.1) and Lemma(1.2) yields:
Theoem 1.1: fis monotone if and only if can be represented by a
{0, 00, 0, B-expression. O

Another important subset dB, is the class ofsymmetric Boolean
functions.f is symmetric if its output only depends on the number of
inputs which are true. Thus foryapermutationo of <1,2...n>

f=f
if fis symmetric.

S, will denote the class afi-input symmetric Boolean functions.
Any f in S, can be succinctly described by a binary word of length
n+1, w=wyw---W,, thew, bit giving the value of when «actly i
inputs are 1w is called thespectrumof f. By considering the number
of distinct spectra it follws that there are "2 functions in S,
Examples of symmetric Boolean functions are:

C(X,) =100 3 % = O(mod R
i=1

n
Ef(X,) =100 3 % =k
i=1
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TX) =10 3 x>k
i=1

In all cases the summation is arithmefi§.is thek-th threshold
function. These are the class of monotone symmetric functiors,
is the majority function (denotedVAJ,).

Arithmetic functions can easily be represented as multiple out-
put Boolean functions by encoding the input data in binary eXj, if
andY, are disjointn-tuples of Boolean variables then:

ADD(X,,,Y,) {0, 3*" - {0, 3"

denotes the Boolean representation of integer addition.

Graph-theoretic problems are normally encoded using an adja-
ceny matrix to represent an-vertex graph. Thus let

Xy ={x; :1<i<jsn}; X] ={x; :1<i,j<n}

Gy is a function fromX; to n-vertex undirected graphsG,(X;) con-
tains an edgdi, j} if and only if x; in X} is 1. Gp(X7) is the n-ver-
tex directed graph defined in a similar manner

1.3) Boolean Networks

Let QOB,. A Boolean Q-network, T is a drected agclic
graph containing 2 disjoint sets of nodésjs the set of nodes with
in-degree O (theinputs of T); G is the set of nodes with in-gese 2
(the gatesof T). Eachx in X, is associated with exactly one input
nodei; in |, any remaining input nodes are associated with constant
functions. Each gte g of T is associated with some functidmin Q,
denoted byop(g) = h or g is anh-gate. If g is a gate then the inputs
of g areg, (Left) andgi (Right). For ary nodev of T, the number
of edges (owires) leaving (entering)v is termed the fanout (fanin) of
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v, and is denoted byy(v). The fanout (fanin) of a netark is the
maximal fanout (fanin) of annode. Ary node with fanout O is
called anoutputof T. Q is thebasisof T.

If v, w are nodes such that there is a wire,w > from v to
w, Vv is said to be gredecessoor input of w; similarly w is said to
be asuccessoror output of v. This will also be referred to asv"
entersw". A nodev is anancestor(resp. descendantpf a nodew, if
there is a directed path fromto w (resp. fromw to v).

For brevity we shall subsequently refer to “the inpytof T
rather than "the input of associated with" and to X, instead ofl,
as the inputs off. Smilarly we shall not ma& the ordering of gte
inputs explicit, unless significant.

If Q =B, thenT is acombinational network.If Q ={[J, [} then
T is amonotone Boolean network.

With each nodey, of an Q-network T a Boolean function
reqVv)(X,,) is associated as folles:

0 if vis an input noddabelled0
_ 0 if vis an input noddabelled 1
reV)(Xn) = T if vis the inputx of T
(res( vy ) op(v) req( v, ) otherwise

wherev,, v, are the inputs o¥f.

An Q-network T computes or realise;} in By, if and only if
there arem nodes <vy,...,v,> in T such thatres(v;) =f,. It is dear
from Theorem(1.1) that is monotone if and only if can be com-
puted by a monotone Boolean netw:

It will be assumed that §nQ-network T computing a single
output Boolean function containxaetly 1 output nodd this being
the unique node whose resultfis
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For notational comenience the remainder of this section will be
couched in terms of single output Boolean functionsyeuer it is
trivially verified that the results and concepts introduced generalise to
m-output functions.

The two complexity measures of interest armetwork sizeand
depth. For an Q-network T these are respeedy:

Co(T)=Kg:gis a qte nodan T}|
Dqo(T) = Length oflongest directedpath inT

It will sometimes be carenient to consider the nodes of a net-
work as partitioned intdevels Ly,...,Lp; Ly being the input nodes,
L; those gates which resei an input from a node irL;_; and a node
in L; for somej <i —1.

The nodes of a netwk are said to be labelled itopological
order if each nodeyu, is assigned a distinct number such that: for
all edges <u,v > in the network the numbering satisfiesx n(v).

For any Boolean functiorf:

Co(f) =min {Cu(T) : T computes f}

Dqo(f) =min{Dq(T) : T computes f}
where Q = B, these will be denoted simply bB®(f) and D(f). C(f)
is the combinational complety of f.

An Q-network T, computing f, is gptimal if Cq(T) =Cq(f).
The folloving lemma summarises some important properties of opti-
mal combinational netarks.

Lemma 1.3:Let T be an optimal combinational network computing
f 0B, whereT contains at least oneatg node.T satisfies all of the
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following:
i) No two nodes of T compute the same function &,

i)  Every gate computes a function of the form:

(Vi Oy2)° (O-type) or (y; Oy,)? (O -type)
where{a, b,c,d} 0{0,} andy* =y if e=1 andy otherwise.
i)  No gae receves two inputs from the same node.
Proof:

) If v, is a node andv, is a gate such that
reg(vy)(X,) =reqv,)(X,) then the neterk T' constructed by deleting
v, together with all wires «,,w > from T and adding wires @;, w >
still computesf but contains one fewerage.

i) The only functions inB, which are neither[*type nor
[-type are constant functions or projections. It will bewashahat
nodes computing constant functions or gates computing projections
may be eliminated by "absorbing" their result into succesatasg

Supposerequ) 1{0, 1} for some nodeu of T. Let v be aiy
successor of u and w the other input of v. Then:
reg(v) 0{0, 1,regw), regw)}. In the first two cases the a@te v may
be deleted, replaced by a constant function and the wingss x,
<w,Vv> removed from T. In the remaining caseg may be replaced
by the appropriate projection ofw(w) and again the wire €,v>
may be deleted.

To complete the proof of (ii) it remains to eliminate instances of
projections. Clearlyary projection of the formm, m can be
removed, so it is sufcient to consider only projections of the form
m. Let op(u) = 7;; r, s be the inputs ofi; and v and w as before. In
this case:
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res(v) =regqr) op(v) regw)

= b( req(r), regw))
for someb [ B, depending orop(v).

Now T can be re-wired as follows: Delete the wirel,« >; add
a wire <r,v >; replacev by a b-gate.

In both caseswery wire <u,v > is eventually remeed 0 u has
fan-out 0 and can be eliminated.

i) OhOB, hO{0,1,9,g}. Thus ay gate both of whose
inputs are from the same node can be replaced by a constant function
or projection and thence from (ii) eliminated.

The definition abee restricts consideration to netvks with
fan-in 2, but allevs unlimited fanout. The limitation on fan-in is eas-
ily justified since in practical terms it is costly to meauttire gtes
with large numbers of inputs. Furthermore since a finite number of
2-input gates can compute warfunction in B,, permitting larger con-
stant &nin could only reduce combinational complexity and depth by
a oonstant ctor.

The next tvo results indicate that these complexity measures are
fairly insensitve © the choice of complete basis used and to restrict-
ing node fanout to be at most 2.

Lemma 1.4Let Q; andQ, be complete logical bases froB3 and let
f be a function inB,. There are constansandd such that:

Co,(f) = 5Cq,(f)

Dq,(f) =dDq,(f)
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Proof: Let T be an optimak,-network realisingf and let
REM=Q,-Q, 0B,

Since Q; is logically complete, anfunction b in REM can be com-
puted by some 2-inpu®;-network, which contains at most gaes
and has depth at moskt for some constants and d depending on
Q,;, Q,. It follows thatT can be transformed into a@;-network by
replacing each ae u, with op(u) in REM, by the appropriate;-net-
work. Clearly this increases the size and depthToby at most the
factors statedn

Lemma 1.5:Let T be anQ-network computingf OB, . For
ary constantt>2 there is an{Q [] 1}-network T', where | denotes
the single argument identity function, which satisfies:

i) T' computed.
, 1 0O (m-1)

C T S§+— Co(T) +

i) O (™) t-1)0 o(T) t-1)
i)  Dmn(T) <(1+log;2) Do(T) +logm
iv) Every node,u, of T' has fanout at mosgt

Proof: See Hower, Klawe, Pippenger (1984)a

One important class of restrictednbut models are Boolean for
mulae.

A formula ove the basisQ is defined in the sameay as a
BooleanQ-network except that gate nodesvieafanout at most one.

The set ofQ-formulae is isomorphic to the set ©Fexpressions
defined preiously. Noting this correspondence it will frequently be
more conenient to adopt the folleing inductve definition of Q-for-
mula.
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Definition 1.3:Let Q [0 B,. An Q-formula L over X,, is ary expres-
sion generated by repeated application of the the rulesvbelo

i) Ox OX, % is anQ-formula.
i) ¢ 0{0,1 n Q is anQ-formulae.

i)y If {m,m} n Qz{} andL is anQ-formula, then -L is also an
Q-formula.

iv) If L is anQ-formula then ) is dso anQ-formula.

v) If * 0Q which depends on both itsgaments (i.e is not a con-
stant function or projection) and,, L, are Q-formulae then
L, * L, is anQ-formula.

Lo(G) will denote the number of 2-input gates occurring in an
Q-formula G, this being precisely one less than the totadot from
the input nodes. In terms of Defn(1.83),(G) is the number of times
rule (v) is applied in constructin@. Lgo(f) will denote theQ-for-
mula size of a Boolean functioh As before, if Q =B,, then the
notationL (G), L(f) will be used. Formulae are examinednsvely
in Chapter(3).

Finally we consider a significant tefence between TM compu-
tation and Boolean netwks.

Let f:{0,1" - {0,1} be a decision problem. Theamily of
Boolean functions corresponding ttas the infinite sequence

[[]=<fO @ .0 .. >
f" is the Boolean function obtained by restrictihtp inputs of

size n. A family of Boolean functions ha®-network size (or depth)
G(n) iff

On  Co(f™ =G(n) (or Do(f™)=G(n))
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We define the complexity classesQ - SIZEG(n)), resp.

Q - DEPTH(G(n)) as being the sets o&rilies of Boolean functions
computable withQ-network size (depth) at moss(n). Thusa family

of Boolean functions is garded as being computed by a sequence
<T,T,...,T,..> o BooleanQ-networks, T, realising f”, the net-
work complexity of f being defined with respect to this sequence.
However the TM complexity off is defined with respect to single
TM, viz f O DTIME(T(n)) if there exists a DTMM which acceptd
and makes at modt moves on ay input of lengthn.

Formally this situation is described by saying that TMs are a
uniform model and Boolean networksran-uniformmodel of compu-
tation.

All decision problems may be solved by networks iv is well
knowvn that some decision problems are Adf-computable. A less
extreme consequence of non-uniform bebar is that there are deci-
sion problems which may be sety much more efficiently by net-
works than by TMs and so reasonable simulations of networks by
TMs cannot exist, see e.g Meyer and Stockmeyer (1973), Fischer and
Rabin (1974). Uniform circuit complexity theory attempts to rectify
this situation by constraining the members of a family of networks to
be "similar". e.g a family of networks computing][is uniform if
there is a DTM which gen n, encoded in unarycan construct some
standard encoding of the&'th network within some time bound
depending on the nebsk size. This is one of the most rapidly
expanding areas of complexity theory and an adequate description is
beyond the scope of thisxe The interested reader is referred to the
paper of Borodin(1975) which introduces some of the fundamental
concepts and those of Cook (1979), Pippenger (1980) and Ruzzo
(1981).
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Bibliographic Notes

For further background on computational complexity theory the
reader is referred to Aho, Hopcroft and Ullman (1974) and Hopcroft
and Ullman (1979). Machtey and Young (1978) is an advancedde
description of modern abstract complexity thedbarey and Johnson
(1979) presents a comprehesmsieccount of NP-completeness. Classi-
cal switching theory is sueyed in the tets of Friedman (1975), Har
rison (1965) and Miller (1965).

There are a number of fields of ndrce to Boolean netwvk
complity which will not be examined in gndetail in this book.
The most important of these are algebraic corifyle which studies
computational complexity of netwks in which general arithmetic
functions are ailable as base operations, this area beingerea in
the text of Borodin and Munro (1975); and also VLSI complexity as
described in Uliman (1984).
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Chapter 2

Combinational Network Comptéey

------------ | shall tell you
A pretty tale It maybethat youhave heardt;
But, since itserves mypurpose | will venture
To stakE't a little more
olanus 1,i,92-95

Combinational networks as introduced @bare the basic com-
putational model examined in this book. The present chapter is mainly
concerned with relations volving network complexity measures and
also the combinational complexity of some particular Boolean func-
tions.

Cori-

In Section(2.1) simulations of ufing Machines by combina-
tional networks are considered; the main results presented being the
theorem of Fischer & Pippengewhich relatesDTIME to network
size, and that of Borodin relatilgSPACEto network depth. éllow-
ing this \arious relations amongst network complexity measures are
considered. The section concludes with a description of thyginSk
and Valiant (1984) results concerning reductions betweemliés of
Boolean functions.

Section(2.2) is concerned with estimating therst-case com-
plexity of Boolean functions. The important theorem of Shannon,
shaving that "almost all" functions irB,, have @mbinational com-
plexity Q (2"/n) is proved here. A matching upper bound is pided
using a construction due to Lupandn the same vein general upper
and lower bounds on network depth areegi Thetheorem of Bter-
son and Valiant relating nebtnk size and depth is expounded in
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Section(2.3).

The concluding sections of this chapter deal with the combina-
tional compleity of some specific Boolean functions: Thewéy
bound arguments of SchnpfPaul, Stockmger and Blum are »am-
ined in Section(2.4); efficient nebrks for certain arithmetic and all
symmetric functions being \ggn in Section(2.5).

2.1) Simulation Results

The complexity measures deterministic TM-time and space
reflect intuitve rotions of the temporal and spatial requirements of
particular computations.In this section the relation between these
measures and combinational network comipfeis examined. First
some further terminology is required.

A DTM, M, is oblivious if the vector <h,,...,h,; > of tape
head positions depends solely on the input size and the number of
moves made. As before letf " denote the restriction of some deci-
sion problem,f, to inputs of sizen. A relation between deterministic
TM-time and network size is established irot@ages:

SIM1)
By relating C(f(™) to the time complexity of an obfious
DTM computing f.

SIM2)
By exhibiting an difcient simulation of arbitrary DTMs by
oblivious DTMs.

Both simulations were first presented by Fischer & Pippenger
(2979); Our description folls that of Schnorr (1976a) in which a
careful analysis of constant factors is made.
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It is corvenient to viev the transition functiong, as dscribing
a gmple program consisting of numbered instructions falling into one
of the following catgories.

1) Actions (s, F,t): interpreted as instruction numbsgrconsists of
performing some actiorF followed by a jump to instruction
numbert. HereF is one of:

a)  Move the head on tapg right (R))
b)  Move the head on tap¢ left (L;)
c) Thehead on tapg prints e 0{0, 1} (P;(e))

d) Thehead on tapg prints the symbol scanned by the head
on tapei (TR;(i))

e) Halt (in which caset = s)

2) Tests(s,T,r,t): interpreted as instruction numberis "If T
then go tor else go tat". Tests, T, are of the form:

Q;(e) Does thehead ontape jobserve €1{0,1,B} ?

Clearly aly move d J can be encoded as a finite sequence of
Actions and Tests and so the transition functiovegiise to a pro-
gram which mimics the behaviour ®. For an arbitrary DTMM, p
will denote the corresponding program amfl the number of instruc-
tions contained therein. Instruction number O is the initial instruction,
and since we are considering decision problems, itvgtructionss,,
sr are identified as halt and accept, halt and rejdhen discussing
the eecution of such a program we shall refer to the number
labelling the current instruction as tistate of p. T,(n) will denote
the worst-case running time @f on inputs of sizen.

Theoem 2.1:(Schnorr 1976a) Let:{0,}' - {0, 1} be ary decision
problem.V oblivious Turing programsp, which computef:
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C(f™)<7Ip| Ty(n)

Proof: Since p is oblivious there is a function,pogi, j,n),
0<i<T,(n), 1< j<k+1 which gves the position of thej'th tape
head afteri steps on all inputs of size. Consider the follwing n-
input Boolean functions, wherm [1{0, 1}":

A, s)(a) (I After i steps withnputa p is in Sate s

B(i,I, j,e)(a) I After i steps withinput a e is in cell | of tapej

For eachi O0<i<Ty(n) define C; to be the set of Boolean functions
over X,:

C ={A(,s), B(,l,j,e): Vs, j,e}

The program terminates in one of the final stagssg. From
the definition ofA(i, s) above we have

FOXn) = A(Tp(n), a)(Xn)
It is thus sufficient to pre thatV 0<i < T,(n)
C(C) < 7|pl

Every function inC, is either a wriable x; or a constant function so
C(Cp) =0. Assume it has been established @GE;) < 7|p|i for some
0<i<Tp(n). It must be shown that:

C(Cit1) = C(C) + 7|pl

i.e given a combinational network computingC;, the functions
A(i +1,s) V statess, and B(i +1,1, j,e) ¥ | = podi, j,n) can be com-
puted using no more than p[| 2input gates. Oldously
B(i+1,1,j,e) =B(,lI,j,e) if | # podi, j, n).
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A(i +1,9) is equal to,

O AG,t) 0O
(t,F,s) Op

O AGi,t) OB(,l,j,e 0
. Qje),s 1) Op ) (i1, j,€
Ol = pogi,j,n)

O AG,t) OB(,I, j,e
t.Qj(e)r,9) Op .1 ( e
Ol = pogi,j,n)
Thus the state at time+1 is s if and only if the state at timeis t
andt is an action or test ending in stae

If ac, te denote the number of actions and testyithen it is
easy to see that the set of functiops(i +1,s):V s p} can be
computed using at mosic + 4te gates fromC;.

The functionsB(i + 1,1, j,e) wherel = podi, j,n) can be repre-
sented by:

B(i +1,1, j,e) = Changedd B(i, |, j,e) OUnchanged

where:

Changed= a A, r) O O B@,!l", j',e)0AG,r
g (r,Pj(e), 9 Op (.1 (r, TRi(j"),s) Op ( I LA 1)

gl" = podi,j',n)

Unchanged= [] Al,r)
(rv Pj(f)v s) 0 p
r, TRj(m),s) Op

If p,, tr denote the number of print and transfer actiongpithen,
observing thats(i, I, j, 0) = B(i, I, j, 1) the sets:

{Changed: ¥ I, j,e} ; {Unchanged VI, j,e}

can be computed fronC; using at mostpr +2tr, pr+tr gaes
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respectrely. Thus all the functions:
{B(i+1,l,j,e):VY j,el = podi,j,n)}
can be devied using no more than @& + 3tr + 2k newv gates.

The X term entering sincd(i, |, j,€) must be updated for each
of the k work-tapes and this requires omnégate and onelgate for
each tape. Combining these bounds yields:

C(Ci;1) < ac+4te+ 2pr + 3tr + 2k + C(C))

< 7|pl + C(Cy)

This last holds since we can assume that for each jtapere is at
least one instruction to print on tapeand at least one instruction to
read (i.e transfer or test) from tape otherwise tapej plays no part
in the computation. Thus the input tape, which is read;omgd not
be counted in the alke exosition and additionally it follows that
2k < |p|.

This completes the proof th&(C;) < 7|pli. O

With Theorem(2.1) the combinational comqie of [f,] is seen to be
only a constant factor larger than the time required by arviobd
DTM recognising the related decision problero dbtain a relation
between networks and arbitrary DTMs afficgégnt simulation of these
by oblvious machines is used. This will entail some slight loss in
speed.

Theoem 2.2: (Fischer/Pippenger 1979) For all DTMB], computing
f:{0,1" - {0, 9 a DTM, OBM, such thatV¥ n:
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i) OBM is oblivious
i) Vx0O{0, 3" OBM acceptsx if and only if M acceptsx.

i) If p, obp are the programs arising froml and OBM respec-
tively then:

Tobp(n) = O(Tp(n) Iong(n))

Proof: The method is essentially an oblivious version of the Hen-
nie/Stearns (1966) simulation é&ftape DTMs by 2-tape DTMs. Let
M be ak-tape DTM with programp running in timeT,(n). OBM is

a (k+1)-tape DTM with a tap€TB; for each tapel; of M and one
additional work-tape for temporary storag&ach tape ofOBM con-
sists of 3 tracks and is wided into segments numbered
...,—3,72,-1,0,1,2,3...Sgment 0 contains 1 tape cell per track;
segmenti (i #0) contains ¥ tape cells per track. The section of a
track contained within a segment is termedl@ck.

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

The tape alphabet o©OBM is {0,1,B,#, # being a special
"empty" symbol, the # and symbols are printable, merely for tech-
nical comwenience.

A cell within a track of OBT; either contains a symbol in
{0, 1,B}, in which case it corresponds to some cell .gncontaining
the same symbol, or it contains the # symbol. A blocKulk if it
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contains no # symbokemptyif it contains solely # symbols. A ge
ment is clean if it contains 1 or 2 full blocks with the remaining
blocks being empty A sggment issatutated (voided)if it consists of
3 full (empty) blocks.

Initially the first track ofOBT; corresponds»actly to the start-
ing contents ofT;, dl other tracks being empty Thus all sgments
are clean to begin with. The simulation of the computationT piby
OBT; is identical for all tapes. The simulating prograntp, is con-
structed so that all of the following hold after each simulation step.

S1) Ewery block is empty or full.

S2) Thecontent of T; is formed by concatenating full blocks of
OBT; commencing with the smallest numberedyreents and
lowest track within a ggment.

S3) All tape heads scan ggment 0 which contains the symbol
scanned by the corresponding headMin

The simulation process is built around a remagidefined pro-
cedureSim(r) which will satisfy (S1-S3) on completion and addition-
ally:

S4) Sim(r) smulates 2 steps ofp, neva moving outside sgments
*(r +1). Oncompletion sgments—r,-r +1,...r —1,r are all
clean. The number of full blocks within yarsegnent changes
by at most one.

Sim(r) is defined as follows: Cleanr) performs the actions
below:

The notation "sgmentgs)" is a shorthand for "sgnentés)
resp. sgmentts)”. Note that since the simulation must be woldus
the head meement must be made for both possibilitiegre though
at most one will dect OBT;.
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if r =0then
Simulate one step gf ensuring that (S1-S4)
hold for segments -1,0,1
else
Sim(r — 1); Clear(r);
Simr —1); Clear(r)
fi

if segmentfr) is saturatedhen
combine two blocks into one block
and cop to segmentx(r + 1)

else ifsegmentfr) is voidedthen
bisect a block of segmetifr + 1)
and cop these blocks to segmetit

fi

If Sim(r) is rrect then the simulation can be performed by
activating Sim with r = OlogT,(n) L] Correctness is prxed by induc-
tion onr O0<r <[logT,(n) O

First suppose that wheve Sim(r) is alled sgments
—(r+1),-r,...,r,r +1 ae clean and that (S1-S3) holdlhis is the
situation that holds before yarsimulation is carried out, and hence on
the very first call ofSim(r —1),...,Sim(0). Induction is used to sho
that (S1-S4) holds on the completion ®ifn(r). Clearly Sim(0) can be
realised so that (S1-S4) are true aft®im(0). SupposeSim(r —1)
behaes mrrectly To prove Sim(r) works it is sufficient to she that
both calls onClean(r) can be carried out. Certainly the first call can
be performed sinc&im(r — 1) does not affect genentsx(r + 1) which
are initially clean by the induet hypothesis. The second call of
Clean(r) can only fail if both sgmentsr, r +1 (resp.-r, —-r —1) are
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saturated (or eided). Priorto this second call, genents(r + 1) are
accessed only on the first call 6fean(r). Suppose this call saturated
(voided) sgment +(r +1). Then 2 blocks in sgment tr must be
emptied (filled) by this call. By the indueé hypothesis, since (S4)
holds for Sim(r —1), at most one of these blocks can become full
(empty) on the second call &im(r —1). Thereforethe second call
of Clean(r) can be carried out.

To complete the proof of the theorem it remains to describe an
effectve pogram obp which imitates Sim( OlogT,(n) 0) (i.e one
which does not use recursion) and to bodig(n). Such a program
can be readily described after observing tharye 2'-th simulation
step is follaved by a sequence of calls
Clean(1), Clean2) ,...,Clean(r +1). This yields:

program obp

t:=0;

repeat
t:=t+1;
Sim0);
m:=max{i | 2 divides t} +1;
Clean(r) forr from 1tom

until finished

Clear(j) requires at mosO(2!) steps to complete and is called
2"71*! times within the first 2 simulation steps. Thu®(2" log T ,(n))
steps are sufficient to carry out @lean(j) V 1< j<r.

The total number of remaining steps abp during the first 2
simulation steps is bounded 8)(2" logT,(n) ). Thus the entire obl
ious simulation can be performed in:

O(Tp(n) logT,(n)) steps O
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Corollary 2.1: If f O DTIME(T(n)) then
C(f™) = O(T(n)logT(n)) O

Thus laver bounds on combinational complexity Gf(n) say,

OGN O

HogG(n) U
We mow turn to the relation between network depth and non-

deterministic spaceWe recall that ifR is a binary relation wer a st

A, the (refleive) transitve dosure ofR is the relation:

R=10RORO---OR---

If Ais a finite set containing elements therR can be encoded as an
n x n Boolean matrix,M, in an dvious way. It is well known thatR’
is encoded by the matrid™ defined byM™ = (I + M)"?

Theoem 2.3:(Borodin, 1975) If f is computable by a NDTM using
space,S(n) = logn, then f™ can be realised by a combinational net-
work of depth:

yield lower bounds of2 on deterministic time.

D = O(S(n)?)

Proof: Let M be a NDTM computingf in spaceS(n) = logn. Snce
it does not déct the spatial requirements it may be assumed Nhat
has precisely one avk-tape. Letxs,...,x, be the symbols on the
input tape at the start of a computation, and|Q|. SinceM operates
within spaceS(n) the total number otonfigurationsof current state,
head positions and ark-tape contents isxactly N = g.n. S(n). 33"
Let ID denote this set of configurations and define a relahext
over ID x ID by:

<i,] > 0O NextD] there is a mee from configuration numbeir
to configuration numbey.
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PATH will denote theN x N Boolean, matrix encodindNext,
thus PATH; =1 if and only if there exists a sequence ofvesdart-
ing in configurationi and terminating in configuration. Thus
PATH = (NEXT+ )N,

Given these concepts it is clear that the problem of determining
whether the inpuk, ---x, is accepted is equalent to determining if
there is a path from the corresponding starting configuration to some
accepting configuration. Consider the network of Figure(2.1) in which
{f,,..., .} denote the accepting configurations.

It remains to specify o the inputsx; are connected to the
inputs of the transite dosure network and to establish the depth
bound.

Let i be the number of gnconfiguration in which the input
tape head scans,.

Xy is connected tNEXT; [IJ there is a mee fromi to j only

if Xk = 1
Xy is connected taNEXT; [IJ there is a mee fromi to j only
if x,=0

NEXT; is set to 1 (O)J there is (is not) a nwe fromi to j
regardless of the value ox,.

Clearly with these settings the network wado computes
f(W(X,). lts depth isO(S(n)?) since the PATH matrix can be com-
puted using logN +1 levds of Boolean matrix product and a single
product can be realised by a netw of depthUlogN [J(e.g using the
"obvious" Boolean matrix product netrk). Since the number of
accepting configurations is certainly no more tinso lbgN depth
suffices to compute the findllstage. The depth bound wdollows
since:
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Figure 21
logN = S(n)log 3+log (g.n. S(n)) = O(S(n))

|

In combination Corollary(2.1) and Theorem(2.3) whahat lage
enough laver bounds on Size and Depth provide superlinearero
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bounds on Time and Space.

The next theorem presents general relationships between the
important network complexity measures.

Theoem 2.4:¥ f OB,
Ca(f) < Lo(f) < 2%(f)

Proof: The first inequality is immediate since formulae are a restricted
type of network. The second is obtained by observing that a formula
of depth Dy(f) can be obtained from a netvk of the same depth
simply by duplicating each node until none has fanout exceeding 1
and noting that the binary tree which results has less tRagf )2
nodes.O

By considering the functionﬁ1 X; it can be seen that these
1=

inequalities are the best possible. Inequalities in the other direction are
examined in Section(2.3).

We mnclude this section byxamining reductions betweear-
ilies of Boolean functions. The ideas presented bedce developed
in Skyum and Valiant (1985).

Definition 2.1:Let f(X,) and g(Y,) be n-input and p-input Boolean
functions, wherep > n. f is a projection of g if there &ists a map-
ping o:Y, - {X;, Xq,...,X%,, 0,1} such thatf(X,) =g(a(Y,)). If the
mappingo does not contain geted variables in its range, thenis a
monotone mjection of g. A family of Boolean functions f] is a
projection of anotherafmily [g,] if each f™ is a projection of some
gP. If H is a set of families, the familyf[] is universalfor H if
evay family in H is a projection of {,].

Projections between amilies provide a natural and precise
framework for investigating reducibility between Boolean functions.
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The concept of umersality, as @fined abwe, requires some strength-
ening to cater for ideas of computationally efficient reductigmpro-
jections provide one method of achieving this. A famify][is a p-
projection of a family [g,] if there exists a polynomial, such that
each f™ is a projection ofg® for some p < q(n). Using this notion
a dronger form of uniersality, p-universality,can be defined in the
obvious way. As was observed in (Skyum & Valiant, 1985), treectf
that a family [f,] is p-universal for a claséH may provide one mech-
anism for resolving a number of open problems concerning the com-
plexity of specific functions and the relation betweeamiaus comple-

ity classes. For example the following non-uniform analogue of the
classNP is introduced.

Definition 2.2:Let f(X,) and g(Y,) be as [@fn(2.1). g defines fif
and only if:
()= O 9(Xa)

This reflects the idea of "searching” through a, possikjorential,
number of choices. A familyf[] is said to bep-definableif for some
polynomial t(n), each f™ is defined by some functiog, for which
C(g) <t(n). pD will denote the class of alp-definable &amilies. A
family [f,] is p-completefor a class of dmilies, H, if and only if
[f,] is in H and is p-universal forH.

Informally, just aspC, the class of families which fi@ plyno-
mial combinational compiéty, can be seen as a non-uniforrarsion
of P, so he classpD may be interpreted as a non-uniform analogue
of NP. Since ary family trivially defines itself one has immediately
pC O pD. From Corollary(2.1) it may be shm that to separate the
classespC and pD is to separaté® and NP, dthough the cowverse
may not be true. Theamilies p-complete for pD form a core of
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problems which are the "hardest" pD, in the sense that if gnone
of these were inpC then pC = pD. The following elgant result
from (Skyum & Valiant, 1985) identifies a specifiscomplete &mily
in pD and is similar in spirit to Cook’ Theorem (Cook, 1971).

Theoem 2.5:Let X,,, Y,, be disjoint sets oh? Boolean wariables.
SAT(X,n, Ynn) is the Boolean function which is 1 if and only the
CNF over Z ={z,, z,, - - -, z,}defined from assignments to X, ,, B

to Y, by:

Roeen(@, 8,2) = £ ( 0 @2 0 5;2)

has a satisfying assignment for somél {0, 1}".
SAT(X s Ynn) IS p-complete forpD.
Proof: Omitted. O

A family of functions can be sivm to be p-complete for pD
by exhibiting ap-projection from a knen p-complete family forpD,;
it may be observed that mamf the classical polynomial reductions
used to pree certain decision problemslP-complete can be adapted
with little difficulty to yield p-projections from the correspondingD
family. In Chapter(3) some examples gfprojections between mono-
tone Boolean functions will be presented; these are of interest in
deriving lower bounds for particular families and as a means of-refor
mulating the question P =?NP. Non-uniform analogues of
DLOGSPACEand PSPACEmay also be defined.

2.2) Complexity Results For Almost All Boolean Functions

The results pneed in Sect(2.1) establish tha®-networks, for
ary complete Q [0 B,, are a reasonable computational model in that
lower bounds on Size and Depth, of sufficient magnitude, imply non-
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trivial lower bounds on iine and Space. As we V& dbsened prei-

ously the non-uniform nature of this model means that upper bounds
on Size and Depth do not necessarily permit corresponding bounds on
Time and Space to be inferredhus to strengthen the assertion that
Boolean netwrks are a reasonable model we should consider the
guestions belw:

B1l) Whatis the asymptotic value of
C(B,) = max{C(f): f OB,}

B2) Whatis the asymptotic value of
D(B,) = max{D(f): f OB,}

Obviously if C(B,,) = O(n¥) for some fied k, then combinational net-
works would be an inappropriate model in which to attempt to resolv
the questionP =? NP.

This section is mainly deted to determining these quantities.
A lower bound onC(B,) is given by a esult of Shannon (1949). The
counting argument introduced there is central to ymathmer similar
lower bound proofs. A matching upper bound isvpdo using the
methods of Lupano (1958). A lower bound orD(B,) is deduced
from a laver bound onL(B,) the analogously defined measure for
formulae, using Theorem(2.4). A matching upper bound iviged
by the construction of Gask (1978) improving the uniform method
of McColl (1976), McColl and Paterson (1977)

An important property of all thesewer bound results is that
they hold for "almost all*f in B,, i.e

Supposd is a property of Boolean functions aR{n) denotes:

{f OB,:Mistrueof f}|
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I is said to hold for almost alf in B, if:

im 2

1
n-o |By

Theoem 2.6:(Shannon, 1949Y £ >0 and n suficiently lage. For
almost allf OB,

1-¢)2"
C(f) > &
n
Proof: We poceed by estimating the number of distinct optimal
input networks containing at mo#f gaes. Since each such neik

can be minimal for at most one Boolean function we can thguear

_ n
that if M < %

works available is onlyo(|B,|), and this will be sufficient to pve the
theorem.

for ary £ >0, then the number of distinct net-

To dart an upper bound on the number of such networks con-
taining eactly m gaes is obtained. Let the gates be numbered
1,2,...m. Any retwork can be completely specified by describing
for each gate its operation and theotmodes which supply its inputs.
From Lemma(1.3)(ii) there are 10 choices of operation for eath g
and thus 10 distinct labellings. The inputs for aatg are either from
an input node or from one of the-1 other qates. Sathere are no
more than 16+ m—-1)" interconnection schemes, giving at most
10™(n+m-1)" optimal networks. Ne since the gtes hae been
numbered 12,...,m each distinct optimal network is counted!
times in this analysis. It folles that the number of distinct optimai
input combinational networks with at most gaes does notxeeed:

SM) = % 10™(n+ m-—1)*"

m=0 mI
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S(M) is asymptotically equal to the last term in the summatiorvabo

. . : 1-¢)2"
It is easy to verify that ifM < &

£)2"

, for ary £ >0, then S(M) is

at most £792°, which is o(|B,|) as desiredo

The approach employed in this proof is extremely robust and
may be used to dee lower bounds on the complexity of almost all
functions for subsets oB,, such asM,, when realised by combina-
tional or restricted forms of networks, e.g formulae. Such applications
involve the estimation of te quantities: supposéd, [0 B,, which is
"well-behaved" in a sense we will not precisely specify \{fewer all
specific choices oH,, such asM,, which are gamined subsequently
will be "well-behaed™). Further suppose thak is a class of Boolean
networks, which can realise wrfunction in H,. For a netvork T in
A, A(T) will denote the number of gates T A(f), for f OH,, will
denote:

min{ A(T) : T O A and T realises f}

Shannors agument shows that a lower bound @é{f), which holds
for almost allf O H,, can be obtained from:
B1) A lower bound onH,|
B2) Anupper bound on{[T : T OA, A(T)=m }

For example if A is the class of combinational networks, we
have:
Corollary 2.2: For amost all f O H,:

log [H, |

fys —————
() loglog |H, | H

Lupano (1958) gves a onstruction which asymptotically
matches Shanna’'lower bound so that the multipliceéi constantc
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c.2"

in the bound

cannot be pneed to be geater than 1. First we

n
shav how to construct a network of sizéd(2") for ary n-input
Boolean function.

Consider the set of all"2roducts of lengtm (i.e containingn
literals) over the set{xy,...,X, Xq,...,X,}, SO that for each product,
p, in this set and each exactly one of the literals;, X; occurs inp.
Each p has the form:

p=(x)* O O (%)™
where )% is the literalx; if a is 1, and the literak; otherwise.

For two such productsp, g, of lengthn—i+1, over the literal
set

{Xiy oo Xy Xiy+ -+, X0}

we define a lexicographic ordering by:
ps g
(p=q) or
(p=x, 0p andg=x Q") or
(pP=(x)*0p andg=(x)*0qg and p' <. 7).
where p', g are products not wolving X; or X;

In this ordering no product is; X; --- X, and eery product is
<L Xp e Xy

The n-ordered networkU, is a combinational network with
inputs {X,, X;,...,%.}, 2" outputs <, ,...,t,n> for which red(t;) is
thei'th product in the<, ordering (sores(t;) = X; - - - X,).

U, is inductvely defined as follws:
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Ul) If n=0 then U, is a single node computing the constant func-
tion 1.

U2) If n>0 then U, is formed by adding 2 me [}gates,ty_4, ty
and wires

<Xny by > 5 <t b > <,y > 5 <X, 1y >
to U,_, for each 1<i < 2",

Clearly the node computing 1 and thégates of U, form a
complete binary tree with"2leaves and thus contains "' — 1 gates.
Together with then gates to computdXx; | 1<i < n} this gwves:

C(U,))=2"+n-1<(1+&2™ Ve>0

Any f could be realised fromu, just by [}Fing all the outputs which
correspond to satisfying assignments fof but the resulting netark
would contain too man gates. The solution adopted in Lupano
(1958) optimisesU,, by employing an expansion of which has
become known as thieupanos decomposition.

An important function which is used frequently helas the
equivalence functiong,(X,), which tests if an assignment ¥, is
exactly the same as in {0, 1}". Formally, for a =<a,,...,a,>:

5,(%,) = U(x D a)

To dmplify the notation we shall use to denote the subset
{X1,%5,...,x} of X, and Z to denote X,-Y, s that
f(X,) = f(Y,2).

Let f be ary Boolean function.V 1<k<n, f(Y,Z) may be
defined by a Boolean matrixM(f), having % rows and 27

columns. Eachow is labelled with a distinct member ¢0, 1}¥, cor-
responding to an assignment Yo Smilarly each column is labelled
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with a distinct member of0, 1" corresponding to an assignment to
Z. For thei’'th row let a; be the associated assignment andgletbe
that which labels thg’'th column. The , j) entry of M(f) is then
just the value of f(a;,8;). It will be corvenient to refer to
row/columns by the assignments labelling them.

For some s, to be fked later partition the reavs of M(f) into d

blocks R;, R, ,...,Ry. R containss consecutie ows (1<i <d) and
k

. 2 .
Ry contains at mosst rows, henced < < + 1. Any such block will
be termed aod. For each rod R the function,rod,(Y,Z) is gven
by:

rod(Y,2) = o 5,(Y)Of(a,2)

i.e rod;(Y,Z2) is f(a,Z) if the assignmentr to Y corresponds to
some rav in R, and is O otherwise.
since [ R ={0, ¥, 0 f(Y,Z)= ﬁlrodi(Y,Z). Every rod
i=1 1=

contains at moss rows and gactly 2% columns; if k is "small"
compared tos then mag of the columns of lengtls in R, must be
identical.

Let <riy,ri,,....,rs> be te ravs in the rod R. For
vV=<vg,...,Vs> in {0, 3° the (,v)- pillar of M, denotedP;, is
the set of columns iM(f) which satisfy:

pOpP;, M Vl1<qg<s (rivq,p):vq

(Informally P;, is the set of columns which when intersected vigth
yield the sames-tuple, v.)

Note that ifv and u are different elements df0, 1}° then the
sets P;, and P;, are disjoint. V¢ can nav define a function
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pillar; (Y, Z) by:

pillar; ,(Y,Z) = O d5(Z) Orodi(Y, B)
' B0{0,3"*n P,

Thus:
rod;(Y,Z) = 0O npillar;,(Y,Z)
v£0 '

(where0=<0,0,...,03

Now pillar;,(Y,Z) can only equal 1 when the assignment to
(Y,Z) selects both a column iR;, (usingZ) anda row in R (using
Y) whose intersection inM(f) equals 1. V8 can thus gpress
pillar; ,(Y,Z) as he conjunction of a functionver Y and another
function over Z, viz:

pillar;,(Y,Z) = row - match,(Y) Ocol — match,(Z)

where
co — match,(2Z) = [ 045(2)
’ B 0{0,3"* n Py
row — match,(Y) = l 0, (Y) Ov(a)
’ a 0{0,3* n R

v(a) being the point withinv selected by the wo labelleda in R, 0
if a is the rav r;,, thenv(a) = v,.

In summaryf(Y,Z) may be written as:

ﬁl rod;(Y,Z) = ﬁl (0 pilar;y(Y,2))

= i;ﬁl (\Eo [ row — match,(Y) Ocol — match,(Z)]

and this is thelq, s)-Lupanw decomposition off (X,,).
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Theoem 2.7:(Lupano, 1958)V £ > 0 and n suficiently lamge:

1+¢&)2"
V f OB, C(f) < %

Proof: Let f OB, and consider thek(s)-Lupano decomposition of
f(Y,Z). k and s will be fixed subsequently to obtain the desired
bound. From this expansion we camlth a network realisingf in the
following stages:

L1) Constructthe k-ordered netwrk U, with inputs Y and the
(n—k)-ordered netwrk U, with inputs Z. These contain no
more than (& £)(2“* + 2"**1) gates in total.

L2) For eachi,v computerow — match,(Y) by [king together the
appropriate outputs obJ,. Since row - match, has no more
than s satisfying assignments it can be computed with at most
s—1 additional gates, giving no more thad.s. (25 - 1) < 2¢*s
extra gates to compute all of them.

L3) Similarly compute all thecol — match,(Z) by [-ing the appro-
priate outputs ofU,_.. Snce these correspond to columns in
Py, for eachi evay output ofU,_, is used at most once (recall
that if v#u then P;, and P;, are disjoint). Thus with fixed
all the col - match, can be computed with an additiondl™2
gaes and therefores d. 2" over all.

L4) Conjoin evay row-match,(Y) to its correspondent
col —match,(Z), using at mostl. 2° gaes.

L5) Finally compute f(X,,) by [ring all the functions computed in
stage (L4). This adds at most a furtlie2® gaes.
2k
Recalling thatd < < +1 and summing each contribution, the

reader may easily verify that thisvgs:
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n

2 2
C(f) < (1+£)(2k+1 + 2n—k+2 + 25+1) + 2k+S(1 + g) + z

Choosingk = [BlognOand s = [nh — 5logn Oleaves:
2" "0
flJs——— +0—
() n-5logn ODn O
Thus for alle > 0 and sufficiently lage n:
1+¢)2"
C(f) < %

The lower bound orD(B,) is a mnsequence of the follng
lower bound on the complexity of almost ailinput formulae wer
B..

Theoem 2.8:(Riordan and Shannon, 1942) For almostfalll B,
2n

L(f)> ogn

Proof: See Chapter(4), Theorem(4.1).

Corollary 2.3: For al £>0 and sufficiently lage n. For almost all
f OB,:

D(f) > n-loglogn

Proof: Immediate from Thm(2.4), usingL(f)<2°”  and
Thm(2.8). O

The upper bound of Gask (1978) which matches this i@r
bound to within an addite mnstant is based on a construction of
Lupanos (1973). This method is non-uniform urdikhe earlier upper
bound McColl and Paterson (1977), whichwhd D(B,) <n+1, and
was kuilt around the notion of formula schemes. Belwe describe
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both constructions.

Definition 2.3:A formula stiemeis a directed aclic graph in which
nodes hee in-deggree 2 (@tes) or 0 (inputs). All gates va aut-
degree at most 1. LeH, 00 B,. A formula scheme(C,, covers H,
over the basisQ [ B, if and only if for eachf 0OH, the gates ofC,
can be assigned operations(nso that the resulting formula realises
f. e

We dhall construct a formula scheme whichves B, over the
basisB, and has deptm + 1. As r@ads schemes this depth bound is
very close to optimal; an easy countinggament can be used to sho
that aly formula scheme with the required property musteheepth
at leastn — 1.

In describing the construction the correspondence between
Q-expressions and formulae, asven in Defn(1.3), will be used. It
should be clear throughout that the method presested describe a
scheme.

Let Y =<vy;,...,¥y>and Z=<z,...,Z,> be dsjoint sets
of Boolean variables and(Y,Z) OBy, The disjunctive g&pansion
of f(Y,Z) aboutZ is given by:

f(v.2)= 0 6@0fY.a)

The dual,conjunctive gpansionof f(Y,Z) aboutZ, is defined to be:

f((v.2)= 0 G@0fY.a)

where ,(Z) denotes the complement 6§ (2).

Suppose that, follsing Spira (1971b), one attempts to build a
formula of minimal depth forf(Y,Z) using these expansions as the
vehicle for a recursie onstruction. Eachy,, J, term being in déct
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a product or sum ofn literals (sincea {0, }™) it can be realised in
depth Ologm [ To compute f(Y,Z), formulae for each subterd,,
f(Y,a) can be constructed in parallel and joined together using one
extra level. Finally all the 2" subterms must be collected, this requir
ing depthm. Thus the following recurrence relation results:

D(f(Y,Z)) <1+m+max{dogm[] rDrg%m {D}}

< 1+m+max{Cogm0 D(g(Y))}

for someg [ By.

By choosing a suitable partition of,, Spira was able to con-
struct a formula scheme w@ing B, over B, with depthn + log n.
The log n arises through the additionalv& of gates, used to pair the
d,, 0, to their corresponding (Y, a) terms, at each recuvsi sep.

The scheme deloped in (McColl and Paterson, 1977) elimi-
nates these Vels by applying an ingenious optimisation to the basic
recursve onstruction.

Let 5,(Z) O f(Y,a) be a sngle term of the disjuncte expan-
sion aboutZ. For ary W O Y we may e&press f(Y,a) as a poduct
of 2Vl terms by using the conjuneti epansion off (Y, a) about W.

0,(2)0f(Y,a)=0,(2)0 O [5,(W) O f(U, B,a)]
B 0ofo,M!

whereU =Y - W.

Unfortunately this is a product of"2+ 1 terms and wuld
require additional depth ofW|+ 1, as before. The mel solution
adopted is to discard one of the subterdig\W) O f(U, 8, a)], leav-
ing a product of ¥l terms, realisable with additional depth oriy|]
By alternating disjunctie and conjunctre expansions in the recursion
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this process of term disposal may be erpptbat each stage to guar
antee that the number of terms in a sum or product isxact paver
of 2.

Of course the resulting formula will not realis€Y, Z) but will
merely be an "approximation” to it, \ing depthn. The final stage is
a remarkable result which shows th&fY,Z) can be receered from
the approximation,f*, smply by O-ing f~ with a suitable "correct-
ing" function, R, dso constructed in deptim by using the method
recursvely. The depth of the final scheme will be:

D(f(Y,Z)) < max{D(f"),D(R}+1<sn+1

We reed to define a partition dRy, Ry, ...,Rp} of X,. The actual
elements inX,, n R are not important, heever the relatve szes of
the partition components must satisfywesal criteria. For i < p,
let r; denote R|. For our purpose, §&n sequence
<Iglgyeeufp> O{N}"* of component sizes which meets the falo
ing is suitable.

i
2 r; will be denoted by§.
j=0

Gl) rg=r;=2
G2) S,=n
G3) r,<2%2 for meven and =2
G4) <252 - 2% for m odd and> 3
The particular sequence employed is defined by the rules:
Seql)
rg=2

Seq2)
r=i+1 0<i<p
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Seq3)
re=N-S4

wherep=max{q ON:1+

RS

The choice of sequence affects the adeliterm for the depth
of schemes \@&r bases other thaB,.

Definition 2.4:Let S={R;,R,,...,R} where R O X,V 1<i<k. A
Boolean functiong(X,) is S-simpleif g(X,) =0 wheneer R =0 for
ary 1<i <k, (0 denotes 0,0,...,0).

Note thatSis not required to be a partition &f, or to consist
of disjoint subsets.

Lemma 2.1Let {Ry, Ry,...,Ry} (Wherem > 1) be disjoint subsets of
X, whose cardinalities «,r,...,r, > satisfy conditions (G1), (G3)
and (G4) abee. If g(Ry,...,Ry) is{Ry,...,Ry}-simple then there is
a formula forg which is:

Case a:(m odd) A disjunction of 2» — 1 subformulae, each of depth
Sr-1-

Case b: (m even) A conjunction of 2r -1 subformulae, each of
depthS,;, and one additional subformula of def#y_,.

Proof: By induction onm. Consider the tw possible expansions of
J(Ry, - ..,Ry) about R,,. In Case(a) we hee:

g(RO’ e !Rm) = 090 5a(Rm) 0 g(RO’ T !Rm—l’ 0')
and in Case(by(Ry,...,Ry) is equal to,
5O(Rm) 0 090 [ Sa(Rm) Dg(ROl e !Rm—ll O’)]

If m=1, Case(a) applies and then from (G1):
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g(RO! Rl) = aEIO JH(Rl) N g(Ro'O/)

and this is a disjunction of 3 subformulae each of which is realisable
by a formula of depth 2wver the basisB,, snce, again using (G1),
the termsd, (R,), g(Ry, a) are both inB..

This establishes the induti base. Nov suppose the lemma
holds for all values s and letm>1 be odd. From the inducte
hypothesis, the componeng(R,,...,R,1,a) of Case(a), may be
expressed as a conjunction of"2-1 subformulae, each of depth
S and an additional subformula of deph_;. Thus g(Ry,...,Ry)
is equal to

0190 Ja(Rm) Ij50(|:\)m—1) O 590[5'8(Rm_1) Dg(RO’ e !Rm—2! /B’ O’)]

Now J,(R,,) is efectively a product ofr,, literals, anddy(Ry-;) can
be realised by a formula of dep8, ;. From (G4)r,, < 252 — 2503,
so the subsgressiond,(R,) 0Jd(Rn1) can be computed by a for
mula of depthS,,,.

From the inductie hypothesis the subxpression
BEO [5ﬁ(Rm—l) 0 g(R01 L ’Rm—Zi ﬁ! O’)]

is a conjunction of 2t — 1 subformulae each realisable in de@h.,,

thus the complete term can be computed by a formula of depth
rm1 + Sno = Sy-1, Which proves the inductve gep for the case where

m is odd.

The case ofn being &en follows almost directly from the sec-
ond pansion after observing that thg terms can be realised in
depthS,,. O
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The importance of this lemma is the part it plays in the proof of the
next result.

Theoem 2.9:Y n>4 if g(X) is {Ry, Ry, ...,Ry_1}-simple (where the
R have ardinalities agreeing with the sequence; % given by

Seql-Seq3 abe), then there is a formula realisirg(X,) which has
depthn.

Proof: Sincen > 4 it follows that p > 1. Expressg(X,) as a dsjunc-
tive (esp. conjunctie) expansion aboulR, if p is odd (resp. \&n).
From Lemma(2.1) each of thé»2components of the expansion can
be realised by a formula of dep8y,. Thus g(X,) can be realised be
a formula having deptl,; +r,=n. O

The approximation tof (X,), as described in the proof outline,
will be some{R;,...,R,}-simple functiong(X,), which Thm(2.9)
shavs can be realised in depth In order to achiee the desired
depth bound oh+1 for ary f we must she how to recover f from
its simple approximatiom.

Lemma 2.2.Let {R,,...,R} be disjoint subsets oX,. V f(X,) there
exist functions:

fiXn =Ry, filXy = R) L Bl(Xn = R)

such that the function

60X) = 1(X) O 0 (X, ~R)

is {Ry,...,RJ-simple.
Proof: (By induction onk > 1)
Inductive Base: k=1
Define f,(X, — R;) to be he function
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f lRl:O(Xn - Rl)
then certainlyg(X,) = f(X,) O f(X, = Ry) is {Ry} —simple

Inductive Step:Suppose the result holds fér—1 and so there »ast
f1(Xp = Ry1),..., fria(X, = Re.1) such thatV j, 1< j<k-1,

k-1
RJ=ODfDQ1f,=O
Define f (X, — Ry) by:

Bon‘ some R=0 (1<is<k-1)
fiXn—R) = 0O
B g%=(X,, - R,) otherwise

Clearly f, has the desired property

Theoem 2.10:For all n>1 there is a formula scheme of depii 1
which coers B,, over basisB..

Proof: For n<4 shemes may be constructed directior n > 4,
using Lemma(2.2) and the properties[bfwe may express gnfunc-
tion f(X,) as:

-1
o) 0 0 f,(X, = R)

where g(X,) is {R;,...,Ry4}-simple, and theR, are as abe.
Using Thm(2.9) yields a formula of depth for g(X,), to this we
must O functions f,,...,f,; to obtain f(X;), each f; having
n—i—-1 aguments. Whem-i—-1<4 a formula for f; may be con-
structed immediate)yotherwise we can apply the construction recur
sively to yield a formula forf; of depthn—i. We may rearrange,
using the associativity ofl, the expression forf (X,,) at the start of
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this proof, to obtain:
f=g0(fHO(HRLOC--0f4))...)

and this represents a formula of dempth 1 dnce eachf;, has depth
n—i, for1<i<p-1. 0O

Preparata and Muller (1971xaminesD(f(X,)) for n<8 and
proves an yper bound ofn on depth for these cases. By computer
analysis, based on ideas of Knuth, (Elspas et alia, 1968) shows that
this is the best possible for= 3, 4.

Theoem 2.11:(Gaslov, 1978) For allf OB,
D(f) < On-loglogn+o(1) 0+ 2

Proof:? Let f OB, be ary Boolean function and partition its inputs
X, into 4 setsW, Y, Z and U of sizesw, y, z and u respectrely so
thatw+y+z+u=n andu is an &act power of 2. The precisalues
of these quantities is \g@n belov. We describe an expansion of
f(W,Y,Z,U) whose depth will be of the required order

Given a =<a,,...,a,>0{0, 1}", the sphee with cente a is
the set ofu-tuples,sph(a ), defined as

;l_<a1,...,ai_l,ai,ai+]_1---1au>

Now since u is chosen as a per of two it follows that one
may choose “u centresa® | ...,a®"¥ whose spheres fafd a parti-
tion of {0, }". For some such choice of centres ¢gtU) be he char
acteristic function of thé&'th sphere, where %i <2"/u. Clearly

0
@ (U)Ouy, & = Jal(i)(U)

a) The expansion dof which is central to this proof is originally from Lupan@d973)
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wherea( is the tuple insph(a®) which differs in itsl'th entry from
a®.

Now let

fio.0,(Z,U) = @(U) f(o,p,Z,U)
It is easy to see that(W,Y,U,Z) is equal to,

00t 6,(W)8,(Y) i, (Z,U)

o p i=1l
Consider the functiorf; , ,(Z,U) for fixed i, o and p. This may be
written as a table with“2rows andu columns; the ras representing
all possible assignments td and the columns allu-tuples in
sph(a®). The table entry corresponding towra’ {0, 1} and col-
umn | contains the value of; , (¢, a”). Using this table we can
express f; , ,(Z,U) using a variant of thek(s)-Lupanw representa-
tion as follavs.

For some s< 2% to be fked subsequently partition the revs
into [(R*/sOrods, each containing actly s consecutie rows, and at
most one rod of fewer thas rows. Let A;,...,A, denote these,
where p<2is+1. For each Xks<p define the function
fi 0. o k(Z,U) to be,

fi,U,p,k(Z!U) = ZDDAk JZ(Z) fi,U,p(Z’U)

so that,

fi,a,p(Z’U) = kgl fi,a,p,k(ZlU)

We reed also a partition of the columnsorFr ({0, 1}° let
Bi., ok b€ the set of columns whose intersection with the Apds
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the s-tuple r.

Although B; , , « . induces a partition of the columgs, ... u}
using difering r, this is not good enough to yield the required bound
on depth, since the size & , ,«, May be too large. dr overcome
this we further partition each s&; , , .. For someq<u, to be
fixed subsequentlyartition each seB; , , . into O0B; , , « ./qsub-
sets of size at most. We denote a typical resulting subset by
Bi 5. p.k.r.m Where,

l1<m< B, ,k /90

For fixed i, o, p andk let N denote the number of distinct sub-
setsB; ;. o kr.m 1€

N zllg |%| {Bi,a,p,k,r,m}l

u :
ThenN < q + 2% To e this letr(d) denote
|{ T:lBi,a,p,k,r | = d}l

u

Clearly > r(d)=u andr(d) #0 for at most 2 vaues of d. From
d=1

the definition ofB; , , « . m it follows that,

u u
N < SOd/gis Srig+2 = - +2%
d=1 d=1 q

We @n thus renumber the subseB;, ,x.m @S B, ,k
where X< j<N. Each of these sets contains at mgselements of

{1,...,u}.

Now f; , ,k(Z,U) can be gpressed in terms of the conjunction
of two functions @er disjoint variable sets. Specifically
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fropdZ,U) = B 6@ ()02 L (2)
]

i,o0,0,k, i,o,p.k,
where;
(9 ki (U) = a(U)OFD ()
_ o
= qu)o(_ 0 u¥)
i,o,p.K,j
@ =
f"a'p'k’l(z) (DAk:v(Dz)zlinTJZ(Z)

i.e the columns irB; , , « ; yield the samez-tuple, r when intersected
with rod A,. f@ selects those rows ok, which indicate entries of
equal to 1.

In summary f(W,Y,Z,U) is equal to,

io,p,K, ] 0,0, K,

000005,(W) 5,(Y) @) £9 k@) 15,41 (V)

ogpi j

However we reed to further rearrange this to yield a suitablpae-
sion. Considethe functions,

Gioki(Y,Z) = 95p(Y) figza),p,k,j(z)

g

hi,a,p,k,j(Y’U) = QJP(Y) fi(.3),p,k,j(u)

It is easy to she that,

Mook i (Y2U) = D(=8,(Y) DT, 5(U))
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and so,

2 3 _
95;: fi(,a),p,k,j fi(,a),p,k,j = Giokj Ui ok

With this, the expansion which we analyse the depth of is,

00008,(W) a(U) 8.0,k (Y, 2) D(=8,() O, (V) (2.1)

In which: o ranges wer {0, 1}V, p over {0,1}Y, 1<i<2'/u, 1<k<p,
1<j<N and p = [2%s[] Ns§+25.

We haveto fix the values ow, y, z, u, sandqg. Set,

y=[Rlognd; z=[RloglognO; u=2"9°9n>1

s=[ogn-5loglogn
and choosgl to be in the interval lbgn)* < q < 3(logn)? in such a

way that y+q is an exact power of 2.

We daim that these choices yield the desired depth bound using
our final expansion of (W,Y,Z,U) above.

Recall that the disjunction or conjunction bofliterals can be
realised by a network of deptdogr [I To amplify the dervation let
Fi, .« denote the function

50’(W)¢I(U)gi,0',k,j(Y7Z)

Fiz,a,p‘ K j the function,

~6,(Y) O 9\ (V)

i,o,p,k, ]

and F?,  ; the functionOF?, , . ;(Y,U). With these our xpansion
0
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F=0000F, ; OFY (22)
g | ] T T

It follows that,

u
D(f)< Elogé% 2" p NED+ 1+ iT%{D(Fl), D(F3)} (2.3)

ConsiderD(F}, | ;). Clearly
D(o,(W))<2+logn ; D(@(U)) <2logn-1 (2.4)
Also by e&pressingg; , « j(Y,Z) in disjunctve rormal form we
can construct a network for this of depth at most

y+z+0og(y+z) U< 2logn+ 3loglogn + 3 + o(1) (2.5)

From (2.1), (2.4) and (2.5) it follows that,
D(Fi, ;) < 2logn+3loglogn + 5+ 0(1) (2.6)
Now consider F?, ,(Y,U). Since B, ,k;l<q and
y+qg=2" for some intgral r, we have
D(Ffy oK) < 1+log(y+qg)=r+1 (2.7)

and so from the definition df?, | |,

D(F?, ) S y+r+1 (2.8)

With (2.6), (2.8) and the choice gfand q it follows that,
maX{D( Fi%a,j,k)1 D( Fis,a,j,k)} < y+r +1 (29)
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(2.3), (2.8) and (2.9) yield,

W+U

O

D(f) < O

pN+y+r+2

As n - o0, 2°=0(u/q) and Z/s - oo hence,

ow+u n-y

2
;PN = T (o)

So from (2.10)

D(f) < h-y-logs-logg+o(l)l+y+r +2

h-logs—-logq+m+o(1) [+ 2

(h—-logs+o(1) [+ 2

(n-loglogn+o(1) O+ 2

This proves the upper bound claimedi

65

(2.10)

A natural question to consider at this stage isvHarge may
the "gaps" be for the complexity measufesietwork size and depth.
A gap in this sense is gnnon-empty interval of natural numbers
(c,d) such that no function irB,, hasQ-network size (depth) which is

greater tharc but less thard.

In order to discuss this question more precisely we introduce the

following notation:

For any complexity measureM, let
M(r) = {f OB, |M(f)=r}

and
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M(B,) = max{f OB, | M(f)}

(where M =Cq or Do and Q is not complete,M(B,) will be
regarded as the maximal complexity ofyafunction in B,, covered by
Q)

The problem of determining the size of conxgle gaps can
now be formulated as that of calculating:

Mq(r) =min{c ON:M(r) OM(r +c) }

Thus we examine questions concerned with coxitglehierar
chies, particular compkety measures of interest beinQg,, Do and
Lo. For these we useg, do and |5 to denote the corresponding
instantiations ofmg. The approach taken in the proof of such results
is to construct a sequencé;, f;, ..., f, of functions inB, which sat-
isfies:

M(f,) = M(By)

M(f)<M(fi.))+b O<isr
whereb depends on the hierarcisought.

The study of these problems was initiated in (McColl, 1977)
and (McColl, 1978b). The results thereinvlasibsequently been
improved, havever the latter paper pues the existence of a uniform
hierarcly for Q-depth.

Lemma 2.3(McColl, 1978b)V Q 0O B,;
do(r) =1 YV r <Dq(B,)

Proof: Let f be aiy function in B, for which Do(f) =Dg(B,). We
construct a sequence of functionsBp:
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= fo fry.o f, = f

such thatDq(f;) = Do(fi_;1) + 1 for eachi = 1. The existence of such a
sequence will clearly pwe te lemma. So suppose for some
0<i<r we hae found a sequence of functions i;

fiogs fiap ooy 1o

such thatDq(f,) = Do(B,) and Dq(f;) = Do(f;-;) + 1. Considerany
minimal depthQ-network, T, which computesf,,; at some nodd.
Let v, w be the nodes of which supply the inputs df. Certainly

Dq(fi+1) = max{Dgq(reg(v)), Do(res(w)) } + 1
and so one ofeqv), regw) is a slitable choice forf;. O

One weakness of McCdl’ herarclty is that it may contain
degenerate members. afener (1981) pneed that the lemma abe
still holds with the constraint that only non-degenerate functions are
permitted. The proof is rather lengthend we refer the reader to
Wegeners paper for the details of this result.

For Q-network size the methods of akerson and gener
(1986) provide an almost complete hiergratovering each intger
between 0 andCy(B,). Again this will be presented in a style which
permits the use of denerate functions in deriving the hierarch
although this and the theorem following it, may both be extended to
permit only non-degenerate functions, with only a slightly more com-
plex argument. The main result for network size assumes the Basis
so that the dependence @&h will be dropped from our notation. It
will be clear from the proof that the same results hold for the basis
B, - {0, (M}

Theoem 2.12:(Paterson and &fener 1986) Letn>1
c(r)=1 forO0<r <C(B,)
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c(r)sn for C(B,.,) <r <C(B,)

Proof: Let f OB, with combinational complety C(B,). Suppose

{a,,...,a,} is the set of assignments ¥q, which satisfy f and that
{p1,...,p/} are the corresponding products rofiterals. Consider the
sequence of functionff, , ..., f,} given by:

f0:O ; fi:fi—lljpi (0<|Sr)
(so f, = f). Clearly we hee in dl cases:

C(f,)=C(B,) (By choiceof f)

C(fi) = C(fi-) +n

which is sufficient to pnee the second inequality of the theoremo T
obtain the, optimal, first equality we decrease thp g going from
each fi_; to f; by interposing additional sequences of functions
between them. So for this case X, —{x,}) be a tinction haing
combinational complaty C(B,_;) and f,, f;, -+, f, be the sequence
of functions constructed, as before, froim Modify this sequence by
[+ing each component function witty. From the choice of sequence:

fi Oxy = fisg O(Y1Y2 -+ Vo) O X,

where eachy, is eitherx, or its complement, depending on the prod-
uct p;. To compress the complay gap betweerx, [0 f, and f;; X,
substitute for eacH; 0 x, the sequence af— 1 functions gven by:

fi OXq, Oy %) 50, 0V Y21y %)

(for 1< j <£n-2), the precise literals used depending on the product
Pi+1-



Complexity hierarchies 69

With this &panded sequence the first equality in the theorem
statement follows. For each function can be computed from its prede-
cessor by either replacing the inpyt by the appropriate literay, ;
and then(}ting x, with the output gate; or replacing the inpytwith
y; OX,. Both these transformations can be carried out using at most
one additional gte. O

For arbitrary complete bases frolB, and for formula size
slightly weaker results hold:

Theoem 2.13: (Paterson and “ener 1986) For agy complete
Q [ B, there exists a constaktsuch that:

Co(f) sk forO<r <Cq(B,1)
Co(r)<kn  for Cqo(B,1) <1 <Cq(B,)
[o(r)<kn forO<r <Lg(B,)

I(r) < n forQ=B, andO<r <L(B,)
Proof: Exactly as Thm(2.12) noting the definition of formulae and the

result of Lemma(1.4)0

Paerson and \&ener also present a nearly complete hiesarch
for monotone netark complexity with essentially the samegament.
A very small impreement can be made for the upper range of this:

cop(r)sn forC"(Mp ;) <r <C™(M,)

as gven in the paperThis improrement relies on a deep result from
Korshunw (1981) and will be described in Chapter(3).
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2.3) Relating Network Size and Network Depth

Theorem(2.4) presented 2 inequalities relating the combinational,
formula and depth complexities of Boolean functions, namely:

V f(X,) C(f)<L(f)<2°M

We roted that these inequalities could not be inapdo In this sec-

tion inequalities in the werse direction, which hold for all Boolean
functions, are considered. The main resultvpdois the theorem

from (Paterson & Valiant, 1976) whichvgs a bwer bound on com-
binational complexity in terms of network depth having the form:

vV f OB, C(f)= %D(f)logD(f)

As a prelude to this we outline some results relating formula com-
plexity and depth.

In these cases the method used is to construct a formula of
"small" depth @er some basisQ; which is equialent to a gven for-
mula over a basis Q, by applying a result from (Brent, Kuck and
Maruyama, 1973).

Lemma 2.4(Brent et alia, 1973) LeF be anQ-formula over X, and
|F| denote the total fanout from the inputs Bf which is equwalent
to the total number of literals occurring IR using the sense of
Defn(1.3).

V' m 1<m<|F| there aists a subformulaléR, of F (6 0Q)
which satisfies:

) JLOR|z=m
i) |RI<L| 0

Observing thaf is written as,
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F(Xn) = P(xn) 01 (LHR)(Xn) ‘92 Q(xn)

where P and Q are Q-formulae andg;, 6, 1Q, one may splitF into
two Q-formulae; LOR)(X,) and A(X,,Y), the latter beind-(X,) with
the subformulaLé@R replaced by a ne literal, y. Now suppose we are
attempting to find a minimal depth egaent formula @er the basis
B,, then usingA(X,,y) and (L&R)(X,), a nev equivalent formula is
given by:
F'(Xn) = AXy, 1) O(LER)(X,) U (AX,,0) O (LER))

With d(k) to denote:

max{D(f) : f is realised bya formula of size k-1}

we hare the relation:
d(IF[) = max{d(|L&R]), d(JA])} +2

(Some refinements are necessary for transforming into formwae o
complete bases other thd), howeve here we are only concerned
with giving a brief description of the basic technique.)

The construction is applied recwdy to the formulaeA(X,, 0),
A(X,,1) and LOR as necessaryAdditionally a sequence K > must
be defined to specify the minimahlue of L OR| at each stage, noting
that |A|=|F|-|LOR| < |[F|-r;. The next theorem summarises some
of the known relations between depth and formula size for specific
complete bases. All of these are basically vadrifrom the skleton
construction just neewed.

Theoem 2.14:Y f OB,
1) Dn(f)<2.88logL(f)+O(1)

2) D(f)<2.465logL(f)+O(1)



72 CombinationaNetworks

3) Dy,(f)<1.81logL,(f)+0O(1)
U, being the basi8, - {0, (11}

Proof: (1) is from McColl (1977), (2) from Spira (1971a) and (3) is
due to Preparata and Muller (1976).

(3) improves the earlier result of (Barak and Shani®76). o

The relation between size and depth is obtained in a similar
style by constructing a small depth netk equvalent to one of mini-
mal compleity. In what follows the basi®, is assumed. ¢f a gven
combinational netark, T, (T) will denote the total number of wires
leaving gate nodes inT. For v,w ON, B(v) and A(w) are defined
respectrely by:

max{ D(f): f is realised bya network Thaving €T) < v}

max{ v : B(v) < w}

For any v>0, B(v) <1+ B(v—-1). To se this, consider gnnetwork

T with ¢(T) = v. If any gate of T, which has only variables as inputs,
is replaced by a mevariable, then the resulting neivk T, computes

a rew function, hase(T,) < v-1 and so depth no more thas(v-1).
Thus B(v) <1+ B(v—-1) because the original function has depth at
most one greater

Theoem 2.15:(Paterson & Valiant, 1976y f OB,
1
C(f) = i D( f)logD( f)—-o(D( f))

Proof: Let T be an optimal netark realising some functiorf at a
gae t and haing e(T) = v > 0. Suppose the gates @f are partitioned
into 2 sets,Y andZ say with no gate ofZ preceding a gate of. t
must be inZ if Z is non-emptyLet M be the set of thoseatgs inY
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which supply an input to some gate4nand letm = |[M|. We wish to
consider the gates of as forming a network computing some multi-
ple output function ofX,,, and the gtes ofZ as a network computing
a Boolean function ofX,, and{reqg): g 0 M}. We weY to denote
the netvork comprising the gates i, the inputsX, and with wires
as inT. Smilarly Z denotes the network having inputs, together
with the outputs ofM, gates fromZ and wires as infil. Further let
e(Y)=vy, e(Z) =z Since each gate irM supplies at least one wire
betweenY andZ, it is immediate that:

yt+z+msyv (2.11)

Suppose a single gate is wed from Y into Z. This decreaseyg by at
most 2 andm by at most 1, so the partition df into Y and Z can
be chosen to satisfy:

[2y+m-v|<2 (2.12)

Let u=max{y,z}. From (2.11) we hee 21+ m<v+|y—-2z and
zsv-y-m Fom (2.12) Y-z < |2y+ m-vV|< 2. Thus:

2u+msv+2 (2.13)

Now Y is a network realising each of the functions in
{reqg) : g O M}, so dl of these can be computed in de@y). By
using this set of functions as input to a minimal depth oetvequv-
alent toZ we obtain a network realising shaving that:

D(f) < B(y) + B(2) < 2B(u) (2.14)

Consider the functionf'(X,,S;,...,Sy) in Byym computed byZ at t.
From the choice oZ it is clear that:

f=f(X,redgy),...,redgmn) (2.15)
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where <g,,...,0y, > is M under some ordering.
ObviouslyV a 0O0{0, 3™

D(f'(Xp,a)) <D(f'(Xp,S15---,Sm) < B(2)

Recall that the disjunete expansion of f' about <s,,...,s,> is
given by:

i EI{DO,l}m Oy (Sty---,Sm) O F'(X,, )
With this a nev network realising f(X,) can be constructed as fol-
lows. For eacha 0O{0,1}", Z, is the network formed fronZ by
replacing each input; OO M by the corresponding constaat of a
and absorbing these into their successor gates (cf. Lemma(Zg3)).
computesf'(X,,a) a t. Any assignment,s, to X, the inputs ofY
induces somem-tuple at the gtes in M. For ary o 0{0,1}™ let
X.(X,) be he Boolean function which is 1 if and only if this-tuple
corresponds ta. Noting our identity (2.15) forf and the earlier dis-
junctive expansion off’ we hae:

)= 0 Xa(Xa) O F(X, ) (2.16)
Since eery x,(X,) is just a product of the, possibly gaed, outputs
of the gates inM, 0 x,(X,) can aays be realised in depth at most
(log m [0+ B(y). Therefore the network fof built according to (2.16)
has depth notxeeeding:

max{B(z), B(y) + DlogmJ + m+1
Hence:

D(f) < max{B(2), B(y) + dogm3J + m+1

<B(u)+Oogm+m+1
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<B(u)-2u+v+3+Oogm0O via(2.13) (2.17)

So for a single fixed partition of we hae two inequalities, (2.14)
and (2.17), giving an upper bound @ff). Let us fix f and T for
some chosem in such a way thag(T) =v=A(r)+1 and D(f) >r.
From (2.14)

B(u) > Or/2 0 or equivalently u> A( Or/2 0) (2.18)

The right-hand side of (2.17) is easily maximised by choosing
u=A(Or/20)+1, m=v+2-2u since this gpression is a decreas-
ing function ofu (recall B(u) < B(u—1) + 1) and an increasing func-
tion of m. From this:

r<D(f)<Or/20+1-2(A(0r/20+1)+v+3+Oogv [
which simplifies to
v+ Oogv 0> 2A(0r/20 + Or/2 0- 2 (2.19)

T was fixed so hat e(T) =v=A(r) +1 so @.19) yields a recurrence
inequality for A(r) for ary r. To solve this let:

1
H(r) = 5 rlogr + 2logr — kr
then

2H(Or/20 + /20-2 > H(r) +1+ Ologr O

for all k=0 and sufficiently lage r. An easy induction orr can be
used to pree that for somek

A(r) = H(r) = %rlogr - 0(r)

Finally since for ay network T, e(T) < 2C(T) we have shown:
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C(f)z%D(f)IogD(f)—O(D(f)) O

2.4) Lower Bounds on Specific Boolean Functions

The preceding pages V& largely been concerned with proper
ties that either all or almost all Boolean functions possessusing
now on ecific families, it vould be appropriate to present as coda to
Shannors theorem, a proof that some explicitly defifetamily of
functions had combinational compiyy Q(2"/n). At present no such
proof «ists. Havever, deriving bounds of this magnitude is perhaps
rather too ambitious and one might be content, for subsequedt de
opment, with simply exponential or polynomial oree just superlin-
ear complgity, knowing from the various hierarghtheorems, that
families of this difficulty abound. Again, despite some considerable
effort encompassing almost 40 years, no such results arenkno
Establishing results of this nature remains one of the most fundamen-
tal objectves for complexity theorythe lack of progress to date serv-
ing to highlight one frustrating and challenging aspect of the problem;
the apparent paradox that much is known about the complexity of
functions in general, but little about the difficulty of particular cases.

So the most powerful techniques currentigilable yield only
linear lover bounds on combinational comyity. Here are presented
three progresgely stronger results; a theorem of Schnorr (1974)
which gves lower bounds of 8- 3 on an mportant subset oB,,; the
method of Stockmeyer (1977) which allows bounds d&@n25 to be
obtained for certain symmetric functions; and finally the I8wer
bound of Blum (1984a) which is the best avbikto date. It should
b) Formally, we dall regard a family [f,,] as "explicitly defined" if there is aTM

which given nin unary as input, outputs the truth-table f¢X,), in time polynomial in
2",
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be noted that the concepts enyad by both Stockmeyer and Blum
rely heavily on an approach \®#oped in the earlier &n lower
bound of Paul (1977), which will not be presentegdlieitly.

That the extant theory is dad of all, sae exstential, &posi-
tions that specific functions are ftililt to realise, may be attubed
to the impotence of what is essentially still the only generally applica-
ble paradigm for reasoning about combinational corifgteinductive
gae elimination. The form this takes is simply described. Consider
ary family, [ f,] of Boolean functions. Suppos&n) is a function
from N - N and it is desired to pve a bwer bound ofs(n) on the
combinational complexity of [,]. This may be accomplished by
shaving that C(f.) = s(c), as the inducte lase,c denoting the num-
ber of arguments to the smallest instance in #mily. The inductve
step assumes th&t(f;) = s(i), ¥ c<i <n and consists of some analy-
sis which proes:

Y optimal combinational netwrks, T, realising f,,, there exists a
partial assignmentr such thatf " = fon (.6 a lower indeed
member of the dmily). Furthermoreapplying 7 to T and sim-
plifying, using Lemma(1.3), eliminates at ledgn) gates. Nav
since

C(fn) 2 C(fryy) + k(n) 2 s(n =) + k(n)

it follows from the inductie hypothesis that ifk(n) is large
enough therC(f,) = s(n).

The inductve base should be reladly easy The limitations of
the method become apparent in\png the inductre gep, where tw
difficulties arise; the requirement to project onto a smaller instance in
the family; and the need to eliminate faiént gates in order to mak
the inductve pocess succeed. The first of these may often be cir
cumwented by using a broader concept amily. In this way instead
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of attempting to pree ounds for a single function one aims to deri
results for the compidty of all families which possess some property
e.g symmetric, threshold etc. This need not complicate the imducti
base and can permit considerable latitude in the choice of partial
assignment, since woit is sufficient to project onto gnsmaller func-

tion which has the required property

It is the second constraint which presents the major obstacle to
more substantial resultsoTencapsulate all optimal combinational net-
works for f, in the inductve gep, the normal mechanism is to pro-
ceed by anxhaustve @ase analysis examining thanbut of the input
nodes. The purely indugg agument outlined abe is wfficient to
derive Shnorrs 2n results. Havever, for proving larger bounds, often
it happens that there is some case where not enoatfs gan be
eliminated at once. o deal with this it is necessary to rely on the
knowledge gleaned from the other cases about the structure of optimal
networks for which induction dils and thereby pwe that such net-
works contain the requisite number of gates direaly Blum’'s anal-
ysis efectively reduces to examining a network in which all inputs
have fanout 1 and enterttype ates, all other cases being handled
inductively. Such proofs are notable for the great complexity and con-
siderable technical sophistication of thguanents used to handle the
final cases. Paul (1977) was the first tovettgp these with a method
asserting the existence of gates in the final odtwwhich were
potentially quite distant from the inputs. The techniques of that paper
have snce been modified by Stockger and enhanced by BlumThe
reader should beware that the earlier 18 lower bound "proof' of
Schnorr (1980) is M@ known to be incomplete, cf Blum (1984a).

Belov we dall frequently mak use of Lemma(1.3) without
directly referring to it.
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The results of Schnorr (1974) and Stockmeyer (1977) pertain to
certain members of5,, the class of Boolean symmetric functions,
Stockmeyess bounds being a delopment of Schnors.

For f OS,, W(f)=wuw;---w, 0{0, 3" denotes the spectrum
of f. SWis the set of strings ifi0, }* which contain 3 distinct sub-
strings of length 2, i.e

Sw={0100, 0010, 0110, 0011, 1011, 1101, 1001, 1100

For k>0, n=2k+3 we monsider the subsdt, , of S, which consists
of:

{f 0S,:w(f)O{0, *k.SW.{0, 3%}

(Unless otherwise stated, it will be assumed throughoutktkad.)

A lower bound on the complity of functions inF, follows
directly from ay lower bound on

C=min{C(f): f OF,}
The results presented shadhat:
C=22n-3 Vn=3 (Schnorr 1974)

C=22n+k-3 VY n=2k+3 (Stockmeyerl977)
All but 8 functions inS, are inF,,, these being the constant func-
tions, and six functions having compity n—1.

To further simplify the description we emplathe followving
notation of Stockmyer.

For n>3, let fOS, with w(f)=wywuw,,w, where
u 0{0, "3, Functions fo, fo1, f10, f11 IN Sio» are gven by ectra:
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W(foo) = Wow,u
W(for) =wW(f0) = Wiuw, 4
w(f11) = uw,_ Wy,
(i.e the spectra resulting by settingotvinputs to 0, 0 and 1 or 1
respectrely.)
Functionsf,, f; in §,_; are defined similarly fronf so that:
w(fo) = Wowiuw, 4 w(fy) =wuw,w,
For arbitrary ¢, d in {0, and f in S, the functionsf, in S,, and

f. in S, are gven in the obvious way using the preceding defini-
tions.

From these we a:
Lemma 2.5:
() If f OF, then fqy, foy, f1; are all distinct functions.

() If f OF,k wherek =1 then none offy, fo;, f11, fo Or f; are
constant functions.

Proof: The lemma may be evified directly from the definition of
Fok- O

The net result is an important lemma, due to Schnernich
shavs that in ag optimal network realising somé O F,, we can
identify an input having fan-out at least 2.

Lemma 2.6:(Schnorr 1974) Let f OF,, and T be an optimal net-
work computing f at some nodé. There exists some; in X, such
thatg(x)=2in T.

Proof: Let g be a gate inT whose distance from the output gate is
maximal. Both inputs of g must be (distinct) inputsTofotherwise it
would be possible to select aatg at a greater distance from
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Without loss of generalifylet x;, x; be the inputs ofg and suppose
that ¢(x;) = ¢(x;) =1. Sinceat least 2 ofreg(g)(0, 0), reg(g)(0, 1),
res(g)(1, 1) must be identical and since depends orx;, x; only via
g it follows that two of:

foo(Xn ={Xi, Xj 1), for(Xn = {Xi, Xj}), f12(X = {Xi, X;})

are identical. But then from Lemma(2.4)cannot be inF,, and this
contradiction prees the lemma.n

Now we can prave aur first lower bound using the inducgi
gae elimination method.

Theoem 2.16:(Schnorr 1974)¥ n>3,C>2n-3

Proof: It is corvenient to choosen =2 as he base of the induction,
defining: C as

min{ C(f): f OS, and fis nota constant functioh

(The alternatie would be to shw directly that all functions inF3,
require at least 3 gates; sindg; | = |SW =10 this latter would be
somevhat tedious.)

Base: n=2 Obvious

Inductive Step:Assume the result holds for all valuex? <n. To
showv the theorem holds foF, , consider ap f [ F,, and an optimal
network, T, realising f. Let x;, with ¢(x;) = 2, be the input identified
in the proof of Lemma(2.6). Sincé O F,,, there is some in {0, 1,
such thatf, OF, ;0 Set x; =c, smplify T and rename the remaining
inputs X;,...,X,-1. The nev network computesf, and contains 2
fewer gates becausgx;) = 2. Thus:

C(f)2C(f)+22C+222(n-1)-3+2=2n-3

from the Inductie hypothesis.O
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To adbtain lager bounds it is necessary to examine the structure
of optimal networks in more detail. Thewler bound ornC is a conse-
guence of the following lemma.

Lemma 2.7(Stockmeyer1977)V k>1,V n=>2k +3
Czmin{C+3,C+5}

Proof: Let f OF,, andT be an optimal combinational network real-
ising f att. It is assumed that of all such neivks T is chosen so
that the quantityX —out, being the total fanout from input nodes, is
minimal. Thisassumption is required only once at the conclusion of
the proof. It will be shown that at least one of the following holds:

R1) Thereexists an inputx; of T such that settingg; =c {0, 1}
eliminates at least 3ates.

R2) Thereexist distinct inputsx;, x; of T such that settingg, =0
and x; = 1 diminates at least 5ages. Since
fh=e=f O Fr-1k-1 and fP=0x970 = fo, O Fnok-1

(after renaming the inputs as appropriate) thiwvgzrdhe lemma.
To establish that (R1) or (R2) holds considery asptimal net-
work realising f. We poceed by a case analysis.

Case 1:There exists an input; of T such thatp(x;) = 3

The successors of must be distinct and so setting=0 dim-
inates 3 gtes.

Case 2:There exists an inpuk; of T such thatg(x) =2 and X
enters ari -type aate.

Let g,, g, be the successors a&f and without loss of generality
assume thag, is the [+ype gate, the other input of which is some
gae h. In this case:
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res(gs) = ( (%) Ores(h)® )°

Setting x; = a eliminatesg; and g,. In adldition, sincereqg,) is a
constant function under this assignment, all the successogs cdn
also be eliminated. For from Lemma(2.9) #t; from optimality
some successor af; must differ fromg,, otherwiseg;, g, could be
replaced by a single gate. So 3 gates in total may bevedmo

We ae left with just one case. For thig, x; and d will denote
the nodes ofl identified in the proof of Lemma(2.6)

Case 3:Cases(1) and (2) do not hold apfk;) =2

The casep(x;) =1 is dmost identical and so will not merit sep-
arate consideration. The mechanics of the proof are not affected by
this detail. x; must enter Zl-type gates,d and g, say. x; entersd
and some agte h,;, which is alsolJ-type. In this case we must resort
to examining gtes which are deeper in the network; aguarent
based on the methods of Paul (1977) is eygdo

Let <g;,02,...,9, > be a @th inT with the properties:
)] V1<i<p g is anld-type ate.
1)) Vi<i<pgg(g)=1

iii) ®(9,) >1 a g, enters anl+type gate org, =t the output of
T.

A path <h;, h,,...,hy> is defined analogouslylt should be
obvious that both pathsxist. For the path fromh;, s will denote the
node which supplies the other (thap or h;_;) input of h;. The sub-
network identified is depicted in Figure(2.2).

This network has seral important properties.
Property 1:V 1<k<sp, V1<l<qgg#h
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Figure 22
Proof: If g, = h, then
res(ge) = x O x; O r(X,)
for some functiorr O B,,. t depends orx;, x; only via d and g, but:

res(d) " =% =0 = reg(d) P =% =1
re(gy) 7%= = reg(gy) =X =t
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hence f "=%i=0 = { }=Xi=1 and this contradict§ OF,,. O

Without loss of generality it may be assumed fhatloes not
contain ag path fromg, to hy; for sinceT is acyclic there cannot be
both a path frong, to h, and a path fromh, to g,.

Property 2.V 1<k<p,V1<l<q gi#95 and there is no path from
Ok to s.

Proof: Suppose thag, =s. If k< p then g,,; =h, and this contra-
dicts Property(1). Ifk = p then there is a path from, to h, contra-
dicting our prgious assumption. Sincg, # s ary path fromg, to s
must be viag, and this again would yield a path frogy to hy. O

We row make a smple modification to the network of Fig(2.2).

If g > 1 then
Delete the wires «;, h; >, <sy, hy >
Add wires <x;, hq >, <sg, h; >

See Figure(2.3) in whictn, has been renamed and s is the gite
supplying the other input di.

Property 3:

i) g, # s and there is no path fromy to s

i)  @h)=2 or h enters ar-type gate oh =t

i) d#s

Proof: (i) follows directly from Property(2) and (ii) is immediate from

the choice ofh,. For (iii) if d=s then regh)=(x)* for some
a {0, I} which would contradict the optimality af. O

Property(3) guarantees that the six nodes in Figure(2.3) are dif-
ferent.
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Figure 23

The remainder of the proof concentrates on this subemketw
and its emironment. Theobjectve is to establish tvo further proper
ties:

) | Elim | =2, whereElim is the set of gates which Ve an input
from d or h.

i) T may be rewired to a netwk T' realising fp; and in which
the nodesx;, x;, d andh all compute constant functions.

For e 0{0, 1}, T, is the network obtained frori by changing
the sub-network of Fig(2.3) as folls:

El) Deletethe nodesx;, x; and all wires leaving them frof.
E2) Replacahe wire <s,h > by a wire <s, g; >.

E3) Replaced by the constant functionp, associated withres(d),
leregd) =b 0 x O X;.
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E4) Replace h by the constant function eldc where
regh)=c0 x; Oregys) inT.

The net effect of (E1)-(E4) is that of replacing by the func-
tion [reg(s) ]° and x; by the function [reg(s) |°. Clearly T, realises
fo1 for bothe=0 and e=1. T, contains tw fewer gates ¢, h) than
T and two nodes computing constant functions (from (E3) and (E4)).
We rmow show that at least 3 gates in addition doand h may be
eliminated fromT in forming Te.
Property 4:Let e ({0, 1.

i) For ary gater #sin T,

{u:renters uin T} = {u:r enters uin T}

i) For ary nodey#sin T, if y computes a constant function then

oy) =2 1.
i) @d)=21,¢h)=1inT.
Proof: (i) is immediate from the definition of,; (ii) follows from (i)

and the fact thafy; is not a constant function; (iii) is consequence of
(i) and Property(3)(ii).

(If o(x;) =1 thenT, is formed as beforeub the wire <s, g; >
is not added. Property(4) still holds as stated)

We @an nav resume the case analysis, this time centred on the
size of Elim.

Case 3.1:Elim| =3

Choosee =0, then the gtesd, h and at least 3 gates ialim
can be deleted fron in creatingT.. Snce T is optimald, h [1 Elim.

Case 3.2:|Elim|=2
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Let Elim ={u,v}; u being a successor af and v of h, where
{u,v,d, h} are distinct by virtue of Prop(3)(ii) and (4)(iii)

Case 3.2.1¢p(h) =2 (See Figure(2.4))

Figure 24

Consider the netark T,. In this requ) is a @nstant function, sincé
and d become constants, thus from Prop(4)é{u) = 1. If v is a suc-
cessor ofu thenreg(v) in T, is also constant angfv) = 1. So hered,
h, u, v and all successors of can be eliminated fronT in forming
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T,. Alternatvely if u does not entew, then all successorsy of u
together withd, h, u andv can be eliminated.

Case 3.2.2¢p(h) =1

From Prop(3)(iii) v must be an‘ttype gate, so we can choose
some e, depending onop(v), so thatregv) is constant inT,. If v
enters ap gate w# u then the 5 gtesd, h, u, v and w may be
deleted. Ifv enters onlyu then, fore chosen as beforeegu) is con-
stant inT, and so has some successoi/1{d, h,v,u}, and again 5
gaes may be eliminated.

It remains to dispose of the case wheitan contains but a sin-
gle cate. Thefinal property establishes the impossibility of this
occurring and uses the assumption on the minimalitX efout made
at the start of this proof.

Property 5:|Elim| # 1
Proof:

Suppose the contragrgo hat we hae the sub-network of Fig-
ure(2.5). The gte u must belFtype. If sis not an input oflT then re-
wire T as depicted in Figure(2.6), to awn@etwork T', amending the
gae operations ofd, h and u to ensure thategu) in T is the same
asregu’) in T'. That this is alays possible follows from the iden-
tity:

(xM y)O(yM 2z = (x[M 2Oy M 2
Now T' computesf using no more gates but the total input

fanout of T' is less than that of, contradicting the initial choice of
T.

On the other hand, supposeis an input of T, x, say From
optimality | #i and| # j In this case, since is [Ftype, we can fixx;
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Figure 25

and x; to constants so thaegu) is constant. Theresulting netwrk

is independent ofx; but should compute a non-constant symmetric
function of n—2 arguments. This contradiction establishes Property(5)
and completes the proof of Lemma(2.7).

It is nowv easy to pree:
Theoem 2.17¥ k>0,V n=2k +3

C=22n+k-3
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Figure 26

Proof: By induction onk. The inductve base, k =0, is just Theo-

rem(2.16). Assuming the result holds for alllues less thark and

applying Lemma(2.7) we obtain from the Induetihypothesis:
Czmin{2(n-1)+(k-1)-3+3,2—-2)+(k—-1)-3+5}

and this quantity is2+ k -3. O

Special cases of interest are the threshold and congruence func-
tions.

Comollary 2.4:YV k2<k<sn-1
C(T)z2n+min{k -2,n-k-1} -3
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Vk3sksn-1
C(CH=2.5n-k/2-4

Proof: The first inequality follows from Thm(2.17) since:
w(T) = 02,0011, 1*1

The second inequality is obtained by fixing=(n-k-1)/2 and
observing that:

w(C}) O{0, }*P.{0100, 0019.{0, I}*P

In particular we hee:

C(Th,)=2.5n-5

C(C)=2.5n-6

As Stockmger demonstrates this last is, to within an additmon-
stant, the best possible, his paper proving that:

C(C))<2.5n

By fixing k=0(n-3)/20 m=0(n-3)/20it is easy to see that the
number of spectra of the forf0, I*. SW.{0, 3™ is 25.2¢.2m=2"
and hence at least half of the functionsSinhave wmbinational com-
plexity > 2. 5n - 5.

Stockmeyels agument is atypical in that the results aréeeted
entirely by an inductie process. This is not so inaBl’s ariginal 2.5n
lower bound where the structure of the function examined necessitates
the investigation of further cases.oF completeness we stateauPs
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result belav.
Theoem  2.18: (Paul, 1977) Let a;=<@a,a,,...,8y>,
a, =< a1 ,-..,8y> Where m="0logn [ For a gven assignment

from {0,1}™, a; encodes, in binarysome integer between 0 and
2™ -1 in the obvious w&y. (a;) denotes this alue.

f(O’l, as q, Xn) :{0! 1}n+2m+1 - {0! 1}
is given by:
(A U Xy DX(ap) DA U Xy O Xay))
(Note: f is arbitrary if @;) > n or (a;) =0)
C(f)=2.5n-2 O
Two strands run through the proof of this bound; the use of the
“indirect address" fields; and the application of the “"control” dpit,

Both are important in g@ning information about the form of optimal
networks realisingf.

The 3 lower bound of Blum (1984a), which is presentecdtne
also eploits these concepts. The function considered is a little more
comple< than Ruwls, involving an additional address field
Q3 =< Qm1s---183m >

f(aq, ay, a3, Q, X,,) is defined to be:
Xy I (X B Xaz)

Since Ruwl's function is a special case of this it fell® from
Thm(2.18) thatC(f) > 2.5n - 2.

Theoem 2.19:(Blum, 1984a) Br f(a4, a,, a3, 4, X,,)) a gven above:
C(f)=3n-3
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Proof: For any s, 1< s<n, let P(s) be the assertion:

C(f)=3s-3 for all f:{0, ™™ _ {0,1} such that there
exists SO {1, 2, ... n} of cardinality s, satisfying:

V <(a1), (@), (a5) > O S

f(ali as, as, q, Xn) = X?al) O (X(ﬂz) N X(as))

We pove the veracity ofP(s) by induction ons, thus again the
lower bounds are established for a class of functiongpaa particu-
lar property dbeit a rather specialised one.

Inductive Bases=1,s=2

The cases=1 is dovious. The case =2 follows by observing
that ary function with the property of interest\iag s=2, depends
essentially on at least 4 inputs (2 data inputs, at least 1 address bit
and 1 control bit) and thus requires at least 3 gates to be confputed.

Inductive StepLet P(s) hold for all valuess <s. Consider ag f
satisfying the property stated afeofor some setS of cardinality s.
Let T be an optimal combinational netvk realising f att. We po-
ceed by a case analysis which examines the environmert sidich
thati 0 S. The cases:

Case 1:4i U S such thaty(x) = 3

Case 2:4i OS such thatg(x) =2 and X enters anltype
gae.

are similar to the corresponding cases in Lemma(2.7) and are
left to the reader to confirm.

c) Extending the inductée base to ceer s=2 is a tchnical cowenience; at certain
points in the proof of the indugt hypothesis it will be necessary to select Jeddnt
elements of.
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Case 3:4i U S such thatyp(x;) <2 and x; enters onlyl-type ates.

Case(3) of Lemma(2.7) established the existence of a path
<0i,...,9p, > of O-type gates satisfying:

i) X; entersg;

i) g entersgy; 1<k<p

i) ¢g)=11<k<p

V)  #(gp) =22 or g, enters ar+ype gte

v) If r, denotes the node supplying the other inputgpfthen
req(r,) does not depend or, V 1<k < p.

(v) is just a reformulation of the properties present by assuming
the absence of certain pathsTin

Clearly:

res(gp) =[ x O Epl refr;)]0e (ed{0,1)

= x O h(X, ={x;}), say

So replacingx, by the functionh or h rendersres(g,) a constant
function. With this we can proceed to eliminate &eg fromT. Con-
sider the tw possibilities forg,.

A)  ¢gp) 22

Computeh from req(r,) ,...,res(r,) using at mostp —1 O-type
gaes and replace; by h. res(g,) is now constant and so allages
{91....,9p} and the successors @f, may be eliminated. The we
network contains 3 feer gates and satisfieB(s—1), for the set
S—{i} by the inductre hypothesis.
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B) @gp)=1

Thereforeg, enters anl:type cte, u say An easy agument,
given in Paul (1977) establisheg(u) > 1 (i.e u#t). As in (A) replace
X, by h or h to ensure thatresu) is constant. This allows
{91....,9p}, u and all successors af to be eliminated. Again this
leaves a retwork containing 3 fewer ges thanT and satisfying
P(s—1) for the setS—{i}.

So it may be assumed that none of Cases(1-3) are tru€. for
Thus we hee Vi OS:

o(x) =1 and x; enters arittype cate C;, say.
Some further properties df, in this case, are mo proved.
Property 1:Vi,j OS, (i# ) C #C;

Proof: Suppose the contraryThen there xsts somee [0{0, 1} for
which reg(C)) ¢ is constant, hence replacing by e rendersT
independent of x;. But fX=¢ still depends on Xj, eg fix
(a1) =(ay) =1, (a3) =), q=e and the remaining variables arbitrarily
In this casef =el x;. O

Case 4:4i 0 S such thaty(C) = 2

Choosee 040, I} for which res(C;) % =® is a constant function.
Then fixing x; = e allows C; and its> 2 successors to be eliminated.

We rmow haveonly:
Case 5:Vi O0S¢C)=1

The remainder of the proof is dedicated tovprg that ay
such network containss3- 3 gates directlyi.e without recourse to the
inductive hypothesis.

We introduce some further terminology and notation.
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D; denotes the unique successorGpffori [ S. Let
C={C;:i0S} ; D={D;:il0Ss}

A split is a nodev such thatgp(v) = 2. A path ¢ - w) isfreein T is
no node in the path (with the possibbeception ofv, w) is in C. A
node,w in T, is afree splitif:

FS1) w is a split.

FS2) Thereare distinct nodes andv in T for which there are free
paths (1 - t) and (v - t) and w entersu andv.

A node w is acollector of free paths G - t), (C; - t) (i #J)
if it is the first node common to both paths.

The next 4 properties df were first gven in Paul (1977).
Property 2:V i O S there exists a free patiC;(- t).
Proof: Suppose for somein S there is no free pathC( - t). Every
path from C; must go through som€; (j #i). Since eachC,; is
[Fype one may construct an assignmegt,such that all ariables,
except x; are fixed undep and:

YV j OS-{i} res(Cj)'ﬂ 0{0, 1
(a1) =(ay) =i, (a3) =] #i andq is chosen so that:
£ =(x)°

for somee 0{0, 1. T under g8 is independent ok but f ¥ is not.
This contradiction pnees the existence of a free pat@; (- t). O

From Property(2) we Wwa immediately that the set§, D are
disjoint.
Property 3:Let i, | be distinct elements o0& and G be the collector
of a free path@ - t) and a free path@; - t). Suppose there is no
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free split on the pathsC( - G), (C; - G), except possiblyG itself.
Then

)] G is an[J-type cate.
i)  Thereis a free path@ — C;) or a free path C¢; - C)).

Proof: Suppose (i) is false and th&t is an[Ftype gate. Lei3 be the
assignment which fixes eack, for k 0 S—{i,j}, so hatres(C,) " is
constant, &,) =k #1i,j, (ap) =i, (a3)=] and q so that x?al) =1
Then f ¥ =% O x;

(Note: The control variable is used here to guarantee ghat
exists. Theproof of this property is one of the reasons for commenc-
ing the inductre gep from aluess=>3 dnce we are nw assured of
the existence of a suitable,. In this context see also Property(6)
below).

With B a mntradiction can be dewd. For supposeres(Cj)V’
depends onx;; then we can selk; to somec so thatT under
< B, Xj:=c > is independent ok; but f IBx=¢ is x; O c. An identical
argument can be used i€ depends onx;. Now by the stated
assumptions all pathsC( - t) and (C; - t) pass through somé&,,
all of which are constant, or go through the collec®i(since there
are no free splits on the considered patBjt re5(G) ¥ computes an
[Hype function ofx; and x; or depends on only at most onariable.
In either casd cannot realise thél-type function required.

G is thus anl-type cate. So suppose (i) does not hold and
there is neither a free patl;(- C;) nor a free path@; - C;). Con-
struct an assignmeng for which reC,) " is constant for allk in
S—{ij}, (@) =i, (@) =], (@3) =k O0S—-{i,j} andq=1. Then, f¥
realises ariHype function ofx; and x; and nev employing a similar
amgument to that of (i) we dee te contradiction thates(t) '’ must
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be anlktype function, but such cannot be computed from [fhgype
function of x;, x; given by G. O

Property 4:V i,j OS (i #]) D; #D;
Proof: Immediate from Property(3)a

Properties (1) and (4) identifys3istinct ates,C [] D.
Property 5:T contains at leass — 1 distinct splits.

Proof: Let S =S. Find i, j in S for which there exist free paths
(G - t) and (C; - t) such that for allk S —{i,j} no free path
(Cx - t) goes through the collecto@, of (C; - t), (C; - t). Such a
pair can alvays be found as follgs:

Consider ap pair of free paths@ - t) and (C; - t) with col-
lector G. Suppose some other free path, (- t) aso goes througit.
This path must intersect either the pa@ ¢ t) or (C; - t) before
G, by the definition of collectorLet H be the first gate at which this
occurs and without loss of generality suppétdies on the free path
(Ci - t). ClearlyH is the collector of the free patlC( - t) and the
free path C; —» t) and is an ancestor doB. If i, k do not meet the
condition required then thegament abee @an be repeated to select a
newv pair. The process must terminate since a gate preceding the cur
rent collector is alays chosen at each stage and none of the gates in
D [] C can be collectors.

From Property(4) one of the path€ (- G), (C; - G) splits
into a free path td or to C; (resp.C;), the split occurring at aage
precedingG. Without loss of generality suppose the path { G) is
the one which splits. N set S =S —{i}. Repeating the gument
s—1 times praes the result. The construction guarantees that no free
path C, — t) intersects with the free patl€;(-~ G[, and so no split
is counted twiceO
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The remainder of proof is due to Blum.

The main idea is shwothat at leastg—2) of the distinct $— 1)
splits identified abee must be free splits. Wh Property(2) this will
leave As—-2)+2 wires which must be connected ontoeach wire
lying on a free path tao. It will be shown that this entails the use of
s—3 gates in addition to those i€ [ ] D, proving the lower bound
3s-3.

First consider thes(—1) splits located by Property(5) and sup-
pose at mosts(—2) of these nodes are free splits. Ljebe such that
the split identified on the path fro@; is not free and be such that
no split on the path frong; is found, i.ei, j are pessimal cases. By
Property(3)i, j satisfy with G the collector of the free path€;(- t)
and C; - 1).

1J1) Thereis no free split on the path€(- G), (C; - G), except
possibly G.

1J2) G is O-type.
IJ3) Thereis a free path fronC; to C;.
For this situation we hze

Property 6:V k 00 S—{j} there is a free patiC{ — C;) or a free path
(Ck - C)).

Proof: A free path ¢; - C;) has been identified by the choice iof
Suppose for somk O S—-{i, j} there is neither a free pat€(- C))
nor a free path@ - C;). Let g be the assignment which fixes all
variables, &cepting x;, X;j, Xx SO thatres(C,) ¥ is constant, for all in

S -{i,j,k}, (@) =], (ay) =i, (a3) =k andg=1. Then:

f2(xi, Xj, X) = X; O(x O X )

Now if res(Cj)'ﬁ is independent ok; we can fixx, to e in {0, so
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that reg(C,) ¥ *=° is constant andf =€ =x, 0x®. Since G is
[-type the argument used to peoRoperty(3) yields a contradiction.
On the other hand, ifes(Cj)'ﬂ does depend orx;, then x; may be
fixed to somee so thatreg(C;) is constant. Note that since there is
assumed to be no free patG, (- C;) or (C —» C)), regC;) cannot
depend onx,. Agan a contradiction results since after tfisis inde-
pendent ofx; but

flﬁ'xi:e:XjDXk O

The final property will allv us to onclude that at most one of the
splits identified is not a free split. In the statement welp is agin
the path on which the non-free split is assumed to lie.

Property 7: ¥V k,1 O0S-{j}. If H is the collector of a free path
(Cy - t) and a free path@ - t) then there is a free split, other than
H, on the path C, —» H) or the path C, -~ H).

Proof: (See Figure 7) Suppose there is neither a free split on the path
(Cx - H) nor the path ¢, — H). From Property(6), using and |
instead ofi and j, there is a pathQ; - C)) or a pth C; - Cy). But

from the choice ofj and i there are also pathsC(- C;) and

(Ck - Cj) and this impliesT contains a ycle. 0.

It is clear from Property(7) thakt contains at leas$ — 2 distinct
free splits. From this and Property(2) wevéad least 26-2)+2
wires on free paths which must be connected up fthe gates inC
cannot be used (by the definition of free path) and #tesginD can
account for at moss wires. Thusat leasts—2 wires hae © be ©n-
nected using gates not @[] D. A single nev gate can reme two
wires but, if it is not the output, adds onélences— 3 gates must be
in T beside those i€ andD. This gwes:

C(f) 2 IC|+|ID|+s-3 =3s-3 O
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path(C; - C,)or (C; - C)) (Property 6, wittk, | instead of, j)
J J

path(C, - C;) or (C, - C;) (Property 6, by the choice ofj)
i i
Figure 27

2.5) Some Upper Bounds on Combinational Complexity

We mnclude this chapter by describingotwetwork construc-
tions which provide depth and sizdi@ént realisations of some inter
esting classes of Boolean function. The first is a solution of the "par
allel prefix problem”, due to Ladner and Fischer (1980), which per
mits small depth and size simulations of finite state transducers by
combinational netarks. A consequence of this is a linear size,
O(logn) depth network for computing the+1 bit sum of two n bit
binary integers. The second construction presented is a linear size,
logn-depth network capable of realising yam-input symmetric
Boolean function, and is from Muller and Preparata (1975).
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The existing literature concerned with combinational oet®
realising the basic arithmetic functions stensve. Howeve with the
adwent of more sophisticated technologies, entailing the assessment of
nev complexity metrics, it is perhaps debatable whether the solutions
proposed are mo of immediate, direct, practical significance.vé
this and the technical complexity of the more important constructions,
we will merely summarise the best of such results obtained to date at
the the end of this sectionThe bibliographic notes following indicate
further references.

Definition 2.5:Let * be aly associatve, binary operation wer some
domain D. Let <d;,d,,...,d,> be a n-tuple of variables taking
vaues fromD. The n-input prefix poblemfor *, is to compute then
products:

{dy* dy* dg*---*d|1<i<n)

A *-product networkor simply product network, is a directedyalic
graph containing n input nodes associated with anables,
<d,,...,d, > and *-nodes, these having in-degree 2 \WBeC, D to
denote the number of *-nodes in (resp. depth of) a productorigtw
S e

In the obvious way anproduct netwrk computes some set of
products at its output nodes. WhBn={0, 1}, the product network is
just a Boolean networkver the basis{ * }, where * may be one of
(0,00 m}.

We wish to construct product netrks to sole the prefix prob-
lem in minimal depth and size. The fallmg construction of Ladner
and Fischer (1980) presents a family,f(n)] of product networks
such thatV O<k<OognV n=1:
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P (n) solves then-input prefix problem.
C<2(1+2%)n-4
D<k+0Oogn0O

Below we wse m to denoteUn/200 If n=1 then P,(n) (i.e
Po(1)) is just a single input nodeofFn>1, P,(n) is formed recw
sively as follows:

k = 0: Py(n) consists of a copof P;(m) and a coy of Py(n—m).
<d;, d,,...,d,> and <dpq,...,d, >
denote the inputs dP;(m) and Py(n —m) respectiely. Smilarly let:
<Yi,oo, Ym> and <Vypu1,...,Y0 >

denote the output nodes of these meks. Py(n) is formed by adding
n—-m nev * nodes, <gm.1,---,0, > the inputs ofg, being the out-
put y,, of P;(m) and the outputy; of Py(n—m). The outputs
<Pi,..., P> 0f Py(n) are then

<y1’---,Ym’gm+1,---’gn>

k > 0: P, (n) consists of a single cgpof P,_;(m). If nis odd the
inputs to this are the products:

<d;*dy,d3*dy,...,dn*dpyq, d, >
If nis even the inputs are:
<d;*dy,d3*dy, ..., dyg*dy >

These being computed usinglin/20 new *-nodes. Let
<VYy, ¥Y2,...,Ym > denote the outputs d?,_;(m). If nis odd the out-
puts of P, (n) are given by:
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< dl! yl! yl* d3! y2’ y2 * d5’ LR ym—2! ym—2* dn—21 ym—11 ym >

whereas ifn is even the outputs ofP,(n) are computed by:

< dl! yll yl* d3! y2! y2* d5’ LR ym—ll ym—l* dn—li ym >

The construction is depicted belo

Figure 28 (a)

Lemma 2.8¥ n>1,V0<k<OognU

)] P (n) solves then-input prefix problem.
i) D<k+Oogn0O

i) C<2(1+2"n-4

Proof:

i) By induction on the valuer2+ k (k >0, n=>1). The basen=1
and k =0, is obvious. Assumé,(n) solves the prefix problem
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Figure 28 (b)
wheneer 2n+ks<s-1. To prove P,(n) solves it when
2n + k = s we distinguish tw sparate cases.

A) k=0: Sincen>1 we have 2m+1<2n so from the
inductive hypothesis bothP;(m) and Py(n—m) are cor
rect. Thecasek =0 is now easily verified from the defi-
nition of Py(n), cf Fig(2.8)(a).

B) k>0 Agan P,_;(m) is ocorrect from the inducte
hypothesis and using the definition Bf(n) cf Fig(2.8)(b)
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this network solves the-input prefix problem.

i)  The depth bound is a straightfoand induction using the easily
obtained result that tha'th output of P, (n) is dways at depth
Ologn [ The details are left to the reader

iii)  (Outline) The description ofP,(n) yields a system of recurrence
relations. Solving these yields the claimed upper boun€.om

One of the significant points of interesigaxling this solution
to the prefix problem is ho it can be applied to ge an dficient
simulation of finite state transducers by combinational odsv W\e
assume someammiliarity with the basic concepts of automata theory
A finite state tansducer(also knevn as a Mealy machine) is a quin-
tuple M =<Q, 2, A, J,y >, Q a finite set of statesy a finite input
alphabet; A a finite output alphabet (taken to bgO0,1});
J0:QxZ - Q the state transition functior;:Q x~ - A the output
function. A stateq, in Q is distinguished as the initial state.v&i
some input sequena® - - - a, in ", the output stringo, - - - b, gener-
ated byM is given by:

b1 = y(do, &)
b, = y(3(do, 1), @)

bs = y(3(3(Qo, A1), &), @3) etc

The computation proceeds sequentiallgt us nav consider a parallel
entity, combinational networks, which mimic the belar of such
machines.

For eache 00 define a functionM.: Q - Q hy:

aM, = 4(q, €)
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(That the argument oM, is to the left is a notational cesnience
introduced for reasons which will become apparentvipelo

For any gven input sequencesa, --- a,, the state ofM after
readingi symbols is clearly:

JoMa, 0 My, 0---0 M,

(o denoting functional composition).

A combinational network which produces the output sequence
b, --- b, and the final state from awgh input a; ---a, and the ini-
tial stateq, can be built in four stages.

S1) ComputeM,, Mg, ,...., M, .

S2) Computdor each I<i < n the functionsN;, where:

N; =M, 0 M, 0---0 M,

S3) Computdor each I<i < n, the next state; = qoN;.
S4) Finallycompute the outputh;, using b; = y(Qi_1, &).

We row gve a detailed description of e these steps may be
realised.

Each input a is represented by a binaryowd containing
r = Ulog | Obits. Each statey; is represented by a binar@|{tuple
<S,...,Sgr > in which s, =1 and all other elements are 0.

Each functionM,, for e 0 X is encoded by aQ] x |Q| Boolean
matrix, T.; the (,j) entry of this matrix being 1 if and only if
o(q;, €) = g;. With this cowention, evaluation of gqM, can be per
formed as a ector matrix product, viz T,, where s is the encoding
of stateq. Also the "functional compositionM, 0 M; reduces to the
multiplication of 2 Q| x |Q| Boolean matrices (using instead of+, [
instead ofx). Thus:
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qu 0 Mf =S TeTf
Since matrix multiplication is assochatj so $age (S2) can be imple-
mented using the solution to the prefix problem.

We @n nav construct a combinational network to compute
(S1-S4); the total number of inpwtriablesis nr, x; denotes the -
tuple of variables corresponding to the transducer iaput

T1) For eachx; the appropriate matrid, must be selected, thus
some function:

T:{0, 3" - {0, 3
is being computed. Thep(q) entry of T, is given by:
egz 5( de(xi) DTe[ P, q ] )

where d. is the "equrdence function” of Sect(2.2) and

T p,q] denotes the g, q) entry of T.. Thus the matrixT, is

selected if and only if the input correspondsetm 2.

No more thanr.2" -1 gates are needed to compute a single
matrix entry Thus:

n QP (r 2 -1)

gaes suffice to compute all the outputs of (T1).

T2) Thesecond stage is realised by the prefix oekwP,(n), con-
structed earlierin which the product nodes realis@| k Q]
Boolean matrix multiplication. From Lemma(2.5) at most
4n - 4 of these are needed, K=0, (fewer for larger figd k).
Assuming the olhous matrix product network, this stage entails
the use of an additional:

(4n - 4) (2RF - QF) gates
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T3) This is just a ‘ectormatrix product, hwever since q, is
encoded as £,0,0...,0,& this stage imolves no &tra cates.
Only the appropriate entries from each matrix computed in (T2)
need be passed to

T4) in which g,,...,q, denote the encoded states selected. Each
outputb; can nov be mmputed from the »@ression:
0. B, (dg(a) Dde(xi) Uy(a,€) )

qUQeDO
Thus a total:
n 02" |Q| (Q| +r) - 1 Ogates

suffice to compute all thé;.

Summing the contriltions of (T1), (T2) and (T4) ges at nost
c,n —c, gdaes, for some constants, c,. Smilarly the depth of the
construction can be shown to be no more thgnlogn [Ifor some
constantc; depending orM.

The multiplicatve constants in the size and depth bounds may
often be substantially smaller for specific simulations, since one may
be able to utilise a oker encoding of the state and composition func-
tions. A good example of this, v@n by Ladner and Fischeis the
derivation of a combinational netwvk realising binary addition, the
function ADD(X,,,Y,) of Sect(1.2).

Consider the 2 state transducer depicted in Fig(2.10)

The output gies the result of summing the 2 input bits and/ an
carry from the previous addition. This carry being stored as the label
of the current state. Since the bebar on input 10 is identical to
that on input 01 there are only 3 functionserothe states 0 and 1, to
consider:Mgyg, My, and M4;. From inspection of Fig(2.10) it may be
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Figure 29

verified that:

Vi, k1 O{0,} Mo My O{Mgy, Mgy, My}
i.e the set of functions is closed under composition.

Fdlowing Ladner and Fischer (1980), instead of representing
M; for ij 0{00,01,10,1}1 by a 2x2 Boolean matrix, it may be
encoded by 2 bits: (result) andc (carry), thus:
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Figure 210
Input: 00 01 10 11
rc 00 01 01 10
Table 2.1

So for inputxy, r =x Oy and c=x O y. The result,rc, of compos-
ing two functionr,c; andr,c, is then gven by Table(2.2). Sdahat:
r=r,0(r; 0cy) and c =c; Oc,.

Finally the state which results by applying; to a gven date,
s U{0,1 is shown in Table(2.3); the output resulting in staten
input corresponding to functiorc is given in Table(2.4).
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r>Co
o 00 10 10
00 00 00 10
01 00 01 10 r,Cy
10 00 10 10
Table 2.2
Function=rc
sM | 00 01 10
State 0 1
S 0 1 1
Table 2.3
Input=rc
| 00 01 10
State 0 1 0
t 1 0 1
Table 2.4

113

In Table(2.3) the result is\gn by the epressionr [J(sc); In

Table(2.4) the output is gén by t [ c.

We @n nav prove:
Theoem 2.20:

C(ADD(X,,Y,)) < 3C(P(n)) +2n

(2.20)
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D(ADD(X,,,Y,)) < 2D(Py(n)) +2 (2.21)
and both bounds are ach@ble simultaneously

Proof: The basic template (S1-S4) akp is implemented by the
stages (A1l-A4) belws.

Al) The function, r;c; associated with each input paixy; Iis
encoded by computing x; Oy;, x; O y; >, following Table(2.1).
This uses A gaes and requires depth 1.

A2) The computation of N;,...,N, from the input pairs
r.C;,...,r,C, proceeds using the prefix ne&k P, (n), in
which product nodes realise the functions ¢ according to
Table(2.2). This can be done witlC@,(n)) gates and in depth
2D(P(n)).

A3) By choosing the initial state to be state 0, thgtrstate compu-
tation merely selects the component of each output pair in
(A2) (cf. Table(2.3)). Thusthis stage adds no extra gates or
depth.

A4) The n outputs are computed usin@gble(2.4); the final state, i.e
last carry gres the n+1 output. This requires in total at most
gaes and extra depth 1.

Summing each contribution pres the theorem.o

The multiplicatve @nstants are bettered in the construction of
Khrapchenk (1967); these bounds areven at he end of this sec-
tion.

The method for efficiently realising symmetric functionsegi
in Muller and Preparata (1975) alsovdlves a form of addition net-
work; one which calculates the total number of Jresent in an
assignment tox,,.
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Theoem 2.21:(Muller and Preparata, 197%) f OS,

Oon g
C(f)sbn+0——
(1) <5n HognQ

D(f) < 70logn 0

Proof: We shall assume thah =2™ - 1 for somem = 1. The construc-
tion is in two dages: the first computes the-output functionWT
which is defined by:

WT:d:<dm_1, dm—2!"'1d0>

where d is the binary representation of the total number of 1’
assigned toX,, d,_; being the most significant digitl, the least.

Since ay symmetric function is completely specified by its
spectrum, it may be gerded as a functiom(d): {0, 3™ - {0, 1}, the
assignments ta corresponding to the number ofslin assignments
to X,. In this way, given a realisation ofWT, any symmetric function
can be computed from the-tuple of outputsd using some combina-
tional network. The second stage consists of an appropriate network to
perform this task. From Thm(2.7) and Thm(2.10) such a network can

m

.2 n .
be constructed to kia sze - = m or depthm+1. It is therefore

sufiicient to prave tat the first stage may baiilh using at most B
gaes and with depthr.

The construction is recurd. Let k =2™1-1=(n-1)/2. Sup-
pose S, is a network computingWT(xq,...,X,) a outputs
<anz,...,8 >, and thatS, realisesWT(X,41 ,...,Xy1) @ outputs
<bmns,...,bg>. The required output fONVT is then just the result of
adding these 2 - 1)-tuples together witlx,,.
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For this addition a chain om-1 full addess (FASs) is used. An
FA has 3 inputsy, z, ¢ and 2 outputsy giving the result of adding
the single bitsy, z and c (the carry forward); andhc which is the
next carry forward. So:

r=yOz0Oc ; nc=cl(ydzOyOz

An FA can be realised using Satgs and depth 3. The chain is illus-
trated in Figure(2.11). The inputs to theh block area;, b, andc;_;
(the previous carrywith c_; taken to bex,). The outputs ared; as
result, andc;.

So the combinational complexity ®/T, S(n), satisfies the rela-
tion:

S(n) <5(m-1)+28(n-1)/2)<5(n-m-1)
By an easy induction om.

The depth bound is only slightly more difficult. LBt denote
the depth at which theth output d; is computed when realising/T,
for n=2"-1. We shall prove:

D<4dm+2i+1 YmVO0<is<m

The base casesm=0 and m=1 ae trivial. Assume that
D<dm' +2i +1 for all m<m. Using the recurse nstruction
above and this hypothesis it follows that each output b; is at depth
at most 4h—1) + 2i + 1. We aditionally assume inductly that the
carry in to thei'th FA, c¢_;, is computed at depth no more than
4(m-1)+ 2i + 3. With ¢, = x, the base here is again trivial.eWow
have that d; requires additional depth only 2, hence:

D<4(m-1)+2i +5=4m+2i +1

The inductve dep for the deptlc; follows in a similar manner Now
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Figure 211
choosingi = m yields the claimed bound on depth.

The theorem bel® summarises the best upper bounds on size and
depth for the arithmetic operations addition, multiplication andgerte
division. Inall cases the bounds are simultaneously aebie.
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Theoem 2.22:
C(ADD(X,,,Y,)) £9n (2.22)

D(ADD(X,, Y,)) < logn + o(log n)
C(MULT(X,,Y,)) = O(nlognloglogn) (2.23)
D(MULT(X,,,Y,,)) = O(log n)

C(DIVN(X,,,Y,)) =O(n*) for some fixg24)
D(DIVN(X,, Y,,)) = O(log n)

Proof: (2.22) is from Khrapcherk(1967); (2.23) from Schonhage and
Strassen (1971); (2.24) is penl in Beame, Cook and Heer
(1984). O

Bibliographic Notes

The complgity of computing Boolean functions onamous
automaton models has been considered by Breitbart (1968) and Sholo-
mov (1970). Alt (1984) and Jung (1985)amine depth efficient simu-
lations of arithmetic netarks by Boolean networks. The properties of
C(B,), usually referred to as th&hannon functiorby Soviet authors,
have keen studied in Karpa (1975) and Orle (1971). Seeral
researchers ha investigated different forms of "umersal” netvork.
Preparata and Muller (1970) shahat erery function in B, can be
obtained as a subfunction of oneBy,,, and obtain an asymptotically
minimal bound on the size oh. Valiant (1976) constructs a nedwk
of size O(clogc) and depthO(c) which can simulate gnnetwork of
size ¢ given a sitable setting of its control inputs. In similaeim



119

3
Cook and Hower (1985) present a network of simDﬂDand
Uogcl
depth O(d) which can simulate gnnetwork of sizec and depthd.
Lupanos (1958) also gies uper bounds for the complexity of all sets
of functions in B, for m satisfying certain conditions. These are

mentioned in the following chapter

Besides those @en in Sect(2.4) a number of other lineanler
bounds on combinational complexity are known. Redkin (1973)
appears to be the first detailed presentation of an invaéugiie elimi-
nation argument, although this is only for the bdsisl], -}. Schnorr
(1976b) gves exactly matching upper and lower bounds on the combi-
national complexity of the function:

f]_jll (% [ Xi42)
Linear lower bounds are alsovgn by Bremer (1974), Harper (1975)
and HarperHsieh and Sage (1975).

As we mentioned prgously the literature ogering the combina-
tional complaity of arithmetic functions is substantial. Addition net-
works being studied in VAzienis (1961), Sklangk(1960a,1960b) and
Spira (1973); Earlier results on multiplication were found by Karat-
suba and Ofman (1962), Ofman (1962pom (1963) and \allace
(1964).

Paul (1975) and Ulig (1974) consider the conxite of realis-
ing functions on disjoint sets of variables; both papers showing that
combinational complexity is not addié (.e there gist functions
f(X,), and g(Y,) for which C(f Og) < C(f)+C(g)+1). Pip-
penger (1977) and Sholom@1971) examine the application of infor
mation theory as a means of obtaining comiptebounds. Blum and
Seysen (1984) consider simultaneous computation Cbfand -1



120 CombinationaNetworks

Finally, Yablonskii (1959a,b) and Nigmatullin (1984,1985) attempt to
account for the fact that proving superlineavéo bounds on netvk
compleity is difficult.
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Chapter 3

Monotone Network Compigty

-+ - it wasclear thatthe endwas still far, far off, and that
the hardestand mostcomplicated prt wasonly justbeginning

Anton ChekhovThe Lady with the Dog

In this and the remaining chapters our primary concern is with a num-
ber of restricted models of Boolean netlw monotone; formulae;
bounded-depth; and planafrhere are seral important general dr-
ences between monotone netis and these other models. The final
three all emply graph-theoretic restrictions: formulae compeles to
have aut-dggree at most 1; bounded-depth networks permit arbitrary
fan-in gates of certain typesutlimit the depth to being constant; the
planar model requires the underlying graph to be plahdditionally

all of these turn out to be functionally complete in the sense that each
may realise an f in B,. Neither is true of the monotone model; this
involving a restriction of content, the basis, rather than of form, the
graph structure.

That one considers simplified models is largely due to the lack
of progress in desloping powerful lower bound arguments pertinent
to combinational networks; the hope being that these restricted forms
will prove nmore amenable to analysis.itW respect to arbitrary net-
works the aims of such models areofeld: to gain insight into proof
techniques for combinational networks viavey bound methods for
the restricted model;, and to determine if such networks may ef
ciently simulate unrestricted netwks® Thus formulae are of interest

a) The assertion here requires some qualification in the case of bounded-deptksnetw
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since it is possible to deduce bounds on network depth from bounds
on formula size, cf Theorem(2.4); the bounded-depth model includes a
class of networks whose complexityiaetly corresponds with the
number of products in the minimal DNF for the computed function.
Finally the planar network complexity of can be shown to be at
most C(f)?, s0 lage enough bounds in this model yield superlinear
bounds on combinational comgity.

For the class of monotone Boolean netits thereappearsto
be no such strong theoretical nvation. Hovever a rumber of signif-
icant results, deved from 1983 onwards, ka fiowvn that it may nw
be reasonably contended that this modéérefthe greatest potential
for obtaining realistic complexity boundsorfFthis reason and thedt
that the other models mentioned eboray themselves be restricted
to monotone instances, monotone Boolean odsv will be the first
restricted model which will be examined in dethil.

Prior to 1983 the study of monotone network complexigsw
motivated in a number of ays. The set oh-input monotone Boolean
functions, M,,, has long been of historical interest in certain areas of
algebra and combinatorial mathematics, dating back to the work of
Dedekind in the late 19th centunpespite the dct that the monotone
basis{[], [} is incomplete, a great mpancomputationally interesting
functions are monotone, e.g the threshold functions and a large num-
ber of NP-complete problems. Ewn in cases where a function is not
monotone it is often possible to consider instantiations which are, e.g
the set of Boolean functions defining integer multiplication is not in
which have mainly been imestigated because of their relace to a question concerning
the separation of particular complexity classes. This is discussed in greater detail in
Chapter(5).

b) We oould of course define other compositions of restriction, e.g bounded-depth for

mulae. In practice such modelsvhdittle theoretical andwen less pragmatic signifi-
cance.
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Man2n-1, buUt @ special case is Boolean colation, a set of monotone
functions. Theprogress made in obtaining good techniques for other
monotone models provides another justification. The complexity of
monotone arithmetic networks i.e with only the operatiens< per-
mitted was considered in both Schnorr (1976¢) and (Jerrum and Snir
1982). Theformer demwes exponential lever bounds on the number

of additions required to compute certain rational functions, bounds
which are sometimesxact; the latter similar results for the number of
multiplications necessary Lingas (1979) prees smilar bounds in
other monotone models of computation.

This chapter presents a detailed andemsve acount of the
theory of monotone netwk compleity. In Section(3.1) we describe
the history of a classical problem first formulated in Dedekind (1897),
namely to determineM,| (denoted ¢/(n) henceforvard). A lover
bound allows complexity bounds for almost all monotone functions to
be obtained using Shannenagument. The upper bound og(n)
proved in Hansel (1966) is also wn. Although Hansels result is
not quite optimal, the bounds of Kleitman (1969), Kleitman and
Markowsky (1974) and Krshune (1981) all impreing it, the con-
cepts introduced in its destion will be useful subsequentlyThis
section continues with wvupper bounds on the network comptg
of all monotone Boolean functions. The first, also from Hansel (1966),
is an asymptotically optimal construction foombinationalnetworks
realising functions inM,. This utilises a powerful design method
detailed in Lupane (1961b, 1965b), known as the "Principle of Local
Coding". Thesecond construction, described in Red’kin (1979), con-
cerns the computation of monotone functions using only the monotone
basis {0, 0,1}. We onclude this section with a minor
improvement to the complexity hierarghresults of Thm(2.11) for
monotone netarks.
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Section(3.2) is a prelude to a number of the lower bound results
presented later in the chaptérintroduces an important tool for rea-
soning about the optimality of monotone networks, which was origi-
nally developed in Paterson (1975) and (Mehlhorn and Galil, 1976).
This is the concept of replacement rules. The application of this tech-
nique is discussed and some characterisation theorems from Dunne
(1984c) are pneed.

The earliest indications that monotone networks are a tractable
model in which to obtain good comgityy results came in the mid
19705 with the appearance of the first superlinear lower bounds on
the complexity ofsetsof monotone Boolean functions, i.e members of
the classM, . Section(3.3) deals with a number of these results,
among them the precise description of re8 computing Boolean
matrix product from Paterson (1975); the result of Weiss (1983) on
Boolean Cowolution; and a bound on the compily of sets of
Boolean sums from Mehlhorn (1979)Refinements of the inducé
gae elimination approach, all these results utilise replacement rule
arguments in some ay.

The following two sections consider the complexity of single
output functions, Section(3.4)wyng some linear lower bounds on the
compleity of threshold functions from Dunne (1984b, 1985a) and a
particularly elgant 4n lower bound of Tekenheinrich (1984). An
upper bound on the monotone network complexity of a#dixhresh-
old functions is also gen.

Thus far there is ui little to merit the status we V& arlier
accorded this model. It is in the results of the concluding sections of
this chapter that its significance is confirmed. In 1985 theieSo
mathematician Razbovo obtained the firstsuperpolynomial lower
bounds on monotone network comptg. Razborew (1985a, 1985b)
proves auch results for a range of "natural" problems in graph theory
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The method empis a startlingly inngative cmbinatorial approach
and may be phrased to yield a general inequality on monotone func-
tion compleity. These results represent a tremendousarck and

yet were improed, by diferent methods, in the paper of Andree
(1985). Andree derived exponential lower bounds, for an alterwati
class of monotone functions. Independently of Andre&lon and
Boppana (1986) showed that certain combinatorial arguments of
Razbore (1985a) could be sharperied In doing this thg improved
Razborovs results to exponential and exceeded the best lower bound
obtained by Andree In Section(3.5) a complete account of these
techniques is presented.

In Section(3.6) the relation between monotone and combina-
tional complexity is imestigated by introducing the concepts of "stan-
dard circuit” and "pseudo-complement”. An important result of
Berkowitz (1983) is preed, this shwing that superlinear \wer
bounds on the combinational complexity af functions in M, , fol-
low directly from sufficiently large lower bounds on tlmeonotone
complity of a related class of functions, called "slice functions".
The properties of slice functions Jea keen iwvestigated further in
Wegener (1985, 1986) and Dunne (1984a, 1985c, 1986).aiiclude
this chapter by describing some of the results of these papers.

In total the results of Section(3.5) sheohat lage lower bounds
on monotone compidy can be dewxied and, as will be apparent, by
two quite general methods. The results of Section(3.6) demonstrate
that if these, or other methods, can be adapted to apply to certain
types of monotone function then a general technique for \acgie
good lower bounds on combinational conxitle has become
¢) We rote here that Razbord1985a) gires no poofs, only an outline of the method,

thus Alon and Boppana hadfedtively to derive tese results directlyRazborov
(1985b) does gk a etailed description of his approach including all proofs.
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available. It is these facts that establish the importance of monotone
network theory

Subsequently we shall u€2™(f) to denote the monotone net-
work complexity of a functionf OM,, and C"(S) to denote the size
of a monotone netwrk S.

3.1) Bounds for almost all monotone Boolean functions

A consequence of Corollary(2.2) is that avés bound on the
combinational (and so also monotone) comipye of "almost all”
functions inM,, can be obtained from a lower bound @(n) = |M,|.
The problem of xactly determining this quantity for arbitrary was
first raised by Dedekind (1897)It is not difficult to dewe a cude
lower bound ony(n) by reasoning as folles:

Let E, denote the binomial -cdefient E[Dnr/]2 D% From
Lemma(l.1) ay prime implicant of f [OM, is just the product of
some subset of its formal arguments. Clearly there xaetlg E,, dif-
ferent products oflIn/2 Ovariables. With this we can identify at least
25 distinct functions inM,, snce ary subset of theseE, products
can be interpreted as the set of prime implicants of some function in

M, and no tw dfferent subsets define the same function.

As a result of this we he:
Theoem 3.1:For dmost all f OM,, for all £ >0 and n sufficiently
large:

—/2 (1-£)2"
Cm(f)2C(f)>-\/7—T %
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. . o .12
Proof: Using Stirlings gproximation E, -\/% 2" and Corol-
lary(2.2).0

At present, no concise closed form fgi(n) has been found,

and the exactalue of this function is not known fan abore 6 A
considerable body of avk exists concerning the asymptotic babar
of ¢(n). The list follaving summarises the history of Dedekid’

problem.
1) Dedekind(1897) praes ¢(3) = 20, w(4) = 168.
2)  Church(1940) demonstrates that(5) = 7581.
3)  Ward (1946) obtains the resyi(6) = 7, 828, 354.
4)  Gilbert (1954) considers the behaviour of lp(n) and proves:
<logy(n) < E,logn
5) Koroblkov (1963) strengthens the upper bound of Gilbert (1954)
to
3log 3
logy(n) < (32/3 )3/2 En
6) Hansel(1966) improes Korobkov (1963),
p(n) <35

7)  Kleitman (1969) further reduces the upper boundydm),

logyw(n) < (1+ OD ge § E,
8) Kleitmanand Marlowsky (1974) strengthen thewer bound of

Gilbert (1954) and this upper bound,
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MonotonéNetworks

01 Hog, n
(1+O@§Enslogw(n)s(l+om ne gEn

Korshune (1981) denwes asymptotically matching upper and
lower tolerances fog(n). For n even (resp. odd),

M, O -n 0
n -

g™ 2 epmn _ 0@z +n"2" -n2™)0

15 ~io 0

w(n) " 2" exp(G(n))

whereG(n) is

M n O s D -1
Mn-30Q 2 -n2™°-n2"%)Oo+ E, (2 2 +n?2"™Y)
5 O 0

Korshunovs result estimateg/(6) as 7,996,118; an error of just
2% using the result of Ward (1946).

The last 3 results mentioned a&poae too length to present

here. Instead we shall be content to \erHansels wper bound.
Both Kleitman (1969) and (Kleitman and Mavsky, 1974) are in
effect improrements to the basic method presented in Hansel (1966).
Korshunw (1981) introduces radically different ideas, some of which
will be mentioned belw in the context of complexity hierarchies for
monotone Boolean functions.

Hansels poof is based on the properties of a widely studied

partition of 2 into E, connected symmetrichains. A connected,
symmetric chain in 2 being a totally ordered collection of subsets,

Rg_j U Rg_jﬂD---D Rn

2"
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the setR, containing &actly i elements ofX,,. In describing this we
shall emply the characterisation presented in Greene and Kleitman
(1976). It will be corvenient to rgad subsets ofX, as defining
monoms, for which we use the partial orderas before. Thus P

and Q are two wubsets ofX, with P 0 Q then the corresponding
monoms, p and g, satisfy q< p. We dall retain this covention of
using upper case Roman letters to denote subsets and lower case for
the implied monom. The notatiomp||is enployed as a shorthand for
lvar(p)| = [P|.

Definition 3.1:Let w be aiy finite binary string.w is well-formed if

and only if

W1) wis the empty string.
or

W2) w=w,w, andw,, w, are well-formed,
or

W3) w=1w, 0 andw, is well-formed.

Let w=w;w, ---w, be a binary string of length. j is afree 0
if there is noi (1<i < j) for which the substringv,w;,; ---w; of w
is well-formed. Similarlyj is afree 1if there is noi (j <i <n) for
which the substringv;wj,; - - - w; is well-formed.

(i, j) is abound pairin w if i < j and the substringy; - - - w; of
w is well-formed. ¢

Informally well-formed strings correspond to balanced sequences
of left "(" and right ")" parentheses,ga&ding 1's as &ft and 05 &

right. Free 8 and 1's ae then un-matched parentheses and bound
pairs form matching braeis.

Fact 3.1: Let w=w;w, ---w, be a binary word of length.
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i) If i is afree 1 inwthenO j>i, jis not a free 0 inw.
i) If iis afree Oinwthenl j<i, jis nota free 1 irw.

Proof: Since (ii) is immediate from (i), it is didient to prae ()
only. Suppose that is a free 1 inw but that (i) is false. Letj >i be
the free O inw such thatj —i is minimal. The subard wi,; ---W;_;
cannot be well-formed for then, () would be a bound pair iw. So
from the choice ofj, this subword contains a free l.et k be the
free 1,i+1<k<j-1 such thatj -k is minimal. Nav a contradic-
tion results sincew,,, ---wj_; is well-formed and thusk(j) is a
bound pair inw. O

Any subset, P, of X, can be encoded as a binary string which
is just the assignment %, fixing exactly the variables i® to 1, e.g
if n=5 and P ={xy, X3, X4} then the encoding is 10110; here (1,2)
and (4,5) are bound pairs and 3 is a freegP) (or B(p)) will
denote this encoding of an arbitrary subset (monom). The partition of
2% is formed by considering a relatiGiED, defined between subsets
of X,. For P andQ OO X,, <P,Q>OTIED if B(P) and B(Q) contain
exactly the same bound pairs, e.g for 5 <10010, 10116 O TIED.
Kleitman and Markwsky (1974) note that the properties of this rela-
tion have keen studied and used by agarnumber of authorsThe
result belav summarises a&ral which will be of interest.

Fact 3.2: (Parts (v) and (vi) are due to Hansel)
i) TIED is an equaence relation.

i) LetC={P,,...,P,} be ay equivalence class offIED. Then:
P, 0P, and P;|=|P;| -1, 01<i<r; i.e Each equalence
class is a chain, totally ordered by

i)  TIED contains ractly E, equvaence classes.
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iv) For ary P O X, the length of the chai containingP (i.e [C|)
is 1 plus the total number of freesCnd free 15 in B(P).

v) OO<r<0On20if P, OP,0OP;is a consecute equence of
3 aubsets ofX,, occurring in a chain of length—2r +1 then
the subsetP, [ ] (P; - P,) of X, occurs in a chain of length
n-2r-1.

vi) [O0<r <0On/2[ there are xactly:

MO On QO

G0 0 - 1Dchalns
O
of lengthn-2r +1. (For k<0 we take EkDaS 0.)

Proof:
i) This is trivial and is left to the reader

i) Supposethe contrary and that R,Q> CTIED but PIQ and
QI P. The set of ordered pairB —-Q x Q- P must then be non-
empty Let <X, X; > be a @ir in this set such thaf fi| is minimal.
Without loss of generality we assume thpti, x;, OP-Q and
X; 0Q—P. Thus g(P), B(Q) may be depicted as:

1 2 -« i-1 i i+l - j-1 j j+1
BP) .- 1 < z >
ﬁ(Q) ...... 0 < z >

From the choice ok; and x; the substringz, between positions + 1
and j —1 must be the same ig(P) and B(Q). | must be a free 1 in
B(P) and a free 0 inB(Q), for otherwise <P,Q > I TIED. From
Fact(3.1)(i) it follows thatj is not a free 0 in3(P) and thus K, j) is
a bound pair inB(P) for somek < j (in facti <k<j). But (,))
cannot be a bound pair i#(Q). This contradicts €,Q > OTIED
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and soP 0 Q or Q O P, proving the first part of (ii).
For the second part consideryaaquivalence classC, of TIED:

C={P,Py,....,P}

From our argument abe C may be rgaded as a chain, i.e
P, 0Py, O1<i<r. It follows that 3(P;) contains no free & for
otherwise we could reme ome element fronP; and not affect the
set of bound pairs.

Let
k=max{i |iis a feeOin B(P,)}

and Q = P, [] {x,}. Then <P, Q > OTIED sincek could only form
a bound pair with some free 0 at a positiork *n B(Q) and none
such exists. From the ordering 6f it must be the case th& =P,
and P4|=|P,]-1. An identical agument establishes that
|[P;| = |P;s+1] — 1 for each ki <r as claimed.

iii) From (ii) no 2 subsets o, containing &actly [On/2 [Jelements
are in the same emaence class, hence the number of classes is
> E,. On the other hand, suppose some cl&scontains no subset
with exactly this may elements. Either the minimal subs&?, of C,
must contain at leasin/2 0+ 1 members ang3(P) has no free 1's, or
the maximal subset has at madt/2 - 1 members and no free O’
But then in both cases there are at ldasf2 [0+ 1 bound pairs and
hence >n positions. Thiscontradiction praes (ii).

iv) The argument used to p the second part of (ii) siides; namely

for ary chain C start with the minimal subse®. This contains no

free 1's. The next subset in the chain is formed by adding the element
X; to P wherei is the rightmost (i.e maximal) free 0 i8(P). i is

now a free 1 ing(P [ {x;}) so the total number of free positions is



Bounds for almost all monotone functions 129

unchanged.

v) Using (iv) it need only be shown that(P; [] (P; - P,)) contains
2 fewer free positions thag(P,). From (ii)

P, =P, [l {xj} ; P3=P; H {x;, x;}
for somex;, x; O P,. Thus
P, [l (Ps—Py) =P, [ {x;}

Both i and ] must be free ing(P,), for all 1<r <3. Sincei is a

free 1 in B(P,) so from Fact(3.1)(i) there are no freesO& j >i.

Thusi > j. Additionally sincej is a free 1 inB(P3) there are no
free 05 k such thatj <k <i. It follows that the substring between
positions j+1 and i -1 in B(P;) must be well-formed, for from
Fact(3.1)(ii) there are no free d’k, such thatj+1<k<i-1. Nowv

(v) follows easily since (i) is a tound pair in 8(P; [ {Xxj}), thus
this contains precisely 2 fewer free positions as required.

vi) With (iv) it is sufficient to she that the number of binary ads
of lengthn containingn —2r free 15 and no free (& is actly:

mO_0On Q0
GO0 O -10

Any such word hasn-r 1's end r 0’s. The total number of avds

with this may 0's and 1's is doviously Epg Howeve this includes

words with fewer tharr bound pairs. LetB denote the set of avds
with n—r 1's, r 0's and at mostr —1 bound pairs. W <hall shav
Oon 0O
0 - 10
from B to the set of wrds containing xactly n—-r+1 0s andr -1

that the size oB is exactly by exhibiting a bijectve mapping

1's. Subtracting this total frorﬁ'%prw&s the desired bound.
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We daim that ay w=w;w,---w, with n—-r 1I's andr O’s is
in B if and only if there exists somesuch that the subovd w; - - - w;
contains more @ than 15.

The "if* part is easily erified since the first at which this con-
dition holds must be a free 0 and hemnehas fewer tharr bound
pairs. D establish "only if" consider someaosd w in B. w must con-
tain a free 0 since it has 0's kut no more tharr —1 bound pairs.
Let i be the lowest inded free 0. w;---wi_; is well-formed, from
Fact(3.1)(ii) and the choice af and so contains equal numbers of 1’
and 0’s, thusw; - - -w; contains precisely one more 0 thas.1’

From the previous paragraph it is easy to check the correctness
of the following procedure which maps words B to words with
n-r+10sandr-11s, and vice-\ersa.

Input: w in B (resp.z containingn—-r +1 0s andr —1 1s)
Output: z containingn—r +1 0s andr -1 I's (resp.w in B)
1) Findlowest indeed j such thatw; - - -w;
(resp.z; ---z;) has more & than 15.
2) Complementhe subwrd wj,; - - - W,
(resp.zjy - - Zp).
i.e Change ¥ to Os, Os to 1's

This completes the proof of (vi) anddi(3.2). O
Theoem 3.2:(Hansel, 1966)y(n) < 3"

Proof: Consider the partition of*2 into E,, chains:
{Ci, G,y C }

given in Fact(3.2). Let these be ordered by length so B4K||Ci.4],
01<i<E,. The ordering of chains of the same length is not impor
tant. Let the subsets of, in thei’th chain be denoted by:
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{P{, PE,... P}
where these are ordered by containment.

The upper bound is pved in two dages. In the first we sho
that ay f OM,, may be encoded by B, ternary digitcode,

tyty -+t -+~ tg, 0{0, 1,3

In the second part it is pred that distinct functions map tdifferent
codes.

Obsenre that ary function, f [O0M, takes at most one monom
from each chain as a prime implicant, since the chains are ordered by
containment. W can thus encode gnmonotone Boolean function
over X,, by indicating which (if any) monom in each chain is a prime
implicant of f. We dall prove by induction on the length of chains
set so &r, that there are at most 3 choices for thé chain: namely
no monom inC; is a prime implicant off (X,) or Pij is or Pij+l IS.
(These possibilities will correspond t©=0, 2, 1 respectirely in the
generated code). Theek factor is that the xact positionj within the
i'th chain does not need to be encoded; it can be deduced from the
encoding of the pxeous i —1 chains. Note that from det(3.2)(vi)
there are nowen length chains i is even; no odd length chains if
is odd. It is clear that for each chain of length there are at most 3
choices as indicated am® So he inductve lase is established. Wo
assume that for all chains of lengten-2r-1 (for some
0<r <[0n/2 Othere hae keen at most 3 choices for each chaire W
shav that the same holds for each chain of length2r + 1, namely
that all but tvo monoms are predetermined as non-implicants or as
(non-prime) implicants. Consider yarchain, C,, of lengthn-2r +1
and assume that ahd t (1{0, 1,2 has been assigned for each chain
of length at mosnh - 2r — 1. Obviously as soon as one mondgf, is
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selected as a prime implicant this precludeg monom O PX in the
same chain being chosen. Waonsider ag consecutie fquence of
subsets P/, P/**, P in C. From Fact(3.2)(v) the set
P} [0 (P/**- Py is in a dain of lengthn —2r -1 and so the corre-
sponding monomg say is dther not an implicant, in whichvent the
monom defined byP! is not an implicant (a®! 0 Q), or g is an
implicant, in which case the monoms defined By O k> j+2 ae
also implicants sinc&) [ Pij+2. The latter case leas anly 2 unchar
acterised subsets, nameﬂ%), Pij+1. By considering eachj from 1 up
to n-2r+1 in this way, eventually at most 2 non-determined
monoms remain. This completes the proof of the Indedtypothesis.

It remains to she that distinct functions ge lise to diferent
codes. Letf and g be distinct functions irM,. Since f ¥ g we hae
PI(f) £ PI(g). For each 1<i<E, let:

p=PI(f)n G ; g =Pl(g) n G
Let C; be the lowest inded chain for whichp; # g;.

Ci :{rl, I‘2,...,I’j_2,l‘j_l,l’j = pi,rj+1,rj+2,...}

Since p; is a prime implicant off, but not of g and since the pwe
ousi—1 chains hae bkeen encoded identically fof and g (by the
choice of i) it follows thatr, is not an implicant off or g,
01 <k < j—3. We dstinguish 3 cases.

Case 1:r; is determined as an implicant of both and g, using
Fect(3.2)(v) as in the first part of the proof. Then simge= p; is a
prime implicant of f, neitherr;_; or r;_, is an implicant off, thust;
must be 0 forf. Howeve one of these must be a prime implicant of
g, hencet; is 1 or 2 forg.
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Case 2:rj,, is determined as an implicant of bothand g, as tefore.
Using the same reasoning as Casei{ljnust equal 1 forf, but O or
2 for g.

Case 3:rj,, is determined as an implicant of bothand g. Note that
this alvays holds since

R OR; 1 (Rjsz = Rjsy)
Again t; must equal 2 forf, but O or 1 forg.

Thus in all 3 possibilities the code digtf, assigned forC; is
different for f and g and this completes the proof of the second
stage.

Now Theorem(3.2) follows easilySince e&ery function in M, is
specified by some-digit ternary sequencg and there are exactly"3
such sequences, weveay(n) < 3" as claimedo

Corollary 3.1 There exists a surjeca mapping
CODE:{0,1,35 - M, O

So gven any E, digit ternary code we can find a unique
input monotone Boolean function associated with it and furthermore
ewery such function is associated with some such co8elov we
give a pocedure which realises a surjgetimapping from{0, 1, 35
onto M,. This determines the value df over each chain, using the
values of f which hare dready been determined and the ternary digit
t;. In order to test if the value off(,B(Pij)) is predetermined we
emplo/ two predicates: O-ogered takes a subseé® of X,, and the
index, i, of some chain as parameters and is true if and onB [if Q
and f(8(Q)) has already been fixed to 0. Thus:

0-CoveredP,i) (0 (POQDO kml C. and f(5(Q)) = 0)
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Similarly a subsetP is 1-covering if and only if P is a superset of
some subse® such thatf (B(Q)) has already been fixed to 1.

1- CoveringP,i) (0 (POQ O kml C. and f(B(Q) = 1)

A procedureSet Poin(i, j) is used.

proc Set Point(Chain i, Chain elementj)
if 0— CoveredP},i — 1) then

f(B(P)) :=0
elif 1—Co_veriani‘,i - 1) then
f(B(P)) =1

dse f(B(P)) := Ot,/2 Ofi
if 0— CoveredP/**,i - 1) then
f(B(PI™) =1
dif 1 - CoveringdP/**,i - 1) then
f(B(PI™) =1
dse f(B(P/™) := Ot,/2 Dfi
corp
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Input: tit,- -t 040, 1,35
Output: (0,0,...,0)...,f(3,1,...,1)

the truth-table of somé M,

for each chairC; i =1,2,..,ndo
if |Ci|=1 then

f(B(PH) :=0/2 0
fi

if |C|=2 then

Set Poin(i, 1)
fi

if |C/| = 3 then

(A)

fi
od

ji=1

if 0— coveredP],i - 1) then
f(B(P)) :=0; j:=j+1

elif 1 - coveringP/,i — 1) then
F(BPE) =1 for k=], j+1,...,i
=i

dse {assert f(a(P! O (P/?-P/"™) =1}
F(BPN) :=1for k=j+2,j+3,...,i,
Set Poin(i, j)
ji=i

fi

if j =i, —1then
Set Poini, i, — 1)
ji=hy

fi

goto (A) if j i,

135
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We leave it to the reader to erify the correctness of this proce-
dure.

The fact that such an encoding of all functionsMp exists and
can be easily applied turns out to be of greaue in constructing
efficient combinationalnetworks for aly monotone Boolean function.
We dall only briefly outline hw this may be done using Hansel’
procedure abee. For a fuller description the reader should consult
Pippenger (1978). The technique applied \@srifrom the ideas of
Lupanos (1961b, 1965b) and is known as "The Principle of Local
Coding".

Consider ay class H,, [0 B, of Boolean functions, with the
property that for all functiondh OOH, evey subfunction ofh is in
T;i H;. The classM, is a particular xample. V¢ have seen earlier
i
how a lower bound onH,| may be used to obtain lower bounds on
the combinational compléy of almost all functions inH,. The local
coding principle is a method of deng, under suitable conditions,
upper bounds on the combinational complexity ofy afunction
h[OH,. Suppose that for each, there exists a surjeeg@ mapping
from {0, 3P ~ H, so that eery function in H, can be associated
with a distinct p-digit binary codword C, ---C,. Of course the pre-
cise value ofp will depend onn, to keep the notation as simple as
possible we shall not makthis explicit unless required. If these con-
ditions are all met then we can empla retwork of the form in Fig-
ure(3.1) to compute gnhOH,. This network consists of 3 parts
which fulfill the following functions. The inputsX,,, are partitioned
into two sets{X;,..., Xy} and{Xms1 ,...,X%}. Any aubfunction of h
induced by an assignment {&.; ,...,X,} belongs toH,, and thus
can be associated with some uniqueligit binary codeord. The net-
work N" of Fig(3.1) outputs the binary coderd C,---C,
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Figure3.1

corresponding to the subfunction lofarising from a gien assignment
t0 < X1 - X, >. Note that this netark just computes some set of
functions in B,_,,. The codword produced is fed as input to the
second stagd). This is a decoding netwk, having p inputs and 2
outputs, these outputs being the truth-table of the functiorH in
encoded byC, ---C,. The final stageN’, is a ®lector netwrk: the
output of U which corresponds to the assignment{y }™ given to
X; -+ Xy IS chosen byN' and returned as the result of Upper
bounds on the combinational complexity &f and N” may be
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obtained (relatiely) easily The problem in applying the construction
in general is that of finding an efficient encoding scheme and decod-
ing network.9

The following lemmas ge wper bounds on the combinational
compleity of N' and N"'.

Lemma 3.1:0 n there e&ists ann+ 2" input, single output netwrk
which computes the alue of h from the truth-table ofh and X,
which network contain©(2") gates.

Proof: See Lupane (1965b), Lemma(2.2), (p.42)1

Lemma 3.2:Let C(B, ) denote the maximal combinational comple
ity of ary n-input, m-output function inB,, .. If 3loglogm< n + O(1)
then,

m2" °0 doglog[m2"] OO

C(B <———e
(Bom) n+logm P~ n+logm 0O

Proof: See Lupane (1965b), Theorem(D.13), (p.109)

Hansels result shows that gnf 0OM, can be encoded by a
binary codevord of length p(n) = (log 3) E,, [ Using Hanse§ proce-
dure abwe, an dficient decoding network can beiilb.

Lemma 3.3:Let U, be a minimal combinational network which pro-
duces the truth-table of a function My, from its p(n)-digit codevord.

C(U,) = O(En(logEy,)")

wherer is some constant.

d) The un¥ersal construction for symmetric functions/gi in Chapter(2) is a particu-
larly simple application of this principle in which the Decoder and Selector are col-
lapsed into a single network. The caaed consists of(Jlog (n + 1) Odigits being the
binary representation of the number of i the assignment t¥,,. The Decode/Select
stage then just returns the result using the function spectrum.
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Proof: A detailed construction is gen in Pppenger (1978).0

Theoem 3.3:(Hansel, 1966)1 f O0M,, O ¢ >0 and sufficiently lage
n:

—12 (1+6)2"
c(f) < (Iog3)-\/— ( ;;2)

m

Proof: We gply the principle of local coding and the results of the
three preceding lemmas. Let the inpuds, be divided into
{X1,..., Xm} and {Xm1 ,...,%,} and computef using the scheme of
Figure(3.1) and the decoding nernk U whose existence is estab-
lished by Lemma(3.3).We ten hae:

N"” is a network withn—m inputs and(log 3)E,, O outputs.
For suitable choice oim, its complexity will be:
O(log 3)E,,, 02"™
n—-m+ log (J(log 3)E,, O

U is a network withC(log 3)E,, Jinputs and 2 outputs. From
Lemma(3.3) its complexity is:

O(En(log Ern)')
N’ is a network withm+ 2™ inputs and a single output. It has
complexity O(2™).
m must be chosen so that:
3loglog (O(log 3)E,, J<n—-m+ O(1)

Choosingm=n - clogn for some constant depending orr ensures
this. It may nwv be asily verified that the complgy of N” is the
dominating term, and that with the choicerofthis yields:
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2 (1+¢)2"
T nde

C(f) < (log 3)?/

for all £ >0 and n large enough.o

Pippenger (1976, 1978) and independently UgoWiK1976),

=12 (1-¢)2"
prove that the lower bound\/— &

combinational complaty, by dbtaining bounds of:

is the best possible for

12 2" _
C(M,) -\/7—1 P (Ugolnikov, 1976)

=12 2" dognOd .
C(M,) = -\/7—7 P SH ODTDD (Pippengerl976, 1978)
The latter result also utilises the principle of local coding in conjunc-
tion with the construction of Kleitman and Mauksky (1974).

A more natural question for monotone computation concerns the
monotone network complexity of monotone Boolean functions.
Namely to determine upper and lower bounds on
C"(M,) =max{f OM,:C"(f)}. A lower bound is again easily
obtained from Shannam’methods. Red’kin (1979) gés a o©nstruc-

. . : . . "logn
tion which asymptotically matches this, improving the earﬁerilg%

bound of Pippenger (1976). This again reliesvitgaon the partition
of 2% into E, connected, symmetric chains described &atf3.2).

Theoem 3.4:(Red’kin 1979) f O M,

_ 02O
C"(f) = OEWD



Upper bounds on monotone network size 141

Before proving this theorem we need some preliminary resultsX et
be partitioned into to ts Y and Z of sizesn; and n,. Further for
ary set of Boolean ariables,W, let Ny, denote the set of chains con-
stituting the partition of ¥ discussed in &ct(3.2).

Given f OM, and chainsQ, OTy, R O, haing length k
and| respectiely, we dcefine the functionfy, g (Y,Z) by,

O f(mo) if rOQcando OR

fo, x , = .
xR (7,0) BO otherwise

In this 7 0{0, 3™ and 7 0 Q, is a shorthand foB () OQ,, and
similarly for o 0{0, 3. g is the mapping from monoms/& Y to
binary words described aftera€i(3.1). D avoid confusion when dis-
tinguishing different sets of variables subsequently we will yi$&V )
to denote the monomver W corresponding to the binaryond p. i.e
W) = 0w
V(W) wOgY(p)
In general this function will not be monotone wser we can

define a monotone "approximation” to it which will be fwignt for
Thm(3.4).

Thus, {3 «g (Y,Z) is given by:

[ VoY) yo(Z
{(m,0) OQxR : foxgr (7o) =1} (Y)ye(2)

o on 0
(pO Ch-10
there are »actly h(n, p) chains of lengthn—2p+1 in My . Clearly
for ary f OM, we hae,

Now for O< p<[n/20let h(n, p) = and recall that
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_ y20h(ng,p) Onaf200(ng,0)
f(Y,z) = Eo Iﬁl q@o ]ﬁl frai(Y.2) (3.1)
where f; (Y, Z) is
+
Qi thy2mepi X Ry, myezoqi ( Y, Z ) (3.2)

Qi being thei'th chain of lengthr under some ordering.

The expansion defined by (3.1) and (3.2) is central to Red’kin’
upper bound construction. Before presenting this we require one pre-
liminary result.

Fact 3.3: Let Q, OOy, R OM;, be chains of lengthk and | as
before. Then

1{ fauxr : f OMq}]

IN

{foxr - T OMp}|

_ [K+IO
T Ok O

Proof: The first inequality is immediate from the definitions fgf and
f.. For the second obsesvthat we can represenfy g as akxl
Boolean matrix,M, in which M, ; is the value off(7,o;); 7 being
the i'th dement of the ordered chai@,, o; the j'th dement of the
ordered chairR,. It follows that it is sufcient to count the number of
pairwise distinct matricesM, which are consistent withf being
monotone.

Since,

Qk =<m,m,..., 7>
R = <04,05,...,00>
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with . (Y) <y, (Y), y,,j+1(Z) < yo.j(Z) for each ki <k, 1<j <,
it follows

f(m,0)) =1 0 f(fus0p) =1

for each walid s=0, t=0. So in counting the number of distinct
appropriate matrices we kwothat for each w i, if M;; =1 then the
values of M, j,; are predetermined to be 1 alsoe\tAn nav proceed
with an inductve agument. The result is obvious fér=1 so asume
it holds for all \alues< k-1 and all | and consider the number of
valid kx| matrices. By the induate hypothesis, there arexactly
g(;_lilgvalid matrices in which the first vois entirely 0. Similarly

: k-1+j-10Q
for each 1< j <| there are xactly 0 k-1 O
the first j —1 entries of the first @ are 0's and the remainder §.
Since there are no other consistent assignments to the fivstveo
have that the total number ofalid k x| matrices is xactly

matrices in which

2 k-1 -10
ad k-1 O
. : . k+10 :

and an easy induction dre 1 shows this to beD | 1as claimed.o
Proof of Theorem 3.4Let f OM, and partitionX, into 3 disjoint
sets of ariablessW =<X;,...,Xpoom>1 Y = <Xpoms1y - - - » Xnem > and
Z =<Xpm1:---. %> Wherem will be fixed subsequentlySince f is
monotone it is clear that

f(W,Y,Z) = 0O y,W)fW=a(y,z) (3.3)

a Ofo,3"~2m
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Using r to denotelim/2[1(3.1) and (3.3) shw that f(W,Y,Z)

IS
h(m. p) h(m.q) ,+
p=0 i=Dl q:OaD El y“(W)fp,i,q,j (¥.2) (3.4)
Hence,
m r hmp) o
Ch(f) = 2 % 2 C™(fpiq(W.Y.2)) (3.5)
P= 1= g=

fpiq being the inner ter [ levels of (3.4). V& goup the chains of
lengthm-2q+1 into blocks of size at mos{(p, q). s(p,q) is chosen
so that

2m-p-a+ 0" _ oy 2(m-p-q+ it

0 m-2g+1 O 0 m-2q+1 O (3.6)

Now for n =8 and m = [{n - 2)/60it holds,

< @(m—|o—q+1)mS on-3m
0 m-2qg+1 O

From the first inequality and (3.6) we deduce thgh, q) < n-3m.

From (3.6) and the fact thatg:gs 2" it follows that

n-3m

s(p, q) > 2(m—p—q+1)_1' In total
n-3m
2(m—p—q+1)_1 < s(p,g) £ n-3m (3.7)

So, realising (3.5) by grouping chains of length-2g+ 1 into
sets of sizes(p, q) gives fy; (W,Y,Z) as
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Ch(mg S(pq)D
OyaW) Y (Y, 2) (3.8)
where
a _ min{s(p,q)t, h(m,q)} fa+
fplqt - j= s(p;%t -1)+1 p|q1 (Y Z)
Hence,
m th(m,g)/s(p.g) O —
C (fp,i,q) < t:Zl C (fp,i,q,t) (39)
where
.I:+

p.i, gt = aDya(W) fg,i,q,t(Y’Z)

We @n nav describe a 4 part monotone netk, S, realising
f;,qt for fixed p, i, q andt. S consists of sub-newwvks S, S,, S;
andS,. S, has inputsW and realises all the monomseo W, i.e the
functionsy, (W) for eacha. Using then —2m-ordered neterk U,_,,
in which instances ok; are replaced by the constant function 1, this
can be accomplished in at most%?' [-gates.

The netvork S, has inputsY [ ] Z and realises all of the func-
tions fg,qt Each of these is the disjunction of at maép, q) func-
tions of the form,

f&" (3.10)

Qi m-2p+1 X Rjm-2q¢1

For fixed i, p, j, g and the number of distinct functionyeo
Y []Z of the form of (3.10) is, from Fact(3.3), at most

g(m’ p’ q) | |:| { QI m-2p+1 X RJ m-2q+1 } |
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. 2m-p-q+1)O
~Om-p-q+1 0
So the number of distinct functionf; ., for fixed p, i, g, and t is
at mostg(m, p, q)%P% which from (3.6) does not exceed "

Each of the functions from (3.10) has by definition at most
(m+1)? prime implicants, each prime implicant containing at most

2m variables. Hence a singlég; ., can be realised irs(m+1)*2m

gaes, and all of them in at most 2" s(m+ 1)’ 2m gates.

S; conjoins each output db, to its appropriate output frors,
and thus has at mosf™2" gaes. FinallyS, Os together all the out-
puts ofS,, adding a further 2™ gaes.

In total we hae,
C™(fpiqr) S €1272"+ 2" s(m+1)*2m
which is< ¢, 2"?™ for some constant,, given that m = O(n - 2)/6 0
Combining this with our previous expansions it follows that,

th(m,q)/s(p,q) O

r m, r
C'f)s ¥ ¥ ¥ X c2rm
p=0 i=1 ¢g=0 t=1
om < "QP O h(m, p) O
< ¢, 2"mm +1
2272 2 2 - 3m2m-p-g+1) 0
2n—2m r h(mp) r
< G 2 2 2 (2m=-p-qg+1)h(mqg)+m)
p=0 i= q=0

It is relatvely straightforward to she that,
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S (Mm-2i + 2)h(m,i) = 2"+ E,,
=

and consequently

2n—2m r h(m,p)
2 2 ((M=-2p+2)Ey+2"+n7)

C™(f) € c3
N p=0 i=1

2n—2m r

2 ((m=2p+2)h(m, p) E, +2"Ep,)
p=0

N

Cy

n-2m

Cs

— ((2"+Ep) En +2"Ep)

2n
n3/2

N

Cs

from the choice oim. This proses Theorem(3.4).0

We @nclude this section by presenting a very slight
improvement to the complexity hierarghfor monotone netark size.
This dvides the upper rangd C™(M,_;), C"(M,)) into two parts:

[ C™(M,.), C™(P3)) and [C™(P3), C™(M,) ). The class of monotone
Boolean functionsP; was onsidered by Krshune (1981). Its pre-
cise definition is not important, the only property of it that we require
¥

For s O{0On/2 [J On/2 3:

If nis even and f O P; then all prime implicants of contain
n
5"

If nis odd andf OP; then all prime implicants off contain
betweens—-1 and s+ 2 variables.

n )
between 1 and > + 2 variables
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Fact 3.4: (Korshunw, 1981) Let M, =P" if n is een and
M = PUV2O[] pin2Uf njs odd. Almost allf OM, are inM. O

Fact 3.5:If f OM,, such thatC™(f) >C"(M,.;) then f has a prime

implicant, which contains at most— [] Ovariables.

log, n
Proof: This is an easy countinggument. O

With these tw facts the hierargh result belw, improving
Thm(2.12), for monotone bases, is immediate.

Theoem 3.5;

n
Cion(r) < DE +2 forC"(M,,) <r <C™(P})

n

O f MPHY<r <C™M
og,n 0 forc(PH =T <Cn(My)

C{DYD}(r) <n-0

3.2) Replacement Rules

One reason for theailure of inductve methods to deve super-
linear lower bounds on combinational network size lies in doe that
such methods la made little use of the structure of optimal net-
works. For the unrestricted case information about the form of mini-
mal networks appears to be very difficult to obtain. In contrastyman
inductive proofs concerned with the complexity of monotone computa-
tion rely on aguments which assert that optimal monotone osktsy
realising f 0OM,, do rot contain @tes computing certain functions.
Such aguments utilise a powerful technique callegplacement rules,
which was independently proposed by Paterson (1975) and (Mehlhorn
and Galil, 1976).
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Definition 3.2:A replacement ruldor f [OM,, is a rule of the form:

In ary monotone netwrk S computing f, any node u, for
which requ) =g may be replaced by a nodew for which
re{w) = h and the resulting monotone netk will still com-
pute f. e

Here "replaced" means that the nodeis deleted fromsS,
together with ayp wires <v,u> or <u,r >; then the nodev is added
to S—u and wires <w,r > for all r such that <u,r > was a wire in

S. We dall say that § is h-replaceable with respect tb", denoting
f

this by g ==1h. It is important to note that replacements areverni

sally walid in the sense thag may be replaced b in all monotone
networks realisingf .

How can this idea be useful in determining the structure of opti-

mal monotone networks? Suppose that for sdniéM,, we knav that
f f f

g =10, org =11 or g ==F1x;. Then no optimal monotone net-

work realising f can contain a gate whose resultgisfor ary such

gae can be eliminated and replaced by a constant function or an input
X;. For suitablef and g determination of such rules may alignif-

icant properties of optimal networks to be inferred. For examalerP

son (1975) considers the monotone complexity of Boolean matrix
product, BMP(X;,n, Ynn): {0, 32" ~ {0, 3" where each outpu¢; is
defined by

Cj = k@1 ( Xk Oy )

By shawing that certain functions can be replaced by 1, it is deduced
that there is onélgate for eery prime implicant of eacl;. It fol-
lows thatC™(BMP) = n® since this number dfl-gates is required.
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In this section we »amine general replacement rules. Firso tw
results gving necessary and sufficient conditions for a functions to be
replaceable by a constant functions arev@io These originated in
(Mehlhorn and Galil, 1976). In the remainder of this section we
briefly suney ssme characterisation results of (Dunne, 1984a,c) which
yield closed form expressions describing all valid replacement rules.

Definition 3.3:Let p be a monom and a dause defined wer subsets
of X,. The monotone Boolean functiong(p) and ¢(c) are defined

by:

= O
x(®) {xi OX, - var(p)}

¢lc) = N X .

{x; OX, - var(c)}

Lemma 3.4:

i) (Mehlhornand Galil, 1976)
f

g =410 O pOPI(g) -Om s.t pmOPI(f)

f
i) g =410 f<gOhO f<h
f
i) (Dunne,1984a,c) g ==410 [0 0<g< Dgl(f))((p)
p
Proof:
i) Since
f f f
g, ==4l0and ¢ ==410 0 g, 0g, =10

it is sufficient to pree () for g being a single monomp say So



Replacement rules 151

f
suppose p =210 hut that there exists a monomm for which

pmOPI(f). Thus
f = pmO []
g OPI(f) = pm

f

[ g¥ f. This contradictsp ===10 and so no suchm can
q OPI(f) = pm

exist. On the other hand, suppose that there doesxmitaay monom
m such thatpmOPI(f). Let S be ary monotone network realisind
at some node¢ and letu be a node inS for which requ)=p. Con-
sider aly path fromu to t; this may be rgaded as computing some
function R of p and X,;;

R(p, X, = pROR, < f

since S realisesf. It follows thatp R, < f but PI(p R) n PI(f)={}
and so replacing the nodeby 0 cannot déct the computation of
att.

f
i) 0 Supposeg ==F10 and that f <gh for someh. We wish to

f
shav that f<h. Snce f<gUOh, so f=(glh)f. But g =10

hencef =h f thus f <h.

0 As in (i) let S be a monotone network realisinig at t and con-
taining a nodeu with result g. Consider the function ofjy and X,
computed on some path fromto t, i.e g h, Oh,. Since S computes
f, we have

f<gh Ohy, = (gUhy)(hy Ohy)

<gOh, O f<h,
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So replacingu by 0 does not affect the computation bfby S, i.e
f

g =—10.

f
iii) 0 Suppose thag ==F10. From (i) for all prime implicantsg, of
g there does not exist ywmm for which gm OPI(f). Thus for gery
prime implicant,p, of f

p£qg0 Ox Ovar(q) - var(p)

0 g< x(p)

SoqQ< . Dgl(f) x(p) for every g OPI(Q)

0 Suppose that @g< Dgl(f) x(p). Considerany q[PI(g) and
P

any pOPI(f). By the choice ofg, g< x(p) thus p£q and so there

does not eist ary monom m for which g m= p. Since p and q were
f

chosen arbitrarilyit follows from (i) thatg ==10. O

Lemma 3.5:

f
) g =1 @

0 cOPC(g) - Os auch thatc Os O PC(f)

f
i) g==0100 gOhs<f O hsf

f

== < <
i) g =411 [ CDFQC“) plc) <g<s1l

Proof: Duality. O
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The net theorem completely characterises all valid replacement
rules in monotone Boolean nedvks.

Definition 3.4:Let M ={m,,...,m} be a set of monoms, and lét
be a monotone Boolean function. TReime-Implicant Extensiorof
M with respect tof (IE;(M)) is defined as,

IEs(M) = {p OPI(f)|Om; OM with p<m }

The Prime-Clause Extensioof a set of clause={c;,...,C}
with respect tof (CE;(C)) is gven by,

CE/(C) = {pOPC(f)|Uc; OCwthcg<p}

In addition let,

A(f, []
(1.9 m O 1E;( PI(g))

B(f, []
(f.9) ¢ OCE{(PC(g))

Note: Cowentionally the empty monom ( clause ) is 1 ( 0).

Plien(f, 9) = PI(F)-1E(PI(9) )

PC.em(f, ) = PC(f)-CE{( PC(9) )

E(f,g) = mDPIEn(f,g)X(m)
D(f.9)= cDPCEm(f,g)(o(C) )

f
Theoem 3.6:g ===1h [1]
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R1) A(f,g) < h < B(f,0)
R2) D(f,h) < g < E(f,h)
Proof:

R1) O is obvious.
O Since A(f,g) = B(f, §) we have
A(f,g)<h<B(f,g) M A(f,§<h<B(f, g

Thus to pree O it is suficient to shav that A(f,g) < h and then
h<B(f,g) follows by duality Suppose the contrary and that

A(f,g) £ h. There eists somep OPI(A(f,g)) such thatp<h. It
f

will be shown that this contradictg ==f1h. By the definition of
A(f,g) we have p<g and p is a prime implicant off, so as m
Lemma(3.4)(i),

r= pquDPEf)-pq

bu f +ph0 [ q.

q OPI(f)-p

R2)0 Again since E(f,h) = D(f, ﬁ) it suffices to pree that
f
g ==3lh O g<E(f,h), for thenD(f, h) < g follows by duality Sup-

pose thatg £ E(f,h), so that there is some OPI(g) for which
p £ E(f,h). ThusE(f,h) < x(p) and from the definition oE there is
somer [P, (f,h) such that

E(f.h) < x(r) < x(p)
sor < p. Now r is a prime implicant off so

r= ar DqIZIF’ID(f)—r 9
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but
f+hr0 [ ¢
q

gPI(f)-r
f
sincer 0PI, o, (f,h) and this contradictyg ==F1h.

O Clearly

f
IE(g) O IE,(h) O CE,(g) JCE«(h) O g ==1h

So it is sufficient to pnee that

g< E(f,h) O 1E(g) OI1E(h)
D(f,h)<g O CE(g) O CE((h)

The latter following, by dualityfrom the former Suppose, then, that
g<E(f,h) but IE{(g)DIE{(h). In this case there exists some
p OI1Eq(g) such that p I1E¢(h), thus p OPl,g,(f,h). Now px x(p)
hence

P O = E(f,h)

g OPlrem(f,h)

This contradiction pnees 1E¢(g) O 1E¢(h). O

3.3) The Monotone Complexity of Sets of Functions

Replacement rules in combination with indueticate elimina-
tion provides a technique sufficiently powerful to obtain superlifear
lower bounds on the monotone conxile of several multiple output
functions. Theform such arguments tek wnsists of identifying
classes of functions which may be replaced by constants, and

e) i.ew(n + m) for functions inM, .
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therefore cannot occur as intermediate results in minimal onkesw

For suitable classes the means by which optimal networks realise the
output functions will be serely constrained. In this way the kmb

edge of the structure of minimal netks may permit mangates to

be eliminated in the induee gep.

In this section the approach describedvab@ illustrated with
three examples: The results oft€rson (1975) concerning the mono-
tone complexity of [, (}-Boolean matrix product; the wer bound of
Weiss (1983) on the number d&fgates required to compute Boolean
Corvolution; and the result of Mehlhorn (1979), which ye® lower
bounds for realising certain sets of Boolean sums.

The following notion is used in some proofs belo

Definition 3.5:Let I be some predicate defined on the gates gf an
monotone netark. For an arbitrary monotone Boolean netl, S,
Init(S, M) is the set of gtes,u of S, such thatl(u) =1 but for all
ancestorsy of u, MN(v) =0. Informally we sall say thatu is a first
gae in S satisfyingll.

Similarly Final(S,I) is the set of gtesu in S, such that
M(u) =1 but for all descendants; of u, IM(v) =0. In this casey is a
last gae in S satisfyingll.

Let X, x and Xy ; be disjoint sets olK and KJ Boolean ri-
ables encoding the entries of awBoolean matrices ] and [yy]
respectiely. BMP(X, «, Xk ;) is the IKJ-output monotone Boolean
function, having outputéz; | 1<i <1, 1< j<J} given by:

Z = ké Xik Y

Lemma 3.6(Paterson, 197501i £ p, j £ q,
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BMP

Ul) x,0x, ====11
BMP

U2) yy; 0y =411
BMP

U3) Xi1 ] ylj =———f1]1

Proof: We gply Lemma(3.5)(ii) for each case. It should beviobs
that for all monotone functiong,

BMP Zj
g==—-11 [0 0O1<i<l,1<j<J g==-H11

Ul) Supposehat for some monotone functioh, and somer, s we
have g = (x; Oxp) Oh < z,. Sincei F p it must be the case that
i¥r or p¥r. Without loss of generality assume the form&he
function z, does not depend om;;, thus (zs)™ ! = z.. How-
eva g =1 = h and soh < z as claimed.

U2) Similarto (Ul)

U3) Supposehat g = (xi; Oyy;) Oh < zs. If i Fr or j ¥sthen the
argument used in (Ul) siides. So it may be assumed thatr and
j=s i.e

g = (Xrl D3/15) Oh < er = k@1 er yks

Thus there is som& (1< k < K) for which g < Xy Yys If kKF1 then
Xk Yks IS independent ofx,, and so as in (Ul) we ta
h< Xy Ves < Zs. If k=1 then,

g = (Xrl Dyls) h < Xr1 yls

Hence,
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g|Xr11:1 = h < Vi | g|y15;:1 = h < X1

and soh = hOh < x4, 0y € Z5. O

Corollary 3.2:
BMP

Ud) X1y OXpyqj === yy;
BMP

US) X1y OXi1yyq === x; O

Theoem 3.7:(Paterson, 1975; Mehlhorn and Galil, 1976)

Any monotone Boolean network realisiMP(X, «, Xk ;) con-
tains at leastJK [Fgates andJ (K —1) [Fgates.

Proof: The theorem is trivial forK = 1. Inductvely assume it holds

for all values <K and letS be an optimal monotone network com-
puting BMP(X, k, Xk ;). SinceS is minimal none of the rules U1-U5
may be applied directly t& to eliminate ap gates.

With each pairij, (1<i<l,1<]j<J) define the predicate
My : S - {0, 1}, over the nodes ofS by:

Mi(u) 0 X,y <reg(u) and x; £ res(u) and y; £ resu)
Init (T, S) is the set of gates gin by Defn(3.5).

Now if the sets Init(M;, S) are disjoint and contain only
[Fgates, then the assignmer} ;=1 01<i <1 eliminates at least
IJ Crgates fromS. This is because for gnu O Init(M;, S) one of its
inputs, v say must hae x;; < reqVv).

Supposeu [ Init(M;, S) and has inputs from nodes and w of
S. If op(u)=0 then it must be the case that, £reqv) and
y1; £ res(w), sinceu satisfieslT;. It follows that x;;y;; £ reg(v), and
Xi1y1; £ res(w) as u is a first gate which satisfield;. But with this
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Xi1y1j  res(v) Oregw) = reg(u), which contradictslT;(u) =1. Thus
op(u) = [

Now suppose thau O Init([;, S) n Init(My,, S), for somep F i
or g j. If vandw are the inputs ofi then either

Xi1 O Xp1 <reg(v) and y,j Oy, < reg(w)
or
Xi1 O Yiq < res(v) and xp; Oy < regw)

In both cases at least one of U1-U3 can be applied and this
contradicts the assumption th@tis optimal. Thus the setit([T;, S)
are disjoint.

We rmow oonsider the number aftgates inS. For eachi, | let
Z; be the predicate defineden the nodes ofS by,

Zij(u) M Xy <srequ)<y,;; 0 kEl Xix and regu) £ y;
It will be shavn that the setdnit(Z;, S) are disjoint and contain only
[Fgates. This will permiiJ [lgates to be eliminated using the assign-

menty;; =0 for all 1< j < J. This is because for gru O Init(Z;, ),
some inputy say of u must satisfyregv) <y;;.

Let u O Init(Z;,S) and supposeop(u) =Ll If v and w are the
inputs ofu then

regv) £ y;; O k'gl Xik
resw) £ y,; O kEl Xik

sinceu O Init(Z;, §). But then
res(u) £ y,; O kg Xik

which contradictsy;; (u). It follows thatu must be ari-gate and
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res(v) <y O klgl Xik
resw) < y,; O kEl Xik

Suppose

udmit(Z;,S) n Init(z

ij o S)

pa
for some {, j)¥(p,q). Usingv and w as before, it must be the case
that

res()  y3; 0(iq 0,0 %)

thus j=q because X, y;j<res(v). As ullInit(Z;,S) we have

rew) £y;; and soXpy; yiq < res(w). Hencex,; y;q<res(v) and thus

Xi1 Y1j O Xqp Y1; S reg(V) < yy;

Now since j=q it follows that i + p and therefore from U5
BMP

reg(v) ====H1y,;. So in simmary this yields,

y1j < res(v) Ures(w) < (yy; Dkgl Xik ) U( 1 Dkgl Xpk )

S Yy D(kgl Xik ) D(El Xpk )

BMP
and nov using Lemma(3.4)(iu =====ly,; contradicting the optimal-
ity of S. This establishes that the sétst(Z;, S) are disjoint.

The theorem nw follows easily No input can satisfyl; or %
forary 1<i<|I, 1< j<J, while each outputz; satisfiesl; and (if
K >1) Z; also. So the setiit(M;,S) and Init(Z;, S) are non-empty
and disjoint. The assignmentxg =1,y;; =0> diminates the > |1J

[tgates in Init(M;,S) and the =1J [kgates in Init(Z;,S). The
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resulting network computes(K —1)J - BMP and so the stated ver
bound on the number df-gates andl}gates follows from the induc-
tive hypothesis.O

Corollary 3.3: Any monotone network realisingkJ — BMP with the
minimal number ofi;-gates andlgates, computes each produgt y,
directly from the input nodes, ang directly from the K products
{Xikyy : 1<sk<sK}

Proof: Exercise. (See @erson, 1975) for solution)a

Corllary 3.4: Let n= N2 Any monotone netark which computes
the {00, (}-matrix product of 2N x N Boolean matrices contains at
leastn®? O-gates and at least’? - n Crgates. O

A special case oBMP is the n-point Boolean Cowvolution. For
this it is conenient to rgad X, as then-tuple <Xy, X; ,..., Xp_1 >
and Y as the n-tuple <Yor Yire-r Yo >
CONV(X,,Y,):{0, 3" =~ {0,13" is the function with outputs
<CyCy,...,C,y > defined by

Ci(Xn, Yyp) = ] Ekgmod " Xi Y
This is thecyclic corvolution; a variant is theshifting corvolution,
SH(X,,,Y,), which has A-1 outputs, <SH,,...,SH,,, > defined
by,

SH, = D Xi Y
i+j=k
The shifting cowolution is a special case of integer multiplication. All

known lower bounds folCONV can be shwen to hold for SH using
essentially identical guments.

CONV has beenxamined by a number of authors. (Pippenger
and \aliant, 1976) and independently Lamagna (1979) obtainedrlo
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bounds ofQ(nlogn) on its monotone compkdty. Blum (1984b) gies

a lower bound ofQ(n*®) on the number of}lgates required.Blum’s
methods are extremely complicated and cannot be presented here. The
best bound attained, to date, is that ofis¥ (1984):Q(n*?) on the
number of(+gates. This is described beloThe structure of optimal
monotone networks realisinBMP motivates the folleving

Conjectue 31: Any monotone network realisin€ ONV contains at
leastn? C-gates and at least® — n [-gates. e

This, and its weaker forn€™(CONV) = ? Q(n?), remains unre-
solved.

Weiss’ result is based on an gat "information-flow" agu-
ment which identifies a set @n distinct [(;-gates all of which may be
eliminated by fixingx,_; :=0. The inductre agument is applied to
those functionsQUAD(X,,, < Yo - - - Yk >) U M. m Which satisfy:

Al) For every output functionQ; of QUAD and each inputariable,
z, at nost one prime implicant o, depends orz.

A2) O1<i,jsm [QnQz1 M i=]j
A3) O1l<i<m pUOPI(Q) O p=x, ysfor some Kr<n, 1<s<k.

Clearly the sequence aof functions

[ CONV,i (X = {Xnet s -+ o Xoi}s V) ]2

defined by:
O
OCONV(X,,Y,) ifi=n
CONV = - - (3.11)
GCONV.1(Xy = 11 x5, Yo) b =0
0 j=i+l

satisfies (A1-A3). The leer bound of Weiss (1984) is established by
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shaving thatyn [Fgates can be eliminated by the assignment which
renders a monotone network realisi@ONV, into one computing
CONV_;.

Below C{( f) denotes the minimal number éfgates needed
in ary monotone network realising [IM,,.

Theoem 3.8:(Weiss, 1984Y1n=>1
CP(CONV(X,,Y,)) = Q(n*?)

Proof: We wse induction wer i to prove,
0 1<isn  CN(CONV(X, -1 x,, Yp) = i ¥n
j=i

and then from (3.11) this establishes the theorem.

The inductve basei =1 is immediate. Inductiely assume that
the lower bound orCT(CONV,) holds for all values X j<i. LetS
be an optimal monotone network realisil@ONV,; at nodes
<tg, t;,...,t,1 >, so that:

res(tk) — C:k|{xj =0:i+l<j<n-1}

Note that sincei +1=>2 each output function has at least 2 prime
implicants. Consider the inpuk; of S. From the definition of
CONV,,;, it follows that eey output function redt,) for
O<k<n-1 has eactly one prime implicantX; Yy ijmod n Which
depends onx;. Let g; G(S) - {0,1} be a predicate definedves the
gaesG of S by;

op(u) =0, u lies ona path[ x;, ty ]
o(u) (I and
Oj i, h st x;y, <regu)
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As before Init(o,S) are the first [Fgates satisfyingo in S. Thus
u O Init(o, S) if and only if u is the first(}gate on a path fronx; to
an output for whichx; y, <res(u), with jFi. We first shev that
evay path fromx; to an output contains aatg u O Init(o,S). Sup-
pose the contraryso hat there is some path from to an outputt,
which is deoid of gates satisfyingo. Let vq, v, ,...,V, =t be the
gaes on this path. Since ridgate on this path satisfies one of the
following conditions must hold:

Cl) op(vg)=001=<qsr.

C2) If op(vq) =0 then O m OPI(res(vy)) eitherm=x;y; or =p
such thatm p [0 PI(CONV,,).

Now (C1) cannot hold since then settimg=0 rendersred(t,)
equal to 0, which contradicts the definition @DNV.. Thus it may be
assumed that the path under consideration contains Sebgages and
that these must satisfy (C2). Lef be aly [;-gate on this path. I

is fixed to 0, then from (C2) and Lemma(3.4)(i) we véha
CONViyg

res(vg)"=° =£10. It follows that under the partial

assignmentx; : =0 every gate on the pathx to v, =t, becomes O,
since it is either artgate replaceable by 0, or drigate one of
whose inputs is 0. Again this contradicts the definitiorCGINV, and
thus eery path fromx; to an output contains aatg, u, satisfying o,

and so a gate imit(o, S).

From the previous paragraph we can conclude that the assign-
ment x; :=0 dlows every gate in Init(c,S) to be diminated. D
prove te theorem it remains to skothat |nit(c,S)|=vn. Then,
since all these ajes arellgates andCONV. =° = CONV, the lover
bound asserted follows from the indwetihypothesis.
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Suppose tha€ =|Init(c,S)| <¥n. Let u;,...,us be the gtes
in Init(o,S). By the definition ofo for eachu, there exists some
jq T1 and h, for which Xj, Yh, < res(u,). Consider the partial assign-
ment {qu =1, yy:=1:0 1=qgs E}. Under this all the ates u,
take the value 1. The resulting nedvk is therefore independent &f,
since someu, lies on each path fronx; to ary output t,. Consider
the function computed by each outgptunder this assignment. All of
these must be independent gf Before the assignment; y, is a
prime implicant ofreqt,). reqt,) becomes independent of if and
only if it becomes the constant 1 or this prime implicant becoypes
However this would imply thatres(t,) had 2 prime implicants depend-
ing ony, (becausex; is not fixed to 1, so the only way in which this
latter case could arise is fog y,. to be a prime implicant ofes(ty)
with x, being a variable fixed to 1). It folies that all then outputs
whose result depends o must become 1 under this partial assign-
ment. But nw a mntradiction results since no more thBA< n out-
puts can h&e me prime implicant satisfied by theven assignment.
This proves that E = yn and so the theorem is established.

The structure of BMP allows replacement rules to be used
directly to deduce properties of optimal monotone networlksesy
realising certain simple functions cannot occur becausg tne
replaceable by constants or some inpartiable. Hovever applications
in this pure form are notvailable for mary sets of functions. &t
example one could obtain a lower bound @fn®) on the number of

[Fgates required to computeCONV if the replacements
CONV CONV

i+j". As with CONV for mary functions inM,,, we can identify
specific functions which, if replaceable by constants or inputbles,

f) These are not valid, cf Lemma(3.5)(iii)



166 MonotonéNetworks

allow good laver bounds to be pved snce sufficient information
about the form of optimal networks is madealable by their
absence.

In the next result presented this difficulty arises but is circum-
vented by employing a technical device: it is assumed that certain
functions are \ailable as additional inputs, the cost of computing
these is assumed to be 0 as far asvishgrithe required lower bounds
is concerned. Thus certain useful functions areviged for “free".

Let C™ (f) denote the number of 2-inpuf and C-gates required to
compute f OM, by a netwrk in which the inputs are
X, U<g; ...+, gp > for some set of monotone Boolean functigps

g, etc. Olviously C™ (f) < C™(f), so ay lower bound bound o€™

is trivially a lower bound onC™. By providing additional inputs it
becomes possible to empl@a wider variety of replacement rules, for
now no ootimal network can contain gate which computes one of
the functionsg; or a function which is replaceable lgy. The tech-
nigue of preiding functions for free as additional inputs is one which
had preiously been applied in the sphere of algebraic coxitgle
Wegener (1980) is one of the earliest instances of its application to
Boolean networks. This paper pes lower bounds on the size of
monotone networks realising certain sets of Boolean sums.

Definition 3.6: F(X,) =<s,S;,...,8,> UM, is a set of Boolean
sums if each functios; O F satisfies
OpOPI(s) p OX,

For any such <s;,...,s,> we dall useP; to denote the subset of
X, on whichs essentially depends.

For 1<sh<m-1, 0sk<n a st of m Boolean sumsF is
(h,k)-disjointif and only if,
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Ofigyip,...,iny 0{1,2,..,m}
AP | <k .
j=0 !

Neciporuk (1970) pneed that ary set of m (1,1)-disjoint sums,
F, has monotone network compilgy,

C"(F) = g(w—l)

i.e the obvious network using onlylgates is optimal. Neciporuk
defined specific instances iM,, having complaity Q(n%?).
Wegener (1979) generalised this result to arbitrank)-Hisjoint sums.
The result we ne give is from Mehlhorn (1979) and applies toyan
set of f, k)-disjoint sums. Mehlhors’ gopproach employs the method
of providing additional functions, at no cost, as extra inputs. Hye k
ideas behind the proof lie in thact that it would be easy to deter
mine a lower bound on the complexity df, K)-disjoint sumsif it
could be assumed that optimal networks contained ahyjates. In
general this assumption isvalid, since there are sets of Boolean
sums for which minimal size monotone networks contakgates.
Wegener (1979) pneed that optimal monotone networks computing
(1,k)-disjoint sums having all Boolean sums a&f k variables pro-
vided free, do not contain pntgates. Mehlhorn(1979) deelops
this result by proving thatlgates cannot help reduce netWw size
significantly for similar networks computind,k)-disjoint sums. W
employ the following notation.

A k-2 network is a monotone netwk in which all sums con-
taining <k variables are provided as additional inputsLet
Q O{0, [} andF be a set oim (h, k)-disjoint sums,
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Cg* (F) = Size ofa minimal k- X network realisingF over thebasisQ

C3 (F) = Size ofminimal networkrealising F over thebasisQ

Lemma 3.7 (Mehlhorn, 1979) Let~(X,) {0, 3" - {0, 3™ be a set of
m (h, k)-disjoint sums.

i)  CT(F) < max{1,h-1} CI'y(f)
i)  CT"(F) < max{1l,h-1,k-1} C"(f)

Proof: i) Let S be an optimalk —Z network over the basis{[], [}
realising F. S contains d [;gates and ¢ [lgates so that
C™(F)=c+d. It is proved that for each &i <c there is ak-X
network, §, which contains at mostt—i [J;gates and at most
d +(h-1)i Ogates. The inducte hasei =0 easily follows by choos-
ing § =S. Now assume the assertion hold for alllwes <i and let
S be ak-Z network realisingF and containings c—i [-gates and
<d+(h-1)i [Fgates. It may be assumed ti&tcontains at least one
[Fgate otherwise the indugué dep is immediate. Leu be a last
[Fgate inS, and v, w the nodes which supply the inputs wfin this
case;

res(u)(X,)

res(v)(X,) O resw)(X,)

=y Oy, -y, Omg -+ Om,
where y; OX, for each 1< j<p and eachm; is a product of at
least 2 variables fronX,,.

There are tw cases,

Case 1:p<k. The sum_ﬁlyp is available as an input function d§.
J:

The function ﬁl m; is replaceable by 0.It follows that u may be
J:
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eliminated and replaced by an input §f The resulting network is
S.1, and it contains no additional-gates and one Weer [Fgate.

Case 2:p > k. Without loss of generality left, ,...,t,} be the out-
put gates such that there is a path franto t;, for each k j<r.
Then

(7]
I

J- re(t;) = res(u) Ub;

=y, O0--- Oy, Ores(v)rew) O b,

for some functionb; OM,, b; ¥ 1. From this it follows that < h for
p >k andF is (h, k)-disjoint. We daim thatJ 1< j<r

s; =res(v) Ob; or s;=regw) b;
Obviously
s; = res(u) Ob; = (reg(v) UOb;)(res(w) Ob;)

So to pree the claim it is sufficient to shw that regv) <s; or
regw) < s;. Suppose for somg neither of these is true. In this case
there are prime implicants), of reg(v) and r of regw) such that,

|var(gq) n P;| = |var(r)n P;| =0

But thenqgr s, dthough qr <reg(u), soregu) £s;, and this con-
tradiction proes the claim.

We @an nav constructS,;. Replaceu by the constant 0 so that
regt;) :=b; for each 1< j<r <h; this must eliminate at least one
[(Fgate fromS unlessr =1 and req(u) = s, in which cases; = reqVv)
or s; =regw) and the proof is complete. Otherwise, add}-gates
Oi,...,0 to §; the aqte g; haing inputs t; and v if
s;=b; Oregv); t; and w if s; =b; Oregw). S,; still realisesF,
contains one feer [Jgate at at mosh -1 additional [(;-gates. This
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completes the indus dep. The neterk S. contains only[}gates
and has size< max{1, h—-1} C™ (F).

i) The method of (i) is used to ceat a monotone netark, S, con-
taining ¢ [Fgates andd [Fgates to a sequence=S,, S;,..., S, S
containing at most c-i [Fgates and no more than
d + max{h-1,k-1}.i gates. Theonly difference occurs in the
p < k case where the suyy O--- Oy, not being free, must be com-
puted directly usingp — 1 [J-gates. O

Theoem 3.9:For any st of (h, k)-disjoint sums,F,

§ ( D'ikil 0-1)
CE(F) = CT'(F) = =——

Proof: The first inequality is obvious. For the second consider an opti-
mal k —Z network over the basis{[]} realising F, with output @tes
<t;,...,ty,>. Since at mosk variables occur in ansum prosided

. : Pil _.
as a free input, there is a path from at Iéﬁjsl{('—l Oinputs to the out-

put catet;, for each i<m. If uis ary [lgate inS, then from the
the optimality assumption, it follows thaegu) is a sum of at least
k +1 variables and hence there is a path froio no more tharh
output gates. For eaclatg u of S, let 5(u) denote the number of out-
puts t; such that there is a path from to t;. From the preceding
argument clearly

S o(u) £ h.CY'(F)
u 0G(S)

On the other hand the number dtes,v, such that there is a path
P.
from v to t; must be at Ieasﬂ]l—k'| [J- 1 dnce there is a path from at

P.
IeastDl—k'| Oinputs tot;. This gves,
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> oWz 3 (0 o-1)

uiG(S k
proving the theorenm

Corollary 3.5 For any st F of m (h, k)-disjoint Boolean sums,

max{1,h - 1}2 I—kl—l)
C™(F) = =1

h

Mehlhorn (1979) defines arxm@icit set of Boolean sums Wiag
monotone compidty Q(n®3). The set defined uses a result of igmo
(1966) and the fact the Boolean sums may be represented as bipartite
graphs ger disjoint sets{s;,...,Sn and{x,,...,X,} of vertices. In
such graphs there is an edge betweenand s; if and only if
x; OP;. A set of sums is I{,k)-disjoint if and only if the bipartite
graph defined thus does not contalkg,;,-; as a subgraph, i.e the
complete bipartite graph on éwsets of h and k vertices. Bravn
(1966) constructs ann2vertex bipartite graph hang Q(n°°) edges
and withoutK;; as a subgraph. This graph defines a set of (2,2)-dis-
joint Boolean sums having comply Q(n®3).

To conclude this section we outline a method first applied suc-

r]2
cessfully in Végener (1982) to obtain lower bounds of si2 ogng

The paper introduces the conceptvafue functions.

Let F =<f;, fo,..., fn>(X,) OMp,,. Given an @timal
monotone netark, S, realising F suppose that for eachrgate,u of
S, a function V,PI(F) - [0,1] is defined which satisfies;

>  Vup) < 1. Then;
p OPI(F)
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_ 2 Vu(p) = C"(F)
{u:op(uy=0in S p OPI(F)

Thus,

C"F) = % 2 Vu(p)
p OPI(F) {u:op(u)y=0in §

So if for every prime implicant,p, of F it holds that

2 Vu(p) 2 h(n+m)

{u:op(u)y=0in S}
for some functiorh: N - R™ then,

IPI(F)I

C"(F) = hn+m)

Wegener (1982) defines the set of functiofgy, which hae
m MN inputs andM™ outputs. The inputs correspond to the entries of
m M x N Boolean matrices. The outputs,
{Yn,-on, - 1<hy, ..., hy, <M} are gven by,

Yhyhy = Iiﬁl Xyl Xiy1 =+ Ximi
xi'j‘ denoting theij-th entry of thek-th matrix. This set of functions is
known as theDirect Matrix Poduct (mMN - DMP). An output is 1
if and only if all the matrix rws referenced @ a ©ommon 1.
Wegener (1982) combines the techniques ofvgling certain func-
tions for free (specifically all products of fewer thanvariables) and
the use of value functions to pe

NM™
2

The paper defines specific valuesnaf M and N for which

C™(mMN - DMP) >
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Oon® g

UognU

C™(mMMN-DMP) = Q

wheren = max{mMN, M™}.

3.4) Linear Lower Bounds on the Monotone Complexity of Single-
Output Functions

The methods used to obtain lower bounds for function®!in,
have ot proved adaptable to networks realising single output mono-
tone Boolean functions. One reason for this is @t that the tech-
niques used rely to some extent on "informatiomfl@arguments; the
idea that certain properties may be deduced from the knowledge that
several outputs depend on a singleatg cf the lower bound for
Boolean Cowolution and that for sets ofh(k)-disjoint sums. In the
next section some techniques for deriving superpolynomial bounds on
functions inM,, are presented. In this section we describe some earlier
results exhibiting linear lwer bounds. First a lower bound of
2.5n - 5.5 on the monotone complexity df;(X,), for 3<sk<n-2
is proved. We then outline a lver bound of 35n on the monotone
complity of the majority function and present the fower bound
of Tiekenheinrich (1984). @ conclude an upper bound &h for T} is
established, whek is fixed.

In Dunne (1985a) the following result is ped.
C™"Tg)=2.5n-5.5 forn=k and 3<sk<n-2

It is suficient to consider only the cas&k =3, since for
4< k< 0On/20Oit will be clear that the same proof is applicable, and
for On/20< k< n-2, the relationT? =T",,, establishes the result
by duality
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In common with the ver bounds on combinational comxity
presented earliethe method used combines an indeetenalysis of
optimal monotone netwrks with a counting gument. Br the induc-
tive dage only partial assignments which set inputs to 0 are usable.
To prove smilar or lager bounds by setting an input to lowid
require at leastlIn/2 0 gaes to be eliminated. Some preliminary
results are required for the lower bound proof.

Lemma 3.8:Let S be an optimal monotone network computiff at
some nodd. S does not contain gngate g for which:

no<reg(g) O1<ky <k and k=2

Proof: SupposeS contains a gte g such thatTy <reg(g) for somek;

as abge. We d<all shav that S is not optimal. Let S denote the
monotone dual netwk of S. This network computed}_,,,;. Let §

be the dual function ofes(g) computed inS. Clearly G<Thy+1 By
Lemma(3.4)(i) g in S is replaceable by the constant 0. Thus, by
duality, g in Sis replaceable by the constant 1. It follows tBaivas
not optimal.o

Lemma 3.9:There is an optimal monotone nefk S computing T},
such that eery input x; of S which has &n-out equal to 1, enters an
[lgate.

Proof: We show how to restructureS to a netvork S satisfying the
lemma. Letx; be an input ofS having fan-out equal to 1 and enter
ing an [;gate g whose other input is some functidn Obsene that
f<T.. For suppose{x, ,...,Xp_} is a subset o, such that the
monom formed by Fing the \ariables in this set is an implicant of
The partial as.s.ignmenxpj :=1, 01<j<k-1 leares S independent
of x;, but under this assignme®& should compute
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Ik (X, - J@I{xpj})

which depends orx;. This contradiction establishes thatesy prime
implicant of f is an implicant of . Now, since g*t, the output
gae, S can be restructured as folle:

1) Replacegae g in S by the inputx;.
2)  Addone-gate toS with inputs f and the output of

Clearly the ne network contains no more gates th& and
computesTy. If g has only a singl€l+gate as successor then the
steps abee may be repeated.Eventually the fan-out ofx; must
increase orx; must enter arilgate. Asthe fan-out of other inputs is
not affected, this process may be applied repeatedly until the lemma is
true for all inputs. O

Lemma 3.10:Let S be ary monotone network which computeg,
(where n>k). Let x; be ary input of S which enters exactly 2
[Fgates, whose other inputs afg f,. For eachr with 2<r<k-1 if
there exists anmonom m, ove X, —{X;} such that

my < f, OTE(Xn —{x;})
then there does not existyamonom m, over X,, —{x;} such that

m, < f, DT (X, = {xi})

Proof: Supposem;, and m, are two such monoms. The partial assign-
ment x;:=10 x; Ovar(m,) []var(m,) leaves S independent ofx;.
But under the assignmef should compute

Ty_q (X = var(m,) - var(m,))

(q=|var(m,) [] var(m,)|]) and this depends ox sinceq<k-—1. This
contradiction prees the lemma. o
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Theoem 3.10:(Dunne, 1985a)
C"(T§(X,)) =2 2.5n-5.5

Proof: By induction onn=>3. The inductte hase is obvious, so
assume the theorem holds for a#llues <n and letS be an optimal
monotone network realisin@j at a unique nodé. We proceed by a
case analysis. It is assumed tl&ahas been subjected to the process
of Lemma(3.9) and thus wynnput haing fan-out equal to 1 enters an
[J-gatein S. The cases

Case 1:00x; OX, such thatp(x;) = 3.

Case 2:0x; OX, such thatyp(x;) =2 and % entes an [}gate. (Fig-
ure(3.2)).

Figure3.2

are straightforard and it is left to the reader to confirm that é8eg
may be eliminated fron® by fixing x; to O.
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Case 3:00x; O0X, such thatp(x;) = 1.

X; enters somelgate, g say Let h be the gate which supplies
the other input of g. It is esy to see thatgFt and
ToY(X, - {x;}) < regh). Setting x;=0 eliminatesg and its successor
The resulting netark computesT; (X, - {x;}), but still contains ate
h, with T37(X, - {x;}) < reg(h). From Lemma(3.8) theage h may be
replaced by 1 in this netwk. Thussetting x; =0 diminates 3 gtes.

This leaves anly,

Case 4:00 x; O X, x; enters exactly Z}gates. (Figure(3.3))

Figure 3.3

Case 4.1:.0x; X; such thatx;, x; enter an(;gateg and¢(g) >1 a g
enters an[tgate. At least 5 gates may be eliminated by setting
X; = X; = 0. This would be sufficient to pre the result.

To summarise it may n@ be assumed that:
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Al) Every network input enters exactly[2gates,g,, 0,

A2) From Lemma(3.10): for at most one of the functiohg f,
which enter theseages is it true that therexists x, such that
xx<fi(i=1lor2

A3) If g, has inputsx; and x; theng, has only one immediate suc-
cessor and this is dri-gate.

For any TS network which is not of this form sfi€ient cates
can be eliminated to apply the indwetiagument.

The lower bound for the remaining case is \eriby a wre
counting argument, without recourse to the indctiypothesis. Let:

out(Q) = | { The setof wiresout of a st of nodes G} |

T ={0-gates g x; is aninput of g and Oj#i s.t x; <reg(g)}
R={0-gates g x; is aninput of g, g T }

T, ={0-gates gOT : x;, X; are inputsof g}

T,=T-T,

M ={0- gates g g is the uniquesuccessor osome h0T,,g 0T, }
U ={0-gates gT, : g is the uniquesuccessor okome hIT; }

E={g:gDT R M}
We @an obserg the following:
B1) out(X,) = 2n (By analysis abee).
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B2) out(R) = |R| (By optimality of S).

B3) out(T) = [T| (By optimality of S).

B4) out(T,) =|T4|=[U| +|M|. Thisholds as each gate b has only
one input from a gate i,;. Although a gate inM may hae two
inputs from @tes inT,, Snce T; gaes hae fanout=1, by (A3),S may
be restructured in this case so that eaate gn M has only one input
from aT, gae. (Fig(3.4))

Figure3.4

B5) out(E) = |R| (By (A2), as each @e in R must hae me input
from a gate not iR [1 T [] M).

B6) 2[Ty| + [T2| + |R| = out(X)
B7) [T4| +[T,] = [T| By definition).
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B8) out(M) = |M| (By optimality).
Now, it is dear that for ap network S

C™S) = 1/2out (X, [19)

To prove 25n the lower bound gen by (B2) must be
improved by $howing that:

out(R) = |R|+ U]

Definition 3.7: Let S computeTg. A U - configuration is a subnet-
work a of S consisting of 5 gtes{g;, g;, Ok, 94, 95} arranged as in
Figure(3.5). «

Lemma 3.11Llet P ={i, j,k} and letS be an optimal monotone net-
work computingT§. S may be restructured to a monotone raetw
S which is no larger thai$, computesT} and satisfies:

(*) For eachU-configuration inS’, there exists somg 0P such
that every path fromg, to an [-gate splits, i.e there exists a
gae u on a path fromg, to anJgateh such thatgp(u) > 1.

Proof: SupposeS does not satisfy the lemma. Letbe ary U —con-
figuration for which (*) is false. Leth;, h;, h, be the firstCigate
encountered on paths from, g;, g«. (Note that there can only be
one "first" [;gate on each path as no path splits). All the gates on the
paths fp,, h,) are (-gates. LetF;, F;, F, be the function[ed with
Xi, Xj, X on these paths. LeB;, B;, By be the function fed to the
other input ofh;, h;, hy, so that reshy) =B, (F, 0Ox,). We per-
form one modification.
C) If x,<B, then compute &, OF,) B, by using onel}gate to
computeF , B, and [ the result withx,. h, and g, can then be
eliminated. (Fig(3.6))
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Figure3.5

Thus we may assume thatp O{i, j,k} x, £ B,

We row prove three properties of this subnetik.
Property 1:h;, h; and h, are distinct.
Proof: Suppose, without loss of generalityhat hj=h;, so that
Bi = x; OF; and B; = x; OF;, as in kgure(3.7). Consider the assign-
ment x,=1. By aguments similar to the proof of Lemma(3.10) it is
easy to see that

XkX| $ Fi |:| F] |:| X| DXn _{Xi’xj}

Thus S*%-! depends orx, X; only via h;. This implies that all gtes
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Figure 3.6
whose result depends o, other than those on the patlg][, h,) are
descendants of; (p=ior j). Butregh)=(x; OF;)(x OF;) and
the only prime implicants of this functionvislving x; or x; have the
form x;X; or XiXpXq Or X;XpX, where pq. Therefore S*! cannot
compute TS (X, - {x,}) and this contradiction establishes the prop-
erty. O
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Figure3.7
Property 2:Let g be a gate ofS such that:

bl) X XjX¢ < reg(Q)

b2) O p O{i,j,k} g is not a descendant of yargate on a path
[9p. Pyl
Then: x; O x; O x, < reg(q)

Proof: All such gates are descendants gaf Partition these descen-
dants into sets according to their distance frggn eg. By breadth-
first search rooted ags. The proof proceeds by induction ah the
distance of sets frongs. The based=0 is obvious, as the onlyatge
involved is gs itself. For the inductie gep assume that Property(2) is
true for all gates at distance less thdirirom gs and letg be a @gte
at distanced from gs such thatx x;x, < res(g). Let g and g’ be the
inputs of g, both of which satisfy (b2).I1f g is an [lgate then
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X X;Xx Sres(g) or XXX, <res(g’), without loss of generality sup-
pose the former Since the distance off from gs is less thand, by
the inductve typothesis, x; Ox; Ox, < res(g), and so by mono-
tonicity x; O x; Ox, < reg(g). If g is an[lgate thenx;X;x, < res(g)
and x; X; x, < res(g’) and this case follows by a similargament.o

Property 3:For al pHi, j,k} xXx;x £ B,

Proof: Suppose, without loss of generalithat x; x;x, < B;. The cte

which computesB; must be a descendant bf or h,. To se this
recall thath; + h; and h; ¥ h, (Property(1)), and so if this obsation

were false, Property(2) auld apply andx; O x; O x, < B; contradict-
ing the modification (C). It follows that; is a descendant df; (or

hy) and thusx;x;x, < B; (or By). By repeating the gument twice a
cycle in S would result. This contradiction pres the claim.o

Lemma(3.11) ne follows easily for consider the partial assignment
Xn-{Xi, Xj, %}=0. Then from Property(3)B, =0,0 pAi, j,k}. S
under this partial assignment cannot comp'uj(axi,xj,xk) as t only
depends orx;, X; and x, via gs which computesTf(xi,xj,xk). Con-
tradiction. O

From this Lemma it folles thatout(R) = |R| + |U|. For leta
be ary U-configuration inS. Without loss of generality suppose a
path fromg; in a splits before meeting aintgate. LetF; be the func-
tion [Fed with x; on this path before it splits. It is clear thatmay
be restructured in such aaw thatx;, enters an‘}lgate g whose other
input is F; with ¢(g) =2. This may be done without increasing the
size of S, and for all U-configurations inS. (Figure(3.8))

This nav gives:

out(S[LI X,) =outRUELIT M X,)



Linear Bounds on 1-output Functions 185

Figure 3.8
2 (IRI+U)+[R[+[T[+[M]+2n

2 4n+([R|+|U])+|M|-[T4| (B6,B7)
>4n+|R| (B4)

>5n (as|R|=n from(A2))
Thus;
C™T3) = C™(S) = 2.5n-5.5

and theorem follws.O
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Theorem(3.10) yields a lower bound ®f whenk is fixed. W
now present a general lower bound @, which gives larger bounds
for k=0O(n), k< On/2 0 Thus:

0 3<k<0On/20

C™(T9) = max{2n+3k, 2.5n+ 1.5} -c

Wherec is a constant.

For the majority function, we deduce a lower bound obr3.
slightly improving the & lower bound of Bloniarz (1979).

The approach is a generalisation of the standard inveucgte
elimination agument. Threeideas are central to the proof method:
extending the definition of "family of functions” as used in the induc-
tive gep; the notion of the "distance" @f from MAJ,; and the con-
cept of areduction. The concepts employed are similar to those
employed in the 25n lower bound on combinational complexity from
Stockmger (1977). So instead of considering amfly of monotone
functions{f,..., f,,..., }, in which for eachn there isat most onen-
input function, we consider families sktsof functions:

{{F3{Fah o {F o} 0}

In this way eachf O F, is ann-input function. For the inducte gep
it is then suicient to project onto a member of a smaller iedeset.
The family we shall use is:

{0 an}
n=2 k=2
Thus then'th member is the set:

{T2, 73, Taad
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The "distance" ofT; from majority isrelated tothe minimum
value of J7|, wherer is the partial assignment such that:

(T = MAJ, 4 and n-|nis even

Using these concepts thewler bound proof divides into three parts:
we first shav how an abitrary reduction may be used to reason about
the size of monotone nebnks computingT,'; then, assuming the cor
rectness of a specific reduction, it is yew that a particular piece-
wise-linear function y(n, k), gives lower bounds forTy. The final
stage is to verify the correctness of this reductidmis is done by a
case analysis on the structure of optimal oeks.

Definition 3.8:Define A(T\) to be n/2-k. A represents the "distance"
of T¢ from MAJ, and may be rggtive and non-intgral. e

Definition 3.9:Let S be a monotone network computiig. Let 7 be
a partial assignment such th&> S, i.e §" =S, where S computes

Te". The descriptorof 1, (m), is a triple €, s,t) where:

r | { Inputs of S ®t by} |

s =AT")
t < |{ Gates deletedrom S by applyingr } | .

Definition 3.10: An a B-reduction for T\, is a ®t of q descriptor
pairs,{ < a;, b; >} such that:

For any S computingT,, 0< &, b; > and partial assignments,
7 applicable toS for which:
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o(m)=a [ &()=Dh (3.13)
O<a,b > 2A(TY)-(s+5)=0 (3.14)

Lemma 3.12(Dunne, 1984b) LeS computeT; and let{ < a,b; >}
be an ap-reduction for S. Let A(TY) =s. If there is a function
x(n,s) - Q" such that:

3 x(n=r,8) +1,
x(n,s) < max (3.15)

0 x(n-ri.8) +,

O<a,b > = <(r,s,t), (. s,t4) > and
x(N,A(TY) = x(n,A(T);)) = n-Constant

thenC™(T\) = x(n,s).
Proof: By induction onn. For the inductrte base the recurrence of
(3.15) will terminate at x(n,A(T{)) or x(n,A(T\)). The conditions
on y yield the laver bound. For the inductve gep assumél n <n,
0K that C™(TJ) = x(n,s) where A(T!) =s. and let S be a
monotone network computingy. As { < a;, b, >} is ana B-reduction,

there exist partial assignments, , applicable to S, such that:
<d(m),d(mr)> = <a,b, > for some ki<qg. Thus:
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[
B (3m(-|'(nr1_—rh)+S )+
C™TY) = max[ 27
S CMTL )
0 (Tl)iﬁ
By the inductve
B x(N=ri,s) +1
C™(TY) = maxg
0 x(n=r8) +
But:
B x(N=ri,s) +1
x(n,s) < max

Hence:C™(T) = x(n,s)

0 x(n-r,5) 4

|

189

hypothesis:

Lemma(3.12) yields a recurrencepeession for the monotone
network complexity of T;. We do rot attempt to find a general solu-
tion to this, but illustrate that a particulgi(n, s) is given by a peci-

fied a B-reduction.

Lemma 3.13(Dunne, 1984b) If:

AB = {<(1,s+1/2,4),(1,5-1/2,3) >,
<(1,

< (2,

s+1/2,5), (1s-1/2, 2) >

s+1,8),(2s-1,6)>

(3.16)
(3.17)

(3.18)
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<(1,s+1/2,3),(1,s-1/2, 4) >
<(1,s+1/2,2),(1,s-1/2,5) >

<(2,s+1,6),(2s-1,8)>}
is ana B-reduction for gery S computingT/),_., then

BS.Sn—|s|—c 0<|s|<3/2
x(n,s) =0
BS.Sn—3|s|+3—c |s| = 3/2
satisfies:
BX(n_riysi)"'ti
x(n,s) < maxg
0 x(n=ri,s) +

O <a,b>=<(r,s,t),(,s.t)> 0 AB

Proof: By inspectionm

(3.19)
(3.20)

(3.21)

In terms of the usual form of indue# agument, y(n,s) can be

viewed as follevs:

For any monotone netwrk S, which realisesT,, one can find

partial assignments, m, ..., 7. such that:

(S)™ =Sy D0<i<r

and the neterk S computes a threshold function which is
"close to" majority Then, for ag T;, close to majority it is
possible to choose partial assignments,which eliminate, on
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avaage, 35 gates and such thatT{’ ) is also close to majer
ity.
We disene that the a g-reduction AB, can be similarly inter

preted, for a number of dérent y(n,s). One such interpretation is
outlined belov.

It may be noted that in someag b; >:

BX(n_ri!Si)"'ti
x(n,s) = ming
0 x(n=ri,8) +

eg x(n,V2)>x(n-2,-1/2)+6

This imposes a strategy in induwely eliminating gates fronS com-
puting T/, in that for those <, b; > having this property the step
which reduces to:

g x(n=ri,8) +1,
x(n,s) < maxg]

0 xn-r8) +

must be applied.

Theoem 3.11:Let S be ay optimal network computingT; for
1 <k<n. Then AB is ana B-reduction forS.

Proof: The proof is by a case analysis on the fanout of inpuis. F
reasons of space the details are omitted. A complete description
given in Dunne (1984b).0o

Corollary 3.6: [0 k 3 < k < [h/200
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C™TY) =2 2n+3k-c cOQ"
Proof: Let k =n/2-s, s 0Q*. By Lemma(3.13) and Theorem(3.11)
C™(T?) =C™(Th,.)=3.5n-3s+3-¢C
However: s=n/2 -k, thus

C™(T&)

1\

3.5n-3(n/2-k)-c¢

\}

2n+ 3k -c O
Corollary 3.7:
C™T) 24k -3)+ C™(Ti**¥ -¢
Proof: (Outline) The a g-reduction AB may be interpreted by saying:

"For ary monotone netaerk S computing T}, [0 some inputx;
and some constartt [1{0, 1} such that setting = ¢ eliminates
at least 4 gtes."

Choosing a suitablg(n, A(TY)) leads to the theorerm
Corollary 3.8: If C™(T) =(2+A)n-cthenO 3<k<0n/20

82n+3k—cO
C™TY) = maxQ
B(2+/])n+(2—/\)k-cl
AN
Oon+3k-c k>
0 3k - o A+1
= J AN
B(2+/\)n+(2-)l)k-cl ks -5
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Theoem 3.12:(Dunne, 1984b)

an+3k-c0 k> n/3
C™"(T) =2 O
82.5n+1.5k-cl k<n/3

Proof: From Theorem(3.10)C™(T§) = 2.5n-5.5 and the theorem
follows from Corollary(3.8) witm=1/2. O

Corollary(3.8) implies that impked lower bounds ol or ary
T, with k fixed, would lead to consequent impements in Theo-
rem(3.12). In particular arBlower bound onT§ would immediately
give the 3.5n lower bound onVIAJ,.

The final linear lower bound presented is fromek&nheinrich (1984)
and is notable for the absence of the cumbersome technical complica-
tions of the preceding methods.

Lemma 3.14:Any monotone network realising’;(X,) contains at
least 2 —4 [lgates.

Proof: By induction onn=>=2. Since the base is wal assume the
lemma is true for all alues <n and letS be a monotone netwk
realising T (X,,) at ©me nodet. Let g be a gate ofS whose distance
from t is maximal. The inputs of must be distinct inputs; and x;
of S. From Thm(1.15),p(x;) = 2. If x; enters at least Z}lgates then
setting x; =0 proves the result via the induete hypothesis. If x;
enters only onéltgate, h; say and ariltgate h, then proceed as fol-
lows. Letu be the firstCrgate encountered on some path frbomto
t. u must exist otherwise setting to 0 malest equal 0. IfuF h;
then settingx; =0 diminates 2[}tgates fromS. If u=h,, then there
must be somélgate on ap path fromh; to t. The first of these can
be eliminated by setting; to 0. The case wher; enters nollgates,
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and thus at least Prgates, is dealt with by a similargarment.o

Theoem 3.13:(Tiekenhienrich, 1984) Lef (X,, z) OO M,,; be defined
by

f(Xn2) = zOT7(X,) O Tra(Xn)
then

C™(f) = 4n -8

Proof: Let S be an optimal monotone neaivk realising f(X,, 2).
Since f 71 = TX(X,), from Lemma(3.14),S must contain at least
2n -4 Chgates. Sincef ¥ = T (X,) = T,(X,), by duality S must
contain also at leastnz-4 [lgates. This is a total ofn4-8 distinct
gaes and so the theorem falls.O

The lower bound oy proved aove, is possibly sub-optimal.
This section concludes with a monotone network constructior for
This gives the upper boundC™(T\) < kn+o(n) for k fixed. T
prove the upper bound the following combinatorial result is required.

Fact 3.6: Let Yy, = <Vi,Vi, Vi > ON* (where k=2) and
I'Iq:Nk —. N¥ be the projection which sets the position ofy; to 1.
Finally let COVER be a predicate defined on sets kiftuples
Y = (Y10 Ys) by:
0 1if01<sqgs<k Oy,y]OY

O such thatf,(y) = N,(y!) and &j
COVER(yy, Y9 = O i) =Maly;) and ]

O O otherwise

Then miQ {IY] :COVER(Y)=1} = k+1
YON

|
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Proof: The upper bound is elementaiyhe lower bound is pxed by
induction onk = 2. Thebasek =2 is immediate, so we assume the
lower bound holds for all values less than Let Y ={y,,..., vy} be
ary set of k-tuples such thaCOVER(Y) = 1. Without loss of gener
ality it may be assumed thafl,(y,) = INy(y,). Thus, as
COVER(Y) =1, the set of§—1) (k—1)-tuples

{< Yy Y1 = } D g' {< Yips oo Yiy >}

must  satisfy COVER.;. By the inductve  hypothesis
s—-1>k O s = k+1. Thelower bound follavs. O

Theoem 3.14:For any fixed k C™(T(X,)) < kn+ o(n).

Proof: For ease of exposition, suppose= p* for some positie inte-
ger p. It is easy to see hw to anend the construction beloif n is
not of this form. Let:

Xn = D { Xrlrz...rk }

1<ri<p
1<r,<p

1<rgsp

To avoid a plethora of subscripts rg,...,r, > will denote x,, . It
will be corvenient to consider the elements {f, 2,..., p}** arranged
in lexicographic orderThusr; =<rlr? ...rkt > is the i'th element.
egr;=<11,1.,1>

The g — partition of X, is constructed as folus.

T1) X, is partitioned intop“? blocks B, where 1<i < p*. Each
block containsp elements ofX,,.
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T2) Theparticular elements ok, in a block B! are gven by:
BY = ] {<rd, oo g e ks
j=1
where <rl, ..., rk> is thei'th element of{1,2,...,p}*" in
the ordering described am
The q - partition of X, thus consists op*™ blocks each block being
defined by a distinctk(- 1)-tuple.
Clearly there are& possibleq — partitions of X,,. We daim that:

K k k-1
T o) = U TET(TRED, L TEEL)) (22)

If this assertion holds, it gés rise to a recurse @nstruction for a
monotone netark computingT,. Solving the underlying recurrence
relation yields the upper bound statede Ystify this assertion as fol-
lows. Firstobsere that if fewer thank element ofX, are assigned
the \alue 1 then the right-hand side of (3.22) is 0. Since the RHS is
clearly monotone it is sufficient to pm that it attains the value 1
wheneer exactly k members ofX,, are 1. Consider gnassignment

to X, for which eactly k variables are set to 1. Let:

Y o= {yn Y2 Yid

= { < yly y12’ e yl;< >, < ykliykzi S ykk >}

be thek variables of X,, which are fixed to 1. Fromé&g€t(3.6), since
Y| <k+1, COVER(Y) =0. It follows that there exists sonse(with
1 < s< k) such that:

{ < y11! e y15_1’ yls+1! T ylk 2,0, < yky SRl yks_1! yks+11 ey yk|< > }
are distinct k - 1)-tuples in{1, 2,..., p}*. Therefore by the definition
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of q - partition:

y, OB} Oy, OB M i=]j

Thus no tw y;'s (i.e variables ofX, which are set to 1) are in
the same block of the- partition of X,,. So:

k-1
TS (TP(B). TP(BY) ... TI(Bya) ) = 1

and therefore the RHS of (3.22) is &
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3.5) Superpolynomial Lower Bounds on Single Output Functions

In this section we ge a cktailed technical description of ¢w

techniques for deriving large lower bounds on the monotone cemple
ity of single output functions; that of Razbwras enhanced by Alon
and Boppana (1986), and that of Andtetn the remainder of this
section we gie sme basic definitions and notation. In Section(3.5.1)
the Razborg Alon and Boppana results are presented. Section(3.5.2)
describes the conceptually simpler approach employed in Andree
(1985). W mnclude with a discussion and comparison of the tw
methods.
It will sometimes be corenient to rgard a monom as the set oén-
ables defining it, as well as a function. In thigywwe may write
manm, and m; [1m, instead of var(m;) n var(m,) and
var(my) [] var(my).

In the ne&t section we will be interested in the following mono-
tone Boolean functions.

Recall that X7 = {xj :1<i<j<n} denotes a set ofn/2
Boolean wariables. G(XY) is a function from assignmentsy, to X}
onto n-vertex undirected graphs in whic(a) contains an edgé, j}
if and only if x; =1 in the assignmentr to Xy, For 1<k<n the
function k — clique(X)) takes the alue 1 if and only ifG(X!) con-
tains ak-clique, i.e a sefv;,...,v} O{1,...,n} of vertices such
that for all 1<i # j <k, {v;, v;} is an edge o3(X}).

Xnn = {X;; 1 1<, j <n} denotes a set af* Boolean wariables.
B(Xnn) is a mapping from assignments %, , onto Zh-vertex bipar-
tite graphs.B(a) is a hpartite graph eer two dsjoint setsV and W
of vertices (Y| =|W|=n) in which there is an edge betweenV
and W; OW if and only if x; =1 under a. PM(X,,) is the mono-
tone Boolean function which takes thaluwe 1 if and only if the
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bipartite graphB(X,,,) contains aperfect mathing, i.e there is a -
vertex subgraph (factor) ofB(X,,) in which esery vertex is the end-
point of exactly one edgd?M(X,,) may be expressed as

n
PMOG) = VA %o

Notation: For any finite setF, 27 denotes the set of all subsets Fof
and P4(F) the set of all subsets ¢&f having cardinality<ss. We use
2% to denote the sdi(1) andO to denotel (0).

3.5.1) The Lattice Method of Razboov, Alon and Boppana

This technique is presented in Razhor(l985a,b) and as
improved by Alon and Boppana (1986). Our description kelcom-
bines results from all of these papers. The method divides naturally
into three stages, of which only the last is igadependent on the
monotone function considered. At the core of the approach isréh no
interpretation of monotone Boolean netks as a particular type of
combinatorial structure called a regular lattice.

Definition 3.11:A regular lattice M, is a kttice whose elements are
subsets of 2 and which satisfies,

R1) {I(x),....1(), 1(0), 1(1)} UM
R2) Elementoof M are ordered by set containmernt

(0 and 00 denote the usual lattice operationseet and join.
Given A, B elements of a regular lattidd these operations satisfy

ALlBOAMMB : AMB O An B .

In general both these containments will be strict. This vaes the
ideas ofsurplus and deficiency. For A, B as before these arevgn
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respectiely by

5.(A B)=(An B) - (AIB)
5.(A, B) = (AB) - (A [l B) (3.23)

Finally in order to model monotone netiks by regular lattices some
concept of the comptity of a function with respect to gnsuch lat-
tice is needed.

Definition 3.12:Let f(X,) OM, and M be ary regular lattice. The
distanceof f in M, denotedp(f, M), is the least such that,

- t pairs of lattice elements A, B; > and an elemenD of M for
which

D O I(f) [ @1 o.(A, B) (3.24)

I(fy O DU @1 J.(A, B) (3.25)

Using these ideas the three sections of the technique consist of

S1) Shwing that for all f OM, and all regular latticesM,
C™(f) = p(f,M).

S2) Constructinga particular class of regular lattic€3. OSELY f).

S3) Preoing a lover bound on the monotone complexity of some
specific functions,f, by dbtaining a lower bound on the dis-

tance of f in CLOSEf). Here the method relies on the
structure of the gen f in order to dexie large bounds.
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3.5.1.1. Distance in Regular Lattices and Monotone Complexity
Lemma 3.15% f(X,) OM,, V regular latticesM;

C™(f) 2 p(f, M)

Proof: Let S be aly monotone network realising with C™(S) =t.
Number the gates o8 in topological order Let I;,, r; denote the
functions computed by the left (resp. right) input nodes for tite g
numbered.

With each node of S we associate an elemenfv) of M as
follows,

1(X;) if v is the inpute;

[(0) if vis an input labelledwith O
(1) if vis an input labelledwith 1
A(vy) DDA(vg)  if op(v) = A

A(vy) DDA(vg)  if op(v) =V

Av) =

I s

We daim that choosing thet pairs <A, B, > by A =A(),
B, = A(ir), wherei is the gate numbereidby the topological ordering
of S (thus 1<i <t); and choosingD = A(t) satisfies relations (3.24)
and (3.25) abee. This is easily sheon by induction ont=0. If t=0
then f is either a constant function or tharsablex. In any case D
is defined ad(f) and so the inducte kase is twial.

Now suppose the assertion holds for adllues<t-1. We dall
prove it holds fort also. Sincet>1, S contains at least oneatg.
Consider the output gate & which must be labelled in the topo-
logical ordering. By definition we ka that f =1, op(t) r,. By the
inductve hypothesis, since both andr, are computed using at most
t —1 gates inS, we have
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A O 1)U Ea_m, B) (3.26)
B, O I(r) [ Ed_(A,-, B) (3.27)
00 0 A0 Jaa 8 (3.28)
I(r,) O B, [ gam, B) (3.29)

First suppose thatp(t) = V. In this case,
D= A(t) = A B,
and so using (3.26) and (3.27);
D = A LB [a(A, B

mmDumDQﬂkm

=KUDQM&W
1=

So (3.24) holds in this case. Similarly using (3.28) and (3.29);
1(f) =10 L 1(ry

0 AlB [ E[&(Ai, Bi)
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O (A By [ ];Jl[ 3.(A, By)

i=

So that (3.25) holds. The casg(t) = A can be shown by a similar
agument. This completes the indweti agument and hence,
C™(f) zp(f,M). O

3.5.1.2. The Class of Regular Lattice€LOSEf)

Lemma(3.15) demonstrates that in order tovertower bounds
on monotone complexity it is didient to prove lower bounds on dis-
tance in regular lattices. There are infinitely sngossible choices of
regular lattice. A lattice with too fev elements e.g containing only
I(x), O and Z», would hae insuficient structure to allw large
bounds to be easily deed. On the other hand, using a lattice with
too maty elements e.g containingvery subset of 2, it would only
be possible to dere tivial lower bounds on distance, in the cited
example @ery function has distance 0 only

Razbore defined a class of regular lattices based on the prime
implicant structure of angiven monotone function and a we clo-
sure relation. Unfortunately no medtion for the chosen representa-
tion is gven and the reader should note that much of thecldpment
belowv is non-intuitive.

Let f(X,) OM, and recall thaPI(f) is the set of prime impli-
cants off. Belowr =2 and s= 1 ae natural numbers.

Definition 3.13:For f OM,, U(f) O Py(X,) is the set,
U(f) = {m : [m|<s and p OPI(f) such thatp < m}
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Here we are garding m both as a function and as a set @friv
ables. -

Informally U is the set of monoms containing at maesvari-
ables and which are shortenings of prime implicantd (of,).

The relation 3— (read "yields") is a subset dfi(f)" x U(f)
defined by saying <€,;,...,E, > — E, (where E; OU(f),
0<i<r)if and only if

[0 EnE DOE, (3.30)
l<i<jsr
If U; O UandE OU we writeU, 3— E if there are set&, ,...,E
(not necessarily distinct) itJ,; such that <&,,...,E, > 3— E. A
subset U, of U is said to be closed if
Y EOU(f) (U G—E O E 0OU;). We cenote byU, the smallest

cardinality closed subset dfi(f) which containsU,, thus if U; is
closed therJ; =U;. This is called theslosureof U;.

Finally, for ary E OU(f) the cover of E, denotedJE [is the
set,
ODEO={F:FOE}

For a aubsetU; of U(f), this is naturally ®ended by defining, the
setlU, Das [] OEO

EOU;

Definition 3.14:Let f(X,) O M, the lattice CLOSEL{f) is the lattice
which contains exactly the elements,

{0OU, O: U, OU(f) and U, is closed} .

CLOSENf) is the lattice used to dee te lower bounds
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established beln?

Lemma 3.16FFor al f OM,, CLOSETf) is a regular lattice, whose
(Mand Moperations satisfy for alllA [J OB 00 0 CLOSELf),

AOmMoUBO = ODAn BO
AOMUBO = DAL BO

Proof: It is clear that CLOSELf) contains I(x) = 0{x;} O for all
1<i<nand alsol(0) =00 Oand (1) = OU(f) O For the second part
of the lemma consider

SUB(f) = {C:Cis aclosed subsedf U(f) }

Obviously SURf) under the ordering] forms a lattice with opera-
tions inf(A,B)= An B and sup A, B) =(A[] B). The coer opera-
tion [.. Odefines a mapping fronsUB(f) - CLOSEL{f) which is
an order preserving lattice homomorphism, i.e

AUOB O ODAOOOBO

The lemma will follav if [..is actually anisomorphic mapping
Thus if for aly closed subset#\, B of U(f) we have

AOOOBOO AUB

So supposeéA, B are two dosed subsets df(f) with DACO DO OB O
Let E OA. Since

EODAOUADD UOBO

g) For the lower bound ok-clique this is not strictly truelnstead of usindJ as the
basis for defining "closurel3— and "cwers" a particular subset &f is used. The com-
binatorial results pneed subsequently all hold for the lattice structure that arises. This
will be clear when the actual form used is defined later.
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it follows from the definition ofl].. Othat there is somé& O B such
that F O E, we therefore hee from (3.30) that

F.F,.... O— E

and E O B since this is a closed subset Wf So we fave established
that A [0 B proving the lemma.o

A set CO 2% (i.e set of monoms or ofaviable sets) is said to
be independentf for each distinctA, B O C: A B andB [ A

The lover bound proofs require upper bounds om tneasures
to be established:

UPB1) For ary closed seW O U(f) the walue of basg(W)|, where
basg(W) is

{EOW:|E|<skandV FOW FOEO F=E}

basg(W) consists of the minimal (wt [0) sets inW of car
dinality at mostk.

UPB2) For ary set W O U(f) the \alue of W -W |, i.e the num-
ber of sets added ¥/ to render it closed.

The main contribution made by Alon and Boppana was in
improving the upper bounds on these quantities originally obtained in
Razbor@ (1985a,b). In practice only the impmment of (UPB1) led
to larger laver bounds, although in principle that made to (UPB2)
could also yield better results. At present mareples were this is so
are knavn.

We tackle the problem posed by (UPB1) inotwtages: first it is
shavn that for ag independent subséty, of P,(X,) for which there
does not exist anr + 1-tuple

<EypnE;,....,E,> OW™
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with [J E nE; O E, such a set contains at most «(1)*

l<i<jsr
members. Note that the containmentsigct. Using this it is easy to
derive an upper bound on

I, = max{ |[basg(W)| : W O U(f) and Wis closed}

Fdlowing Alon and Boppana, we say that an independent subset
W of P (X,) is r-stableif there does not exist g + 1-tuple inW"**
with the property described in the preceding paragtaph.

Lemma 3.17:(Alon and Boppana, 1986) improving Razbord985a)
Let W O P(X,,) be independent. I is r-stable thenW| < (r — 1)~

Proof: By induction onr>2. For the inductie lase, r =2 let

W O P,(X,,) be independent and 2-stable. W|= 2 then W contains
sets W; and W,. But W; n W, O W, OW which contradicts the
assumption of 2-stabilityThus W| =1 proving the inductie lase.

For the inductve hypothesis assume the lemma holds for all
vaues <r -1 and let W O P, (X,) be independent and-stable. V&
shall shav that W| < (r —1)*. Choose ap V OW and for eachC OV
define a seW¢ 0 P,_¢(X,,) by

We ={F-C: FOWadFnV=C}

Clearly W is independentW, is also ( —1)-stable. © sse this sup-
pose the contrary Then there is some r-tuple
<Ey E;,...,E41> 0O W such that

[0 EnE OE
1

1<i<j<r-
But this implies that,

h) Alon and Boppana (1986) actually uses the term "has Prdprti)".
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0 E0CcnE Oc)oEOcC
l<i<jsr-1
and sincek; OW, by definition we hae that

[ & 0cnv=c

l<is<sr-1
So if we chooser;, =E; [ ] C, for each &xi<r-1 and setF, =V
then <Fy, F1,...,F, > O W' and from the previous gument,

[0 FnF OF

l<i<j<r

contradicting ther-stability of W. It follows thatW, is (r —1)-stable.

By the inductve hypothesis, sinceN¢ O Py (X,), this gies
W¢| < (r —2)<l Now,

W= 3 Wels 3 (r-2)©
cov cov
_MWavio, Wk
=20 o 2"
<3 B0 oy = -y

i=o 00

By the Binomial theorem. The completes the induction, proving the
lemma. O

Comollary 3.9: 1, < (r - 1)

Proof: (Razbore, 1985b) LetW be aty closed subset ot(f). It is
sufficient to shav that basg(W)| < (r — 1) . Clearly
basg(W) O P, (X,) and is independent. Supposmseg(W) is not r-
stable. As before we can find
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<Egy E;,...,E > Obasg(W)™* OW'™! such that,

O EnE=ED0E
l<i<j<sr
Hence baseW)E3—E O WE-E O EOW by closure. But
E OW contradicts E, [0 basg(W) since E 0 E,. This contradiction
shavs that basg(W) is r-stable, thus from Lemma(3.17)
lbasg(W)| < (r - 1)¢ as claimed.o

We row turn to the problem posed in (UPB2), that of bounding
the number of sets needed to prodidefrom W. In fact all that is
needed for subsequentvélmpment in the lower bound proofs is an
upper bound on the number of iterations of the following algorithm to
produceW.

Input: A, B where AB [0 U(f) and closed
Output W = (A1 B)
Method (Alon and Boppana 1986)
W, := ALl B
while W, # W do
Vi1 = E Obase {F OW, : W, 3— F}
Wiy 1= W [ (Vi On Py(Xy))
=i+l
od

The Closure Algorithm

Let p be the maximal number of iterations of this algorithm, and
<Vy, V,,...,V, > the sequence of (minimal) sets whos&ecaip t©
sets of cardinalitys is added at each stage.eWMsh to dene an
upper bound ormp. Now dnce U(f) is finite and closed it is ofous
that p<|U(f)| and this is the measure used in (Razhof®85a,b).
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As we remarked previouslyven this crude estimate is adequate to
derive the exponential bounds obtained in Alon and Boppana (1986).
However the improved bound dewed by Alon and Boppana may yet
be of value for deriving further results.

Lemma 3.18:p the number of iterations of the Closure Algorithm is
< 2rs.

Proof: Let S=<V,,...,V, > be he sequence of minimal sets added
by the closure algorithm. This sequence has the following property:

Each V;, has cardinalty <s and there do not xest
i1 i, <---<i, <l for which

<V,

I 7

LV, > E-U0Y,

We sy that ag sequence of distinct setsGy ,...,Cy > which sat-
isfy this hae Property T(rs).

Now supposeS is as abwve hut thatS does not hae poperty T.
We daim that thenV; , would not be the set added at the, itera-
tion. This is becaus®;  is supposed to be a minimal set which is
not inW; __; but such thatW; _, yieldsV; . Now if
<V,V,

117 Ip 1"

LV > B-U 0V

Ir+1

i.e T does not hold, theN;  could only be an appropriate set to con-
sider if U OW, ;. This can be true only ilu O ALIB or
U 00V, On Py(X,) for somej <i.. In the former case we b
without loss of generality) O A so U O n Py(X,) O A (since A
is closed) hence, becausel V; . 0 Py(X,), Vi, OA. This contra-
dicts V; ., occurring in the sequence of s@s The latter case isven
easier to dismiss for thedU On Py(X,) O OV; On Py(X,) thus by
the previous a@ument V; OOV, On P¢(X;) and is agin
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unsuitablée

So <V,,...,V, > has propertyT. We daim that for allr > 1,
s20 any squence of distinct sets Gy ,...,Cq > with property T
must hae g < 2r®. Clearly this prees the lemma.

This claim is established by induction ore 1. For the induc-
tive base letQ=<C,,...,Cy > haveproperty T. For r =1, the rela-
tion [— satisfiesQ 3— [1. Now suppose thatg = 3. Since theC, are
distinct, at least one of,, C; must be non-empty Without loss of
generality assume it isC,. Now we have a ontradiction since
C, 30 0OC, andQ does not hee poperty T. It follows thatq < 2
proving the inductre base.

Assume the claim holds for allalues <r -1 and let Q have
property T. We nust shav that g<2r®. Put D=C; and for each
V 00 D define the sequend®, as the sequence of s&fs -V such
thatC, n D =V, these appearing in the same order aQ.irt is easy
to shav that Q, has PropertyT by using methods similar to
Lemma(3.3). By the induste hypothesis, Qy| < 2(r —1)* V! and so,

o 2,200, o
q=1Q=23 0 -1P°

i) The reader familiar with Alon and Boppana (1986) maynder wly we have 1)
Defined the Closure algorithm for sets of the fotnh | B for closedA, B instead of
arbitrary subsets dfi(f) as is @ne in their paper; and 2) ¥&h a cktailed &position
that S actually has property, when this is just stated in the pap€ne Closure algo-
rithm, of course, does work for arbitrary subsetsydver property T does not alays
hold. Consider forming the closure ©f= {x;%} whenr =2,s>5 and U(f) = P(X,).
Using the Closure algorithnG [3— x;%X; V 3< j <n. Each setx;xX; is not con-
tained inC and is a minimal such set. It is easy to see that cho®siAag XX, IS @
valid choice of sequence for the closure algorithm toen&ut this sequence does not
have popertyT. V,,V, — X%, O V3. Infact in this case the number of iterations,
p,is exactlyn-2 > 2rS =251 wheneer s< Olog, n - 1. Ourpresentation, which is
sufficient for the purpose intendedyaids this problem, shwing that for ag such U
which arisesy [ A [] B by using the closure ok andB.
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S 30 s — S
< - =
<2 EO [m(r 1) 2r

This completes the proof by induction.

3.5.1.3) Lower Bounds on Distance ii€CLOSEL)

In this section we sho how the combinatorial results pred in
Sect(3.5.1.2) can be used to produce a general inequality i@r lo
bounds on monotone comgpity. Sect(3.5.1.4) bel will then give
some specific applications.

The technique used is a probabilistic countinguarent, in the
style of Erdds and Spencer (1974). Subsequently the feifg nota-
tion will be used.

M,(f) is a mndomly chosen prime implicant of(X,). Each such
prime implicant is selected independently with probabifity({)[™.

M_(f) is a mndomly chosen monom, (i.e subsetxg).

The exact details of o M_ is defined depend on the function con-
sidered.

Ext(f,k) = max [pOPI(f) : psm}
{m O2%n: |m| =k}

Let ALlB = CyCy,...,C,=A[] B, where A and B are
closed subsets di(f), be the sequence of successits generated
by the closure algorithm. Let E;,...,E,> be te minimal sets
added at each iteration. Th&§ — E;,; and E;,; 1C;, for each
O<i<sp-1

Gap(f) = OSrinsaif_l Probl M_(f) O(0OE;,; O- OC; O) ]
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The reason for these random variables is to produce upper
bounds on:

EXCES®f) = A,eran%)éEm) Prob[ M, Oo,(A, B)] (3.31)

DEFICIT(f) =, max_ ProblM_05.(A B)] (3.32)

Theoem 3.15:Let t = p(f, CLOSELf)), then

_ 1-Prob My(f) 0D]
= EXCESS$f)

_ Prob[M_(f) 0D] - Prob[M_(f) < f]
= DEFICIT(f)

Proof: The first inequality follavs from relation (3.25) in Defn(3.12),
using the &ct thatM,(f), as a prime implicant of, occurs inl(f)
with probability 1. The second inequality folls from relation (3.24)
in Defn(3.12).0

(r —1)* Ext(f,s+1)
IPI(T)|

Proof: Let A=V O and B=0W [ be elements ofCLOSELf)
whereV 0O U(f), W O U(f) are closed. W have from Lemma(3.16)

Lemma 3.19EXCES$f) <

5.(A, B) = (An B)-(AB)
=(.vOhWD-(LV nWDQ

= (Cbaseg(V) On [baseW) D - (LMW n WD
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=( 0 tEoch 0O OFD-(VvAWD
E Obaseg(V) F Obasg(W)

:(QQDEDm OFO-(OV n WD

=QQ(DEDFD—D\/0WD

Consider ap E [Obasg(V) and ary F [Obase(W). We aan distin-
guish three possible cases.

Case 1:E 1 F @ var(p) ¥V p OPI(f)
In this caseProb] M.(f) OOE [] F O] = 0.
Case 2:E [ F O U(f)

Obviously E OV, thus sinceV is closedE [ ] F OV also. In
the same wy E[J F OW. So E[JF OV n W and therefore the
setOE [J F O- OV n W Ois empty

Case 3:E [ F O var(p) for somep OPI(f), but E[] F D U(f)

This can only be so iff[] F|=s+1, by the definition of
U(f). We now have

Prob[ M,(f) OOE [ F O

Probl EL] F O M.(f)]
< Ext(f, s+1)
IP1(f)|

So in eey case, Probf M,(f)OOE[JFO is & most
Ext(f, s+1)

IPI(F)I

Prob[ M, (f) 0&.(A, B)] <

. From the preceding analysis and Corollary(3.9),

|base(V)|lbase(W)|Ext(f,s+1)
IP1(f)]




212 MonotonéNetworks

_(r - 1)* Ext(f,s+1)
IPI(f)|

Since A, B were chosen arbitrarily the upper bound BXCES%f)
follows. O

To produce an upper bound dDEFICIT(f) we use the result
of Lemma(3.18).

Lemma 3.20DEFICIT(f) < 2r° Gap(f).

Proof: As in the proof of Lemma(3.19), leA=0[V [J B=0[CW Obe
elements ofCLOSEL{f) whereV, W are closed subsets bf(f). Let
Co=V [JW and <C,; ,...,Cp > be he sequence of sets created by
the closure algorithm i.e the/; sets in the description of this algo-

rithm abwe. Finally let <E,,...,E,> be he sequence of minimal
sets used in the closure algorithm. Recall ®at3— E;,,, E;,; [1C,
and that the sequence E,...,E,> has propertyT and hence

p < 2r°. Applying Lemma(3.16) we ha,
OovOOw) o-oviwao

5_(A B)

0 B (oc., 0- oc 0)
i=0

- (0B, 0- 0c D)
i=0
Note that the second inequality uses the fact that,
q (0Cy, O- 0OCy, 0O) O ﬁol (0OC,, O- 0OC; O)
1= 1=

This being easily established by induction og K< p.
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Now since p< 2rS, C; — Ej,4, Ei;; OC; it is immediate from
the last inequality that, the probability &_(f) occurring inJd_(A, B)
is at most

2r® max Prob[ M_(f) O(0E;,, O- 0OC; O) ]

O<isp-1

Since A, B were arbitrary this establishes the upper bound on
DEFICIT(f) stated. O

Theoem 3.16:Let t = p(f, CLOSELT) ).

0 IP1(f)] O
O -1y Ext(f,s+1) U
1= M D prop M_(f) 0D ] ~ Prob M(f)< ] (3.33)
0 2rs Gap(f) ]
OPI(f)] (1- Probl M, (f) OD]) O
0O (r - 1) Ext(f,s+1) 0
tzm'”gl — Probf M_(f) < f | . (3.34)
0 2rs Gap(f) O

Proof: (3.33) follows from Thm(3.15), Lemma(3.19) and Lemma(3.20)
by considering the tavcasesD =0 and D # . (3.34) follows in the
same way by considering thedwasesD # U(f) and D = U(f). O

3.5.1.4) Lower Bounds for Specific Monotone Functions

We mnclude this section by deriving non-trivial lower bounds
on the monotone compity of k- clique(Xy) and PM(X,.). The
first will be exponential for suitable choices lof

We roted earlier that the actual lattice structure employed for
the bound ork-clique isslightly different from the dmily CLOSED
defined abwe. The underlying seU(f) is not the set of monoms
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containing at moss variables, which are shortenings of prime impli-
cants, i.e graphs with at most edges which are subgraphs kf
cliques. Instead we takJ(f) to be the set of all monoms correspond-
ing to cligueswith at mosts \ertices. In this way UE [J whereE is

a dique of size <s, is the set of graphs which contalh as a sub-
graph. Inthe same style we amend the definition ©ft, for k-
cliques, to be the number &fcliques a clique of size+1 could be
extended to. Since X\ is a set of edges, each cliqueli{f) has at
least two vertices. Itis not difficult to verify that the combinatorial
analyses of the preceding sections all hold for the Iadtice defined.
For PM(X,,,) no suich amendments are needed, &idSEQPM) is
exactly as defined abe. We use CLOSELOK) to denote the amended
lattice for thek-clique function. The following is obvious and needs
no proof,

Fact 3.7:1) [PI(PM( X,,))| = nl.

i) |PI(k - clique( XY ))| = g‘(g

To dgart we need upper bounds o&xt(PM,s+1) and
Ext(k — clique, s+ 1)

|

Lemma 3.21:
. _ M-s-17
Ext( k —clique, s+1) = K- s—10 (3.35)
Ext(PM, s+1) = (n-s-1)! (3.36)

Proof: (3.35) is immediate from the modified definition of
Ext( k —clique, s+1). For (3.36) a bipartite graph containirg+ 1
edges can only bextended to a perfect matching if eacértex has
degree at most one, i.e if the graph is a perfect matching onstig
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of s+1 vertices. It follows that the number of perfect matchings con-
sistent with this is just the number of perfect matchings two sts
of n—s—1 vertices. The upper bound wdollows from Fact(3.7). O

The problem of boundingGap(PM) and Gapk - clique) is
more dificult. We first considerk - clique(Xy). Define M_(k) to be
the following randomn-vertex graph. Select a random colouring of
{1,2,...,n} with g colours{1', 2 ,...,qg'}, each colouring appearing
independently with probability g™". For a gven oolouring,

x O(1l..n] - [1..9]), G(x) is the graph in which there is an
edge between and j if and only if x(i) # x()).

Lemma 3.22:
0 st 0
0 _ (g - |) ]
Gap(k —clique) < 1 - "O—SD
0 9 0
[l [l

Proof: Given the definition of Gap, we have to shav that
Probf M_(k) O(0E;,; O—- OC; ] is bounded abee by the epres-
sion in the Lemma statement. WoM_(k) is a @mplete g-partite
graph andE;,; [0a st of graphs containing the cligug,; as a sub-
graph. M_(k) contains the same clique if and only if the vertices of
E;., are all coloured differently by, the randomg-colouring which
generatesM_(k). Now suppose that there is some detldC; such
that y colours the vertices oF using different colours. In the same
way M_(k) OOF OO OC; O A subsetW of {1,...,n} is said to be
properly coloured (PC) byy if each \ertex in W is coloured difer-
ently by yx. It follows that M_(k) O ( LE;,; O — 0OC; 0) if and only

if Ei is PC by y but no ®t inC, is PC by x. So to pove te
lemma it is sufficient to obtain an upper bound for
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Prob[ E;,; is PCby y and nosd in C; is PChy x ]

From the definition ofl3— we can findV,,...,V, in C; such that
[0 vinVv O Eu

l<sj<lsr

It follows that, Prob[ E;,; is PCand nosd in C; is PC] is no
more than,

Prob[ Ej;;is PCand Vjisna PCVY 1< j<r]
which does not »xxeed
Prob[ V; is na PC | Ej,; is PC]

and this is at most

r

[1 Prob[ V; is na PC | Ej,4 is PC]

j=1
The last inequality holds by virtue of the fact that the $6ts E;,;
are disjoint (by definition of 3—) and hence the wents
<Vjis na PC|Ej,, is PC> ae mutually independent. Now let
p; = Vj n Bl and q; = V; = Eju| so hat p; +q; = [Ejuy| < s.
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Prob[ Vj is na PC | Ej,; is PC] = 1 - Prob[ V; is PC| Ej,; is PC]

[Eisal - 1

M (@-n

I=p;

-—5

s-1
1 (@-n
I=p;

W

IN

M-
1 1=0
gS

IN

This proves the lemma.o
Lemma 3.23Letg=k-1. If D OCLOSEk) and D # [0 then

Prob[ M_(k) < k-clique] = 0

s-1
1 (k-1-i)
Prof M_(ky 0 D] = =2
ol M-(k) 0 D] 2 =5 —
Proof: The first inequality is obvious.df the second sinc® # [, D
contains at least one st say. Thus

Prob] M_(k) 0D ] = Prob[ M_(k) O CE [

\

Probf E O M_(K) ]

Prob[ E is PC by x s.t G(x) = M_(K) ]

and this prees the second inequalityd
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/3
Theoem 3.17:For 3<k< E Diﬁ ,
4 [ognQ
0 vk [J
) n
C"(k —clique) = QDD—d 0

OHL6k¥2lognl

Proof: Fix s= Wk J r=04ysSlogn 0+ 1, g=k-1. This gies from
Thm(3.16) (2.11), using = p(CLOSELK), k - clique),

nJ
[k
Mm-s-10
(k -—s-10

(r—1)>

_ n! (k-s-1)!
© (n-s=1)Lk(r-1)s

n" kk—s
2 k
nn=s K° (r — 1)

0 n 0
k(- 120

vk
o n d

— [6k32logn0

We leave & an &ercise the problem of skong thatt exceeds this
guantity in the cas® # [ in (2.11) of Thm(3.16).0

For the function PM(X,,), the random monom=( bipartite
graph) M_ is constructed by the method be&lo
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Let V, W be the disjoint sets af vertices in the bipartite graph
B(Xnn). Select a random labellindy, of the \erticesV []W with 0
and 1. Each labelling is chosen with probabilify"2 M_(PM) is the
random bipartite graph formed by choosing such a labelling of
VW and adding edges{<v;, w;>:h(v)=h(w;)}, where
1<i,j<n

In order to boundGap(PM) with this choice ofM_, Razborov
(1985b) prees some combinatorial results on propertiesWPM). It
should be noted that in graph-theoretic terms, an elemehi(PM)
corresponds to a matching containing at nmestdges. Amatchingis
a (bipartite) graph in which very vertex is the endpoint of at most
one edge. This interpretation is wenient for deeloping an upper
bound onGap(PM).

Lemma 3.24(Razborw, 1985b) Let
B={By B,,...,B} O UPM)

be a set ofr non-empty matchings such th& n B; =0 wheneer
I # ]. There is a subset

{Te, Ty, T}

of B such thatp > \/_Sr and for which the bipartite graph with edges

|ﬂ T, contains no cycles, i.e isfarest.
i=1

Proof: Let {T,, T,,..., Ty} be a maximal size subset Bf for which
: . Vr
ﬁ T, is a forest. It suffices to pve that p= \/? Suppose the con-
i=1
trary and putkg = ﬁ T,. Snce [I;|<s, by the assumption we ha
i=1

|Eo| <Vr. Now consider the subsetg, of V, W, of W, being those
vertices inV, respectrely W, which occur in at least one edge 6f.
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Clearly Vo| <¥r and W,| <Vr hence Y, x Wy| <r =|BJ. It follows
from the edge disjointness of matching Bnthat we can find some
matching B; OB such that B; n (Vo xW,)=0. By definition
Eo 0 Vo x W, henceB; n Eq = 0. But Eq is a forest and3; a match-
ing and so from the precedinggament the graph with edges
E, [ B; is also a forest. This contradicts the choice{Tof, ..., T}

. . r
as being maximal and therefore we mustehp > % |

Lemma 3.251et T be a forest wer V [] W which contains xactly p
edges {<in jck>:1<k< p}h The aents
{<iy Jx>Iis anedge ofM_(PM) } (for eachk) occur independently
with probability 1/2.

Proof: It is sufficient to she that for aly subsetK of {1, 2 ,..., p}
the probability of the \eent
YV kOK <iy, jy>0OM_(PM); V KOK <iy, j, > OM_(PM)

is exactly 2P.

Let xx:{1,....,n} - {0, be the predicate for which
xk(k)=1 I kOK. Now recalling thatM_(PM) arises from a ran-
dom labellingh:V [L1W - {0, it is clear that the probability of
this event is just the number of labellings, which are solutions to
the following system ofp linear equations \& GF(2), divided by
272" j.e the total number of distinct labellings.

[ N
Oh(vi,) ® h(w;,) = x(k)® 10
[ Dlsks p

So it suffices to she that this system has’2P distinct solutions.
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Consider the forest with p edges{ <i, jx>:1<k< p}. Let
B =1 be the number of connected components (i.e trees) in This
each component containing at least one edge. Theontains gactly
p + B vertices. For each tree there areaetly 2 ways of labelling the
vertices to satisfy the system of equationsvabane being the logical
complement of the otheiThat there are exactly twsuch consistent
labelling can be preed by an @sy induction on the number of edges
in a single component. Mo since each component may be labelled
independently of the others it follows that there afdabelling of the
vertices in the forestT which satisfy the system. This ies
2n — p — B vertices unlabelled (those not the endpoint of adge in
T) and ary labelling of these will bealid. Thusthe system of linear
equations wer GF(2) has ®actly 2°.2*""P~F = 22"~ P (jstinct
solutions as required:

Corollary 3.10: Let D OCLOSEQPM) with Dz0.
Prob] M_ O OD [0O] =2 2°°.

Proof: Since D is non-empty it contains at least one matchiggsay.
Note thatE is obviously a forest. Wterefore hae

Probl M_ OOD O] = Prob[ M_ OE ]

Probf EOM_] = 28l > 278

Jr
Lemma 3.26Gap(PM) < (1-27°)s

Proof: From the definition ofGap(f) it is aufficient to shav that if
C OU(PM) and C [&— E then
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I
Probl M_(PM) O(CE-CO 1< (1-2%) s
So suppose that [0 U(PM) and we hae
<E;,...,E >0{C}
for which
<E,,...,E,> 3 E

Consider the set (of matchingé§F; : F, = E; — E }. From (3.30), the
definition of 3—, we have F; n F; = wheneer i # j. In addition if
any F; is empty thenE, O E; and hencellg, [0 0 [OC Ofor which
the upper bound oap(PM) claimed follows trvially. So it may be
assumed that eadR; (1<i <r) is non-empty Now the conditions of
Lemma(3.24) holds for the s@f,,...,F,} thus we can find a subset
T={T,,..., Ty} of this such thatp > \/_Sr and for Whichﬁ Tjis a
j=1
forest.

We row have
Probf M_ O(CEO- OC D]
iS no more than
Probf M. OOEO&Yi M_ DOE O
and this is equal to

Probf EOM. &VYi F, IM_]< Prob[ViF, 0 M_]

< Prob[ VT, 0T T, M_]

From Lemma(3.25) thevents T; O M_ (for each 1< j < p) are
independent and occur with probability T2 275, Therefore
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Prob[ VT; OT T, I M_] is equal to |'p| Prob[ T; I M_] and hence
i=1

is no more than (% 2‘5)%. This establishes the upper bound on

Gap(PM). o

1

__\/_n.

Proof: M_ contains a perfect matching if and only if the number of

vertices ofV labelled with 1 by a random labelling equals the num-

ber of vertices oWV labelled 1 by the same random labelling. Thus,

Lemma 3.27Prob[ M_ < PM(X,,)] <

IN

Prob[ M_ < PM(X, ) | Prob[ % h(v,) = i h(w;) ]
i=1 i=1

IN

n
max Prob[ > h(w) =j]
O<j<n i=1

_ 0N Oy

th/20

1

Vn

IN

|

Theoem 3.18:For any ¢ > 0 and n suficiently lage,

1
C™(PM(Xp)) 2 nite” 21"
Proof: Fix s=0Oogn/80 and r=0On"*(logn)®0 and let
t = p( CLOSEOPM), PM ). Using relation (3.33) of Thm(3.16) and
relation (3.36) of Lemma(3.21) \gss,
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n!
>
(r=-21%(n-s-1)!

. O n ﬁ
a r—l)zg

> n(1—16—5)Iogn
Now consider the second part of relation (3.33) in Thm(3.16),
i,e D is non-empty Using Corollary(3.10), Lemma(3.25),
Lemma(3.26) and Lemma(3.27) and the chosen values ahd s
shaws that in this casewould be at least>@( log® n — o(log®n) ) and
hencet is asymptotically greater than the first cage=[. This
proves the theorem.oo

An important consequence of Thm(3.18) concerns the power of
negation in computing Boolean functions.

Corollary 3.11: The basis{/\, V, =} is superpolynomially more pe
erful than the basi§/\, V}.

Proof: PM(X,,) can be computed using polynomial size raks
ove any logically complete basis e.g by combining the algorithm of
Hopcroft and Karp (1973) with the result of Corollary(2.1) \&ho
Thm(3.18) shows that polynomial size monotone pet& do not
exist for this function.o

Tardos (1988) has recently shown that the gap between mono-
tone and non-monotone network complexity is in fagiomential.
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3.5.2. The Andreesr Lower Bound Method

The techniques applied in Andrve¢l985) are desloped from
the classical induate cate elimination method and utilise égéner’s
idea of providing certain functions "for free" as additional inputs.
This approach is shown to yield an exponential bound”of ¥ on
the monotone complexity of a specific functionM.

Below E" denotes the sef0,1}", |la|| the number of & in
a OE" and D; the (minimal) DNF of f OM,. The size of f
(denoted by f||) is the number of prime implicants &f The rank of
f (Rf) is the length of the longest prime implicant of If f is a
constant function thenf|=Rf =0. Gwen f; and f, in M,, we [y
that f, O f, if and only if PI(f;) O PI(f,). A function, f, is called
(u,n-reqular if it can be expressed in the form:

f=Xil/\Xi2 /\ "'Xiu /\ fl

Here i, ,...,i, are distinct, f; does not depend ofx; ,...,X_},
|fi|=r and each dependenanable of f; occurs inD;, exactly once.
f is calledr-regular if it is (u,r)-regular for someu = 0.

M! denotes those functiond OM, such that eery prime
implicant of f has lengtht. Define:

B min [g] if such ag exists
g

m(t) =g "
B 1+ G0 otherwise
I(r,s) =r°s!

Ris={f:fOM,Rf<ss|f|<I(r,9)}

An (n,r,s)—schemeis a monotone network with functions froRj g
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given free as extra inputs.Ly is the least number of\, V géaes
needed to realisd OM, by a {,r,s)-scheme. Itmay be assumed
thatr 22 ends>1. Clearly L'(f)=0 0 f OR',.

Let O<p<l For f, and f, in M, we define a measure
pp(f1, f,) as Dllows:
pp(f1, f2) = 2 p"~Wli1 - p)ll

a OEN: fi(a) # fa(a)

pp(f, g) may be interpreted in the folling way. Consider construct-
ing a random membep, of E" by settingx, to 0 with probability p
and to 1 with probability * p, the eents {x, =e: e 1{0,1}} for
1<i<n being independentIn this way p,(f,g) is just the probabil-
ity that f(B) # g(B). Itis easy to see that,

Pp( F(Xn, f1), F(Xn, f2)) < pp(fy, f2) (3.37)
Lemma 3.28Let {i;,...,i,} O{1,...,n} and suppose that
u
9(Xy) = j/:\1 %, N gi(Xn —{xi, : 1< j<su})

whereg; is (O,r)-regular.

If Rg<sthenpy(g, X, ---%,)<(sp'.
Proof: Without loss of generality suppose thgt x;%, ---X, N\ gy,
where g; is (0,r)-regular By definition esery variable on whichg;
essentially depends occurs by, exactly once andg}|=r. Addition-
ally sinceRg< s it is obvious thaiRg, < s also. Hence
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[T pp(2, m)

m O PI(gy)

pp(la gl)

P

m O PI(gy) x Ovar(m)

< (sp'

Thus  from  (3.37) pp(0, XX ---%,)<(sp’, by  using
F=fi Axqg\N---Nx,. O

Lemma 3.291f f OM, and Rf <, then there exists some functidn
in R such thatf < f and p,(f, f) < |f] (sp".

Proof: First of all suppose that if 0M,, Rf <sand [f|=I(r,s) then
there exists arr-regular g such thatg f. Using the result of
Lemma(3.28), we can construct a sequence of functions
f=fy, f,,..., f,=f which for 0<i <t satisfy:

i) |fi|=1(r,s)

ii) pp( fi, fisr) < (sp)
This sequence can be constructed by the following procedure.

1:=0; fg:=f
while |f;|=1(r,s) do begin
Find anr-regularg such thatg OJ f;,
{thus g=m A g,, say}
=i+l
fii=fi.,Vm
od

Note that this procedure terminates becadsg| K |fi|]. Obviously (i)
is satisfied. Also eacHf; is of the formf, = h; V. m A g; where
m; A\ g; is r-regular In this way f,,; = h; V. m,. Thus,
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po( fis fi) = pp(hy V.my A g, by V my)
< pp(my A g, m) (by3.1)
< (spf by Lemmé3. 28)

Since,

pp(f, 1) < pp(f, fia) + py(fig, )
The final function obtained is th& of the Lemma statement.

So it suffices to pne that the supposition stated at the start of
the proof does in fact holdWe prove tis by induction ors.

If s=1 then f itself is [f|-regular i.e trvially g exists. Nav
suppose the result holds fos<t-1. Let s=t and f; be a
(O, |f1])-regular function and the maximal possible such thatl f.
If |f|=r then trvially g exists. Therefore suppose thdt|<r — 1.
Without loss of generality lex; ,...,x, be the variables whichf;
depends upon. It is clear thek s. By the maximality of f; evey
prime implicant of f contains at least one @&f ,...,x.. Without loss
of generality suppose that occurs in the layest number of prime
implicants, and letf, be the disjunction \@r al these prime impli-
cants. Thenf, =x; N f; where f; does not depend or,. Clearly
Rf;=Rf,-1<t-1. Also

|fal = |fo] 2 [FIKk=rE (@t -2) =1(r, t-1)
So by the inductie hypothesis, there exists arregularg; such

that gz 0 f;. So if g=x; A gz then g is r-regular and
g f,Of. O
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Lemma 3.30:f f OM, such thatL (f) >0 then there exists some
g UM, such that:

) pp(L,9) 2 py(L,f) = (sp' I(r,9)?

i) 77a(9) 2 7 (f) - 1(r, 9

i) LPy(g) < LPg(f) -1

Proof: Let S be an optimal r{, r, s)-scheme realising. Consider ag
gae both of whose inputs are inpug, h, in R'g of S. Both are
non-constant by the assumption of optimaliffhe output of this gte

is some functiorh; * h,, where *= A\ or V. It is dear that in either
case

[y * hyl < max{ [hy|. hal, hal + hol} < 1(r, ) (3.38)

Let hy and h, be functions whose minimal DNF contains each prime
implicant of Dy, -, of length more thars, respectiely not more than

S. Let h be an arbitrary function iM,. Consider a netark S(h)
which is obtained fromS by remwing the output of this gate and
replacing it with the functiorh. Let G(h) denote the function com-
puted byS(h). It is easy to see that:

G(hy) < f < G(hy) V hy (3.39)

Therefore: p,(1, G(hs)) = pp(L, f). From Lemma(3.29) we can find
a functionhs O R’ such that

hy < hs ; pp(ha hs) < (sP)' |hy| (3.40)
Setg = G(hs), from (3.37) and (3.38) it follows that:
Pp(d, G(hy)) < (sp' I(r,s)?
Using the triangle inequality we va

Pp(1,9) 2 pp(1, G(hy)) = pp(9. G(hs)) (3.41)
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> pp(L, f) = (sp'I(r, 9)?
Now from (3.39) and (3.40),
fsgVhy | mu(f) s 764(9) + 7154(hs)

Applying (3.38) and theakct that each prime implicant iy, con-
tains at leass+ 1 variables it follavs that ., (hs) < |hs| < I(r, s)? and
SO

7641(9) 2 7esa(F) = 7esa(h) 2 77001 (F) = 1(r, 9)? (3.42)
Clearly,
Lrs(9) < Lig(f) -1 (3.43)
(3.41), (3.42) and (3.43) pre the result. o
Theoem 3.19:If f OM, then

pp(L, f) - spU

n 1 ; 0
Lr,s(f) 2 ——— min (Ms+1 (f)a r O
0 (sp 0

I(r,s)?

Proof: If f OR's then the assertion holds since both sides of this
inequality are< 0. If L}((f) >0 then from Lemma(3.30) therexists
a £quence of functiong,, g, ,...,0; in M,, such that:

po(L,g) 2 pp(L, f) =il (r, )*(sp)
Ta(Q) 2 men(f) —il(r,9? 1=1,2,..,t

Lis(f) > L7s(9) > > L7s(9) = 0

Clearly g; is a member oR's. If g, =0 then m,;(gs) =0 and conse-
guently,
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_ ()
I(r,s)2

If g;#0 then it follows thatRg <s and thenpy(1, g) <sp. Thus
pp(L, f) =tl(r,s)* (sp" < sp So,
_ Po(Lif)=sp
— (r,s)? (spr
(3.44) and (3.45) ge the result.o

Let T=[m; ], where 1I<i<m, 1< j<n, be aa mxn Boolean
matrix without ay zero ravs. Definethe function f; by,

(3.44)

(3.45)

fT(Xli"WXn) =

J

<3

N X
:mij =1

Corollary 3.12: If every row of the Boolean iy, n)-matrix T contains
at leastt>s+1 1's and T does not hee a k,s+1)-submatrix of 18
then,

L0 (f) > —1 minpm L=Me” = spo
R T T R = T

This follows since:

m
k-1

ﬂs+1(fT) 2
and
pp(L,fr) 2 1-m1-p)* = 1-me™ o

Let GF(q) be he Galois field of ordeq and letn=q?. Also let the
pairs @, ;) range oe the set GF(q) xGF(g). F;, where
i=1,2,...,m=qg%, is an eumeration of all polynomials ver

GF(q) whose degree does notxceed s. T,s denotes the



232 MonotonéNetworks

(m, n)-Boolean matrix such that
m; =1 0 a;=F(B)

It is easy to see that fof # i, the system of equations:
y=Fi(X) ; y=F(x)

have o more thans common solutions; Consequently the matfiy
does not hee a @,s+1)-submatrix of 1s. In addition each ne of
T,s contains ractly g 1's. Setf,s=F; and from Corollary(3.1)
we hae

Corollary 3.13:
0 1- n(s+1)/2 e—an — SpD
LM (fo) = min m©?2, [ O
P, 5)? 0 (sp)’ 0
If we fix
0 511/8
< -
log.n-2
_ (s+1)log,n+2
p = 2n
r = O(s+1)log.nU
This gves
Corollary 3.14:
o v o
L' (f)= ——— O
o) [4s* logz nO

This esdluates to
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m*® log, log, n[J

e
* log.n U

3.5.3. Conclusion

Andreer (1985) and the work of Razbar@1985a,b) and (Alon
and Boppana, 1986) fef two goproaches to proving non-trivial ier
bounds on monotone natvk size. In this final section we consider in
what ways the te basic methods are similar

Both techniques are, in a broad sense, ingdeicirguments
based on \&geners mncept of providing functions for free as addi-
tional inputs. Havever this is only explicit in Andreés proof. In the
Lattice method the indus® agument occurs in the general lemma
relating monotone network size to the distance metric gulae lat-
tices, i.e Lemma(3.1), but is not otherwise applied in the subsequent
combinatorial analyses. The elements of the latGt®©SELXf) (and
by extensionCLOSEKk) for k-clique) correspond to particulanono-
tone Boolean functions. Thus we can define a mapping
REPR: CLOSEOf) - M, as follovs; For A OCLOSELQf),
| (REPRA)) = A so that

PI( REPRA) ) = base(A)

Note that the oger operationll.. [ensures thaREPRA) is in fact a
monotone function. The set of functions
{ REPR(A) : A OCLOSEL )} form a subset of the s&’g used by
Andreev. This is a proper subset sind®(REPRA))| < (r —1)°> while
for f OR's we hare aly |PI(f)|<I(r,s) =r°sl.

At first sight it appears that the veb closure relation used by
Razbor@ does not seem to @ any aalogue in Andregs proof. In
fact Razborw (pers. comm.) has pointed out that this is not the case.



234 MonotonéNetworks

Recall Lemma(3.29) in the deation of Andre&’s proof:

If f OM, and Rf<s then there is a functionf OR, such that
f<fandpy(f, f)<|f|(sp".

Consider the sets of monor =PI(f) and U,=PI(f) so hat
W O=1(f) ; OJoO=1(f)

If we examine the proof of this lemma and the process by which
constructed fromf it turns out thatJ, consists of the minimal sets in
U,, i.e the closure of),. So dearly

1(f) =00, 0= 00, O

and thus from the earlier bound on the number of minimal sets in a
closed set, pred in Razborw (1985b),

IPI(f)| <S8t O fORY
In addition,U, 0U,, hence

I(f)=0U,00 0,0

=W, O=1(f)
shaving that f < . Finally we hae the relation
po(f, 1) < [f](sp)
which, from the previous #elopment, reduces to
po( T, f)=Prob[ M_ 00U, - U, 0]
where M_ is a random monom defined by the disitibn

Prob[ M_<x] =1- p independently foall x X,
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It has already been shka that the RHS of this equality is bounded
above by the number of iterations of the closure algorithm multiplied
by Gap( f ). Andree applies the simple upper bound that the number
of iterations does not exceed || and Gap( f ), with the choice ofM_

is easily shown to be(sp)'.

In summary the closure operation employed by Razband its
properties are paralleled in the proof and statement of Lemma(3.29)
used by Andree

In fact it turns out that we may impm® Andreevs lower bound
inequality by recasting his proof in terms of the functions arising from
REPRinstead of the seR's and by appealing to the impe combi-
natorial analyses of Alon and Boppana (1986). ®Welve describe
how this is accomplished.

We diall call a monotone Boolean nafik, S, an
(n,r,s,d)-schemewhere d OM,, if S has as inputsxactly the set of
monotone functions

nd ={ REPRIOAD) : OADO O CLOSEQd) }

Since CLOSEQd) is a eqular lattice this provides the normal net-
work inputs X,,. L{‘;S(f) denotes the number ofates in a minimal
(n,r,s,d)-scheme realisingf. It should be noted thatd is not
required to equaf. The quantitiesz(f) and p, retain their meanings

of Section(3.5.2). The main result to be rep is Lemma(3.30),
which can be sharpened by using Lemma(3.16), Corollary(3.9),
Lemma(3.18) and Lemma(3.20). eWcan dispense entirely with
Lemma(3.28) and Lemma(3.29) of Andvegl985) in the course of
this proof.

Lemma 3.31If f OM, such thatLP;;’(f) > (0 then there xsts some
g O M, for which,
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) pp(l,9) = pp(d, f) = 2r°(spf

i) 77a(9) 2 ma(f) - (r-1)%

i) Lr(g) < LM -1

Proof: The proof parallels that of Lemma(3.30). L&tbe an optimal

(n,r,s,d)-scheme realisingf. Consider ay gate of S whose inputs
are functionsh;, h, O ”S By definition

h, = REPROAD) ; h, = REPROBID)

for some closed subset8, and B, of U(d). The output of the selected
gae is some functiorh; * h, where *= A or V. Thus, from Corol-
lary(3.9).

Iy * hyl < max{lhy|. hal, hal + |ho} < (r - 1) (3.46)

Let h;, resp. h,, be functions whose minimal DNF consists of all
prime implicants ofh; * h, having length more than, resp. at most,
variables. For ayp h OM,, S(h) denotes the rr,s,d)-scheme
obtained by replacing the gate computihg* h, in S, by a rode
computingh. G(h) denotes the function computed I8¢h). It is obvi-
ous that

G(hy) < f < G(hy) V hg (3.47)
and sop,(1, G(hy)) = p,(1, ).
At this point the proof dierges from Lemma(3.30).
We daim the there is some functiom = REPR OC [0) O RS

for which,

0o ifx=A
hy<hs ; pp(hy hs) < O

g2r°(sp” if* =V (3.48)
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First consider *= A. In this case choosinghs; to be
REPR UA OJIIOB 0) satisfies (3.48). @ show this it is suficient to
prove that h, = hs. Now, using Lemma(3.16),

Pi(h,) = PI(REPROAD A REPROB D) n P(X,)

Pl(hs) = base(UAOOBLO = basg(An BD

Supposem O PI(h,). Then yar(m)| < s and there are monoms
my, U base(UA D ; m, Obaseg(lIB 0

for which m=m; A m,. Since, yar(m)| < s, var(m;)dvar(m) and A,

B are closed subsets dfi(d) it follows that mOA, mOB thus
mOOAN BO and so ms<hs. On the other hand suppose that
m OPI(hs). Thenm OOA N BOand yar(m)|<s. This implies the ®s-
tence of somemy; JAn B for which var(mg) Ovar(m) and hence
mUOA, mUOB by closure. It follows that
m< REPROA O A REPRUB [J and since Var(m)| < s we hae there-
fore m<h,. It has been pned that h,<h; and hs; <h, hence
h, = hg. This completes the argument for the case A.

If * =V thenhs is chosen to be
REPROAOMOBL = REPROATIBD
Since *=V,
PI(h,) = PI(REPR OA0) V REPR OB 0)) n P<(X,,)

Obviously PI(h,) O PI(REPROA L] B[)) so h, <hs. It remains to
shav that pp(hy, hs) < 2r3(sp)’.

Let M_(f) be a endom monom in whiclx; occurs with proba-
bility 1 — p and does not occur with probabilify. By observing that
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I(h,) = 0A O[] OB Uit is clear that

po(hs, hs) = Prob] M_(f) D6 (DAQOBD]

IN

2r® Gap(f)
from Lemma(3.18) and Lemmay(3.20).

We @n produce an upper bound &@uap(f) with the chosen
M_(f), by adapting the techniques of Lemma(3.26). So it ifcgerit
to shav that if C 0 U(d) and C [— E then

Prob[ M_(f) O(DEO- OC O] < (sp"

Let <E;,...,E > O{C}" which vyields E and consider the set of
monoms {F; : F, = E; — E} which are pairwise disjoint and can be
assumed to be non-emptygf. the proof of Lemma(3.26). & now
have that

Prob] M_ O(OEO- OC D]
is at most
Probf M. OOEO& ViM_ DOE O
which is equal to
Prof EOM. & ViF;, I M_]
This quantity is at most
Probf Vi F, T M_] < (lrgfanr{Prob[ FFOM_]1})

< (> ProbfxmOM_])

xOF

(whereF is the maximisingF;)
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< (sp
The last line follows from theatt that the \eents {x; 00 M_} are inde-
pendent.
The completes the proof of the claim made earlier

The remainder of the proof is identical to that of Lemma(3.30)
but making use of the fact thal,|* h,| < (r — 1)*°. The details are left
to the readero

It is immediate from this result that,
Theoem 3.20:If f OM, then

() 3 ) ppd 1) = spl
' D(r_l)zs 2rs (sp)f 0
With this expression, the explicit lower bound obtained by Amndree
(1985) is impreed to 2" %@ This is the same as that acrge in
Alon and Boppana (1986) for the same function, using the Lattice
method directly

|

3.6) Relating Monotone and Combinational Complexity

At the start of this chapter we obsedvthat the aim of studying
restricted forms of Boolean netvk is to enable meaningful results on
combinational complexity to be deed. One way in which this can
be accomplished is by demonstrating that the chosen simplified net-
work form can diciently simulate combinational networks. Corol-
lary(3.11) showed that networksep any complete basis can be much
more efficient than monotone netsks. This might seem to validate
our reasons for examining monotone network corilesince we
cannot hope to find gnpractical simulation using monotone nerks
which would work for all functions inV,,. Howeve this fact does
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not remae the possibility of there being efficient simulations for-cer
tain subsets oM,,, and it might still be possible to de& ron-trivial
lower bounds on unrestricted nemk size via similar bounds on
monotone complaty.

In this section the important results of Bewnktz (1982) are
described. In essence thesevstfor ary Boolean functionf (X,,) (not
necessarily inM,), there exists amonotone Boolean function g,
"related to" f, with the property thatC(f) = Q(C™(g)) and
C(f) = O(nC™(g)). Thus f has "lage" combinational compkity
if and only if g has "large" monotone compléy. The precise mean-
ing of "related to" will be made clear belo

The remainder of this section falls intoavgarts: in the first the
concepts of standard circuit and a special type of replacement rule
called pseudo-complementation are introduced. A result of Dunne
(1984a) is preed which exactly characterises valid pseudo-comple-
ments. A consequence of this is a method of transforming combina-
tional networks to monotone networks, but one which is not in gen-
eral efficient. In the second part weaeine a class of monotone
functions, called slice functions, which were introduced in Beitz
(1982). For these functions the transformation in the first part fis ef
cient. Subsequent work on the properties of slice functions from
Valiant (1986), Végener (1985, 1986) and Dunne (1984a, 1985b,
1986) is presented heralVe mnclude with a result generalising Ugol-
nikov (1987), from Dunne (1987), which offers a different approach to
relating monotone and combinational conxjile

3.6.1) Standard Circuits and Pseudo-Complementation

Monotone Boolean networks emplothe incomplete basis
{N\, V}, whereas combinational networks permiy danction in B, as
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a cate operation.Lemma(1.4) allows us to we combinational com-

plexity and Q-network complexity as equéent, to within a constant
factor, for ary completeQ [0 B,. So in ©nsidering relations between
monotone and combinational complexity it is feiéntly general to

focus on the complete badid\, V, —}.

Definition 3.15:A standad drcuit is a Boolean network in which the
permitted gate operations afé, V} O B, and whose input nodes are
<Xy X9 5o vy Xy X1, X0, ..., %, >. Thus standard circuits correspond to
monotone Boolean networks with gaéed inputs permitted. df ary

f 0B, SC(f) denote the number oA and V gaes in the smallest

standard circuit realisind (X,).

Lemma 3.32V f OB, SC(f) < c.C(f), wherec is some constant.

Proof: From Lemma(1.4) we ha that C;y y 4(f)<c,.C(f), for
some constant;. So gven an @timal combinational netark T, real-
ising f it may be cowerted to a{ A, V, =}-network T;, dso realising
f, T, being only a constant factor larger th@jn The only way in
which T; differs from a standard circuit is that the outputs of some
gaes of T; may be ngaed. Letg be a last gate id; for which at
least one of the wires leimg g enters a ngetion gate. Without loss
of generality suppose that the firstwires leaing g, under some
ordering, are rgated. Here Kr < ¢(g). By applying De Mogan’'s
Laws we can rearrang€, in the environment ofj using the scheme
of Figure(3.9)(i) if op(g) = A, Fgure(3.9)(ii) if op(g) = V. This
pushes the instances of - back oneelleso repeating this process
eventually ensures that getion is applied to the inputs of; only.
The final network is thus a standard circuit realisingand since at
most one gate is added for each transformation wee hhat
SC(f) <2Cp, v, 4(f) proving the lemma.c.
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Figure 39

The only way in which standard circuits differ from monotone
networks is that the former permit as inputX;s...,X,>. Suppose
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that gven any dandard circuit, T, realising f M, we wuld find a
collection H =< h,,...,h,> of monotone functions with the prop-
erty thatreplacing the inputx with h; did not alter the dct that f
was mmputed. Inthis way C™(f) < SC(f)+C™(H) so that if
C™(H) were small enough, i.& ¢.C"(f), for some < e<1 then
ary non-trivial lower bound preed on C™(f) would perforce hold for
SC(f) and thenceC(f). This motvates the follaving,

Definition 3.16:Let f OM,. We sy thath OM, is apseudo-comple-
ment for x when computingf if h can replace the inpw; in ary
standard circuit realisingf. A collection H =<h;,...,h,> is a
pseudo-complement vector fdr OM, if h; is a pseudo-complement
for x; when computingf, for each i <n.

Theoem 3.21:(Dunne, 1984a) For gnf OM,, h is a pseudo-com-
plement forx, when computingf if and only if

=00 = {6 < h(X) < £9=5X, = {x;})

Proof: Let f OM, and T be ary standard circuit computing. Con-
sider replacing the inpu of T by a nev input z to give a rew dan-
dard circuit T' realising some functionf'(X,, z). This function may
be written as,

f'Xn2)=0oo V % o1 V 2o V X Z 01 (3.49)
The functionsg, ; satisfying,

V mOPI(g,5) (X)* (x)? m is a monom computed by and
m does not depend ox.

where k)Y = xif y=1and 1 ify =0.
Thus, sincef OM,,

f(Xn) =900 V X o1 V % 910 =00 V X o1 V 910 (3.50)
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We @an nav proceed with the proof of the theorem.

Suppose thah 0O M, is a pseudo-complement fagy when com-
puting f. We nust then hee that f'(X,, h(X,)) = f(X,). If
fk=0 ¢ K(X,) then there is somep OPI( f%=°) such that
p £ h(X,). Consider computing by a standard circuit for which

PI(goo) = PI( £4°°°) - {p}

Gor = 7771
Jwo=0P
0,1=0

Clearly goo V %001 V X 010= f, but f'(X,, h(X,)) # f(X,) because
p OPI(f) and p OPI(f'). It follows that f¥=%<h. On the other
hand, suppose thdt< %=1 Then there is some prime implicapt
of h which is not an implicant of =1, In this case using a standard
circuit for which ggo = f%=°, go; = f%=1 g,,=0 and g;, = p leads
to a contradiction. So ifh is a pseudo-complement then
fR=0 << fhR=L

Now suppose thath is such thatf*=°<h< fk=1 We daim
that h is a pseudo-complement far when computingf. It must be
shavn that f'( X,,, h(X,) ) = f(X,) in this case.

f'( X,, h(X,)) < f(X,): From (3.49) and (3.50) it need only be
proved that x; h g;; < f. By definition we hae,

xhgasxhsx N fR= < f
f(X,) < f'( X,, h(X,)): Agan from (3.49) and (3.50) it is didient

to prove that g;0 < h gy, i.€ g;0< h. Now g, does not depend ox
andg,o< f, 0

O < M=% < h



Relating monotone to combinational 245
This completes the proof of the theorem.

3.6.2) Slice Functions

Theorem(3.21) offers a method of transforming combinational
networks realising ay f M, into equvalent monotone networks. By
definition, f%=% < %=1 for ary f OM,, so he interval of the
theorem is alays well-defined. Havever in general this interval does
not appear to yield efficient simulations. Bemktz (1982) gves the
first exkamples of functions with efficiently computable pseudo-comple-
ment \ectors. Thesdunctions, calledk-slice functions, are more than
just a class of functions with closely related monotone and combina-
tional complexity; as we shall see beldhey are of importance in
assessing the combinational conxgle of any Boolean function by
concentrating on monotone netks.

Definition 3.17:Let f(X,) OB, and k be aly natural number such
that 1< k< n. The k-slice functionof f, denotedf,, is the monotone
Boolean function

fiXn) = (F(Xn) A TR(Xn)) V' Teaa(Xs)

Note that f, is O for assignments tX,, in which fewer thank vari-

ables are fixed to 1; is 1 for assignments in which more kheaxi-

ables are set to 1; and is equalftdor assignments which sekaxtly

k variables to 1.

Theoem 3.22: (Berkowitz, 1982) For all f 0B, and 1<k<n,

T '(X, - {x}) is a pseudo-complement forx, when computing
fk(Xn)-

Proof: From Thm(3.21) we need only shdhat,

(f* 0 < Ti < (fh =
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(R =0 = (FR=O AT V TED (X, —{x})
< T (X —{x})
< (PP ATE VTG —{xi))

= (fi)h=?
proving the theoremp.

From this theorem we ka that the collection of functions,

Hok = <Tea(Xn = {xad) oo Teea (X = {xa}) >

is a pseudo-complement vector foryakslice function f,. The net
result, independently obtained bye@ner (1985), ®liant (1986) and
Paerson (pers. communication) st thatH,, can be computed by
efficient monotone netarks. The bound fork constant was also
derived by McColl (pers. communication).

Lemma 3.32C™(H,,,) = O(n min{k, n-k, (logn)?})

Proof: The casek and n -k being constant are similar and are left as
an &ercise. For arbitraryk, not necessarily constant, our description
follows that of Valiant (1986).

It is corvenient to assume that=2" for some natural number
m and thatk < 2™, For k> 2™ we @n build a monotone nebsk
for H,x by constructing one foH,,, and setting the extra inputs to
0. It is sufficient to construct a nedvk which is correct wheexactly
k inputs are 1. For then, denoting tieh output byy, we can use the
fact that

TIT_l(Xn _{Xi}) =Y A TE(Xn) Vv TE+1(Xn)

The monotone network realisingl, consists of tw parts, essential
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building blocks in each part armelging networks. A merging net-
work takes as input 2 disjoint lists of Booleaalues,d, ,...,d, and

€ ,...,&, where these satisfyd, <d,;, & <e, for all 1<i<r.

The network outputs a list ofr 2Boolean values, being the awnput

lists combined and sorted into ascending ord@atcher (1968) con-
structed monotone nging networks of sizeO(r logr) and depth
O(logr).

The following terminology is used in the proof. Tlk&,  net-
work has n inputs X, and n outputsy; ,...,Yy, It contains 2ogn
memging levels. The output nodes at each mergingeldorm a single
layer. Layers are labelled

{i:0<i<logn}[]{2logn-i:0<i<logn}

Layersi and 2ogn-i consist OfE lists, each list containing '2
nodes. A list, A, spansa abset, spar(A) of X,, consisting of the
. : . . n
variables {x; :r 2 +1 < j < (r+1) 2}, for some G&r< > The
lists at layers O and l@gn contain respeately a single inputx; or
outputy;. The span of the list containing, is x;. Finally we say that

the complemenof a list A, denotedA, is formed by concatenating all
lists, except forA, which are on the same layer As

Assignments to the inputX, induce Boolean values in each
list. One, self-eident, feature of the construction will be that thed-v
ues in aw list will always be sorted into ascending order

Lists will be denoted by upper case Roman letters, and their
associated layers blyayer(. .).

The network is specified by describingwhdhe lists on each
layer are formed from lists on preceding layers.
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L1) Layer(A) =0: thensparn(A) ={x;} and A is just the inputx;.

L2) Layer(A) =i, where 1<i <logn: A is the result of mging B
and C, these satisfying Layern(B) =LayerC)=i-1 and
spar(A) = spar(B) [ ] spar(C).

L3) Layern(D)=Ilogn+1: |spanD) |= g Let G be the list on layer
logn-1, which is also of size g such  that
spar(G) n span(D) = 0. D is formed by concatenating the last
Kk bits of G with g ~k s

L4) Layer(D)=2logn—-i and O<i <logn-1: let E and F be the
lists such that, layer(E) =layer(D) — 1, layer(F)=i and
spar(E) = spar(D) L] spar(F). The result of meging E and F
is a sorted list of @' bits. D consists of the middle' Dits of
this list.

L5) Layer(D) =2logn: D is the outputy; which will correspond to

THX, - {x;}) when eactly k inputs are 1.
It remains to establish the correctness of this construction.

Obsere that the first logn layers form a sorting network. If

Layer(A) =i, for 0<i <logn, then A is a sorted list of the alues
assigned tesparn(A). Let #,(A) denote the number af’s in A, where
a =0 or 1, wnnder an assignment t&, containing &actly k 1's. To
prove arrectness is is sufficient to establish that,

Layern(D) =2logn—-i A 0<i<logn
implies
#,(D) = k-#(D)

We pove tis by induction oni from logn—-1 down to O The
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inductve basei =logn—-1 corresponds to layer log+1 so (3) of
the construction applies. Ldd and G be as in (L3). Since we con-
sider assignments withxactly k 1's it follows that #(G) <k and so
from (L3) sinceG is sorted into ascending order

#(D) = #(G) + (5 K

By definition span(G)=D, hence #(G)=#(D). Obviously
#,(D) = g — #,(D) and s0

#y(D) = k- #/(D)
proving the inductre base.

Now assume the assertion aleotolds for all \alues>i, where
O<is<logn-1. We prove it holds fori -1 dso. Here (L4) of the
construction applies anB®, E and F retain the same interpretation as
there. By the induote hypothesis #E) = k—-#,(E). F is a sorted
list of the assignment tspar(F) hence #(F) = 2' — #,(F). It follows
that,

#(D) = 2 +k—#(E) - #(F) = 2 +k~#/(D)

Now spar(D) = spar(E) L] spar(F) so the result of majing E and
F consists of 2+ k—#,(D) O's followed by 1's. There ar& 1's in
total and P|=2 so #(D) must be at leastk—-2. Hence
k—#,(D) < 2. It follows that the middle '2bits from meging E and
F contain eactly k —#,(D) O's as required.

The correctness of the constructionwnéollows from the &ct
that when D ={y;}, then spar(D) = X, —{x;}. Thus if actly k
inputs are 1 thery; will become 0 if and only if; is one of the true
inputs. O
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Theoem 3.23:(Berkowitz, 1982) For ayp f [ B,:
n

SF1) C(f) < > C(f) + O(n).
k=1

SF2) C(f) < C(f)+0O(n).
SF3) C™(f,) < C™(f)+O(n.min {k, n—k, logn})
SF4) C™(f) = O(C(f)) + C"(Hnw

Proof: Recall thatE/(X,) is the function which is 1 if and only if
exactly k inputs are 1. It is obvious that

Ex =Tk Thu
and so,

f AT, = fAEPVO=fAE

Since f = k\?l f Ef and C(Ty) =0O(n) from Thm(2.20) this establishes
(SF1).

(SF2) is immediate from the definition of slice function and
Thm(2.20). Similarly(SF3) follows from Thm(3.14), fok or n—Kk
being constant, and th®(nlogn) sorting network of (Ajtai et al.,

1983) for arbitraryk. (SF4) is just a restatement of Thm(3.22). In
combination with Lemma(3.32) this yields,

C™(f) = O(C(f)) +O(n. min{k, n-k, (logn)?}) (SF5)
Od

(SF1) establishes that &(f) = w(n?(logn)?) then somek-slice
function of f has combinational compliy w(n(logn)?). Corversely
from (SF2) if some slice off has combinational complgy w(n)
then C(f) = w(n). Combining this with (SF5) we ta that aly non-
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trivial lower bound onC™(f,), where mifk, n—-k} =0(1), implies a
lower bound of the same order onC(f); and if
C™(f,) = h(n) = w(n(logn)?) for ary dice thenC(f) = Q(h(n)). There-
fore we can deduce non-trivialwer bounds on the combinational
compleity of arny Boolean function simply by proving a tgr enough
bound on thanonotonecompleity of one of its slices. Furthermore if
the combinational complexity off is lage enough, cf (SF1), then
there must be some slice function bfwhich is suitable, i.e has &
monotone complaty.

Slice functions constitute an important "partial® simulation of
combinational netarks by monotone networks. The remainder of this
section &amines some specific properties of this class of monotone
functions. In particular we consider slice functions of some monotone
Boolean NP-complete predicates, giving results frome@@her (1985)
and Dunne (1984a, 1986).aAhen consider the question of the rela-
tive ompleities of f, and f,,;. Finally we use slice functions to
prove that a natural class of monotone functionsehagual combina-
tional and monotone network comyilges.

The following encodings of three basiP-complete predicates
are used.

Xy = {x; :1<i<j<n}andG(X}) is an wndirectedn-vertex
graph.
01 if G(XY) contains aclique of size 2

n
— —clique(X?) =
2 clique(X,) BO otherwise

01 i u - N o
UHC(XY) = 1if G(Xn‘) contains aHamiltonian circuit
0 O otherwise

Note thatUHC(XY) may also written as,
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n-1
UHC(XY) = VA Xoy o) N X
X7) o Us imy o) oli+) a(n) o(1)
The final function we look at is a more general form of the encoding
of satisfiability described in Chapter(2).

Xn’m:{xij lSISn,lSjSm}
Yn,m:{yij 1SISn,lSjSm}

are disjoint sets of Boolean variablesr Fassignmentsr to X, ,, and
B 1o Y, m, R(a, B) is the m-clause CNF wer Z ={z, ,..., z,} defined
by:

n

Rla,B) = N\

i=1j

) (aj z; V By Z4)
Thus the literalz; occurs in the'th dause if and only if; =1 under

a; the literal z; occurs in thei'th dause if and only ify; =1 under

B. SAT(Xnm: Ynm) is the (monotone) Boolean function which equals
1 if and only if the CNFR(X,,n, Ynm) is satisfiable.

Supposeq is ary one of these 3 functions. Thenyatwo ds-
tinct prime implicants ofg contain exactly the same number afriv

ables. Thus ifg = g-clique, then each prime implicant gf depends

n
on 5 Enli - 1gvariables, being the number of edges in such a clique; if
g =UHC then each prime implicant @j contains gactly n variables;
finally if g=SAT(X,m, Ynm) then each prime implicant @f contains
exactly m variables. Ary f OM, such that for all p OPI(f),
[var(p)| =k is said to bek-homgeneous. Q. denotes the set dt-

homogeneous functions M,,.

We will be particularly concerned with the following specific
slice functions.
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Definition 3.18:If f 0Q,, then thecanonical sliceof f, denoted
c —sl(f) is its k-slice function.

For any f OM,, the cential slice of f, denotedCen(f), is its
n . :
E-sllce function. ¢

For any f 0Q, it should be clear thaf A T;=f and thus
c-sl(f) = f V Tg,,. The canonical slice appears to berw similar
to f and so for the three functionsvegn aove it would seem to be a
natural candidate to examine as a potential "hard" slice function.

Lemma 3.33Let N = r—; = XYl.
i) C™(c- sl(g —cliqgue))=0O(NlogN) (Wegner 1985)

i)  C™c-sl(UHC))=0O(N?) (Dunne, 1986)

i)  C™(c-sl(SAT))=0(nm(lognm)?) (Dunne, 1986)

Proof: Let f be aiy of the three functions alke and k its canonical
slice. By definition, f,=f A T, V Tg,,;. Snce f, is 0 (resp. 1)
wheneer less than (resp. more thak)inputs are 1, and equal tb
wheneer exactly k inputs equal 1, so for gnfunction g which is
equal tof, for assignments containingaxtly k 1s we hae g, = f,.
Thus instead of using we may substitute gnfunction, g, which
agrees withf on inputs havingactly k 1s.

n n
i) Let k= 5 (E — 1) and choose to be the function,

Th (TIAX®) L., T ™))
where, X" = {x; : 1< j#i<n}

Clearly this function can be computed wi@®(N logN) mono-
tone gates. That the substitution is correct fedlofrom the easily
established dct
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. . n . .
An n-vertex graph with eactly k edges contains alg-cllque if and

: n . n
only if at Ieasti vertices hae degee at Ieasté -1

i) Let UCON(XY) be he monotone Boolean function which is true if
and only if G(X}) is connected. By using a transii dosure algo-
rithm, applied to the adjacencmatrix of G(X.) it follows that
C™UCON(XY)) = O(N?). Using X" as in (i) we choose the substi-
tuting functiong to be,

g(x¥) = A TIHXO) A UCON(X)

That this is correct follows from the fact that

An n-vertex graph with &actly n edges contains a Hamiltonian circuit
if and only if every vertex has degree at least 2 and the graph is con-
nected.

i) Let,
CLi = {Xli o Xnis Y ""1yni}

ZPi = {Xi11""xim}
ZNi = {Yi1,---, Yim}

The substituting functio(X,, , Y m), agreeing wWithSAT(X, n, Y m)
when &actly m inputs are 1 is gen by,

T —on Of +m m [
ii\l TT'(CLi ) A Elz\l T1(ZP) A TT(ZN)

This epression encodes the condition that each of nthelauses of
the CNFR(X,m, Ynm) contains at least one literal and at most one of
the clausesZ), (z) occur inR for each I<i<n. It is easy to see
that aly m-clause CNF containingxactly m literals is satisfiable if
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and only if it meets this condition. The upper bound on
C™(c—sl( SAT) now follows since the instances ofgaion, used in
the definition of g(X,n, Y,m) can be eliminated using (SF5) of
Thm(3.23). O

It is reasonable to conjecture that all tN€-complete problems
above require exponential size combinational netks and so we
expect each of them to Y& osme hard slice function. Lemma(3.33)
has shwn that the canonical slice is not a suitable candidate. The fol-
lowing theorem does identify a specific slice function which is "proba-
bly" hard, in the sense that the corresponding decision problétR-is
complete.

Theoem 3.24:(Dunne, 1986)
n
)] Cer(z - clique) is NP-complete.

i)  CenUHC) is NP-complete.

i)  Cen(SAT) is NP-complete.

Proof: All three results imolve constructing a projection from the cen-
tral slice of a larger instance @ onto g itself, thus in terms of
Defn(2.1), g is a p-projection of Cen(g); here g is one of the func-

tions in the theorem statement. The projection is constructed so that
exactly half of the arguments are 1 foryaassignment. W use e(n)

n . N ,
to denote the alue > In the proof of (i) and (ii) we assume without
loss of generality that is an exact multiple of 4.

i) Any assignment toX" defines somer-vertex graph G. Given any
n-vertex graph G we construct a ®vertex graph H with the follow-
ing properties:

. sn . : . : n .
P1) H contains a?-chque if and only ifG contains ané-cllque.
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e(5n)
2
: n . .
Clearly if H can be constructed then we can compfltecllque(x,‘f)

P2) H has aactly edges.

since the method of constructirtg using G(X\) defines ap-projec-
. 5n . n _
tion from Cer(7 - clique) onto 5" clique

Given G, the m-vertex graph H is constructed as foles:

H consists of 3 graphss with vertices{v; ,...,v,}; G with
vertices {u, ,...,u,} and G~ with vertex set {w, ,...,ws,}. G is the
complement ofG with respect toK,, i.e the graph such that

{Ui, UJ} ] E(G) Il {Vi1 Vj} 0 E(G)

The \ertices{w; ,...,W,,} form a J-clique in G". Additionally G’
% +n

contains edges not in this clique, but does notvéaa

(2n +1)-clique. Finally there are edges
{wi,vj} V1<i<2n, 1<j<n

That G" can be constructed is an easy consequenceudi$ Theo-
rem, see e.g (Berge, p. 280).

Obviously if G contains anz-cllque then in conjunction with
o 5n . .
{wy,...,wy,} this gives a7-cllque in H. On the other hand iH

: 5n : . . ~
contains a?-cllque then this cannot vnlve any vetices of G,

which is not connected t& or G', and can contain at mostaer-
tices of G', since this does not contain an(21)-clique. It follovs

Sn n
that ary ?-clique in H uses at Ieasté vertices of G and henceG

contains ang-clique. Thus property (P1) holds &f.
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Counting the number of edges hh yields;

IE(H)I

[E(G)| + [E(G)| + |E(G)| + 2n?

7n® +n e(5n)

2
So property (P2) holds also and part (i) of the theoremwisllio

+2n° =

e(n) + e(2n) +

i) In the same manner as (i)vgn G, an n-vertex graph, we con-
structH, a 7-vertex graph, for which,

P1) H contains a Hamiltonian circuit if and onl¢ contains a

Hamiltonian circuit.
e(7n)
2
As before this implies thdHC is a p-projection ofCenUHC). H
is constructed as follows from avgn G.

P2) H has eactly edges.

H again consists of 3 graph& with vertices{v,,...,Vv,}; G
with vertices{u, ,...,u.}; and G~ with vertices{w, ,...,wg,}. G is
the complement oG with respect toK,. H contains also the folle-
ing edges,

B{Vl’ up}

ofu,w} V 1<i<n
O{w;,u} V 1<i<n
D{Wi’wi+1} Y n<i<bn
O {wsn, i} Vv O (vy)
5 Wsn, t} Y Uy OT(wy)

OooOooOoooooOooO

Here [(x) is the set of vertices adjacent xoin G, if x=v;, or in G
if X=uj.
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47n°-33n-4

4
edges. It should be clear thet has a path fronv; to ws,, which

path contains all theevtices inG andG™ and so has 16 edges. From
the construction oH we have,

In addition to theseéS™ contain an xtra B(n) =

[E(H)| = [E(G)I+|E(G)|+|Edges inpath v; to Wsy|+n—1+5(n)

The n—1 term is the total number of edges added betwsgnand
vertices adjacent to; or w;.
e(7n)

2

So H contains the correct number of edges. It remains to establish
that H has a Hamiltonian circuit if and only & does.

= en)+7n-1+p(n) =

SupposeG contains a Hamiltonian circuit,
V), — XOM(Vy) e - yOr(vy) — vg

By the construction there is a Hamiltonian patR, joining all the
vertices {v;, V(G), V(G")}, which path commences at and termi-
nates inwg,. Thus,

is a Hamiltonian circuit inrH. On the other hand suppose thdtcon-
tains a Hamiltonian circuit. ¥ daim that there are exactly twedges
in this circuit which connect aevtex of G to ary vertex of G or G,
and that one of these edges{vs, u;}, the other beingdws,, v;} for
somev; T (v;). Obviously there must be at leastdvedges between
V(G) and the other vertices iinl. Since there are exactly twvertices
in V(G) L] V(G") adjacent to vertices o6 and each ertex can occur
only once in a Hamiltonian circuit this assertion is immediaiéws
ary Hamiltonian circuitC in H must be of the form,
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V1<—>ul<—>C14—>"'
"(—)CGn_li—)W5n4—)X4—)d3(—)"'

e Oy - Y- vy
wherec; OV(G) LI V(G”), d; OV(G) and x, y O T (vy).
It follows that
Vi = X -l — - —-dy, >y -V

is a Hamiltonian circuit inG. This establishes part (ii) of the Theo-
rem.

(i) For this case, we construct aprojection fromCen(SAT) onto
SAT by forming a 3n clause CNFQ over the literal setz, []U,
being,

{zy,....2,2Z1,...,Zyy Uy ...y Up, Og .o o, O}

Q is defined using then-clause CNFP = R(X,, i, Ynm) in such a vay
that Q contains ractly 6hm literals (i.e half the number of possible
literals) and is satisfiable if and only Ff is.

Given P, which is anm-clause CNF wer the literal setZ,,, Q is
given by,
Q(Z,, Uy) = P(Z,) N PcomdZ,, Uy,) A P (U,)

Pcompconsists ofm clauses; the'th dause contains all the literals in
U, and additionally all the literals which do not occur in ftn
clause ofP; P* also consists ofn clauses each of which contains all
the literals ofU,. Now if P is satisfiable, then certainl is; simply
setu; = 1. If Q is satisfiable, then since does not depend on the lit-
eralsU,,, any assignment which satisfie® must satisfyP also. SoP
is satisfiable if and only ifQ is. It is immediate from the construc-
tion thatQ contains exactly ®m literals and this establishes (iii) and
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the theorem.o

It is a trivial matter to generalise this to,

. n .
Corollary 3.15:V O0<e<1, if g O{ 5" clique, UHC, SAT } then the
eN-slice of g is NP-complete,N being the number of inputs @f O
We aw in Lemma(3.33) that the canonical slice, which is
superficially that slice function most similar tb, may be easy to
compute. In contrast, Thm(3.24) presents some evidence that the cen-
tral slice is likely to be of superpolynomial comytg for some spe-

cific functions. The next result considers the relation betwg®f,)
and C™(f,.,).

Theoem 3.25:Pat (i): (Dunne, 1986); Part (ii) (Agener 1986).
i) Let f OM, such thatc —sl(f) exists and is thé&-slice f,. ¥V c>1,
C™( fiic) is at nost

n2 +1+ Cm(TE+c) + Cm (TrI2+c+1) + nCm( fk+c—1 )
i) Let
m-10
[k -10

IOgun—lm
[k - 100

I(k, n) =

There exist monotone Boolean function§,[0M,, for which the
canonical slice is th&-slice f, and such that,

C"(f) = C(f) = Q(I(k,n))
but
C"(fsc) = O(nlogn) V c=>1
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Proof: For (i) it is sufficient to construct a suitable substituting func-
tion for f, in the same way as Lemma(3.33). let: X, - {0,14"
be gven by,

E{xl,...,xi_l,o,xiﬂ,...,xn} if x=1
D{0, 0,0,..,00 otherwise

We then hae tat f..(X,) is

hn D ]
%——i‘l fk+C—l(hi (Xn)) D/\ TE+C(XI‘]) O Vv TE+c+1(Xn)

i.e f(X,) is 1 when &actly k +c inputs are true if and only if for
some k+c—-1 dze subset of the true inputd, is 1 when gactly
thesek + c—1 inputs are true. This holds becauserg prime impli-
cant of f contains gactly k variables. Part (i) n@ follows since,

hi(Xn) = XX, X %, 0% X %0 X
which has monotone compigy n— 1.

For (ii) let S, be the set ok-slice functions,f, such that all
monoms of lengthk which do not depend or, are prime implicants
— 1|:|
-10
X, and there is a bijese mapping between subsets of these and func-
tions in S ,. Corollary(2.2) establishes that almost all functions in
S«n have wmbinational compbaty Q(l(k,n)) proving the laver
bound. Nev consider f,,. for ary ¢ > 1. From the definition of slice
function it is sufficient to establish thdf,. = T,.. Now certainly if
fewer thenk +c inputs are true then both of these function are 0. If
at leastk + ¢ are true then there is a subget ,...,x,} of these true
inputs which does not contairx;. From the definition of f,

of f. Clearly there ar% monoms of lengthk which do contain
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X, % < f and so both expressions are equal in this case also.
The previously established upper bounds ©nnow complete the
proof. O

At present it is not knen if the techniques of Section(3.5) can
be made to work for slice functions. Oneaywin which we might
simplify the process of deting non-trivial lower bounds on combina-
tional complexity is by finding other classes of monotone functions
with asymptotically equal monotone and combinational coxitgle
Dunne (1985b) shws that "almost all* functions iQ, -, for k con-
stant, form such a class.

Let Cm*(f) denote the minimal number of monotonates in a
network realising f with inputsX, [] {f,,..., f,}, and C" the analo-
gous measure for combinational conxle We know from
Thm(3.23) (SF1) thaC’(f) = O(n) for all f OB,. From the same
theorem it also follows that

C™(f) < C(f)+O((nlogn)?) +C™ ()

So for ay f OM, for which we can pne C" <e C™(f), for some
0<e<1 we have C(f)=Q(C™(f)), provided thatC™(f) is large
enough.

Lemma 3.33Let k=1 be onstant andQy, denote the set afi-input

m  output Boolean functions such that  for each
F=<f',...f">0Q, we have fI0Q,, for all 1<j<m. As
before l1etC™(Qp)) denote the maximal monotone complexity ofyan
function inQy. Then,

) C™(Qhy)=0(n*logn)
i) C™(Qnx) =nC™(Qni)
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i) C™(Qnuk) £C™(Qny1) +2n-1
iv) For k=2, C™(Q,)=0(n“logn).

Proof: (Details omitted)i) is given by Savage (1974) and (ii) is o>
ous. (iii) is from Wgener (1987) and\) immediate from (i-iii). O

Theoem 3.26:(Dunne, 1985b) Lek ON and Q, -« U M, the class
of (n - k)-homogeneous functions. Then V f 0Qpn«

C™ (f) = O(n“Ylogn).
Proof: Let f 0Q, . Clearly
f=fANTL, = FANT, V T}

So it is sufficient to pnee that for all 2< g<k

k-1

C™(f V Thiaq) S C™(F V Thyuqa) +O(—) (3.51)

logn
As a result of this it will follev that f can be computed from its
canonical slice function,f,, using only O(n**/logn) extra cates.
Since f,_ is counted at no cost in the meas@8 this proses the
theorem.

We dall actually pree a #$ightly stronger result than (3.51),
namelyV 2<qg<k,

k-g+1

C™(F V Thaeg) € C™(F V Thoqs) + O(-—) (3.52)

logn

Let S, be an optimal monotone network realisingV T, y.q-1-
This function may be written as,

fVp Vp, V.-V p

where for eachp;: p, £ f.
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Recall that for ap monom p, x(p) is the disjunction ver all
variables of X,, which do not occur irvar(p). We daim that for all
prime implicantsm of f, and all p; it holds thatm< y(p;). This
assertion follows easily from the fact that< p, hence there is some
x OX, such thatm<x< x(p;). Let S; be the network which com-
putes,

t
(fV Thkega) A i/:\1 x(pi)
From the preceding gumentS, realisesf V Ty,

t
_/\1 x(p) is the dual of ak — g+ 1-homogeneous function, and so
1=

from Lemma(3.33)(iv) this can be computed by a monotone anketw
containingO(n*""Y/logn) gates. This prees (B) and the theoremo

Corollary 3.16:1f f 0Qp -, for whichC™(f) = w(n“Y/logn) then
C(f) = Q(C"(f))

Proof: From the theorem it follows that
C™(f) < C(f)+0O(n) +O(n“/logn)

Noting that @, | = 2%, from Corollary(2.2) we he hat almost
all f 0Qp,« have combinational compbaty Q(n*/logn) thus almost
all functions inQ, ,—« have nonotone compleaty w(n“logn). o

In contrast to this result we v&
Theoem 3.27:(Dunne, 1985b)

i) Let n be &en and X, be partitioned inton/2 setsX? defined by
XY = {x,xn, for 1<i<n/2. LetJ,OM, such that for allf 0J,
2

each prime implicant off contains exactly oneaviable from each
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partition classx?. Then for almost allf 0 J,

. l:Qn/ZD I:Qn/ZD
m - = U m — =~
()= Uono © (f) Yono
ii) There exist functions f 0Q,,«, for k constant, such that
k-1
ans =
OognC

Proof: Omitted. O

C™(f) = Q

Ugolnikov (1987) uses a different approach to the problem of
relating monotone and non-monotone bases. Consider the 3 bases

{ep 7 {w, 0} 5 {x, 0,0

where y is the 3-input majority function.

The last basis is logically complete and the first realizestly
the class ofelf-dualmonotone Boolean functions.

Ugolnikov proved that for aly Boolean function,f, computable
in the basis{y, 0} there existed a self-dual monotone Boolean func-
tion, g, such thatg < f and for which

C,(9) = Cmy(f) (3.52)

and furthermore, for gnsuch f and ay self-dual monotone function,
g such thatg < f it holds,

Cipoy(f) £ Crung(f)+Cu(g)+2 (3.53)
Given this result suppose that(X,,) is a monotone Boolean

function of n variables X, =<x;,...,X,>. It is easy to see that the
function F(y, z, X,,) defined by

F(y,zX,) = yA(zV £(X,)) V zA f(X,) (3.54)
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is self-dual and tha€™(f) < 4C,(F). Now since F is self-dual it
follows that the only self-dual functiog such thatg < F is F itself.
Hence,

Cop(F) = Cu(F)2 C{”+J}(f) (3.55)
(3.55) is the form stated in Ugolmk (1987) and as such does
not gve a drect relationship between the monotone complexityf of
and the combinational complexity &f. Howeve such a relation may
be obtained by widening the scopegfn (3.53); thus ifg< f and g
is computable by the basfg, 0} then

Cipoy(F)=Cpg(f)+Cny(g)+2 (3.56)

This, combined with (3.55), ggs a bwer bound on the combinational
complity of F in terms of the monotone comgpity of f and an
upper bound on théu, 1} compleity of g.

In this section we generalise inequalities (3.52) and (3.53) to
other non-monotone and complete bases. Ugolfskresults connect a
monotone basi®; ({x}), an extension 0€; by a basis of non-mono-
tone functionsQ, ({U}), and an extension of the incomplete basis
Q, [1Q, by a constant functiom ({0}) to a mmplete basis. Using
Ugolnikov's proof of (3.52) and (3.53) as a foundation we establish
sufiicient conditions on €;,Q,,a > which allov analogues of the
inequalities (3.52) and (3.53) to be ded. Belov we introduce nota-
tion used subsequently

For any basis Q [J ﬁ B, of constant arity Boolean functionsQ]|
i=0

will denote the set of functions which can be computed by ar&sy
ove the basisQ. For a [0{0,1} the relation<, is defined wer
f,g OB, by,
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Finally 6, O M, if the functionxV yif a =0, xAy if a =1.

Definition 3.19: Let Q; and Q, be disjoint bases and {0, 1.
<Q,,Q,,a > is sympathetiaf and only if each of the follwing con-
ditions holds.

i) Q, is monotone and contains a non-constant function of at least
two arguments.

i)  Q, contains only non-monotone functions.

i)  The basisQ; [1Q, is not complete.

iv)  The basisQ; [1Q, [1{a} is complete.

v) VYeOQ, H¢ 0O[Q;] such that Co(¢)<1 and for which
U<, 0.

vi) 6, 0[Q,1Q,]. -

Theoem 3.28: (Dunne, 1987) extending (Ugolmil, 1987) If
<Q,,Q,, a > is ympathetic then for alf O[Q, [1Q,],

a) Thereexists g [ Q;] such thatg <, f and for which
Ca,(9) = Co0,(T)
b) ForallgOd[Q;] such thatg<, f
Co,0a,(f) £ Co 0,0 f)+Cq(9)+Co,a,(8,)
c) ForallgO[Q,[]Q,]such thatgs<, f
Co,00,(f) £ Co 00,0 f)*+Cq 00,(9) +Cq,00,(6,)
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Proof: (b) and (c) emplp identical arguments so only the stronger
result (c) is gren in detail.

a)Let f O[Q,[]Q,] and S a retwork over the basisQ, [ ] Q, real-

ising f. Further letg denote the number of gates $1whose opera-
tion is a function inQ,. We sow that for all =0, if Sis a
Q, [1Q, network realising some functiorf and usingq Q, gaes,

then there is a netwk S; realising a functionf;, such thatf, <, f,

and which uses at most mgxq—1} Q, gdes. Clearly this is st

cient to pree @).

If g=0, then the result is tial since f [ Q;], so choosing
g= T gives the bound in this case. So suppose the assertion of the
preceding paragraph is true of all appropriate networks containing at
mostq -1 Q, gaes and letS be a netwrk realising f and usingq
Q, gdes. Letv be a "last"Q, gae in S, i.e a gate all of whose
descendants ar@; gdes. Letvy,V,,...,v, denote the input gates of
v, these computing functionsy, h,,....h, in [Q,[]Q,]. Further
more lety [01Q, denote the operation of so hat v computes a func-
tion h=¢(hy,h,,...,h). Now from (v) of the definition of sympa-
thetic there is some functiop [ Q; ] such thatCq (¢) <1 and for
which ¢ <, 9. Let S; be the network obtained fror8 by replacing
the g-gate v with ¢(hy,...,h) and f; be the function realised by
S,;. Since all descendants of were gates fromQ; it follows that
f1 <, . S contains at mosg—1 Q, gaes and this complete the
proof by induction of (a).

c) Let f,gO[Q;[1Q,], with g<, f, S; be ay Q,[1Q,[1{a}
network computing f and S; any Q, [1Q, network realising the
function g. Replace ap occurrence of the constant functienin S;
by the output of the netwk S, i.e the functiong. Let the resulting
network be denotedS, and f; the function which it computes. &V
claim that f =6,(f;,g). It is suficient to consider the case =1
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only, =0 following by a similar agument. ® se thatf = f; A g

consider the tw possible values whiclg can assume on wressign-
ment . If g(m)=1, then S, behaes eactly as S; hence
f(m) = fi(m). On the other hand suppose tigatr) = 0. Then by the
choice of g and definition of<,, we have f < g, hence f() =0.

The upper bound asserted by (c) isvnonmediate. O

Corollary 3.17: Let Q,={A,V}OM, and define Q,0B,, for
a {0, I} to be ay subset of,

{m,0,0} fora =0
{@,—lD,ﬂ D} fora=1

<Q,,Q,,a> is gmpathetic and for all f OM, such that
Cqo,(f)=0(Cq,q,(f)) it holds that,

VgO[Q, UQ,] withgs f

CleQaD{a}(f) = Q(Cgl(f)‘cnlﬂg,,(g)) |

The basis{x, [0} has some interesting properties with respect to the
guestion of realising the disjunction of 2 functiongerodisjoint sets

of variables. As we noted earlidor complete bases, there exist pairs
of functions, f and g, for which C(f V g)<C(f)+C(g). No
explicit examples of such behaviour are known and whether such sa
ings are possible for monotone networks remains an open question.
For the basis{x, [0} we can exhibit a superpolynomial reduction in
complexity.

Theoem 3.29:Let f OM, with agumentsX,, and lety, z, u be
Boolean variables not contained iX,,. Define the function

F(Xn Y, z) by
F(Xny,2)=y(zV f)V (zf)
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and the functiorG;(X,,Y,z,u) to be,
G:i = uV F(X,,V,2)
i) If
Ciuoy(F)<rCyny(Gy)

for some functiorr :N - N, thenC(f)=Q(C™( f )/r(n)).

ii) Thereis a function f OM, for which C;, 1;(F) is superpolyno-
mial, but C;, 13(Gy) = O(n*°).

Proof: (i) is easily dened using (3.55) and (3.56) (withg=u)
together with the fact thaBy is easily computable gen f. For (ii)
the construction is explicit. Len=m? and f OM, be the Perfect
Matching function,PM, considered in Section(3.5). From (3.55) and
Theorem(3.18) we ha

C{y,D}( F ) > rlclogn

for somec>0. But from (3.56) and theatt thatf has combinational
complexity O(n*®), cf Corollary(3.11), it follows that

Ci.0y(Gr) =0O(C(Gy)) = O(n*°)

So we hae an explicitly defined function,F OB,,, with aguments
<X,,Y¥,z> which has superpolynomial complexityvep the basis
{©, 0} but such that the functioruV F has polynomial compieaty
over the same basisa

Bibliographic Notes
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an algebraic interpretation of replacement rules. McColl (1978a)
proves an pper bound ofn+1 on the depth of monotone netvks
realising functions irM,,.

Apart from those presented afeothere are a number of results
on the compleity of sets of monotone functions. Efficient construc-
tions of sorting networks are vgn in (Ajtai et al., 1984) and
improvements to this by Paterson (1987).weay bounds on arious
functions may be found in & \Moorhis (1972); Lamagna (1979);
Lamagna and Sage (1974); Pippenger and Valiant (1976); arai-T
jan (1978). The hver bound on monotone matrix product froratd?-
son (1975) and Mehlhorn and Galil (1976) imya® an arlier result
of Pratt (1975).

For single output functions, Long (1986) vgs a @mplicated
proof thatC™(MAJ,) = 4n. The results of Razbovoconcerning clique
functions can be used to obtain lower bounds on the monotone com-
plexity of SAT and Hamiltonian ycle; Skyum and Valiant (1985) dis-
cusses monotone projections between thasslies. Jukna (1986) and
Andreey (1987) outline alternate methods of deriving »g@onential
lower bounds. A conjecture of Schnorr (1976c) which woulgeha
yielded similar bounds has since been refuted iegaiver (1979).
Razbor@ (1988a) examines the possibility oktending the approxi-
mation method to networksver complete bases.

A number of papers consider thewsy of nedion in various
senses. Ngion limited networks beingxamined in Fischer (1974)
and Marlov (1957). Skyum (1983) considers an interpretation in
which ngaion is eponentially powerful for computing Boolean func-
tions. Valiant (1979b) has shown thatge#on is exponentially poer-
ful for computing arithmetic functions. Dunne (1985cyegi a nore
general characterisation theorem for pseudo-complements which based
on ideas first used by &fner (1986).
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Alon and Boppana (1986) also peo results on the relat
numbers of A\ and V gaes required to compute monotone functions.
Specifically thg show that if f OM,, can be computed by a monotone
network containingk>1 A-gates, thenf can be computed by a

k-10

monotone netark, S, with k N\-gates anc[:’“(S)Skn+D 2 D—l.

Galibiati and Fischer (1981) consider realising pairs of mono-
tone functions on disjoint sets of variables, proving that
C"({f,g})=C™(f)+C™(g). Lenz and Wegener (1987) xamine
the number of/\-gates required to compute functions @3 ,, devd-
oping the work of Mirwald and Schnorr (1987) on the conjwecti
complity of quadratic forms, i.e ringsum expansions in whigbre
product is of length exactly 2. Finally ®wst (1977) has shown that
monotone sequential machines (i.e monotone circuits with feedback
loops) may be more efficient than monotone oeksw.
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Chapter 4

Formulae

But let your communicationoe, Yeg Yeg Nay, Nay.

Matt. v. 32
for whatsoever isnore than theseeometh ofeuvil.

The compleity theory of realising Boolean functions ly-formulae,

as introduced in Defn(1.3), has its roots in the study of relay-contact
networks and their properties. The mathematicakstigation of relay-
contact schemes ag originated, independentlpy Shannon (1938) in

the U.S, Shestalk (1938) in the Sdet Union, and Nakasima (1936)

in Japan. So this restricted model has a history as old as, and to some
degree independent of, the theory of combinational coxitgle
Although the theory of relay-contact circuits is no longer technologi-
cally relevant, the facts that combinational nerk depth and formula
depth are equéent; that lever bounds on formula depth may be
deduced from similar bounds on formula size, cf Theorem(2.4); and
that Q-formulae are a model to which a considerable literature has
been deoted, justify a substantial treatment of it. The aim of the pre-
sent chapter is to offer such a presentation.

In Section(4.1) the lwer bound of Riordan and Shannon (1942)
on the formula size of almost all Boolean functions igmgi This is a
counting argument similar in spirit to Theorem(2.6). In the same sec-
tion the asymptotically matching upper bound from Lupa(k®62) is
derved. The k, s)-Lupanw decomposition, the description of which
preceded Theorem(2.7), is employed to the same effect as in the anal-
ogous upper bound on combinational corripe

Progress in obtaining nonaral lower bounds on formula size
has been considerably more adeed than with combinational
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complexity A number of general techniques, applicable to formulae
ove the basisB, have leen established. Section(4.2) describes the
most important of these: the technique of Neciporuk (1966) and fur
ther applications of this from Harper and v&ge (1972), and
Schirfeld (1983); the methods of Hodes and Speckl1968) as
enhanced by Pudlak (1983); and the approach of (Fischer et al.,
1982).

Section(4.3) considers further the relation between formula size
and depth. The main results presented are size/depth tfade-of
obtained by Commentz-Walter (1979) and (Commentz-Walter and Sat-
tler, 1980).

In Section(4.4) we consider somdi@ént constructions of fer
mulae for specific Boolean functions, in particular for symmetric
Boolean functions.

Section(4.5) concludes this chapter and looks at formwae o
bases other thaiB,. The techniques of Khrapchemk1971a, b) and
Andrees (1986) are described. These yield lower bounds on formulae
ove the basig A, V, -}

4.1) Bounds on Formula Size for aimost all Boolean functions

Formulae restrict gates to wWiag fanout at most 1, thus in
graph-theoretic terms, the networks may be viewed as trees in which
internal nodes are labelled wittatg operations and the es by lit-
erals and constants; usuallweal leaves ae labelled with the same
literal. Let X,, denote the set of literals, ,...,%,}. Regading formu-
lae as trees allows us to associatecadwof length 2(F) + 1 over the
alphabetX, [ ] X,, [ ] B, with ary formulaF as follows,

Definition 4.1: PREFIX: Formulae - {X,, X,,, B,}" is the (injecte)
mapping from formulaef, onto words of length 2(F) + 1, defined
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inductively by:
P1) If F=x or F =% then PREFIX(F) = F
P2) IfF=F,;* F,, where *IB, then,
PREFIX(F) =* PREFIX(F,) PREFIX(F,) e

Now as a onsequence of Lemma(1.3yeey gate in an optimal
formula over the basisB, depends on both its inputs. Thus minimal
formulae do not contain projections or constant functionsases gper
ations.

Theoem 4.1:(Riordan and Shannon, 1942) For alk 0 and n suffi-
ciently lage. For almost allf [0 B,,

(1-¢£)2"

L(f) > logn

Proof: We estimate the number of distinct optimal formulaesrobasis

B, which contain at mosM gaes. As in the proof of Theorem(2.6),
: 1-¢)2"

we can she that if M < % for ary € >0 then the number of

these iso(|B,|).

Let L(M) denote the number of distinct minimal formulae con-
taining at mostM gaes andl(m) the number withexactly m gates.

M
Obviously L(M) = > I(m) so we reed only bound the quantitym).
m=0

With Defn(4.1) we can associate a unique word{Xq, X, B,}*™*

with ary formula of sizem by using the mappind®REFIX Now for

ary formula F of size m, PREFIX(F) contains &actly m operator

symbols, i.e fromB,, and eactly m+1 literal symbols. There are at
[2Zm+ 1]

most Om O choices for the positions of operator symbols, 10
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choices for each operation and @hoices for each literal. Therefore,

m+1 —/ 2 23™210Mpm*t
I(m) < (2 SAOm(ZI’])mJ'1 < D ——
O m T V2m+1
Hence,
M —/2 M 2°™Z10"n™!
L(M) = I(m) < v— —
(M) mgo()~ 7Tm§O V2m+1
which is

—/2 23M+210M nM+1
S v = < 25M nM+1
T

V2M+1

where J is some constant. It is wo easy to verify that if
1-¢)2"
M < —— then
logn

(1-£)2" + o(1-e)2"

L(M) <2 logn

+logn

which is o(|B,|) as requiredm

Lupano (1962) gves a onstruction which asymptotically
matches this lower bound. It is based on the wWohlg result of
Finikov (1957) which prges an yper bound on the formula size of
Boolean functions wer X,, with exactly r satisfying assignments.
Obviously ary such function, f, has formula size at most
r+r—-1=rn-1. Finikov's result improes this for "small"r.

Lemma 4.1:(Finikov, 1957) Let f 0 B, such thatf has eactly r sat-
isfying assignments. Then

L(f) < 2n-1+r21

Proof: Let {a®,...,a} 0{0,}" be the set of assignments such
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that f(a®)=1 for each ki <r. We may construct a table with
rows andn columns, as belo

agl) aél) ai(l) ar(11)
d@ [ @ [ a@ | @
a0 [ ] a® o |l
a:(Lr) O’g) ai(r) ar(]r)

In this table o’ is the value gien to x by a. Now for ary
B=<by,...,b>0{0,1" let MATCH; be the subsefi, ,...,i,} of
{1,2---n} such thatV i; 0 MATCH,

al) = b, foreachl<ksr

i.e those columns which equal tihduple g when transposed into a
row vector Clearly if g#y then the setMATCH; n MATCH, is
empty With t denoting

|{ 0{0, 3 : MATCH, # 00 } |

<pBi Bo,...,B > wil be some ordering of those-tuples, B, for
which MATCH, is non-empty To aoid an excess of subscripts
MATCH will be used instead oOMATCH,;. We further simplify the
notation by assuming thalATCH consists of a contiguous sequence
of indices, thus MATCH, ={1, 2 ,..., 0.},
MATCH ={qg;_y +1,...,q;}. This could alays be arranged by

t
renaming wariables. Itshould be clear thaf [MATCH|=n.
i=1
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We @n nav define two Boolean functions \@r X,,, using the
table abwe and the partition of its columns induced by tge Con-
ventionally g, = 0 below.

row-traverséX,) = N (A x; V. A X
i=1 =01+l j=0i1+1
| 06) = VA
ast-co = Xq.
(Xn) i=1 j=1 i

We rmow havethat
f(X,) = row —travers€X,) last— col(X,)

since

t Gi Qi rt L0
row-traverselastcol = A (A x; V. N X)(V AXq )
i=1 j=gi+1 j=0i-1+1 i=1j=1

ot t

i di
] -
(AXal A (A %V A %)

i=1 ] =Qj-1+1 [=qj-1+1
rot dk a
VA A X
i=1 k=1 I=qy-_1+1
rn a|(<i)
= VA XK = f(X,)

HenceL(f) < L(row —traversg + L(last—col) + 1. From their defini-
tion,

t
L(row—traversg < t—-1+2> (IMATCH|-1) +t
i=1

2t-1+2(n-t) = 2n-1
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r
L(last—col) < r-1+3 (t-1)
i=1

=r-1
By negaing variables if necessarywe @n alvays guarantee that
<1,1,...,1>satisfiesf and sot < 2. This praes the lemma.o

Finikov's result can also be used to impeothe boundrn -1
for "large" r.

Corllary 4.1: Let f OB, be as in Lemma(4.1) withr = (logn)?.
Then

2nr
L(f) s —(1+
(1) < {5gn L+ &)
where ¢ is such thatlim &(n) = 0.
n - oo
Proof: Let {a® , ..., 2"} be the satisfying assignments bfand par
tition these intoq blocks, B, ,..., By where Bj|=d for 1<i < q and

|B4l<d for some d to be fixed subsequentlyso q< [r/d O+ 1.
Clearly f(X,) = i\=q/1 gi(X,), whereg; is satisfied by xactly the assign-
ments inB;. Applying Lemma(4.1),

L(f) < @2n-1+d29Yg+q = (2n+d29Y)q

Fix d =logn - 2log logn. We then hae,

2nr ron+ rn(logn — 2log logn)
logn - 2log logn (logn)?

L(f) <

and this is no more than

2nr SH clogn N logn - 2loglogn]
logn r (log n)? 0
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as required.O

With these tw results we can mo derive an upper bound on
L(f) for ary f OB,,.
Theoem 4.2: (Lupano, 1962) V f OB, V ¢>0 and n sufficiently
large,
(1+¢&)2"

L(f) < ogn

Proof: Consider the K, s)-Lupano decomposition off, as ascribed
above.

f(X,) = \d/ V [ row-match,(Y) A col - match,(Z) ]

i=Llv#0
where
row — match,(Y) = V 9,(Y) \ v(a)
a 0{0,3¥ n R
col — match,(Z) = V 05(2)
B O{0.3" n Py,

SoL(f) is at nost

% > (L(row - match,) +L(col - match,)) +2d(2°-1) -1

i=lvz0

From the definition ofow — match,, it is immediate that,

IMa

2> L(row-match,) <d(2°-1) (ks—1)

i=Llv#£0

For an pper bound orcol — match, we proceed as follows. Let

CM)=KvO{0.13°:|P[=t}]
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and Q(r, m) be he maximal formula size of grfunction in B, with
exactly r satisfying assignments. Thén C;(t) < 2° since the sets,
t

{tvO{o, 3% P | =t} <

are pairwise disjoint. Als@® tC;(t) = 2" since
t

(] p,={0 1"
v 0{0,1°
Now, for ary i,
V col - match, = V V d5(2)
v£0 v£0 B 0{0, 1}" KA Piv
=V V V J;(Z
t {v20:|P; |-t} ﬁDPi,vﬂ{O,l}n_k ﬁ( )
Hence,
d d
> ¥ L(col-match,) < ¥ ¥ Q(t,n—k)Ci(t)
i=lvz0 i=1 t
This is,

<3 T Qmn-KCO+E T Qtn-kCE

t < (log(n-k))? i=1 t = (log(n—k))2

IN
n Mc:.

S (tn-tk-1)C(t) +
t < (log(n—k))?

d 2t(n - k)

gZ o2 log(n—K) (1+£&(n=Kk)Ci(1)

i-1t=(lo
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2d(n - k)2"
log(n — k)

and so,L( f) does not rceed

< d2%(n - k)(log(n — k))? + (1+ &(n-k))

2d(n - k)2"k

62 (ks+(n = K)(log(n ~ K))” +2) + ==

(1+é(n-k)+d-1
Setting k= 02logn J s=0On-3logn Oand recalling thatd<2*/s+1
proves the theorem.o

4.2) General Lower Bound Techniques

Formulae woer the basis B, form the first widely studied
restricted model for which non+mal lower bound on compiay
were obtained. In this section three important techniques fovirtgri
such bounds will be discussed. All can be applied to a braadty
of functions.

The first method presented is that of Neciporuk (1966) which
relates the formula size of(X,) to the number of distinct subfunc-
tions over YOX,, arising from partial assignments %, -Y. These
methods can yield bounds of at b&xn?/logn); this optimum being
attained in Neciporuk (1966) and remaining, to date, the besdrlo
bound on formula size. Neciporskgproach has also been applied to
yield lower bounds by a number of authors for a consideralvgrsdi
range of problems. @describe its employment by Harper and/&ge
(1972), to the "Marriage Problem" and by 8dald (1983) to arious
graph-theoretic problems.

The other techniques; Hodes and Specker (1968), Pudlak (1983);
(Fischer Meyer, Paterson, 1982); are similar in style. Both deduce
lower bounds on formula size via (@ifent) theorems of the folling
form:
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If L(f) is "small" thenf(X,) possesses Property-X
or equvalently, and more directly applicable to lower bound proofs,
If f(X,) does not hee Roperty-X thenL(f) = Q(g(n)).

The exact definition of Property-X differs for each technique. Hodes
and Specker (1968) has been shown capable of yielding bounds of
Q(nlog n), cf Vilfan (1976). Pudlak (1983) impred the basic meth-

ods of Hodes and Specker to awkidower bounds ofQ(nlog logn).

Since a length case analysis ould be required we do notvgi a
complete gposition of this approach. (Fischer et al., 1982) deduce
bounds ofQ(nlogn) on formula size.

It should be noted that all of these approaches ridffering
realms of application. Neciporuk (1966) and its successors yield mod-
erate bounds on functions to which the others are not of significant
vaue. Havever Neciporuks method is of little use for establishing
results on symmetric functionsWithin this class (Fischer et al.,
1982) obtainQ(nlogn) bounds; Pudlak (1983) denng Q(nloglogn)
bounds for certain symmetric functions outwith the power of both
techniques.

4.2.1) The Neciporuk Bound
Definition 4.2:Let f(X,) OB, andY ={y;,...,Ym O X,.

Ney=] O { K=oy

o 0{0,4"™

Thus N¢(Y) is the number of distinct subfunctions obtainable frém
by settingX, —Y to constants.

Theoem 4.3:(Neciporuk, 1966)
VIOB,YY={ys,....,¥Ymt OX,:
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Y:=o _
L(f) = logs Nf(Y)+UET1{g}>1<}mf Xn = Y)
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Proof: The proof belw is due to Rterson (pers. comm) and yields
the best known multiplicate @nstant in the lower bound. Earlier
methods gie log,s Nt (Y) =log N¢ (Y)/4 instead of
logs Ns =log N;/2.518.

Let F be an optimal formula,wer the basisB,, realising f (X,),
and Y ={y;,...,Yn be aiy proper subset oiX,. For ary x X,
define ocq’x, F) to be he total number of leas (.e inputs) of F
labelled with X or X. Smilarly for W O X,,

ocdW, F) = XDZW ocdx, F). Now,

L(f)=L(F)=ocdY,F)+ocdX,-Y,F)-1
and sinceF can be amended to realiseyasubfunction oer X, -Y
of f, smply by settingY to the appropriate assignment, it is fsuf
cient to sha
ocdY,F) = logs N¢(Y)

in order to prue the theorem.

Let Z2={z1,%,...,Z,.n} denote the ariables X,,-Y and
S (Y) the set of functions,

Si(Y) = {g(Y): g(Y) = £27°(Y), 0 0{0, 3"}

Obviously [S¢(Y)| = N (Y). Consider the relation defined oer S;(Y)
by saying thatf™g if f =g or f =-g. Clearly ™ is an equwalence
relation and we denote bW ;(Y) the number of equélence classes
of 7, excluding aly consisting of constant functions. itW this defini-
tion,

M(Y) £ N¢(Y) £ 2M(Y) +2

We daim that,
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ocY,F) = logs(4M; +1) > log, N¢

The second inequality being immediate from thevipies relation we
proceed by induction oh(f) =L(F) =0 to prove the first.

For the inductve baseL(f) =0, f is just a single ariablex. If
x OY then S;(Y) = {x} henceM;(Y) = 1. Thus,

ocqY,F)=1 = log;5 = log;(4M¢(Y) +1)
On the other hand ik I'Y then S;(Y) =0 and soM¢(Y) =0. Thus,
ocqY,F)=0 = logs1 = logs(4M«(Y) +1)
Assume the claim holds for all value<@ (f) <t. We dow it
holds forL(f) =t also. LetF be an optimal formula realising of
sizet>1. ThenF =G 6 H whereG, H are formulae of size at most

t — 1 realising functionsg(Y,Z) and h(Y,Z) respectiely. The induc-
tive gep follows from the fact that,

M¢(Y) = 4Mg(Y) Mip(Y) + Mg(Y) + Mp(Y)

For with this we hae,

IN

logs(4M¢ +1) < logs((4Mg + 1) (4M;, + 1))

logs(4Mg + 1) + logs(4My, +1)

IN

ocqY,G) + ocqY,H) = ocdY,F)
by the inductre hypothesis.

To e that,
M; < 4My My, + Mg + My,

note that as a consequence of Lemma(l.3Xii)s either an/\-type
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or an[-type gate. SincéV; is certainly no more than the number of
distinct functions obtainable by fixing occurrencesZoin G and H
independently we can produce an upper boundignas follows.

Case 1:6 is O-type

So f=g0h0Oc, where c J{0,. Any f' 0OS;(Y) arises
from one of the following cases,

EOD h,10h : h OS,

0g'0o0,gil:gis
Eg’Dh’,lD goOh : ¢ DSg,h'DShB

oo™

The first case contributes at mdsl, classes toM;; the second at
most My; the last at mosMy My,. Thus if 8 is O-type,

M < Mg My + Mg+ My,

Case 2:60 is N\-type.

So f =(g® N\ h°)° wherea, b, ¢ 0{0,1}. Here ay f' 0 S;(Y)
arises from one of the cases helo

Ut Ah, 1A=k nOS,

od N1, g AN1l:gOS

Og AW,~(g AN):gOS, hOS,
29 A=, ~(g A=) g O, OS,
O-g AN, =(=g Ah):gOS,hOS O
B—'g’ N=h,g Vh :gOS, hOS,

OoOoOoooOod

O

Again the first tvo cases contribute at mo#tl, + M;, classes toMy;
each of the remaining four contribute at mdé&f M, each. Thus i®
is N\-type then,
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M; < 4My My, + Mg + M,
and this prees the theorem.oo

The results bels are immediate from Theorem(4.3)

Corllary 4.2: Let <X® ... XM > pe a mrtition of X,. Then
V f OB,

m .
L(f) = 5 logs N¢(X®P) -1
i=1
Proof: Let F be ary optimal formula for f. Then
m .
L(f) = L(F) =3 ocoX® F)-1
i=1

From the proof of Theorem(4.3), wevieahat for eachX®,
ocoX®, F) = logs N (X®)

hence
m . m .
L(f)=3 ocoXD F)-1 = 5 logs N¢(X®D) -1
i=1 i=1

as claimed.o

Corollary 4.3: Let n be an exact multiple om and X,, be partitioned
. n . - .

into - sets ofm variables each. LeK") denote thd'th t, then for
any f OB,

n . i
L(f) = — min {logs Nt (X))

Proof: Obvious from Corollary(4.2).o

We mw onsider some specific applications of Necipasuk’
method. The function originally used in Neciporuk (1966) is defined
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as follows.

Let nON and setm=_[Oogn+ 2. X,, is a On/mOx m
matrix of Boolean ariables {x;;:1<i<UOn/mJ1<j<m} Let
[ o ] be aln/m [x m matrix of pairwise distinct Booleam-tuples,
each m-tuple containing at least tw 1s. Neciporuks function,

N(Xnm), is given by,

On/m O

NX.)= O O x A A x
e 1<isOvmo k1 T g () =1 .
ki

1<j<m
Here g; j(I) denotes thd'th bit of the m-tuple o; ;.

Before deriving a lver bound onL(N(X,.)) we require one
property of the ringsumxpansion.

Fact 4.1: Let P={p4, p2,..., P/} andQ={q4, > ,...,qst be difer-
ent sets of monomsver X,,. Then,

r S
U p (X O g (X
0 p %) # O (X0)

Proof: Suppose the contrarthen from the definition ofl we have,

This is equiaent to,

pDDPmeDqD%anD pDDP—QquEIDQ—Pq:O
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Obviously P-Q andQ - P are disjoint sets and sinde# Q we hae
that the setP - Q [] Q- P is non-empty Let m be a minimal prod-
uct in this set, i.,e a monom such that no proper subsetarfim)
defines an element @ -Q [ ] Q- P. Then under the assignmeat
which fixes exactly the variables of to 1, m is the only product in
P-Q[J]Q-P which is 1 and hence the left-hand side of this
expression is ® 0. This contradiction prees the result.o

Lemma 4.2¥ 1<i < On/m ONy(X®) = 20vmo-1m

Proof: It suffices to she that ary two dstinct assignments to
Xnm — XO yield different subfunctions oN(X, ). Considertwo dif-
ferent assignmentsr =<a,,...,a,> and g=<b;,...,b,> to the
variables X, , - X", p denoting On/m O- 1)m. Since a and g are
different there is someaviable x, ¢ X, - X such thatx # x“..
Without loss of generality we assume that =1 under o and O
under 8. The function N“(X®) is the O over some set of monoms
depending orX®. In particular since N(X,,) contains the product

AN x
o N ey

this subfunction contains the product, of at least variables,

Al X |
{l o s()=1}

which is not contained ilN(X®). Thus from Fact(4.1) the subfunc-
tions N and N'¥ are different and the lemma folls. O.

on Qg

Oogn0

Proof: From Corollary(4.3) and Lemma(4.2) wevka

Theoem 4.4:L(N(X,)) = Q
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n |og5(2(Dn/m I}l)m)
m

v

L(N(Xn,m))

_ n(@On/m0O-1)m n’> - nm
- mlog 5 ~ mlog5

Sincem = [logn [0+ 2 this proves the theorem.oo

Harper and Sage (1972) she how Neciporuks methods can
be applied to yield a Wwer bound on the formula size of a function
closely related to the Perfect Matching problem of Chapter(3).

Definition 4.3: Let X, ={x; :1<i,j<n} be a set ofn’> Boolean
variables wheren is even. Recall thatB(X,,) is a mapping from
assignmentsg, to X,, onto X-vertex bipartite graphs with ertex set
V [J W and that a matching iB(X,,) is a subset of the edges @
such that eachertex is the endpoint of at most one edge.kAnatch-
ing is a matching with »actly k edges. k - Match(X,,,) is the
Boolean function which is true if and only B(X,,) contains ak-
matching. TheStable Marrigge Roblem, SMPis that of determining
the cardinality of a maximal matching in aven bipartite graph.
Finally PSMRX,,) is the Boolean function whose ale is
SMRA(B(X,))(mod2), i.e the parity of the number of edges in a max-
imal matching.e

Clearly,

n/2

PSMRXpn) = V (20 +1) = Match(Xn,) A (2 +2) = Match(Xy,)

where (+ j) - Match(X,,) =0 for j > 0.
Theoem 4.5:(Harper and Sage, 1972)
L(PSMRX,,)) = Q(N*?)



290 Formulae

whereN = n?.

Proof: Patition X, , into n blocks, Py, where 0< k< n-1, defined by
Pk = {Xij |E]+k(m0d I‘)}

Now since SMRA(B(X,,)) is invariant under relabelling of the graph
vertices we hae that Npgyp(Pg) = Npsup(P;) for each Xi<n-1.
So it is sufficient to pnee a hrge enough bound oNpgys(Py) and
then appeal to Corollary(4.3). Consider th&72 assignments to
Xnn = Po in which X =10i<sn2<j; thus
n2>iorj<n/20 x; =0. Let @ and B be distinct assignments
within this class. Then we can firdand s such thatr < n/2<s and
Xs =0 under a but X, =1 under 8. We daim that the functions
PSMF*(P,) and PSMP?(P,) are distinct. ® se this note that
Po={X; : 1<i<n} and consider the bipartite graphs which result
from the assignment to P, given by,

;i =1 [0 i#randi#s

The graphB(a, y) contains a matching of cardinality— 2 consisting

of the edged{v;,w}:1<i#r,s<n} but none of cardinalityn—-1
since the erticesv,, v are unmarried. On the other hand the graph
B(B, y) contains a matching of cardinalitp—1 consisting of the
same edges anfl/,, wg}, but no matching of cardinality since the
vertex vg is unmarried. Since n(—2)(mod2) # (n—1)(mod2) the
claim follows.

From the abee agumentNpsys(Po) = 274, Hence from Corol-
lary(4.3),

L(PSMRX,,,)) = = Q(N*?

4log5

as required.o
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Kloss (1966) employs the same partition Xf, to produce a
lower bound on formula size fo6GF(2) determinant computation.
Thus rgarding X,,, as ann x n matrix of Boolean ariables,

n
DET(Xp,) = agsn i/:\lxi,a(i)

Theoem 4.6: (Kloss, 1966)L(DET(X,,)) = Q(N*?), where N =n?
Proof: Exercise. O

Our final example using Neciporgk'technique is tadn from
Schirfeld (1983) which devies auperlinear laer bounds for thek-
clique function, introduced in Chapter(3). 8dield (1983) improes
the lower bounds of Mamato(1979) for this function, which were
also obtained using Neciporgkagument.

Theoem 4.7:(Schirfeld, 1983) LetX: be a set of/2 Boolean wari-
ables encoding the possible edges ofnarertex undirected graph as
before. for allk, 3<k<n,

L(k —clique(Xy)) = Q((n-k)*)

Proof: We describe a partition oK\ into n—k+ 3 disjoint sets of
edges, T;,...,T, and shw that for each i, 2<i<np,

Ni-clique(Ti) = 2k-i+3%14 Tha partition classes arevgn as,

T, ={x:1<i<k-3,i+1<<n)
T, ={x;:i+1<j<n} for2<isn-k-3=p

Consider an subsetT,, for somei =2. We wish to identify a
collection of "% *37 assignments tXV — T, which give fise to dis-
tinct functions wer T;. Now any assignmenta to X —T; partially
describes am-vertex undirected graphG(a), in which only the edges
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associated withT; variables are unspecified. So dwdistinct assign-
ments,a and g, yield different functions onf; if and only if G(a)

can be extended to a graph containing@ique andG(3) to one not
containing ag k-clique, by the same fixation of the unspecified edges
T.

We daim that the following class of assignmentsXp — T; has
the desired property

ggmj::liflsisk—S,Zsjsk—S E
Oox; c=1ifl<i<k-3,k+i-4<j<n [T, assignment

OUx; :=0if 1<i<sk-3,k-2<j<k+i-5U

mll 0

0o , : L . O , ,

Oox; -=0if k=2<i<k+i-5,i+1<j<ngT, assignmen2<h<i-1

oo O

O

0o — , . O , .

UgAny bipartitegraph onvertices k=i +3,... | n OTy assignment + 1<hs<p
0o 0

O

Oooooooooooogod

Distinct assignments in this class differ only in the choice of
bipartite graph for the final part. L&(a) be he partial graph defined
by ary assignmenta in this set. First note that this graph contains
several k — 1-cliques, consisting of the vertices2l,..., k-3 and ary
two of the \erticesk+i-3,k+i—-2,...,n. Howeve G(a) does not
contain ak-clique; suppose the contrary and that, ..., v, were the
vertices in ak-clique of G(a). If one of these vertices is—i +4 then
at least tw, v and w say must be in the sefk +i -3 ,...,n}. But
the edgedk —i +4, v} and{k —i + 4, w} are unspecified itG(a). The
only other possibility is that at least &rtices,u, v and w say from
{k+i1-3,...,n} form part of thek-clique, and so{u,v,w} is a
3-clique. But by the constructiom v andw are vertices in a bipartite
graph, and it is well-known that warbipartite graph does not contain a
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3-clique, or more generally arodd length gcle. These contradictions
establish thatG(a) does not contains &-clique and hence the sub-
function aver T; resulting by fixingX\ - T; to « is not the constant
function 1 (or the constant function 0 from the first part of tlgai-ar
ment abwe). Finally we note that the only unspecified edge<G(f)
are those between the ertex k+i-4 ad the ‘ertices,
{k+i-3,...,n} of the bipartite graph. All edge§j, k+i—4} for
1<j<k-3 being present; all edges {j,k+i-4} for
k—-2<j<k+i-5 being absent.

Now let a and g be distinct assignments %} — T; within this
category There is some edges for which X2 # x4, By the choice of
a, B it must be the case th&t+i -3<r<n-1,r +1<s<n. With-
out loss of generality assume th@at s} is an edge ofG(a) but is
absent fromG(p), i.e X2 = 1. We extend the graph&(a) and G(B)
with the following assignment td;,

0 Xri-as := 1

BXKH_M =0 j#r,j#s j2k+i-3 .

Bxk+i—4,r =1 B
U
U

Let H(a), H(B) be the resulting completely specified graphbi(a)
has ak-clique consisting of theertices

{1,2,..,k=-3,k+i—-4,r,s}

However H(B) contains nok-clique. For from the earlier argument on
the non-existence dé-cliques inG(g), ary k-clique in H(3) must use
exactly 2 vertices from the sefk +i—-3,...,n} and the -ertex
k+i-4. Fromthe construction of the assignmentTg k+i—-4 is
joined to only two vertices,r ands, in this set and these are not con-
nected by an edge iG(B) or H(B).
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We have thus established that different assignments in the class

Formulae

considered yield distinct functions of.

It remains to establish the number of suitable assignmeails a
able. First note that the number of different bipartite graphs with
vertices is at least ¥219205 214 This js easily seen by consid-
ering the complete bipartite grapKq,, ;o420 and observing that the

subgraphs defined by different subsets of its edges are distinct. This

shavs that Ny_gique(Ti) = 2374 Applying Corollary(4.2) we he,

L(k — clique)

v

v

P 109 Ny—ciique(Ti)
i= log 5

1 nkes (n-k—ij+3)
|095 i=2 4

3
12|ogS(n—k+1)(n—k+§)(n—k+2)

12i0g5N K (=)

which is the lever bound asserted in the theorem statem@ant.

The bound of Thm(4.6) i(n) if n-k=o0(n?®). For these
cases Sdirfeld (1983)derived the folloving bound which we state
without proof.

Theoem 4.8:Let h:N - N be a function such that(n) - co and
h(n) < On/2 0] Then
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L((n-h(n)) - clique) = Q(n?h(n)) O

4.2.2) The Hodes/Specker/Pudlak Lower Bound

Neciporuks method turns out to be incapable of yielding nowdti
bounds on the formula size of symmetric Boolean functionsssE

this consider an f S, and Y O X,. Let a, B be different assign-
ments toX, —Y containing the same number of 1's. Sintas sym-
metric it  follows that flo(Y)=f¥(Y) and hence
N:(Y) <min {2, n—|Y| + 1}. In the context of Corollaries(4.2) and
(4.3) this establishes that at best linear lower bounds can be attained.

In this section we consider a bounding method deed by
Hodes and Speek (1968) with which superlinear lower bounds for
symmetric functions can be meml. Our presentation follows that of
Pudlak (1983); this paper impring the general theorem dexd by
Hodes and Speek The basic idea underlying Hodes and Spe€sk
original argument is quite simple, as is that behind Pusllekance-
ment; the complications in the proofs arise as a result of detailed case
analyses, which are omitted in the description welo

Let f OB,. For Y O X, the Y-restriction of f(X,) is the sub-
function of f obtained by fixing all variables X, -Y to 0. The
lower bound theorem of Hodes and Specker (1968) asserts that if
L(f) is "small" then there is & -restriction of f with a very pre-
cisely defined form. Specifically theroved,

Theoem 4.9: (Hodes & Spechr, 1968) There ®sts a function,
&(r,n), such that for each, lim &(r,n) - oo and for which,
n - oo

If L(f)<né&(r,n) then there jasts Y [0 X,,, with [Y|=r and
such that theY -restriction of f is equvaent to



296 Formulae

(L, y)e v y)

for somed 0 B,. O

For r fixed, Mifan (1976) established th&{r,n) grew no faster
than log n. Pudlak (1983) used a difrent approach to shothat the
conditionL(f) < né&(r,n) could be sharpened to,

L(f) < en(loglogn—-logr) Ve&e>0

It is this result with which we will be concerned in the remain-
der of this section. Some preliminary ideas are required.

Let F(X,) and G(Y,) be formulae having inputs labelled with
variables fromX,, resp.Y, ={y1,..., Y} We @y thatF and G are
isomorphic,denotedF =, G, if and only if

PREFIX(F (X)) = PREFIX(G(Yy/Xy ..., Yu/Xn))

where PREFIX is the mapping of Definition(4.1) and
G(yi/X1,...,¥Yu/X,) denotes the formulagG with each inputx, (X)
replaced by the inpuy;, (y;). Obviously if F =4, G then F and G
represent the sameinput Boolean function (with dérent agument
sets). Havever the cowerse is not necessarily true; awdifferent for
mulae representing [ B, may not be isomorphic.

If F(X,) is a formula andY O X, then the formulaY-induced
from F, denotedFy, is that formula constructed froR as follovs:

11) Replaceall inputsx O X,, —Y by the constant 0.

I12) Replaceall subformulaeG; 8 G, where bothG,; are constant,
by the appropriate constandlue.

I13) Replaceall subformulaeG; 8 G, where only oneG; is constant,
i=1sy by G,, -G,, 0, or 1 as ppropriate.
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14) Replaceary subformula -(- G) by G.

It should be clear thabcdqY, Fy) <ocdY,F). In addition if
Z Y thenF; =4 (Fy)s.

Finally we define the concept dfomaeneity which will be
important in the subsequent argument. A{X,) is a formula and
Y OX, we say thatF is homageneous wer Y if and only if
VAyi, Y.} OY, {y;,, y,} OY we hae

F{Yileiz} iso F{yjpyjz}

In essence Pudlak'agument is as follows: iF(X,) is homoge-
neous wer Y, with [Y|=r then the induced formul&, falls into one
of 5 distinct classes; gnformula in these classes is eglgnt to
some function of the form,

(ng y) @ (y\D/Y y)

Now if F(X,) is a k-formula, i.e ocqx, F) <k for each I<i <n,
then ai induced formula is again leformula and so we can bound
from abwe the number ofnon-isomorphic Kormulae of 2 wariables.
By labelling each{x;, x;} 0 X, with a distinct colour depending on
the structure ofy ., we can identify courtesy of Ramsges theorem,
a et Z 0 X,, with the property that all the pairs ih have been iden-
tically coloured, i.eF is homogeneousver Z. The remainder of the
proof derves an yper bound on size d& needed for the main theo-
rem to vork.

In this outline the first part is the most lengtand its proof
will be omitted.

Before presenting Pudlak'agument in greater detail weuiew
the important combinatorial result alluded to in the descriptiorveabo
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With some slight notational abuse, we deto denote all subsets of
a £t V, which contain ractly r elements. Ak-colouring of a sew,
is a mappingy :V - {1,2,...,k}. For ak-colouring y of a setV,
X;j denotes the set

{vOv : x(v)=j}

Definition 4.4:Let V ={v,,...,v,} be a finite set, anth=>1, | =2,
r{,...,rn =hintegers.vV has theh—(r,,...,r)-Ramsg property if
and only if:

For al I-colourings, y of V", there aists W OV such that for
somek 0{1,2,...,1}, W' O y, and W|=r. *

Let R'(r,,...,r) denote the smallestalue m for which ary set
with m elements has thé—(r,,...,r)-Ramsg property (olviously
the property is monotonic, so if it holds for amelement set it holds
also for an h+1)-element set). The following is a classical result
from combinatorial theory

Fact 4.2: (Ramsg, 1930) For all h=1, 122, ry,...,r =2,
R|h(rl 1y r|) eXIStS O

For our purposes an upper bound on this quantityen h = 2,
is required. The bound presented kel adapted from a proof of a
simplified version of &ct(4.2) (for the caseé=2) given in Erdés and
Spencer (1974).

!
Fact 4.3:Lett= > r;. Then,
j=1

R(ry,...,n) s It

Proof: By induction onl = 2. For the inductie base it may be shwn
that



Hodes/Specker/Pudlak Lower Bound 299

(P+9-20

R(p.q) < -1 0

(see for example (Etd and Spencer 1974) pp.22-23, or Bege
(1979), pp. 436-437).

HenceR5(p, q) < 2P*42 < 2P,

So inductvely assume that the result holds for alblues
2<|'<I|. For the inductre gep note that

RE(ry,....1n) = Rlz(ra(l) v Roqy)

for ary permutation o, hence without loss of generality we may
assume that r; <---<r,. With this cowention a total l&ico-
graphic ordering may be definedep pairs of I-tuples in the olous
way. We prove the inductve gep by a sub-inductionver this order
ing. First of all obsere tat R¥2,2,...,2=2 and that
R(2,rp,...,n) <R (ry,...,1). In the former case the result
clearly holds, in the latter we can appeal to the indeckypothesis
for | which nov confirms R3(2,r, ,...,r;) as at nost

(I-1) < It

This establishes the subindwetitase. For the step lef > 3 for each
1<j<l andV ={v,,...,v,} where m=I". We nust she that V
has the 2 (r,,...,r)-Ramsg property Consider aw |-colouring, y,
of V2. Choose ap v OV and define

A = A{vj:{v,vi} Oxi}
|
Then> | A | = m—1. Hence there exists sorkel < k< | for which,
i=1

IA] = O(m-1)1 O= 1!
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By the subinductie hypothesis,

A= RA(ry,....rc=1,....1)

hence we can identifyv O A, OV such thatw? O x,, for somem
and W|=>r,,. If mzk thenW is an appropriate subset @t if m=Kk,
so that \W|=>r, -1, thenW [] {v} is an appropriate subset &f.
This completes the proof of the upper bound.

We @an nav turn to the proof of the lower bound theorem.

Lemma 4.3(Pudlak, 1983) LeF(X,) be a brmula which is homoge-
neous ger X,,, n=3. ThenF satisfies at least one of the falimg
conditions.

H1) F =constant

H2) F(X,) =G(X,) 8 H(X,), for someg OB, and bothG and H
are homogeneousver X,,.

variable order reersed, whereG is homogeneousver X,, and
6, @ satisfy

)] ypz=y6dzorypz =y6zand
i) yé@zisequvaenttooneofydz yVz yAzorz

H4) F(X,) =% 0 (X 8 (X368 (Xp-1 0 ¢(X,)) -++)), or with the ari-
able order reersed, where one of the the following holds,

i) y8z=ylOzand @z) =z or ¢2) = 2).
i) yO@z=yVzandg(z) =z
i) yo@z=yNzandg(z) =z

H5) F(X,))=G[ (X)) ,...,9(X,) ], where for somea 0{0, 1}, one
of the following holds:
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n

I) G[yl""’yn]EaDiElyi'

i) Glyi,....val=a O (V y)and ply) =y.

n
i) Glyi,....¥a]=a O (A y) and @ly) =.
Proof: Omitted. O

Lemma 4.41f F(X,) is homogeneouswer X,, n= 3 then
n n
FXa) = (D%)6(Vx)

for somed [ B,.

Proof: The Lemma is easily established by induction lofF(X,))
from Lemma(4.3) using elementary Boolean operatians.

Theoem 4.10:(Pudlak, 1983) Len=>3. 4&¢>0 wch thatV f OB,
r=3 if L(f)<en(loglogn-logr) then for someY [0 X, having
[Y|=r it holds that,

Xn=Y:=0
f (V) = (0,6 (VY

for somed; [0 B,, depending onf.

Proof: Let F(X,) be a optimal formula realising f and
P =ocdX,, F)=L(f)+1. DefineZz O X, as the set ofariables,

Z = {x; OX,:ocqx, F)<0O2P/n [}

Then Z|=n/2 and the induced formul& =F, is a k-formula for
which k= [2P/n 0 Any induced formula ofG is also ak-formula.
Using the method of Thm(4.1) it folis that the number of non-iso-
morphic k-formulae dependent on 2 variables is boundedvealdy

| = 2¢ for some constar€. Thus using Fact(4.3), if
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IZ|=1" (4.1)

then we can findy ={y,,...,y,} 0Z OX, such that all the formu-
lae induced fromG by pairs of ariables fromY are isomorphic, i.e
G is homogeneousver Y, which implies thatGy is homogeneous
ove Y. Now gplying Lemma(4.4) we ha that the function realised
by the induced formul&, is equvaent to

(¥ eV y)

From the definition of induced formula, the function computedshy
is just fX"~Y=0 5o we tave identified a suitable restriction of. It
remains to relate this tb(f).

G is ak-formula. If,

loglog | - logr — logC
<
k< C+1 (4.2)

then,

Ck+logk+1logC +logr < (C +1)k +logC +logr < log log |

hence, SCkr<loglz| O I"<|zZ|, ie (42)0 (4.1). Now
k=02P/n Oand Z| = n/2. So from (4.2)
2L(f)+1 - loglogh—-1) — logr — logC

n C+1

L(f) <

C 1l .n(loglogh—-1)-logr —logC) — 1/2

For £ > 0 aifficiently large, the right-hand side is no more than,
en(loglogn—-logr)

foralln=3,r=3. O
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Corollary 4.4: Let f OB, andY 0O X,, be a maximal cardinality sub-
set of X,, such thatfP =Y =0(y) = ( ny y) 6 ( \D/Y y). (We sy that
y y

f(X,) has aY|-refinementn this case). Then,

L(f) = en(loglogn —log([Y|+ 1))
wheree¢ is the constant of Thm(4.10).

Proof: If L(f) <en(loglogn-log(]Y|+ 1)) then from Thm(4.10) we
can findzZ O X,, such that4|=|Y|+ 1 and

Xhn=-2Z2:=0 =
f B (Z%'Z Z)Q(Z\IZI/Z Z)

and this contradicts the choice ¥f O

As an application of Corollary(4.4) consider the following class
of functions.

Definition 4.5: Let f OB, and k be an intger in the range
1<ksn-3. f is said to be k-sensitive if and only if
\'/a:<a1,...,an>D{O,1}n

Hi:a=1}=k O f(a)=0, (1)
Hi:a=1}=k+2 O f(a)=1, (0)

Theoem 4.11:If f OB, is k-sensitve thenL(f) = Jd.nloglogn, for
someod > 0.

Proof: Let f be k-sensitve and without loss of generality assume that
k< n/2 (otherwise consider the dual functionf (X, ,...,X,) which is
n-k-1-sensive). Let Z={x;,..., %} OX, and consider the
function, g(X,, = Z) = f#=1(X,, - Z) of n—k+1 variables. Otiously
L(f)=L(g). Since f is k-sensitve and k-1 variables hae been
fixed to 1 in order to obtaig, it follows thatg(X, — Z) is 1-sensitve.
We daim that g(X, —Z) does not hee a 3refinement. @ se this
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suppose the contrary and that={y,, vy, y3} is a subset oX, -Z
for which,

g 2T EY) = (y, Oy, Oys) 6(ya V Y V ya) (4.3)
for someé@ [ B,.

But g”» 277 =0(Y) is dill 1-sensitve and so its value when
exactly oney; is 1 should differ from its value when all thrggs are
1. Olviously the right-hand side of (4.3) does not satisfy this require-
ment; hencey(X, — Z) does not hee a 3refinement. Applying Corol-
lary(4.4) we hge,

L(g(X,=2)) =2 e(n—-k+1)loglogh-k+1)

Sincek < n/2 andL(f) = L(g) this gives
L(f(X,)) = dnloglogn O

Corollary 4.5: For al but 16 symmetric functions f OS,,
L(f) = dnloglogn.

Proof: From Thm(4.11) ifL(f) <Jdnloglogn and f is symmetric
then it must the case thdtis notk-sensitve for ary 1<k<n-3. If
w(f)=wywy - W3 W, W, 1 W, iS the spectrum off, this implies
that w, = w,,, for each 1< k< n-3 thus there are exactly 4 possible
settings of bitsw; ---w,_; which define nonk-sensitve gymmetric
functions. ©r each of thesav, and w, may be set arbitrarilyit fol-
lows that there are exactly 2.2=16 symmetric functions which are
not k-sensitve. O

The 16 symmetric functions referred to arise by settpgc,,
C; andc, in the function bela:

0 A (Dx) DA Ax) DA (VX))
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all of which clearly hee linear formula size.

4.2.3) The Fischer/Meyer/Paterson Lower Bound

Pudlak (1983) relatek(f) to the cardinality of the maximal subsét
of X,, for which,

fPo=Y=0(y) = (yEY y) o (y\D/Y y)

(Fischer et al., 1982) consider assignmentto- Y which fix
nearly equal numbers of variables to 0 and 1 and rélatg to the
size of the largest subsef, of X,,, for which:

- a partial assignmentr to X,, —= Y such that,

FMP1)
O<fi:X":=2}-Ki:{":=0}<1
FMP2)
fXn =Y =10y is dfine.

As with the lower bounds presented eayltbe results described
in this section are for formulaever the basisB,. In fact it is con-
venient to mak use of the following d&ct which simplifies a number
of proofs irvolved.

Fact 4.4: Let F(X,,) be any formula wer the basisB,. There exists a
formula G(X,) over the basis{ A, [, 0, } equvaent to F and such

that: V x O X,, ocdx,G) < ocdx, F). Equality holding in the case of
F containing only/\-type andlJ-type ctes.

Proof: Instances of projections or constant functions may be elimi-
nated fromF by applying the result of Lemma(1.3)(ii), so without
loss of generality we may assume thatcontains only A-type and
[-type gates. It is i sufficient to construct an equaent formulaG
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over {A\, [, 0,1 satisfying ocqx,G) =ocdx,F). It is easy to see
that aly subformula F;, 8 F, of F, where ¢ I{/A\, O} may be
replaced by a subformula,

O(F,0a) A (F,0B) 0y if6is A —type 0
SaOF OF, if 6is-type .

where a, B, y are constants. Clearly the number of occurrences of
is not increased by grsuch replacement and this pes the result.o

From this fact it follevs that we may concentrate on darg
lower bounds forocdX,,G), G as abwee, in producing lower bounds
onL, viz L(f)=o0cdAX,,F)-1=o0cdX,,G) -1, F an optimal for
mula realisingf and G its equvalent{ A\, [I, 0, I}-representation.

Below we wse m, o, r (possibly subscripted) to denote partial
assignments tX,. dom(m) [0 X,, is the set of variables fixed by, so
that 7| = |dom(77)|. Theeccentricityof 7, ecq ) is the quantity

Kx Odom(m) : X" :=1} - {x Odom(n) : X" := 0}

mis central if ecdn) is O or 1 o is anexensionof 7 if and
only if dom(r7) O dom(g) and for ary x O dom(r) we have X" = X°.
dom(o, m) = dom(o) — dom(7) are the additional ariables fixed byo
in extending 7.

F, G and H (again possibly subscripted) will denote formulae
over the basis{/\, [J, 0, 3}. var(F) is the set of variables which are
used inF, note that this may be a superset of the variables upon
which the function represented by essentially depends. Thdimen-
sion of F dim(F), is defined to bevar(F)|. F is said to beaffine if
and only if F realises an &he Boolean functionG is anaffine vari-
ant of F if the formulaF O G is affine. As preiously, F is anr-for-
mula if ocdx, F) <r for all x Ovar(F) and is r-minimal with respect
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to some property of formulae, dcqvar(F), F) is minimal amongr-
formulae with the desired property

Given F and 7, the restriction of F w.rt 77, F, is that formula
obtained by replacing each instance xofl dom() n var(F) by the
constantx”. If 7 is central anddom(r7) O var(F) then F . is acentral
restriction of F. Finally the affine diameter of Fdiam(F), is the
maximal dimension of gnaffine central restriction of.

The lower bound theorem @l by (Fischer et al., 1982)
asserts that there is some constant0 with which ary formula F
having var(F) = X,, satisfies

g n [

ocdX,, F) = Enlog[bliam(F)D

Important consequences of this result are lower bounds on spe-
cific symmetric functions, such a8AJ,, of Q(nlogn) and an alterna-
tive lower bound on the formula size &fsensitve functions which
improves Thm(4.11) for certain values &

Fdlowing the presentation of (Fischer et. al, 1982) we describe
this result in three stages. The core of thguarent is contained in
the Main Lemma bels which, with the aid of four preliminary
results whose proof forms the initial stage, establishes thah gny
F and centralr one can construct an centraltensiono of 7 such
that F, is affine and has dimension closely related dion(F ).
Given this, the lower bound theorem is relaly easily \erified.

Lemma 4.5: (The Ahe Variant Lemma)let G be awy affine \ariant
of F. Then for all

)] G,, is afine O F, is afine.
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i) If G is anr-minimal affine wariant of F, for somer>1 and
dom(77) O var(G) then

dim(Fy,) - dim(Gy,) = dim(F ) - dim(G)

Proof: Since F O G is affine and ay restriction is also affine it fol-
lows that &€ O G), = F|, O G, is affine. Thus ifG, is affine then so
is the formula,

F|,T|:|G|,T|:|G|,T = F|,T|:|0 = F|n

and this prees part(). To prove part(ii) simply obsere that
var(G) Ovar(F) for otherwise we can replace eachriable in
var(G) —var(F) by a mnstant inG to yield a smaller affineariant
r-formula of F. The relation na follows easily from the facts that

dim(G,,) = dim(G) - |n| ; dim(F,) = dim(F) - || O

Lemma 4.6: (The Conjunction Lemmiagt 7 be central and= such
that F, =G A H whereG and H are affine. There is a centratten-
sion o of m for which dom(o, ) Ovar(F,), F, is affine, and
dim(F, ) = dim(F,)/3.

Proof: We may expressG and H respecitrely as,

G= Uul 0O wDOec
uldu w OW

vDo O wDd

v av w OW

where W =var(G) nvar(H), U=var(G)-W, V=var(H)-W
andc, d are constants.

H

Now if oy, 0, 05 are central extensions off which add
Ulw, vIW andU [V respectiely to dom(n) then each for
mula F, is affine. Since
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gvar(F|Ji) =udvOw = var(F,)

it follows that one of these restrictions has the required dimension.

Lemma 4.7: (The Partition Lemmagt S;, S,,...,S be a collection
of sets and T= [] SnS;. There exists a partition of

1<i<j<t

{1, 2,...,t} into two sets A and B such that
PnQl=1(Ls)n(L )= [TI2
iOA joB

Proof: Let x OT so thatx 1S n §; for some ki< j<t We sy
that a partition A, B) splits xO0Sn S; if and only if i OA and
j OB (or vice-versa). Clearly at least™2partitions splitx and so the
avaage size of°P n Q is at least,

2 H(A B): (A B) splits x}|

xOT
2t

which is > [T|/2. It follows that at least one partition has the required
property O

The final preliminary lemma introduces a function whose prop-
erties will be essential to the indueiproof of the main lemma.

Lemma 4.8: (The Beta Lemmahere are constants >0, a> 1 ach
that the functiong:N - R given by B(r) = (e a' C,)™?, C, being the
-2
Catalan numbegr gr, satisfies:
r-1
) BN==3 ! for r> 1.
2 (B(s) Blr—9))™
s=1

i)  B(r)<(1-153)/6 <1forr=1.
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i) B(r) < (1-5a)/(1-5a +4r).

r-1
Proof: (i) follows from the fact thaC, = > C,C,_, (Knuth, 1973, pp.
s=1

388-9). (i) and (iii) hold sinceC, ~ d r®24" for some constand > 0
(using Stirlings gproximation), thus for small enough one can find
a mnstanta to satisfy (ii) and (iii), e.gr =1/30,a=360. O

The lower bound theorem will folo from the main lemma
below.

Lemma 4.10Let F be anr-formula ¢ = 1) and , be central. There
is a central eension, m of m such that F, is afine;
dom(r, mp) O var(F) and

dim(F),) = A(r)dim(F,)

Proof: By course-of-values on induction on Thus assume > 1 and

that the result holds for all’-formulae withr’ <r. To establish the
lemma for allr-formulae we apply a course-of-values subinduction on
ocqvar(F), F). The subinductie base being immediate, |& be ary
r-formula, r;, any central assignment and assume that the lemma holds
for all r-formulae G, having ocqvar(G), G) < ocqvar(F ), F).

First obsere that we may assumE to be anr-minimal afine
variant of F, and henceF =F, and var(F) n dom(m)=0. To
see this suppose that there is raminimal affine \ariant, G, of F,
having

ocqvar(G), G) <ocqvar(F), F)

Then applying the subinductioryfothesis we find a centraktension
m of m satisfying the lemma fo6. From the affine variant lemma (i)
it follows thatF, is affine and in addition,

dim(Fy;) = dim(Gy,) + (dim(F ) - dim(G)) AVL (ii)
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1\

B(r)dim(G) + (dim(F, ) - dim(G)) Induction

\}

A(r) dim(F, )
This last from the Beta Lemma (ii), sing¥r) < 1.

Thus if a smaller affineariant, G, exists then the centralx&en-
sion 7 that establishes the result f@& also establishes the result for
F. As F, is obviously an affine variant of itself and arfformula
then such & is guaranteed toxest unless

ocq var(F, ), Fi,) = ocdvar(F), F)

i.e var(F) n dom(m) =0 so thatF = F,.

The lemma holds fo~ if and only if it holds for 10 F so
without loss of generality we may writé as,

No F; can be affine, otherwis@, F; is a smaller affine variant of
j#i

F=F, and this contradicts the assumption tHatis r-minimal

amongst such affine variants. It follows that ea&this of the form
G; N\ H,, where neitherG; nor H; are equwalent to constant func-
tions.

Now consider the following partition ofar(F;) into 4 sets:
global(F;) = var(F;) n ([ var(F;))
joint(G;, H;) = (var(G)) njivlar(Hi)) — global(F;)
own(G;) = var(G;) - (joint(G;, H;) LI global(F;))
own( H;) = var(H;) - (joint(G;, H;) LI global(F;))
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Clearly var(F) = global [] joint [] own where
global = g global( F;)
joint = Izml joint(G;, H;)
own = g (own(G;) [J own(H;))
and these three sets are pairwise disjoint.

The proof of the Main lemma is completed by a case analysis
involving the size of these sets in relationnte: dim(F ) = dim(F,, ).

Case 1. r 1/8(r). Choose ay central etension,r of i, for which

dom(r, mpy) O var(F ) and dim(F, ) =1. Any formula in a single ari-

able is affine and by the assumption that 1/5(r) we have
dim(F,)=1 = g(r)n = g(r)dim(F,)

as required.

Case 2:|global | = 2an. global is the set of variables of which
occur in at least tw of the setsvar(F;). Applying Lemma(4.7) to the
collection var(F;),...,var(Fy) vyields a partition A, B) of
{1, 2 ,...,k} such that

| OJ var(F;) n O var(F;) | = |global /2 = an
iOA idB

F is equvalent to the formulaP [0 Q where
P=0,FiQ=0.F
Consider the set of variables war(P) n var(Q). Each of these

occurs fewer tharr times in bothP and Q. For 1<s<r let V,
denote the subset of those variablesvar(P) n var(Q) for which
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ocq V, P) =s, henceocq Vg, Q) <r —s. We have
r-1
> |Vs| = |var(P)nvar(Q)|=an
s=1

From the Beta Lemma (i),

< B()n

S BB -9
So combining these it follows that for somel<t<r —1 it holds,

B
Vil = 5 50 -

We intend to apply the main lemma, indwely, to some
restriction of P, Q to V,. Let o be ary central extension ofg, having
dom(o, ;) =var(F) -V, and P, Q be the formulaeP,, Q,
respectrely. Thus var(P') =var(Q')=V,, P' is at-formula andQ’
an  —t)-formula. From the inducte hypothesis, forr, there is a
central etensionr of o such thatP;, is affine and

dim(Qj, ) =dim(P};) = p(t).dim(P)

B(r)n
B(r —1)

= B()-[Vi| 2

Qi is an ¢ —t)-formula so again applying the induweti hypoth-
esis forr gives a @ntral etension of r for which Q) =Qy, is
affine and

dim(Qj,) 2 B(r —t)dim(Q; ) = A(r)n
Observing that,

(P 0 Q)|rr = (Pir)|n O Q|’n
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is affine from the construction ofr and 7, and that
dim((P O Q);,) = dim(Q;) = g(r)n completes the proof of Case(2).

Case 3:|joint| = 3an. Any variable inx Ojoint satisfies for some:
x occurs inF; only and

1 < max{occ(x, G;),oca x,H;)} <r-1

Let u, =]joint(G;, H;)|. Following an argument used in
Case(2) we can, for eachfind a waluet; (1<t <r —1) such thaty,
being the set of variables ijint(G,, H;) for which ocq V;, G;) =t;,
satisfies

u; B(r)
a () p(r —t)

Sinceocd V;, G;) =t;, cearly ocq Vi, H;) <r —t;. We row gply the
inductve hypothesis to identify a suitable extensionmf

[Vi| =

Let oy be ary central extension ofz, having
dom(ay) =var(F) - ﬁ V,
i=1

Furthermore letF| = (Fy),, Gi =(Gj),, and Hi =(H;),,. An exten-
sion satisfying the requirements of the lemma is constructe# in
steps. At thei'th g¢ep we find a centralxéension, g, of g,_;, such
that ), is affine and

dim( (F{),;, ) 2 u B(r)/(3a)

For stepi considerG;. This is at;-formula andvar(G;) =V,. Apply-
ing the inductre hypothesis toG; and o;_;, yields a central xension
m; of gi_; such that Gj), is affine and

dim((G)); ) 2 B(t;) dim(G;)
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Applying the inductire hypothesis toH/, an (r —t;)-formula, andr,
we find a centraly@ensionr; of 7z such that ki), is affine and

dim((H), ) 2 B(r —t;) dim(H[)

Now (Gj),, is also dfine, since the restriction of an affine function is
still affine, so from Lemma(4.6), the Conjunction Lemma, there is a
central &tensiong; of r; for which (), is affine and

dim((Fi), ) = dim((F),, )/3
From the choice oby,,

var(F{) = var(G})

var(H/) =V,
Hence,

dim((H{),) = B(r —t)dim((H});) = B(r —t)dim((G); )

v

B(r —t) B(4) Vil

v

u, B(r)la
Thus,

dim((F)),) 2 dim((H), )3 = U A(r)/(3a)

If we set =0y, the assignment at the end of tkih dep,

k
thenF, = .Dl(':i')lcn and thus is affine. In addition
1=
- k - k
dim(F;) 2 Zl dim((F{), ) 2 Zl u, B(r)/(3a)
1= 1=

=|joint |3(r)/3a
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which is at leastB(r)n by the condition onjpint|. This establishes
Case(3).

Case 4:|own|=(1-5a)n and n>12/B(r). If none of Cases(1-3)
hold then the condition of Case(4) must be satisfi&#de will con-
struct a central »@ension,o of i, for which dom( o) O var(F ) and
such that the function realised Wy, is independent of some (non-
empty) subsetV, of var(F,). For such an assignment lgield
denote the size of the associatédind cost= yield + dom( o, ). It
will be sufficient to constructr so thatyield = g(r) cost for then we
can find a centralxension,r of o, which satisfies the lemma fdr.

To see thatyield = B(r) cost implies the gistence ofr consider
the formulaG = (F, ), wherer is ary assignment tov. Snce F, is
functionally independent of we hare G = F|,. In addition

var(F) = dom(o, ) [1V [ var(G)

and these three sets are disjoint. Thius( F ) = cost+dim(G). By
the condition tha¥ # [J, r must fix at least one variable &f, hence
ocqvar(G), G) <ocdvar(F), F). Applying the subinduction ypoth-
esis forG and o we find a central>@ension s such thatG,, is afine,
dom(m, o) Ovar(G) and dim(G,,) = g(r)dim(G). Now, G=F,
and sincerr extendso it follows thatG,, = F, thereforeF, is afine.
Furthermoredom( ) n V = [, by choice ofG, so

var(F,,) = V [ var(G,)
Thus,
dim( F|,T)

yield + dim(G,,)

\}

B(r)dim(G) + B(r)cost = B(r)dim(F)
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It follows that it is only necessary to identity and V having
yield/ cost= B(r) in order to complete the proof.

Let g, =|own(G;)| and h; =|own(H;)|. Snce A is commuta-
tive, without loss of generality we may assume thgat h, for each

k
1<i<kand hencey g, =|own]|/2.
i=1

For eachi there are 2 possibleays in which we can pvent
F’s dependence on a subset @ivn(G;) or own(H;). Either we can
find a central ®ension,o of m, which rendersH; 0, and henced~
becomes independent @hr(G;); or we can find one which renders
H; 1 and henceF becomes independent wbr(H;) — dom( o, ). In
the former case we wish to minimise the participatiorowf(G;) in
constructingo the better to maximisegield; in the latter we wish to
minimise the contribution fromown(H;) for the same reasons. These
alternatves gve rise to 2 possible strages.

Strateggy A: Applicable only if there is a centraktension,o of mp,
with dom( o, m,) O var(F ) and such that f;), =0. Find a minimal
(number of variables) centraktension,o of i, such that

(Hi), =0

var(H;) 0 dom( o) O var(F)
and for whid

|dom(a) n own(G;)|

is as small as possible amongst all suctieresions. With this
approachF, is functionally independent &f = own(G; ) — dom(o)

Strategy B: Applicable only if there is a centraktension,o of m,
with dom(o, ) O var(H;) and for which (H;), =1. Find a maxi-
mal (number of variables) subsét of own(H;) such that there is a
central atension o satisfying Hi),=1 and
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dom(o, my) = var(H;) - V. F, is functionally independent o¢; the
cost is Y|; the yielddim( H;).

We will show that for somei at least one of these strgies
delivers ayield/cost value of the required magnitude. Recall that no
H; is equvalent to a constant function and so there is certainly an
extensionr of g, for which (H;), =0. Let 5(H;) denote the smallest
integer such that there is anxtension r of m having
dom(r, m) =var(H;), (H;), =0 and

-3(H;) < ecqr) < o(H;)+1

Note thatdo(H;) <dim(H;); the *+ 1" term is necessary in the case
wherer is already central andim( H;) is odd.

Suppose Stratg/(A) is applicable witho being the releant
central extension. Let be such that

dom(7) = dom( ;) [] var(H;)

and for ay x Odom(r) it holds thatx" =x. Now ¢ is a minimal
central extension which nullifiesl; so from the definition ofd we
must hae ecdr)=-9(H,) or 6(H;)+1. Thus the sedom(o, 1)
contains the minimal number of variables needed xienel 7 to a
central assignment, i.e

|dom(o, my)| = dim(H;) +J(H;)

Clearly own(G;) —dom(og) O var(F) - dom(o); if this inclu-
sion were strict then there owld be some variable in
var(F) — dom o) which could hae keen used in making central.
o is chosen to utilise asvievariables as possible fromwn(G;) so it
follows that either dom(og) n own(G;) =0 or
own(G;) —dom(o) =var(F) - dom(o). Therefore,
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yield, = Jlown(G;) — dom(g)| = min (g;, n — dim(H,) - o(H;))

and

cost, = dim(H;) + d(H;) + yield,

min (g; + dim(H;) +3(H;), n)

In the eent of Strategy(A) not being applicable we set
cost, =n and yield, =0 so hat these expressions continue to be
valid.

If for some 1<i <k we hae fsls(:: > B(r) then Strategy(A) is

successful.

Now consider ag application of Strategy(B), wher¥ is the
associated redundant set of \variables. e Wdaim that
|V [= min (h;, o(H;) — 1). For let V' O own(H;) with
[V'|=min(h;, d(H;) = 1). Furthermore letc be aly central eten-
sion of ; having dom(o, i) =var(H;) - V' and r be aly assign-
ment toV'. We have

-d(H;) < —min(h;, o(H;)-1) aoviously
= —|dom(7)]
< ecdo 1) By centrality of o
< |dom(7)|+1 By centrality of o

= min(h;, o(H;)+1) < o(H;) +1
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From the definition o®, it must be the case thati(), 7, = 1.
This is so rgadless of the choice of and therefore K;), =1 and
(Hi)\s is functionally independent of'. Strategy(B) chooses/, with
these same properties, as large as possible so certainly
[V|=|V'|=min(h;, (H;)-1) a daimed.

So for Strategy(B) we e,
yieldz = min(h;, 0(H;)—1) ; cost = dim(H;)

If Strategy(B) does not apply seields; =0 and cost = dim(H;) so
that these continue to hold.

ield _ _
)(/:IOSTBB > B(r), for somei, then Strategy(B) is success-

Again if
ful.

It is now shown, by contradiction, that there is somefor
which either Strategy(A) succeeds or Strategy(B) succeeds.

Suppose neither strgye is successful. Since (A) aifs

yield, )
cost, < B(r). So for each ki <Kk,
(A-B(r)) min(g; +dim(H;) +5(H,), n) < dim(H;)+ad(H;) (4.4)

yieldg
cost < B(r), hence

min (h;, o(H;)-1) < B(r)dim(H;) (4.5)

(B) also fails, so for each

Let u =|global []joint|< 5an. Summing oer i and applying
the Case(4) premisewgs,

k
j=1
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<n- |°V;'”| < (1+5a)n/2 (4.6)

From (4.5) and (4.6) we fe,
O(H)) —u—-1<min(h;, (H;) —1) <B(r)dim(H;) < B(r)n 4.7)

From (4.6), (4.7), the fact thg8(r)n>1 and part (i) of the
beta lemma, we get,

dim(H;) + o(H;) < (1+5a)n/2+m+1+ B(r)n
< (1+15a)n/2+2B(r)n < (1-B(r))n (4.8)

If the "min" in (4.4) isn then (4.8) is contradicted. Hence the
first argument is alays less thann. Now (4.4) gves for each
1<ic<k,

(1-8(@r)) g < BA(r)(dim(H;)+45(H;)) < 28(r) dim(H;) (4.9)
and so,

QA-8(r)([A-5a)n/2 < (1- B(r))|own|/2
k
< (1-5() IZl ¢]

< 24(r) 3 dim(H)) < 28(r)rn (4.10)
i=1

since F is an r-formula. (4.10) contradicts part (iii) of the Beta
Lemma and so for someStratgy(A) or Strategy(B) must succeed.

This establishes the last case and the lenmna.
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Theoem 4.12:(Fischer Meyer, Paterson; 1982) Therexists a con-
stante > 0 with which ary Boolean formula,F, having var(F) = X,
satisfies

O

Il
OCC(Xn, F) = £n|09mm

Proof: Let F be aiy formula with var(F)=X,. Fix r equal to
02 ocd X,,, F)/n Oand let, be a central assignment for which,

dom( ) = {x:o0cA x, F)>r}

Fi, is anr-formula so from Lemma(4.10) there is a central
extension, r of m, for which F, is afine; dom( , ) O var(F ) and

dim(F;) = A(r)dim(F ) (4.11)

With the same gument that commenced the proof of Theo-
rem(4.10) we hee,

dim(Fpy, ) = n/2 (4.12)

Furthermore, from the asymptotic approximationio given in
the proof of the Beta Lemma, we can find someg@pK > 1 with
which,

pgr) =z — (4.13)

which, solved in terms af, yields
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_ log(vdim(F,))

gk (4.14)

Therefore,
ocdX,, F) = rn/2 by choice ofr
> enlog(n/dim(F,) by (4.14), withe = 1/(2 log K)
> enlog (n/diam( F)) by definition ofdiam (F) o

Corollary 4.6: For al f(X,) OB,

O n 0O
L(f) = log ———~<_—
(1) 2 enlog o
diam(f) is the natural extension ofliam from formulae to func-
tions. O

Corollary(4.6) leads to an alternagivasion of Thm(4.11).
Lemma 4.111et f OB, be On/2 Hsensitve. Then

L(f) = enlog (n/2)

Proof: It is sufficient to she that diam( f ) <2 for ary 0n/2 Hsensi-

tive f. Suppose the contrary and that there is a central restriction of
f, m say such that dom(7)[=n-3 ad for which

17 (x;, Xj,%)=cOx 0Ox;0x. Snce m is central gactly
O(n - 3)/2 Ovariables indom( 77) are set to 1, thug!™ must be 1-sen-
sitive. This contradicts the assumption th&f is affine. The lwer
bound is nw immediate from Corollary(4.6)o

Theoem 4.13:Let f 0B, be k-sensitve where O< k< n-2. Then

L(f) = enlogmin(k, n—k)
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Proof: Let f be k-sensitve for somek satisfying the theorem condi-
tions. Asin Thm(4.11) it may be assumed tHex [n/2[] Let = be
ary partial assignment for whichdpm( ) n X,,|=n-2k and such
that X" =0 for eachx O dom( 7). Then " OB, and isk-sensitve.
From Lemma(4.11) it follows that,

L(f") > ¢ 2k logk

At least one of the variables X, — dom(7z) must occur = ¢logk
times in a minimal formulaF realising f, snce one must occur this
often in the restricted formuld,. In such a formulaF, choose
dom(r) to be he n—-2k most frequently occurring variables ia.
From the previous gument it follows that with this choice
Y x Odom( 7) ocdX, F) = elogk. Thus,

L(f) = (n-2k)e +L(f"") = enlogk O

Assumingk < [n/20and comparing this result with Thm(4.11)
we see that Pudlak’methods gre larger bounds folk-sensitve func-
tions wheneer k= o(log n) for all r > 0, whereas FischeMeyer and
Paersons goproach is superior fok = w (log n) for all r > 0. In the
casek =6(log n) for somer >0 hoth techniques ge asymptotically
equal bounds.

Two particular classes of interest are the functidisand C}.
For these we hae,

L(Tg) = max{ Q(nlogk), Q(nloglogn)} 2<k<[nh/20

L(CY) > enlog(n/k)  Fork fixed
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4.3) Formula size and depth

At the start of Section(2.3) we outlined some results concerning the
depth complexity of functions with respect to formula sixer osari-

ous bases. In particular Theorem(2.13) shows that fprfamula of

size L it is possible to construct an egaent formula of depth
O(logL ). One undesirable side-effect of the transformation from a
formula F to a formulaG of depthO(logL(F)) is that L(G) may

be w(L(F)?) using the existing constructions. Examples of such
behaiour are gven by Ratt (1975a) for the algorithm of Spira
(1971a).

In this section we present a result from Commen#dt&¥
(1979) which prges that for a specific family of functions decreasing
depth ivolves a compensating increase in formula size. Thus for
these functions there do natig formulae which hae smultaneously
minimal depth and optimal size. The results apply only to the mono-
tone basis{/\, V}. For the unate basi$/\, V,-} Commentz-Walter
and Sattler (1980) ka proved a smilar result for the same family of
functions. Gven the additional technical complexity of the latter we
will be content to present only the monotone tradere$ult in full.
Both are dexied by dotaining a lower bound on the product
L(f).D(f).

Consider the following family of functionsf,, defined aer disjoint
sets of BooleanariablesX, =<X; ,...,X,>ad Y, =<Vy; ,...,¥,>

f1=y1/\x1 ; fnzyn/\(xnv fn—l)

Equwalently,

n-1 n
fn = .VO(Xn—i A /\y])
i= j=n-i
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It is not difficult to see thatf, may be realised by a formula,
over the basis{/\, V}, having size 21 and depth 8—1. On the other
hand Commentz-Walter (1979) has shown thamay also be realised
by a monotone formula of dept(logn) but with sizeO(nlogn). In
the following sections wexamine the complexity measur@g; the
minimal Sizex Depth of a formula forf 0O B,, i.e

Po(f) = min{Lg(F).Dg(F): Fis an Q- formula fa f}

Throughout this section we consider only formulaeerothe
basis{/\, V} and subsequentll? instead ofP;, \, is used.

The aim of this section is to pr@

P(f,) = Q(nlog®n)

Notation: It is assumed that formulae realisinfy are constructed
from the basis of arbitraryah-in A and V gaes. This is covenient
for considering formulae of constant depth.ithWWthe preceding
assumption our measure of formula size will de( X, []Y,, F) for
such a formulaF. For a formulaF, Ind(F) is the set of indices of
literals occurring in F, eg if F=(xxVy)AXx then
Ind(F)={1,2}. For M OO Ind(F ), Z,, denotes the set ofaviables,

i|D]M{Xi,Yi}

ocqi, F) denotesocd %, F) + ocq y;, F). It will also be con-
venient to consider thevarage number of occurrences ofyavariable
in a formulaF. This we denote byel(var(F), F) and is equal to
ocq var(F), F)
|var(F)]|
ocd n,F) and rel(n, F).

. When var(F)=X,[]Y, we wil use simply
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A partial assignmentsz, is said to bereducingif for each f,, it
holds: after renaming ofaviables f,{”: f,,, for somems<n. Let o,
where 1<i < n, be such thatdom(o;) = {x;, y;} and,

oi(x%)=0; g(y)=1
It is easily verified that, for each<li < n,
fi = foa(Xa =X} Yo ={yi}) (4.15)

So o, is a reducing assignment. Additionally since
dom(g;) n dom(oj) =0 wheneer i# | for ary set, I, of indices
one may defines, as o o the assignment constructed by compos-

|

ing each of the assignments, for i 1. This is also a reducing
assignment.

The ley idea in proving the lower bound d?( f,) is to con-
sider upper bounds on the measurdefined as

max{n : qF realising f,s.t D(F)<d,rel(F)<s/2}

Lemma 4.12There is a constart such that for alld = 1, s> 1:
logt < Vcds

We defer the proof of this lemma, first showingvhat is
applied to yield the cited tradefof

Theoem 4.14:For dl n>1, P(f,) = Q(nlog®n)

Proof. Consider ap monotone formulaf, realising f,, which is opti-
mal with respect toP( f,). For somed>1 and s=>1 it holds that
D(F)=d and 6-1)/2<rel(F) < 92 hencen <t by definition. From
Lemma(4.12) we ne have
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P(f,) ocd F).D(F) = 2nrel(F)D(F)

> n(s—-1)d = Q(nlog?n) o

It remains to pree Lemma(4.12). This is accomplished inotw
stages; first we consider a simpler meastifal, s), defined as
Un:qF realising fs.tD(F)<d andg

max[]
0 Ocd{xi,Yj},F)SS [l

It is shown thatt and t'(d,s) are closely related. Finally an
upper bound ort'(d,s) is proved which will be of sufficient magni-
tude to deduce Lemma(4.12). This last part is the mestvied sec-
tion of the proof.

Before embarking on the proof of Lemma(4.12) we require
some preliminary results on the structure of monotone formulae realis-
ing f,.

Fact 4.5: Let 0 be the partial assignment whichdsx; andy, to the
constant 1. Then

fr|15 = f~n—1( Yiro Y1 X2, 1Xn)
Proof: The result follevs easily from the expanded definition &f
using elementary Boolean manipulatiomns.
Fact 4.6:Let m:N — R" be gien by,

Od+s 0
m(n) = maxDBj H ds<n,d,sON[
DD s O 0

Then for alln OON, logm(n) <v¢ n for somec > 0.
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Proof: Omitted. O

Lemma 4.13:Suppose thafg,,...,9} is a set of monotone Boolean
|

functions @er Z,, = X, [1Y,, for which f, = _VO g;- There is a partition
1=

of the indices [L,...,n] intol+1 <ets, ly,...,I, and a set of +1
partial assignments{m,...,7} having dom(7,) ={x;,y;:]j Oly}
such that

I) gKTh = f||h|'
Furthermore, there is a permutatibnof {0, ... I} with which
i) For each h=0,...] and i=1,...,n if i0l, then

y; Ovar( gL”k) for all k with M(k) <M(h).
Proof: Let V ={1,...,n} denote the indeset of f, and p; denote the

n |
prime implicant, A A y; of f,. Since f, = _V0 g; we hare tat,
J:| ]=

{pl,...,pn}mj@opl(gj)m(fn) (4.16)

From this #&ct we can construct some mapping
@:PI(f,) - [0--:1] which satisfies for eachdi < n:

e(p)=] 0O p OPI(g;).

If o(p;)=] we say thatp; is assignedto g;. For each & j<I, ¢
affords a partition ofPI(g;) into 2 sets: those prime implicants &f
which are assigned tg;; and the additional prime implicants. Note
that from (4.16) eery additional prime implicant of; is an implicant
of f,. From this it follows that for eery additional prime implicant,
q, there is some indei, such thatq is a lengthening ofp;,. From
the construction ofp and this last property we V& if g is an addi-
tional prime implicant ofg, and a lengthening op; then ¢( p; ) # h.
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We @an nav construct the partition of the indeset [1---n]into | +1
sets, I, as Dbllows: for each & h<l, I, ={i:¢(p;)=h}. Now let
m, be the partial assignment, _, . With this assignment

|7
fa

i

|7h

Oh

I —

1
-
«Q
|

j=0 7!

|7

for by our preious arguments, whewer j #h, g;" has its assigned
prime implicants rendered O unday, as dso those additional prime
implicants which are not lengthenings @f, for ¢( p;) =h. In the
same way all additional prime implicants gf also become 0 under
m,. We havethus praed part (i) of the lemma. & part(ii) it is sufi-
cient to defined as the permutation which sortg,...,g, in ascend-

ing order of their lowest indeassigned prime implicanto
Lemma 4.14For dl d,s=>1: t < 3t'(d,6s).

Proof: By definition for eachd,s>1 we @n construct a monotone
formula, F, having depth at most andrel(F ) < s/2 and such thaF
realisesf, with n=t. Let F be such a formulaver the variable set
V =X,[]Y,. Since rel(F) < s/2 we hae ocqV, F) < ns. Consider
the setsX 0 X,, andY 00 Y, of x (resp.y;) variables which occur at
most 3 times in F. Snce 3s(n—|X|)<ocqV,F) we nust hae
[X|=2n/3. In the same wayY|= 2n/3 also. Letly, Iy be the sets of
indices corresponding to the variables &, Y and | =1y n ly.
Clearly, from the lower bound on the cardinalities of and Y,
|I'|=n/3. Applying the reducing assignmemt, -, to F yields a
formula G, of depth at mostd, which realisesf|;|. Moreover by the
construction ofl, each \ariable z (0 var(G) occurs no more thans3
times, hence for each pair of distinct indicegk} 01 we hae
oc({X;, Y«},G) < 6s. It follows that t'(d,6s)=|I|=n/3 and this
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proves Lemma(4.14).0

Proof of Lemma(4.12)To prove that logt<vcds it is suficient,
from Lemma(4.14) and Fact(4.6), to establish

+S
™ 0_4

v(ds) < 5

@.17)

For this induction ond =0 is wed. The inducte based =0
and s<1 is dovious. So assume that (4.17) islid for all values
<d-1and all s<s-1. It will be shown that (4.17) is alsahd for
d ands.

Let n=1t'(d,s). By definition there is some monotone formula,
F, realising f, in depth at most and haing ocd({x;, y;},F) <'s for
all pairs of indices, j. We onsider tvo cases.

Case 1IF =Gy V G; V --- V G;: Let g, be the (monotone) function
realised by the sub-formula, of F. Then

fi=0 VoV g

Applying the result of Lemma(4.13) we find+1 reducing
assignments,y;, (0< h<l) and a partition of thelnd(F) into | +1
setsl, for which

fr|1”h - fnh - gKTh

n, denoting |,|. We may assume, sinc& is commutatre, that the
permutation,1, of Lemma(4.13)(ii) is the identity.e M(h) = h.

Now since {l,,...,I;} defines a partition ofind(F) clearly,
|
> n,=n=t'(d,s). We further hae, from the properties ofl, that
h=0
oco({xi,yj},GK’“)ss— h. So snce GK’“ realises f, and has depth at
mostd -1 it follows that,
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n, < t'(d-1,s—h) Yh O<hs<l

Case 2F =Gy N Gy A --- N G;: Apply the partial assignmerd of
Fact(4.5) to F. After relabelling of variables the resulting formula
realisest, ;. Hence the dual formula (in which the finadtg will be
an | +1 input V) realisesf,;. Using the same argument as Case(1)

[
we find a partition as before satisfyingd n,=n-1 and
h=0
n,<t'(d-1,s-h) for each & h<l.

Thus with both cases,

t'(d,s) = n

IN

|
>n, +1
h=0

IN

|
S t(d-1,5-h) + 1
h=0

L m-1+s-hg O
Z -

< 1-+1
h:ODD s-1 O O
S @-1+hg

< -1 s>1
%D d-1 O

_ m+so

T Os O

The last line can be readily e by induction ons. This
completes the proof of Lemma(4.12).

For the unate basi§/\, V, -} Commentz-Velter and Sattler (1980)
have dso proved,
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Theoem 4.15:

_ (nlognloglogn
Pin v (fa) = Q (og log log logn O -

4.4) Upper Bounds on Formula size for symmetric functions

We have seen in Chapter(2) that combinational networks can be con-
structed to realise gnsymmetric Boolean function oh arguments
using O(n) gates andO(logn) depth. In the case of monotone net-
works, the monotone symmetric functions, (i.e threshold functidijs),
may also be realised ikn monotone gates for #&d k, and O(nlogn)
gaes for non-constark. For formulae, the methods of (Fischer et al.
1982) yieldQ(nlogn) lower bounds for specific symmetric functions,
such asMAJ,, whereas Pudlak (1983) obtai®¥ nloglogn) bounds

for T;, for constantk>2. For the basis{/A\, V, -}, Krichevskii
(1964) had earlier pved Q(nlogn) lower bounds for such.

In this section a number of upper bounds on formula size for
various symmetric functions are presented. The specific functions con-
sidered areCy} in the cases where= 2P andk = 3; and finally mono-
tone formulae for threshold functions.

Peterson (1978)xaibits an upper bound dd((logn)n33363°-)
for the formula size of ansymmetric function using the basiB,.
This is based on ideas similar to the upper boundraikerith respect
to combinational netarks: efficient formulae to compute the binary
representation of the number of 1s among thmputs are con-
structed. Copie®f the resultingllognOformulae, S, S, ,...,S, are
then used in conjunction with an appropriate versal® formula to
compute the required symmetric functionn this S is the formula

n
for thei’th bit of the binary representation f x;.
j=1
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Lemma 4.15:

0 O(n(logn)®™) k=27 (a)
w0 O() k=3 (b)
L(Ck) - E O(n2.58) k:7 (C)

0 O(n’) k=5,15 (d)

Proof: (a) is from (Fischer et al., 1982).aMkscribe the construction
for k=4 only, learing the generalisation to arbitrary constantveis
of two as an eercise. W\ further assume that=2" for somer > 1.
For any assignmenta to X,, let

g(a)=0,0,4- 0101 0,00(a)

denote the binaryxpansion of the number of 1s . In this gy is
the least significant bit. Clearlg, (a) =1 if and only if g;(a) and
oo(a) both equal 0. So it will suffice to construct formula for these
two Boolean functions. &tition X, into 2 disjoint sets of ariablesY
andZ each of sizen/2. Then,

n

g (Xn) = 0% ; 0y(x)=0

01(Y,Z) = o(Y) O 0:(Z) O (00(Y) N 0o(2))

Let S(n), S;(n) denote the size of the resulting formulae for
09, 01. Then with thesegressions,

S(n)=n-1; S(n)=25(n2)+n-1

Hence,

S(n)=n-1 ; S;(n) = O(nlogn)$.
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This nav establishes (a) sinc€) = NOR( gy, gy ).

For (b) let C5, O B, be defined hy

Cl, (X,) O zlx = I(mod3)

As in (a) letX, be partitioned into disjoint, equal sized s&ts
and Z with n again a power of 2. Also letq=(2l)mod3;
r=(21+1)mod3 and s= (21 +2)mod3. It may be confirmed that,

CL(Xn) = [CHA(Y) D CJa(Z)] N [CFA(Y) D CY2(Z)]

Solving the recurrence relation fok(C5) given by these
expressions yields the result claimed.

The upper bounds (c) and (d) are yaa in Van Leijenhorst
(1987). O

In the remainder of this section we are concerned solely with
monotone formulae.

One consequence of ti@(nlogn)-size, O(logn)-depth mono-
tone sorting network of (Ajtai et al., 1983) is thséence of polyno-
mial size monotone formulae for all threshold functions, cf. Thm(2.4).
In practice there are twdrawbacks to this result: the proof is non-
constructve; the dgree of the bounding polynomial, for functions
such asviAJ,, is extremely large. The next result described establishes
the existence of monotone formulae MAJ, of "small" polynomial
size.

Theoem 4.16:(Valiant, 1984) For each = 2m there is a monotone
formula realisingMAJ, in depthO(logn) and with sizeO(n>?3).

Proof: The proof is non-construgi. The «istence of a suitable for
mula is shown by considering a sequence of probability disiis
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for monotone formulae with variable 9%f.
Ay AL, Aoy ALLA L,

This sequence is defined in such a way that farge enough a
formula selected at random according £ computes MAJ, with
probability at least 1/2. Since each formula having non-zero probabil-
ity in A, will have depth at most Rand size at most®2the theorem
will follow if it can be shen thatt=clogn, for some suitable con-
stantc > 0O, is an gpropriate choice. The distubon A; is given by
considering the following random generation of a form&lal A,.
Below a = (3-V5)/2.

)] If i=0 thenF is either a literak; or the constant 0. The prob-
ability of F being the formerfor ary x; is 2a/(2m-1). The
probability of the later choice is12a/(2m-1).

i) If i>0 thenF is formed by selecting formula@,, G,, G5 and
G, independently according to the distriiton A;_;. F is then
defined as the formula@; V G,) A (G5 V G,).

Now let m;, ; be assignments tX, in which at mostm-1,
resp. at leasm, variables are assigned the value or B formulaF
chosen according téy let,

fi
h;

Prob[ F, =1]
Prob[ F, =0]

To prove the theorem it suffices to establish that for some con-
stantc >0 and t = clogn we hae

1

o1 0 M < 5o
2n+1 2n+1

f, < (4.18)
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For then, choosing a formuld& according toA;, we have

Prob[F #MAJ)] = 2 Prob[F, # MAJ(m)]
7 0{0,1"

and from (4.18) this summation is certainly less than 1/2.

From the definition of the distriftions A it is immediate that:

2a(m-1) a

< —— = = - .

= Om-1 YT h-1 (4.19)
2am a

< - = - -
hg < 1 ol S (4.20)
fi = f2, -413, +41% (4.21)
h = -ht, +2hZ, (4.22)

: . _ 1 1
We wish to findt for which f; < ol and h; < ol Suppose we

know that for somej = 0, and some >0, eg ¢ =27, it holds that
f] <¢g hj <é¢

Let t>j and k=2"). From (4.21) and (4.22) and theact that
0< fi1,h_; <1, itis clear that

fi < 4fi2—1 ; hi < 4hi2—1
Hence,

ft < 4k—1(fj)2k < 2—2k : ht < 4k—1(hj )2k < 2—2k

Hence if f; <2, then f, for t=OognO+ j, is less than

2n+l
and similarly forh,.
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So from the préous argument the theorem follows if we can
shawv that f; < 274 for some j =clogn. (An identical argument will
hold for h; so only one analysis is\gn in detail).

Consider the behaviour df as a function off;_; and that ofh;
as a function oh;_;. It is easy to shw that,

fi(a) = a , hi(l_a) =1-a

Additionally, for ary 0< £ < ¢ it holds,

|
|
—
Q
~

fila—¢) =

a-4aes+e?(6a+2)-e(4a-4)+¢&*

o' - .
Here 5—)3(/ denotes ther'th derivative d y(x) with respect tox and

0
% is taken to bey(x).

From the abee epansion we hae that for O<e¢<a,
. . a .
fi(a—€)<a-e¢. In particulatr snce f, <a - ——, it holds that

0o O0a 0 a
V y<dag- ——— 2+~ Hhg-4+
y=aa Eh—lDEﬁa h-100" n—l%

Vi>0V0<e<
n-1

Similarly
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Combining this with (4.19) and (4.20) we conclude that,

igda [
< _ |
fi<a-(r) 5-1g
Oa 0O
< _ _ |
h, 1-a—( )Eh——1D
logn
It follows that for somej = ogn +0(1),
logy
f,<2* ; h <2
logn .
So for some constan=>0 and ary t= logy +logn+ g it
holds,
1 1
fo < on+l ; he < on+l

Recalling that ay formula with non-zero probability i, has
size at most 2, we mnclude that there exists a monotone formula
realising MAJ, of size O(n?@*1°92) = O(n>®), proving the theo-
rem. O

Obviously Thm(4.16) implies the existence @(n>3) size
monotone formulae for all threshold functiong}. Results of
Khrapchenk (1971a, 1971b) yield(n?) lower bounds on the mono-
tone complexity ofMAJ,, see the next section.oF k fixed substan-
tially improved upper bounds may be pral, these matching the
lower bound of Krichevskii (1964) cited earlier

The exstenceof O(nlogn) monotone formulae realisin@; was
first established by Khasin (1969a). Khasin considered monotone for
mulae of the following form:
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Letn=pkandA=<MN,, MNy,...,MN> be apartition of X,, into
k sets, each containingkactly p elements. The function

K
fa= N V X
j:lxDI‘Ij
contains p¢ prime implicants each with xactly k variables. Thus
Pl (f,) OPI(TR). Let us say that a prime implicamty of T} is cov-
ered by a partitionA if m< f,. If A ,..., A is a set ofr partitions
of X, as abwee, then for some large enough we hae tat

r
v = V fo. Khasin was unable to explicity demonstrate that a spe-
i=1

cific set of O(logn) partitions would be suitable. M@ver the follow-
ing probabilistic argument was used to y@dhat such a set didxist.

Let n=pk and <f;, f,,...,f;,...,> l® a €quence of monotone
functions wer X, defined as follas:

f, = f5,, whered, is a partition ofX, into k sets of sizep. A,

is selected at random from the set of all such partitions with
probability (p!)*/n!, i.e each partition is equally kky. For
i>1, fi=f_,V f,. A is chosen with probability 1) /n!,
independently of\,,...,A ;.

Using L™ ( f) to denote the size of the smallest monotone for
mula realising f, it is clear from the definition of f, that,
L(fa)=n-1. Gwen this we wish to she that for some
r =0O(logn), the probability that a functiorf,, chosen as abe, is
equivaent to Ty is strictly greater than 0. If this holds then it is
proved that,

L™(Tg) = O(nlogn) fork fixed
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So consider anfunction f, as defined. Clearlyance A, A, etc
are selected independently

r
> [] Prob[ m not coveredby A ]
mOPI (T]) i=1

Prob[ f, # T}]

IN

IN

g:g(l_ Prob[ X, - - -x, covered by\])"

whereA is ary partition chosen with probabilitypt)*/n!.

The last expression holds since fory goair of distinct prime
implicants of T}, s andt say the number of partitions which e& s
is equal to the number of partitions whichveot, so in he summa-
tion we may without loss of generality consider the prime implicant
Xl . .Xk_

How mary partitions A cover m=x; ---x? A covers m if and
only if each clas$1; of A contains exactly ong. If x,;, is the \ari-
able of m contained infl;, then o is thereby a permutation of
[1---k]. Also the sets IN;—-{x,;} afford a partition of
n-k=(p-1)k elements intok equal sized sets. It folles that the
(n—k)! k!
[(p-1)

(n-K'k - (pY* _ o oo
[(p-DF n  Prmo

number of partitions which wer m is exactly and thus,

Prob[ A covers m| =

In summary
10 0 -1 ]
m* mQo 0]
Prob[ f, #T¢] = [ﬂ p* 0< expD—rp O
EkD kO 5~ kO kKO
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r needs to be chosen d¢ar enough so thaRrob[ f, #T.] < 1.
So, we require

expgr pkmﬁlg> ]
5" kg KO

.
r > EkDp log,

(nQ]
kO

Recalling thatn = pk and g:g< n® yields the condition,

r > K**log,n = O(logn) fork fixed

In total we hae just proved,

Theoem 4.17:(Khasin, 1969a) For all fed k, and all n there exists a
monotone formula realising@y of sizeO(nlogn). O

Following Khasins results there were a number of attempts to
find efiicient constructie lutions. McColl (1977) deves formulae
of sizeO(nlogn(loglogn)¥?) for 2< k< 5. Kleiman and Pippenger
(1978) use an intricate technigue to obtain formulae of size
kPO
20 )
formulae of a size matching Khasnkxistential bound was finally
solved by Friedman (1986).

O(nlogn The problem of explicitly constructing monotone

Friedman examined monotone formulae defined by constructing
a squencel;,...,A, of sets of disjoint subsets o0K,. Thus
A =<0, ... N> the setsM. and N} being disjoint for s#t.

Note thatm I‘Iij may be a strict subset of,. We all ary such A a
i=1
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division of X,,, to dstinguish the possibility ofA not being a strict
partition. Asin Khasins example, monotone formulaé;, of sze rn
are used being defined as:

A concept of a division a@ring a prime implicant ofTy is
defined as before and recalling thguanent used earlier in deing
Khasins bound we knw that a dvision A covers x;, - --x;,_if and only
if each X, occurs in exactly one clad3 of A. A set of dvisions
Aq,...,A which collectvely cover al prime implicants ofT} is called
an (n,k)-stieme of size. r

As a preliminary stage consider the problem of constructing
(n, 2)-schemes of siz€logn[l It will be corvenient to viev the \ari-
ables, X, a {Xg,X;,...,X—1}. Let n=2" and for O<i<n-1 let
Bin;(i) denote thej’'th (most significant) bit of the-bit binary epan-
sion ofi. Define the diision A; by,

Nl = {x : Bin;(i) =0}
Nl = {x : Bin;(i) =1}

Now since for ary two dstinct x; and x; the binary &pansions
of i and j must differ in at least one digit it folis thatx; x; is cov-
ered by at least one viBion. So the set of =[ogn[ divisions
defined abwe gves rise to an , 2)-scheme of sizé&logn Ofor ary n.

Friedman notes that attempting to generalise this idea by repre-
senting indices in bask and defining divisions from commonality of
the j’th digit in the expansion breaks down since, wkh=3 for
example, triples such as 222,122,221 >= {Xyg,X17, X5} have o
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single position differing in all 3xpansions.

The lkey dsenation made in Friedman (1986) is that an
(n, k)-scheme of sizeD(logn) can be constructed by buildingvdi
sions based on variable indices represented in somebbaepending
on k. Thus for eachn and k there is a constarth, with which: 4 a
subsetS of {1,2,3,...b}™ having sizen and with the property that
any k distinct elements of differ in at least one position.

More formally we proceed as foli.

Let {1,2,...h}" denote the set of alin-tuples of the intgers
{1,2,...pb}. For ary par of mtuples a=<a;,...,a8,> and
p=<b;,...,b,> the Hamming distance H(a,B) is gven &s,
[{1:a #Db; }|. Theball of radius r aboutx is the set ofm tuples,

Bi(a) = {B:H(a,B)sr}
Finally for ary set, S of m-tuples, theseparationof S is defined
to be minfH(a,B):a,30S azp}.

Lemma 4.16:Let | be ary integer greater than 1) =2? andc=2l.
For dl mON there eists SO{1,...,b}™ such that §|=b™ and
having separation ¥1-1/1) mc.

Proof: For r ON and ay mctuple a it is clear that

Dm@br

<
B(a)l < o ¢

Hence fore =1 - 1/l and ay such a we have,

(1MC O eme

<
| Bemc(a)l - Dfmcl:l

< 2mc bemc - b(l—l/ﬂ) mc
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_{1,....b}7
=S
It follows that we can construct a suitable as follows:
S={ay,...,a;,...,apm}. If i =1 choosea; to be ay mctuple in
{1,...,b}™. If i >1 a; can be chosen as\atuple in the set,

(w2 .m0 Baa)

From the upper bound just meml, this set is non-empty while
i<b™ o

It should be noted that the s8tin the preceding lemma is con-
structible in time polynomial ™.

Theoem 4.18:(Friedman, 1986) For fed k and ay n>k it is possi-
ble to constructn, k)-schemes of siz&(logn) in time polynomial in
n.

Proof: Let | = gg m = Hog,nOand apply the preceding lemma to
yield a setS={x,,...,x,}. Consider the indices df distinct points
Yi,---,¥¢ I S. For ary two dfferent indicesa, B in this set we

knov that these indices are m2-tuples and that
H(a,B)>(1-11)2lm. It follows that there is somg 1<i<2m
such that the’th component of the&k 2ml-tuples differs. & can thus
construct a b™, k)-scheme of siz&©(m) as bllows:

For each j, 1< j <mcand each
1<ty <t,<---<t<hb

the dvision A; ; ; has itsi’'th subset

et —
IR
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given by
{ p: j'th componenbf (2ml) —tuple x, equals t}

The correctness of this construction is immediate from the pre-
ceding arguments and its size is,

O
mcC

KO = O(m) O

4.5) Bounds for bases other than B,

The previous section included some upper bounds on symmetric
functions for the baseg/\, V,-} and{A, V}. In this final section we
review some general lower bound techniques for these cases. The tw
methods ramined are those of Khrapchenk(1971a, b), which
improve ©me earlier wrk of Subbotovskaya (1961) concerning the
power of the basi§/, V,-} and allav a lower bound onMAJ, to be
determined. Thesecond method gen is that of Andreg (1985)
which is notable for being the st bound on formula sizeva a
complete basis attained to date, albeit for a somewhat artificial func-
tion. We mote here that both techniques pertaining to the basis
{N\, V, -} exploit the absence of the operationsand [1] and cannot
be generalised to arbitrary bases.

4.5.1) The Khrapchenko Bound

In considering formulaever the basis{A, V, -} we may with-
out loss of generality assume thatga®n is applied solely to the
input nodes of a formula. This folle easily from De Maan’s Laws
using the transformation of Lemma(3.32) and noting that there is no
increase in the size of the formula because atkg hae fanout equal
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to 1.

Khrapchenkas lower bound is based on a measure defined for
ary non-constant Boolean function. vén any f [0 B, we may define
a partition of {0, }" into two sets of assignments:

f(0) = {a 0{0,3": f(a) =0}
f(1) = {a 0{0,": f(a) =1}

Let NEXT, denote the set of pairs of assignmenis, 8> for
which the Hamming distance betweenand g (i.e H(a, B) using the
notation of the previous section) is 1.

Theoem 4.19:(Khrapchenk, 1971a, b) Letf (0B, be a non-constant
Boolean function,A be ary non-empty subset of *(0), B ary non-
empty subset off 1(1) and C be the set of pairdAx B n NEXT,.
Then for all formulaeF over the basig A\, V, =} realising f it holds,

ICF

ocd X,,,F) =
" |Al. B

Proof: The proof belw is due to Riterson (pers. comm). Ldt be

ary minimal (number of occurrences of literals) formula realisihg
ove the basis{ A\, V,-}. We poceed by induction owmcq X,,,F) > 1

to prove the theorem.

The inductve base,oc X,,F) =1 is tivial. F is a formula of
a dngle literal thus f=x or f=-x Therefore
[f720)|=|f(1)|=1 and IC|=1. It follows that

ICP

|Al. B

For the inductve gep assume thabcd X,,,F)>1 and that the
theorem holds for all smaller formulae. SinEecontains at least twv
literals it follows thatF = Gé&H whereg O{\,V} andG andH are

oc x, F)=1=

as required.
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smaller formulae. The cage=V only is proed; the \-gate case fol-
lows from a similar ayjument.

Let g, h be the functions realised b8 and H respectrely, s0
2
that f =gV h. Choose A and B so that|A|\|C.||B|

A and B we wish to construct subsetd,, A,, By, and By, of g(0),
h™(0), g*(1) and h™(1) in such a &y that the inducte agument
will succeed. Fix A;=A,=A; since f=gVh, f is O only for
those assignments which render bgtrand h 0. Thus these choices
are valid subsets of*(0) andh™(0). Finally chooseB, O B n g™(1)
and B,OBnh™*(1) in such a way thatBynB,=0 and
By [1B, =B. Note that neither set is empty sinBeis chosen as a
minimal formula. With these choices we V&g

is maximised. Using

1Al = |A] = |Al
Bl = [Bg| + [Bh|
IC] = ICql + ICil

The last equality holds sind®, and B;, define a partition o8 hence
Cq = (AxBy) n NEXT, and Cy, = (Ax By,) n NEXT, define a partition
of C. Now dnce F =G V H we hae that,

ocdX,, F) = ocdX,,G) + ocAX,, H)
ICqf? ICnl o
> + By induction
|AL.1Bgl  |Al.[Bnl
ICF
~ |Al.B|

To =e that the last line foles from its predecessor let
Cq =ICql, cn =|Cy| ec and obsew that the inequality asserted is
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equvaent to
(Cg+ Cp)? by b, < (cg by, + cﬁbg) (bg +by)
and this holds if and only if

(Cgbh_Chbg)Z >0

Since this last condition is vadlys satisfied the theorem fol-
lows. O

n
Corollary 4.7: Let PAR,(X,) = Elxi. Linv,4(PAR)) 2 n’.

Proof: In Theorem(4.19) letA = PAR*(0) and B = PAR*(1). From
the properties ofl, any two assignmentsa and g whose Hamming
distance is 1 satisfy PAR,(a) # PAR,(B). It follows that
| AxBn NEXT,|=n|Al =n|B|. The lower bound is mo immediate
from Thm(4.19).0

Earlier Subboteskaya (1961) had obtained a lower bound of
Q(n®?) for the same functionver this basis. Her methods arevee
oped further in Andraeés lower bound bela. It is dbvious thatPAR,
has formula sizen—1 over the basisB, and so these results sho
that no @&act analogue of Lemma(1.4) can bevebfor formula size
ove complete bases. It is kmm that the size can increase only poly-
nomially in changing from one complete base to another (cf.
Thm(2.13)). For the basisN, V, -} Pratt (1975a) has established that
for ary f OB, Lpv.4(f)<L(f)°%% With the lower bound
implied by Corollary(4.7) this exponent is close to optimal.

A further example of Khrapcheolk method is its application to
threshold functions.

Corollary 4.8: Ly v 4(Tg) 2k(n—k+1).
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Proof: Let

A={a:a has exacthk-1 1's}
B={p:pB has exacthk 1's }

Then eery element of A is at Hamming distance 1 fromxaetly
n—-k+1 dements ofB. Smilarly every element ofB is at Hamming
distance 1 from »actly k elements of A. It follows that
[C|=(n-k+1)|A =k|B| and this establishes thewer bound from
Thm(4.19). o

The bound of Corollary(4.8) is maximised for the majority function,
k=0On/20 which has formula size> n?/4. The best upper bound
obtained to date,wver this basis, i90(n°) using a uniersal symmetric
function construction from Pippenger (1974).

4.5.2) The Andreev Bound
Andreer (1986) deelops techniques of Subbotovskaya (1961) and
Neciporuk (1966) to pre a bwer bound of

0 r]5/2 0

O(log n)2log logn O

on the compleity of a specific n-input Boolean function when
realised by the class of formulagep the basig A, V , —}.

Let
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be a set of disjoint tuples of Booleaariables. LetXX' denote the set
of tuples,a of the form,

(jl,l"'"jl,sl""jk,l’""jk,S'al,l""!ak,S)
such that
1<ji1<ji2<--<jjssl for 1<i<k
o U{0,3 for 1<i<k; 1<t<s
If (% ,...,%) is a Boolean function then forr OXY!, 7 is
the subfunction off obtained by fixingx; = o, for each 1<i<k,
1<t<s

Lemma 4.17:If k=1, 1=5 then for ay Boolean function
f(% ..., %) having L;x v (f) =2, there gists a OX{' such that

0, Mo
|—{/\,v,+}(fI ) < C”DI—DL{/\,V,ﬂ}(f)

3x X

h =1-—+—
where ¢(X) >3
Proof: The proof is a probabilistic counting argument. gt be a
random variable & &¢ <Ly vy 4(f) defined as follas: Randomly

choose a OXY with probability (2)%, &(a) is the \alue
Lenv,o(F19).

We daim that the expected value daf;, E(&;) is at nost
@(LN) L, v, 4(F). Clearly this is sufficient to pree the lemma. We
use induction on L, y 4(f)=2 to establish this claim. If
Lia,v,4(f)=2 the claim may be verified directlyOtherwise if
Linvg(f)>2 then f=1f, V f, or f =1 A f, for some Boolean
functions f, # f, f, # f. Thus
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Linv,a(F) =Lia v, o(f) +La v, 4(f)
If Lip v,5(fi)=2 for bothi =1 and i =2 then by induction we he;

E(&s) < E(&r) + E(Evy)

IN

o
wDI_D( Liav,o(f) +Lia, v 5(f2))

o
(UDI—DL{/\, v,4(f)

Otherwise suppose that Ly y 4(f)=1 S0) that
f,=(x))”=x; 0o 0 1. The function f, cannot essentially depend
on x; and this fact and the indueti typothesis establish the claim in
this case.O

Lemma 4.18:There exists a posie nstantc, such that ifk>1,
| >r >4 then for all (%, ,...,%) there aists @ O X[ for which

D |j3/2

Linva(fF9) < ¢ 00 Linv,4(f)

Proof: For L, v, 4(f) <1 the result is immediate. Otherwise repeat-
edly applying the preceding lemma establishes the existence of
a OX{ for which,

r

Dlll 0 DD
L f7) < — L f
v 4(F9) %n:rﬂ(oﬂ'nﬂg v, 4(F)

The \alue of the product in parenthesis is boundedvalwy (1/r )™
proving the result.c
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The following fact is immediate from this proof.

Lemma 4.19:If k=1, I>r=4, g;(%),...,0(%) do not become
constant Boolean functions then foryantegralr and

f=9(a:(%) .. ... g(XJ)Sitholds,

1 EIET/Z

Liav,4(f) 2 o 00 Lin.v,4(9) ]

2k

Let k be ary natural numberk>3 and | = D? O n=2¢+Kkl.
The tuple § contains # distinct \ariables Yo, o, Where o; 1{0, 1}
for each 1<i <k These variables are distinct froky, ..., X, Define
Fo(V, % ,...,%) as

Dk | . aiD
01 v 0 010,33 Yoy e I E@l (jgl X) O

and®(y,z,,...,z) as

Theoem 4.20:

0 n

L Fn) = Q
v, (Fn) O(log n)¥2log logn O

Proof: Let E,, be the set of all binary tuples of length and B,
denote the set of all Boolean functions dependingkowariables.
Define

L(k) = max L v,4(F)
f OBy
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For A O Ex let,
o = O 7,0, 7)
Clearly for ay A O Ex
- | |
Lonvia(Fa) 2 Liav,(® (2 Xj e X;)

It follows from Lemma(4.19) that with = 4 we have

1 08° i}
L F) = max — —— L b
nv,-(Fn) FoEs Gy TAD inov, (P
Now since for ay function g(z; ,...,z) U ék there aists A 0 Ex
such thatg = @}, so we lave
10 E“le
L F) =2 — =~ L(k
{/\,V,—!}( n) CO [H'D ( )
k32 ok 5/2
S =0 28 _ QD n O

~ OkO logk ~ O(logn)*2loglogn O

Bibliographic Notes
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A Boolean functionf (0B, is said to essentially depend om
variables if for all subsetsy of X,, of size m and all assignments
o 0{0, 3™, fM=7 depends on all the aviables X,-Y. Malyshev
(1967) praoed that almost all Boolean functions essentially depend on
m variables form<n—(1+¢)logn, for ary ¢>0 and n large enough.
Using the approach of Subbotovskaya (1961) it isyqurdhat for ary
f essentially dependent an variables,

3/2

O | O
L(f)=maxg————, mogm U
gvh=m 2loglogm

Theorem(4.1) applied to monotone functions yields weflo
n

2 . .
bound of ——— on both monotone formula size and the size of
n¥2logn

formulae @er B,. Redkin (1979) gves mnstructions matching both
lower bounds to within a constardctor These emplyp ideas similar
to those used in the proof of Theorem(3.4).

Bloniarz (1979) considers the formula size fqfX,,) 8 g(Y ) for
disjoint sets of a&riablesX, andY and \arious 6 [1B,. It is shown
that formula size is addvie, i.eL(fég)=L(f)+L(g)+1.

Paul (1977) uses Neciporuk’lower bound method to construct
a function with linear combinational complexity but formula size
Q(n?*/logn).

Non-trivial lower bounds on depth Y& been obtained by
McColl (1978c) for symmetric functions computed by the bases
{-N}, {-N,0}. These are bounds of Bgnl] McColl (1978a)
presents a simple upper bound on the depth of monotone formulae.
Recently Karchmer and Wigderson (1987) vea poved a
Q (log? n/log logn) bound on the depth of monotone formulae com-
puting transitve dosure. Their ajument relates monotone depth to a
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measure of communication complexity and then uses information-theo-
retic arguments to produce the lower boun&Razbore (1988b)
proves larger bounds of ordef(log’n) on the depth of monotone
formulae for a set a@ring problem. Unfortunately a detailed presen-
tation of these techniques would be too long to include here.
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Chapter 5
Bounded-Depth Netarks

---the orderof anaccidental serie®f
accidents accidentallgonceived

Henry Miller

Tropic of Capricorn

5.1) Introduction

Bounded-depth networks allo arbitrary fan-in gates \er the basis
{ N\, V} but restrict depth to being constanorfally

Definition 5.1: A depthk network (k=0) is a network which is a
member of the clasg, or M, these being defined induatly as fol-
lows.

i) If k=0 then
50 = My = {Xy,.o . X Xg, .-, %, 0, 1
i) If k>0 then SO, if SOM,, or Sis formed by V-ing the
outputs of a finite number d,_; networks.

i) If k>0 then SOM, if SOX,, or Sis formed by A-ing the
outputs of a finite number &f,_; networks.

BDZ( f) will denote the minimal size (number @fires) of ary 3,
network realising f. BDJ( f) is defined similarly The depth-k com-
plexity of £ denotedBD¥( f ) is given by
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BDX(f) = min{BDZ( f), BD{(f)} .

Note that fork constant we may interpret this definition as restricting
gae fanout to be at most one, i.e dealing wittunded-depth formu-
lae. This is because such a restriction only increases size polynomi-
ally and we will be interested only in bounds which are superpolyno-
mial®.

One class of bounded-depth networks has already been encoun-
tered in Chapter(l). The representation of a Boolean function in
DNF naturally defines &, network (i.e a disjunction of conjunc-
tions); the representation @NF naturally gves rise to all, network
(i.e a conjunction of disjunctionsY, andll, may be seen as general-
isations of these normal forms.

At first there seems to be little madiion for considering this
class of network which &s first introduced in Lupamo(1961a) and
in fact lower bounds in this modelwvei little insight into proof tech-
niques releant to combinational compkity. Howeve its importance
was demonstrated by (Furst et al., 1984) who established a connection
between lower bounds on depgtleompleity and therelativised poly-
nomial-time hiearchy.

Meyer and Stockmyer (1973) introduced a hierasctof com-
plexity classes, lying betweeR and PSPACE >} and M, consisting
of languages \er {0, 1} characterised as folles.

L 0{0,3" is in Xf if and only if all words y OL can be
described as those satisfying an expression of the form,
Fx ¥ %....Qf xR

a) Some authors define size as the total numbgatespresent. Thisgain is polyno-
mially equivalent to total number of wires.
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where the quantifiers rangesen words ;) of length polynomial in
ly] and R is some decision problem iP. N} is defined as
co-3f ={0,1}" - =¢.

With this P = 3§ =Ng, NP=xf, eg the Directed Hamiltonian
cycle problem of Chapter(3) may be expressed as: "Does th&ste e
an ordering of the verticex,) of a gven drected graphy() such that
the ordering corresponds to a cycle of edgey, i(R) ?'.

Since PSPACE= [ 1P (I NP, it is known that if a decision
n=0

problem were found to be i&f,; but not in X then this weuld
enable a separation &, NP and PSPACEto be proed.

The problem of proving that the class of languages introduced
above des indeed define proper hierarcly is thus at least as diH
cult as preing P # NP and NP # PSPACE

The dificulty of resolving these issues led (Baker et al., 1975)
to consider the apparently simpler question of whether separation
could be achied relative b an aacle.

An oracle A, is just a subset of0, 1", i.e a language. A UF-
ing machine, M, with oracle A has an additional "query" tape on
which, at ag stage during computation¥ may consult the oraclé&
by writing a string,x and entering a "query" state. The answer to the
questionx [1? A determines the next me d M. The consultation of
A is counted as aingle stepin the M’s computation.

Any complexity class, C, is extended in a natural way by the
provision of an oracleA to a nev complexity classC”. C* is said to
be the clas<C relativised with respect to oracléA. In this way we
can consider the question of whether there is an owadla which a
separation of the classes of the polynomial-time hieyarekativised
with respect toA can be preen.
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(Baker et al.,, 1975) successfully constructed an orakldéor
which PAONP” could be demonstrat®d Howeve, until recently
the best result obtained for a relativised hienarelas an oracleA
such thatz5” #MN5* and hencezy,” 0 25*, proved in (Baker and
Selman, 1975). The techniques used therein did not seevarfpb
enough to separate other layers.

The significant breakthrough made by (Furst et al., 1989 w
the discwery that an oracleC, with which ¢ O 575, for all fixed
k=2, could be constructed if parity functions required exponential size
depthk networks, for all constank=>2.

Lupanos (1961a) had earlier established that parity functions
had exponential depth-2 compiy. (Furst et al., 1984) could achiee
only Q(n°") lower bounds onBD for parity”, but in doing this
introduced important ideas which were subsequerdlyable in pro-
ing the depthk compleity of parity to be gponential. This final step
in separating a relativised polynomial-time hiergretas achieed by
Yao (1985). Yao's proof is extremely complicated but Hastad (1986)
discovered a simpler gument which gveimproved exponential lever
bounds. It is this proof which we present belm Section(5.3). Com-
mon to all three arguments is the employment of probabilistic count-
ing techniques c.f Chapter(3), Section(3.5.1.3).

The fact that parity functions could not be realised by simulta-
neous polynomial size and constant depth networks vated the
investigation of seeral issues related to depkhnetworks. In Sec-
tion(5.4) we describe some results which wlléurther eponential
b) The same paper also constructs an or&lér which P2 = NPB. This raises dff-

culties in trying to establisP # NP from relativisation results. A fuller discussion of
these problems may be found in (Hopcroft and Uliman, 1979).

¢) Tkache& (1980) independently pved superpolynomial lower bounds for parity when
realised byz; networks.
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lower bounds on deptk-complity to be deduced. These are ofotw
kinds: those obtained via constant-depth reductions, as first outlined in
(Furst et al., 1984); and those ded as a onsequence of the main
lemma preed in Hastad (1986).

The final section of this chapter deals with dedént bounded-
depth model: Section(5.5) describes some recent results of Razboro
(1986) on the complexity of/\, 0} depthk networks.

Before these the work of Lupan@n wiversal depthk formulae
is presented in Section(5.2).

5.2) Universal bounds on bounded-depth formulae

Lupanos (1961a) introduced bounded-depth netivs as a generalisa-
tion of DNF and CNFIn this section we pre asymptotically match-

ing upper and Mer bounds on the number of 2-inplitand VV gaes
required to compute gnBoolean function by deptk-formulae. Note
that by considering only constant fan-in gates, the concept of Hepth-
formula becomes the restriction of permitting oklalternating lgels

of gate operations, e.g depth-3 formulae with arbitrary fan-in are
equivaent to formulae wer the basig A\, V} having neggaed inputs, in
which every path from an input node to the output gate consists of a
sequence of\ -gates, followed by a sequence Wfgates, followed by

a <quence of\-gates. V& all such netwrks k-alternation or
bounded alternation formulae. There is a close relationship between
this measure and the number of wires in a d&ptktwork.

Fact 5.1: For a bounded alternation formuldl, let L*(T) denote the
number of 2-input gates as before. Furthermore for a defiihmula,
S, let B¥(S) denote the value oBD¥(S) minus the number of (arbi-
trary fanin) gates irS. For f OB, the measures*( f) and B*( f)
are defined in the obviousay
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For dl f OB,
LK(f) = BY(1)

Proof: i) LX(f)<BX(f): Let T be a depttk formula realisingf. We
proceed by induction on the number of gatesTimo construct ak-
alternation formula,S, realising f and satisfyingL*(S) < BX(T). For
the inductve base, T consists of a single gate witlarf-in p say The
equvaent k-alternation formula containp -1 two input gates, with
the same operation as the single gatd.o&ince the only wires il
are thep inputs this prges the inductve base. Nav assume that the
upper bound for alll containing fewer thart gaes and letT be a
depthk formula realisingf and containing xactly t gaes. Wthout
loss of generality let the output gate Dhbe an/-gate and hee fan-
in p=2. Then this gte computes the conjunction @f depth-k —1)
formulae each containing at most 1 gates. LetT,,...,T, denote
these. By the induateé hypothesis there arek ¢ 1)-alternation formu-
lae, Sy, ...,S, such that for each § computes the same function as
T, and,

L“Y(s) < B*Y(T)

Let S be thek-alternation formula which is formed by comput-
ing the conjunction of5,,...,S; using p—1 A-gates. V¢ have

L(S) < p-1+3L¥YS)
i=1

IN

p-1+3 BY(T)
i=1

BY(T)
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and this completes the induati gep and proof of the upper bound.
The proof thatLX(f)=B¥*(f) is carried out in a similar manner
using induction on thé.¥(S) to construct a deptk-formula T com-
puting f and haing BX(T) < LX(S). This is left to the reader

The following upper bounds on formulae are the best possible
for all k=2; and we can pk@ exact bounds for the cade=2. The
lower bound preed for this last result will be important in Sec-
tion(5.2). We anploy the notation,

L¥(B,) = max{L*(f): f OB,}

Theoem 5.1:(Lupanq, 1961a)
L%(B,) = n2"1-1

Proof: For the upper bound observthat ay f OB, has either at
most 2! satisfying assignments or at most'2unsatiséctory assign-
ments. Supposé is the former Expressingf in DNF yields a for

mula of size at most"?(n-1)+2"1-1 and this gies the upper
bound. Anidentical argument applies if there arevée than 2 sat-

isfying assignments by using a CNF representatiorfi.of

For the lower bound consider either of the parity functions, i.e
n
,Dlxi or its ngaion. Since the number of gates in a 2-alternation for
1=

mula realisingf is just the number ofales used to compute a DNF
representation off (for the ordering/\ followed by V) or a ONF
representation (for the alternadi adering), to pree the lower bound
it suffices to she that ary DNF (resp. CNF) representation of a par
ity function must hee a least 2% implicants (resp. clauses) and each
implicant (clause) depends on allvariables. V& gve the proof for
DNF. The other case is pred identically Let f(X,) be a mrity
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function and consider gnDNF representingf. Each product term in
this must depend on atl variables of X,,, for if there is a producp,
such thatp< f and p does not depend ox, then the assignments
and B which male ecactly var(p) and var( p) []{x} take the \alue
1, both satisfyf. But this would contradict the definition of parity
function. It now follows that since all implicants of depend on all
variables there must bexactly 2 product terms in an DNF
expressing f. This is because gnsuch implicant is satisfied by
exactly one assignment and there afé' Zatisfying assignments for
ary parity function. 0

Theoem 5.2:(Lupana, 1961a; 1973) For ak =3, L¥(B,)~ 2"/logn.

Proof: This result is stated (without a detailed proof) in Lupano
(1961a); the presentation beiofollows Lupane (1973). The laver
bound, which holds for almost all Boolean functions, is immediate
from Theorem(4.1) since thiealternation restriction wolves a subset

of all formulae. It is clear that***( f)<L¥(f) so it wffices to
prove the upper bound fok = 3. For this we return to thexpansion

of f OB, used in proving the optimal upper bound on network depth
in Theorem(2.11). Recall that this partitioXsg into 4 setsW, Y, Z
and U of sizesw, y, z andu, with which f(W,Y,Z,U) is

VYV V& (W)A(U) G0k (Y, Z) A (28,(Y)V 1T, (V)
In this, o ranges wer al assignments toW; 1<i<?2'y;
1<k<[R*/s[J p ranges wer al assignments toY; 1<j<N and

u :
Nsa+25. Here u is a paver of 2,q<u ands, q are parameters to

be fixed subsequentlyurther recall thatp(U) is the characteristic
function of the sphere with centee® 0{0, §"; that g; ,.,; is some

function of Y and Z; and ) | | is the disjunction of at mosy



Bounds on all Boolean functions 361

variables fromU.

To dmplify presentation of the upper bound we will adopt the
following notations:

Fioomi = flonki(V) (5.1)
F2 = =5,(Y) (5.2)
Fooki = Flook; V F2 (5.3)
Flow; = /p\Fi?:U,p,k,j (5.4)
Fooki = Gioki(Y.2Z) (5.5)
F? = g(U) (5.6)

FI = 6,(W) (5.7)
Fioki = Flonj NFiouj NFPNF] (5.8)
Fo = VvV Y Fook (5.9)

F° i.e f(W,Y,Z,U) is realised as a formula (using 2-inpuates)
from the class;, thus the alternating Vels of gates are/ A V. We
first shav that the constructed definition &F° is a formula in this
class. Thefunctions F!. for 1<r<9 ae realised by corresponding
formulaeG" in the following classes.
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Ogtos,
BGZDL
0DGcioz,
BG4DH2
0G°on,
0Géon,
BG7DH1
oG®on,
2G° O3,

N Y Y O o R

Using LX and LK to denote the number of 2-input gates iaor M,
formula, it is easy to see that:

nL:(Gh) =g 0

OL3(G?) < O

0 f( 3) y 0

O L:(G’)=y+q 0

OLA(G*) <2/ (y+q) O

For G°, snce F; ,  ; is a function ofy + z variables its CNF (i.€1,
representation) is of size at most“y+z). For G° which is com-
puted as the CNF of(U) we daim thatL3(G®) <u®. To se this
recall that ¢ is the characteristic function of a sphere with centre
a=<a,...,a,> 0{0,3". Thus the prime implicants of(U) are
the u products,

(e )
i=

An assignment tdJ satisfiesg(U) if and only if it differs in &actly
one place from the centee. It follows that

P(U) = THui™, ... ug®) A =Ty(u™,...,ug?)
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and this is,

Y na o8 ma
(VA A (V™)

<i<j<u

which is easily verified as having sigé.

G’ clearly satisfied }(G’) <w and

LA(G*) <2/ (qry+2'(y+2) + 1P +w
From this we hee,
u
L3(6%) < 2 2 pN (2 (qry+ 2 (y+2) +1P +w)

u+w z

(51 H2NZ (a+y+2 (y+ )40 +w)

<
u

If we set y=[Rlogn z=[@Rloglogn[ u=2"°9"=1

q=logn)* Dand s=Oogn - 5log logn Othen,

u==;y=o0(q); 2%(y+2=0(q)

NI S

w+u?=0(q2) ; s=0(2%) ; q2°=o(u)
and so,

on on
3 — =
L3(F) s (1+e) 5 = (L+e) o

for all £é>0 and sufficiently lage n. This complete the proof of the
upper bound.o
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5.3) Exponential Lower Bounds On Parity Functions

We know from the lower bound pwved in Theorem(5.1) that the par
n n

ity functions _D1>q and —|_D1>q have exponential depth-2 complay. In
1= 1=

this section it is shown that for all constdntary depthk formula
realising a parity function of variables must hae sze exponential in
n. The proof belw is that of Hastad (1986), which impres and sim-
plifies the earlier proof of this resultvgn in Yao (1985). The éy
idea in Hastad agument is a result which shows thatyatsmall”
CNF-formula ofn variables can be "simplified" to a "small" DNF-for
mula of m variables cf. Main Lemma belo This result is used to
construct an induate proof that parity functions requirexgonential
size depthk formulae: for some constant any depthk networks real-

1
ising n-input parity of size 2°"™ can be used to pve the «istence

of depth-2 formulae realising parity functions mf variables but with

size <™.

As was mentioned in the introduction the proof relies on proba-
bilistic counting techniques. In trying to e that parity required
exponential size bounded-depth formulae, one might proceed by not-
ing that since\ (V) gates with variables as inputs can be eliminated
by setting a chosen variable to 0 (1), a ddptbrmula could be sim-
plified by finding an appropriate choice ohlwes for a subset of the
inputs which would allev the initial 3 layers,A =V — A\ say to be
transformed into 2 layersy — A\, without greatly increasing the for
mula size. Observing that all sub-functions of parity functions are
again parity functions then permits an indueti proof to be con-
structed i.e depth-2 formulae for parityvieaexonential compbety;
the existence of sub¢ponential deptlk formulae for parity implies
the «istence of sub-exponential dedh-1 formulae for parity
Problems arise in trying to construct appropriate reducing assignments
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explicitly, since the number of gates at the togellenay be very lage

and assignments which eliminate most of these may result in the sub-
sequent parity function being dependent on tow Yariables to madk

the induction work. Bllowing the lead of Furst et al. (1984), Hastad
proved the exstenceof appropriate assignment to input variables by
using probabilistic methods.

Definition 5.2:Let p [(0, 1). R, is the class of random partial assign-
mentsr for which,

=
|
©

Prob[x™ =0]

N

=
©

Prob[ X" =1]

N ‘

Prob[x DOvar(m)] = p
these eents occurring independently for eagh

We will use (%) =0, m(x)=1 and (% ) =* to denote the
three possible outcomes. Note thatriflR, is applied toX, then the
expected number of ariables which are not set to constantspis.
Thus choosing a large value @f increases the expected number of
variables remaining after simplifying a degthformula using7 R,
but aso decreases the probability of being able to restructure to a
depthk —1 formula efficiently since fewer gates areelik to be elimi-
natable.

We @an nav state Hastad Main Lemma.

Lemma 5.2 (Main Lemma)et F be a CNF formula in which each
clause contains at mostliterals from X,,. Let 7 be a random partial
assignment inR,. The probability thatF!” cannot be expressed in
DNF using implicants of feger thans variables is no more thany,,
a,¢ being the unique posie oot of,
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o, 4 oo, 2p O

o (L+p)ap O o 1+ p)ay, O =0

(If p=o0o(1) it is graightfornard to shw that

where g is the Golden Ratio.)

This result is an easy corollary of the following Lemma, which
although technically stronger is simpler to y@oRecall that a prime
implicant of f OB, is a product of literalsn such thatm< f and no
sub-product ofm is an implicant of f. For a gven CNF, F, let
rank( F ) denote the number of literals in the longest prime implicant
of the function represented by.

w
Lemma 5.3:Let F :_/\1 F;, where eachF; is the disjunction of at
1=

most t literals from X,,. Let 7R, and g be an arbitrary Boolean
function. Then,

Prob[rank(F")=s|g" =1] < a3,

Proof: (Note that this lemma implies Lemma(5.2) simply by choosing
g=1.) Theproof is by induction orw>=0. The inductte base,w=0,

is immediate sinceF =1 and hencerank(F)=0. Assuming the
lemma holds for all alues<w -1 we $ow it holds for F a conjunc-
tion of w clauses. Consider the effect afon F,, the first clause of
F. Either F"=1 or FI"#1. Hence,

Prob[rank(F")>s|g"=1]
is bounded abe by,
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O Prob[rank(F")>s|g"=1 A FI'=1]

maxD Prob[rank(F")>s|g"=1 A Fr#1]

(5.10)

To prove the lemma it suffices to shothat the probability of
either of thesewents occurring is at most,,. Consider the first term
of (5.10). Only thoser which renderF; equal to 1 are relant in
bounding this, so the wgn probability is that of thew -1 dause

_/_\2 F; having a prime implicant dependent on at lesstriables, gven

that the functiond A\ F;) becomes 1 when the partial assignmeris
applied. The inducte hypothesis ne yields the upper bound. Note
that since the lemma is stated for gl the fact that the conditional
probability is based og A\ F, is catered for already

Bounding the second term in (5.10) is rather more difficult. Let
T be the set of literals upon whidh; depends and without loss of
generality assume thak; = -\éTX" i.e no ngaed literals occurWe

X
may assume this since the probability of settqig=0, rendering the
literal X; equal to 1, is identical to that of settizg=1 which males
the literalx equal 1.

Any 70R, may be viewed as the composition ofotyartial
assignmentsry;, which fixes only wariables inT, and 7z, which sets
other variables. Gen this, the conditionFl"#1 is equivalent to the
condition F¥*#1. Now the condition F/*#1 holding implies tvo
facts:

)] Some(non-empty) subset of T is left unaffected byr,.

i)  Each prime implicantm of F!" contains at least oneasiable
which occurs inY.

Given YT let Ply(F'™) denote the set of those prime implicants,
of FI", for which Y=Tn var(m). Furthermore,let rank(F',Y)
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denote the length of the longest prime implicantPk (F") and
m(Y)=*the eent "m(x )=* for eachx, JY".

The second term of (5.10) iswaat most,

S Prob[rank(F",Y)=2s|g"=1 A FI"z1]

YOT,Y=0O

and this is no more than,

S E B (5.11)

YOT,Y#0O

where,

E,=Prob[ m(Y)=*|g"=1 A F"#1]
E,=Prob[rank(F",Y)=s|g"=1 A F™ 21 A\ m(Y)=*]

Now if,
n2p o'
| < mfpm (5.12)
E, < (2"-1)a3) (5.13)

then it is easy to shothat the expression of (5.11) is at mas],
and this will establish the lemma.

To se that (5.12) holds, first obserthat for eents A, B and
C the inequalityProb[ A|B A C] < Prob[ A|C] holds if and only if
the inequalityProb[ B|AA C] < Prob[ B|C] holds. SochoosingA
as the eent "m(Y)=*", B as the eent "g"=1" andC as 'F'1”1¢1"
it follows that (5.12) holds if both

02p

Prob[ A|C] < L+ plJ

(5.14)
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Prob[ B|AAC] < Prob[B|C] (5.15)

hold.

(5.15) is obvious from our choice &, B and C; informally (5.15)
asserts that forcing some variablesFaf to be unaffected byr can-
not increase the probability @f” being 1. For (5.14) the conditid®,
i.e F/#1 is equivalent to

VxOT m(x)O{0,*}
(recall that it is assumed thdt,; contains only posie literals).
Thus,

Prob[ 7(x)=*] _ 2p

Problm(x)=*| 1) DO, "H = e N 9T = Ta g

and

Prob[7(x)=0] _1-p
Prob[ 7(x ) 0{0,*}]  1+p

Prob[ 7(x )=0]m(x) U{0,*}] =

(5.14) follows since these probabilities are independent.

Now consider the dctor E, of (5.11). In estimating this only
prime implicantsm 0Pl (F!") are relwant, where FI"#1. We may
express ayp such m as my Am, where var(m;)=Y and
var(m,)OX,—T; this partition is possible from theadt that
mOPIly(F'™) and hence does not depend ory amriable in T-Y.
Now if o is the partial assignment which éx exactly the literals in
m, to 1, thenm, is a prime implicant of the functiof"°. So by
considering the functior""? instead ofF" and g'"»?1" instead of
g” we could emply the inductve hypothesis, provided that the con-
diton F'™#1 could be remued. To accomplish this we maximise
ove al m for which,
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m(Y)=* and m(T) O{0,*}

Noting that rank(F'",Y)=>s implies, from the definition of,
that rank( F'"? ) >s—-Y|, this gves,

E, < > ( max E;) (5.16)
o 0{o,gM-gq  m(Y)=* m(T) 0{0,4"!

where E; is the probability of an appropriate being selected, i.e

E; = Prob[rank(Fm?7)>s—|Y||g"™m7 ™ =1]

Since F™? is a conjunction ofw-1 dauses, applying the
inductive hypothesis allows the conclusioB;< a;ft'Y'. There are at

most 2! -1 terms in the summation (5.16) so certainly

E, < (2M-1)a5)

This completes the proof that (5.13) holds and the inericti
step. O

It should be clear that this lemma also holds in a dual form for
corverting DNF formulae to CNF

For a depthk formula, T, the bottom fan-inof T is defined to be
the maximal fan-in of angate at depth 1 if. An exponential lover
bound on the size of depkhformulae realising parity functions is
easily deduced from the following lemma.

1
Lemma 5.4:Let B(n,k)=0.1nk-1. There exists a constami such

that for allk=2 and n=n§?, n-input parity functions cannot be com-
puted by deptl formulae having bottomah-int and containing at
most 2 gaes of depth at least 2, whers 3(n, k) and s< B(n, k).

Proof: By induction onk=2. The inductte base has already been
established in Theorem(5.1), which established that depth-2 formulae
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for parity functions must ha bottom fan-in n. So asume the lemma
holds for depths<k —1 and suppose that is a depthk formula real-
ising a parity function om=>n§" variables but having bottoma-in
t< B(n,k) and fewer than 2gaes of depth at least 2, fa< g(n, k).
Without loss of generality it may be assumed that #itesgat depth 2
in F are all A-gates. LetF; be the sub-formula oF represented by
the i'th N\-gate at depth-2 irF, where Xi<2° F; has bottom dn-in
<t. From the Main Lemma, usingp=0.14(n,k)™?, s=t=2(n,k),
the probability that a random partial assignmemtiR, leaves
rank(FI")>s is at mostay,. Hence the probability thatr leaves
some F having rank( F/")>s is at most 20, <(2ap,)° In addition
for n large enough the probability th&” depends on at least
E
m=n p=nk-1

variables is at least 1/3. It follows that the probability tHalf
depends on fewer tham variables or that there is sonte for which
rank(F/")=s is at most
2 +Q2ap)

Since a,; <1/2, for large enougtm, this probability is less than 1. It
follows that there certainlyxests a partial assignment with which
FI" depends on at leash variables and which allows eadRl” to be
re-written as a DNF formula having bottom fan-in no more than
Suppose such @ is applied toF and the formulaF!" re-written so
that eachF/” is expressed as a DNF formula; Btbe the resulting
formula which computes a parity function of at leastvariables, has
bottom fan-in at moss and depthk —1 dnce there are ta adjacent
\V-levels in G which may be collapsed to a singlevdie(i.e levels 2
and 3). Note that the number of gates of depth at least@ ismstill
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at most 2.
Now
1
s < B(n,k) = 0.1nk1
k=2 1
= 0. 1(nk—1)k—2
1
< 0.1mk-2 = B(m,k—-1)
Also,
k=2 k-2

These contradict the indue# hypothesis and sd= does not
exist. O

1
Theoem 5.3: Let y(n, k) =200 = There exists a constamt,
such that for alk>=2 any depthk formula computing a parity function
of n=nY variables, contains at leag(n, k) gates.

Proof: Suppose the theorem does not hold, so that there is a ldepth-
formula realising a parity function of variables containing feer
than y(n, k) gates. Such a formula may begaaled as one of depth
k+1 having bottom fan-in 1. Letp=0.3, t=1 and s=logy(n, k).
Using arguments similar to the proof of Lemma(5.4) we find a partial
assignmentr which leads to a deptk—1 formula realising parity of
m=0. 3n variables which has bottomam-in s< g(m,k —1) and fever

than Z™kD gaes of depth at least 2. But this contradicts
Lemma(5.4) which showed that such formulae do mrattet
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5.4) Consequences of the Parity Function Lower Bound

The work commenced in (Furst et al., 1984) and its subsequesit de
opment by Yao (1985) and Hastad (1986Jegitise to a number of
further questions concerning bounded-depth ostg; some of which
we examine in this section.

(Furst et al., 1984) sked that the deptk-compleity of sev-
eral natural Boolean functionsaw polynomially related to the degth-
complity of parity. These results rely on a conceptaoinstant-depth
reducibility which was formalised and considered explicitly in (Chan-
dra et al., 1984). This paper introduced the corile class
S—-D(S(n),D(n)). A family, [ f,] of n-input Boolean functions is in
this class if and only if,

Y n=1, f, is computable by a depthnetwork of size at most
S(n), for some (not necessarily constakf D(n)

Specific cases of interest are

S- D( poly, const) = de 0S— D(cnk, d) (5.17)
S-D( poly,D(n)) = Ik]OS— D(cnk, D(n)) (5.18)
S- D( poly, poly-log) = kldjl 0S— D(cn®, d (logn)') (5.19)

We will also refer to the classeBOLY -2, (POLY-1T1,) of families
of Boolean functions which can be realised by polynomial &ige
(M) networks; POLY -2 and POLY - refer to the monotone
variants of these classes.

Theorem (5.3) established thAAR, [1S - D( poly, cons).
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To investigate the structure of these classes (Chandra et al.,
1984) considered tw concepts of reducibility: reductions vip-pro-
jections, as defined by (#km and Valiant, 1985) viz Defn (2.1)
above; and a weaker form known agonstant-depth truth-table
reducibility. Given two families F =[ f,] and G=[g,] F is said to be
constant-depth truth-table reducible @ denoted F <., G if and
only if there is a polynomialp(n) and a constant such that,

Y n=>1, f, can be computed by @-networkof size < p(n) and
depth <c.

Here aG-network is defined similarly to a depthnetwork but addi-
tionally permits @tes which compute functiong; UG provided that
j < p(n) and there are no paths from the outputs of such gates to
the inputs of otheG gaes.

For families F and G we use the notatiorF <, G if F is
reducible toG via a p-projection.

From the definitions of 4« and<,; it is easy to verify the follo-
ing lemma.

Lemma 5.5:
) <ca- @Nd <y are both refleive and transitve relations.
i) Let S(n) and D(n) be nonotone non-decreasing functions. If
F<wuG or F<p,G and GOS-D(S(n),D(n)) then there is a
polynomial, p(n), and a constant for which,

F 0S-D(p(n) S(p(n)). ¢ D(p(n)))
Thus if G OS- D( poly, const) then F 00S - D( poly, const) aso. O

As examples of such reductions we use the following functions,
in addition to parity A number of other examples arevei in
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(Chandra et al., 1984).

ADD and MULT are the functions which compute the sum (product)
of two n-digit binary numbers.COMP takes as input te n-digit
binary numbersx and y, returning the result 1 if and only K¥>y.

TC takes as inpun? Boolean wriables encoding an adjacynmatri;(,
A=[4q ;] and outputs then® Boolean entries of the matriA* being
the transitve dosure of A.

First some examples of efficiently computable functions are pre-
sented.

Theoem 5.4:
i) ADD OS- D( poly, const);
i) COMP S - D( poly, const).

Proof: i) Let X=X,1Xp0 "X and Yy=VY,1VYno' Yo be the n-bit
binary representations of the dwumbers being added. The so-called
carry look-ahead scheme is used. This proceeds by computing
fi=xy, andg,=x 0y, =x Yy, VXV for eachi (0<i<n). All of these

can be computed in depth 2 using ofllyn) wires. The final stage is

to compute each of the output sum bitg, O<j<n; for this a
sequence of carry bitg;, 0<j<n must be computed. The carry bits
are computed by

i j
© =i\=/0 g A k=/i\+1 i
The sum bits are gn by s=hy, s,=c,.; and for O<j<n
sj=h;0cj;. The resulting network, with getion restricted to net-
work inputs, clearly has polynomial size and constant-depth.

ii) x>y if and only if there is somg O<i<n for which x =1>0=y;
and x; =y; for eachi +1<j<n. Whether this property holds can be
tested by implementing thexgression,
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n-1

n-1

i\:lo(xi Ny A j=/i\+1(xj =Y;))
Since x=y=xy V Xy this can be computed by a network of size
O(n?) and depth 4.0
Theoem 5.5:

i) PARITY<, MULT

i) PARITY< 4« TC
Proof:

i) Let X,, be the input variables for an instance of a parity function
andr =log, n. Construct the tw n-bit numbers;

P=

IMs

x2 Q=32
i=1

n
With theseP Q=3 ¢; 2", where thec; are r-bit numbers. The least
i=1

significant bit ofc, gives the parity ofixi and this yields the result.
i=1
i) As before letX, be the input variables for an instance of a parity
function. Consider the folleing n+ 2-vertex undirected graphG. G
has \erticesvg, vy, ...,V,, Vos1. There is an edge betweeg and the
lowest indeted v; for whichx; =1 and x; =0, V j <i. Smilarly there is
an edge between,,; and the highest inaed v; for which x, =1 and
X;=0, V j>i. Fnally there are edges all pairs and v; such that
j>i, x=x;=1 and x=0 for all i<k<j. Let A=[g;], where
0<i, j<n+1 be he adjacenc matrix corresponding t6&. The entries
of A are easily computed biyl; networks by using the identities,
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i-1
Qo = (_/\171 ) N\ X
J:

n
& =X NCA Xp)

j=i+l

j-1
;= %N (k:/i\+1)_(k) N X;

Now let B=[b;;] be the adjacenc matrix in which b; ;=1 if and
only if there is a path of containingcactly 2 edges betweew and
vj in G. The entries of this matrix can be computed usijgnet-
works, whose inputs are theg ; computed préously, and the relation

n

b. =V a.,a,;:
ij kel i,k 9K, j

Since all thea; ; are computed byl; networks, it follows that all the

b;; are computed by, networks. The final stage of the construction
is to compute the transigé dosure of B using a single transie do-

sure gate. Sincdy; ;=1 if and only if there is a path ofxactly 2
edges betweenand j, it follows thatb{j =1 if and only if there is a
path containing anven number of edges betweenand j. Any such

path contains an odd number of vertices and so in the resulting

n

matrix, by .., =1 if and only if 3 x;=1(mod2). This completes the
i=1

reduction. O

The inductve proof of Theorem (5.3) requires only 2 properties
of parity functions; that gnsubfunction of a parity function is am
a parity function; that this function requires nyafin fact all) of its
inputs to be determined before its result iswno These properties
are shared by other Boolean functions and it turns out that the tech-
niques used in proving parity to be foifilt can be applied almost
directly in such cases.
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For the classS, of symmetric Boolean functions, ggin et al.,
1985) used the results of (Furst et al., 1984) to characterise those
symmetric functions having superpolynomial dektleomplexity By
applying Hastad' techniques Moran (1987), and independently (Brust-
mann and Wgener 1986), generalised these results on symmetric
functions.

Fdlowing Moran (1987) we introduce the terminology belo

Definition 5.3: Let f OS, and wy---w, be the spectrum off. For
0<j<n we say thatj is aleft (right) boundaryof f if w;=1 and
w1 =0 (wj;;=0). j is aboundaryif it is a left or a right boundary
of f. B(f)U{0,1,...n} denote the set of boundaries &f and
b( f) the value ofj ané';(of() mir{j,n—j}.

(Fagin et al., 1985) pred,

Theoem 5.6:Let p(n) be a mlynomial, k a natural number and >0
some constant. Iff 0S, has a boundaryj such thatn®*<j<n-n®
then f 0S-D(p(n),k). o

Moran (1987) extends the interval of this theorem to,

[(fogn)", n—(logn)’] (5.20)
wherer is ary function ofn such thatr - oo.

In combination with (Bgin et al.,, 1985), which established that
f OS—-D( poly,const) if f S, does not hee a lmundary in the
internval given by (5.20), Morans result completely characterises those
symmetric functions which are not 8- D( poly,const) and also
gives eplicit lower bounds onf in terms ofb( f ).

The results are obtained in dwgages. First a lower bound on
the size of deptl- networks computing functions with boundaries at
n/2 is proved. This mirrors the proof of Lemma(5.4) and
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Theorem(5.3). The second stage reduces arbitrary symmetric functions,
of n variables, to ones ofn—m variables having boundariesat
(n—m)/2. Prior to these, twample technical lemmas are needed.

Lemma 5.6:Let f OS, and r ary partial assignment which fs |
variables to 1 anch—m-1 variables to 0. Then for all j<m-1,
resp. Kj<m f" j is a right (left) boundary off" if and only if
m+ | is a right (left) boundary of.

Proof: Let wy---w, be the spectrum of. For ary assignmentr as

in the Lemma statement, the spectrumféf consists of the sutmvd

Wy Wit Wiem =Vo - - " V. The lemma nev follows sincej is a right
(left) boundary of the functionf!” with spectrumy, - - -v,, if and only

if 1+ is a right (left) boundary of a functionf,, whose spectrum
contains the subwvd w; - - - W;,,. O

Lemma 5.7:.Let f OOS,. Any depth-2 network realising has bottom
fan-in at leasto( f ).

Proof: Let T be a depth-2 netwk computing f and j=b(f). First
suppose thafl is a Z,-network. If j is a left boundary then there is
some N\-gate, g, of T becoming 1 under the assignmemnt, which
fixes x, =1 for each ki< j and all remaining variables to 0. Singe
is aleft boundary eachs with 1<i<j must be an input of, for if
not then modifyingrr so thatx; becomes 0O, le@s the output ofg
unchanged. Hencié j is a left boundary theil has bottom dn-in at
least j. A similar argument, identifying a gate witlankin at least
n-j, holds if j is a right boundary by fixing an additional variable to
1, i.eX, must be an input of for eachj +1<i<n.

Now suppose thafl is a IN,-network. Consider the assignment,
m, which fixesx, =1 for 1<i<j -1 and all remaining variables to O.
If j is a left boundary then somé-gate,h of T is made 0 underr.
The literal x; must be an input ofh, for each j<i<n otherwise
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increasingx; to 1 leaes the result ofh and T unchanged. Ifj is a
right boundary we can identify ad-gate with fan-in at leasj +1 in
a dmilar manner by considering the assignment whicksfix =1 for
l<i<j+1.

In summaryif j is a left boundary thel has bottom fan-in at
least min{j,n—j +1} if | is a right boundary thei has bottom dn-
in at least mign—j, j+1} hence T has bottom fan-in at least
min{j,n-j}. O
Lemma 5.8.Let f S, have a lmundary atj=n/2 and g(n, k) be &
in Lemma(5.4). There is a constamt such that for all constark>2
andn=nft, f cannot be computed by depttretworks having bot-
tom fan-int and containing at most® Zjaes of depth at least 2, where
t< B(n, k) and s< B(n, k).

Proof: By induction onk>=2. The inductie base is immediate from
Lemma(5.7). Thanductve gep is identical to the proof of the same
stage in Lemma(5.4), noting that with=0. 13(n, k)™ the probability
that a random partial assignment]R, sets equal numbers ofn-
ables to 0 and 1 and less m=>np variables unassigned is at least
1/n. With such an assignment” 0S, has, from Lemma(5.6), a
boundary atm/2, and so the induett agument used in Lemma(5.4)
can be applied directlya

Theoem 5.7:Let f be as Lemma(5.8). df all constantk>2 any
depthk network computing f contains Q (y(n,k)) gates, where
y(n, k) is defined exactly as in Theorem(5.3).

Proof: Exactly as Theorem(5.3)1
Theoem 5.8: Let fOS,, b=Db(f)/n (so that xb<0.5) and

1
n(n, k, by =201 Eyery depthk network realising f contains
Q (n(n,k, b)) gates.
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Proof: Without loss of generality ldbn be a boundary off, the case
wheren—bnis a boundary off is dealt with similarly Let r be the
partial assignment which sexs=0 for each kKi<n-2bn and leaes
all other variables unset.f”” 0S,,, and from Lemma(5.6)n is a
boundary off”. These tw facts and Theorem(5.7) woyield the the-
orem. O

It should be noted that both Theorem(5.8) and Theorem(5.3) hold not
only for constank, but more generally for alk<logn/(loglogn+C),
for some constart.

None of the preceding results indicate whether the sequence of com-
plexity classes B- D( poly, k)]s, forms a proper hierarghi.e if

S-D(poly,k) O S-D(poly,k+1) Vk=2

The question was first resolved, fimhatively, by Sipser (1983).
Sipsers proof is non-constructe, establishing the existence oérhi-

lies, [f,] OS—-D(poly,k) but not in S—-D(poly,k+1). Hastad
(1986) praed this result for specific amilies of functions. This is
stated belw without proof, as

Theoem 5.9:Let n=mX and

Xn = {Xiliz,,,ik:1Si1,i2,...,iksm}

Define,
len(xn) = |V /Z \£ cQj Qi Xy iy
r ! : ij Ik
whereQ; =\ if j is odd, andV if j is even.

FQn is defined similarly but with Q;=V if j is odd andA if j is
eve.
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For al constantk=>3;
F/y OPOLY-5%, ; F/,0S-D(poly,k-1)
Fen OPOLY =T, ; F\, [1S-D( poly, const) O

More generally the following containment results arewkmo
Theoem 5.10:

POLY -2, 0OPOLY-2,,, 0S-D( poly, const) (5.21)
POLY -1, 0POLY -, OS—-D( poly, const) (5.22)
POLY -5, O0POLY - M,y (5.23)
POLY-N,0POLY -5, (5.24)
POLY-3"OPOLY -5, n{[f,]: f, OM,} (5.25)

Proof: (5.21)-(5.24) are merely restatements of Theorem(5.9); (5.25) is
from Okol’'nishnikova (1982). O

It is an open question as to whethe©OLY -2, = POLY-T1,, for
k>3, even in the monotone cases. That this does not hold for the case
k=2 is easily shown by considering the functioRg, and F3\,.

5.5) Bounded-Depth {A, O}-formulae

The basis{/\, V,-} has been shown to lack 8afent strength to
compute difciently a number of natural symmetric functions using
depthk circuitry. The results rely on theaft that the functionsxam-
ined hae exonentially mag prime implicants and clauses thus nei-
ther short DNF nor CNF representations are possiblevett® in
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Chapter(1) we described another normal form representation for
Boolean functions: the ringsum expansion using the ba&idl, 1}.
Consider,

Definition 5.4:The class\, of n-input depthk formulae (ver {A, 0})
is inductvely defined as follas:

)] If k=0 then,
N = {Xq,.. . X%, 10x%, ..., 10x,}

i) If k>0 and odd, thenSOA, if and only if Sis thed of some
(possibly empty) set of formula8, , ...,S,, where § OA,_;.

i) If k>0 and even, thenSOA, if and only if Sis the A of some
(possibly empty) set of formulag, , ...,S,, where§ OA;.

It will sometimes be cornient to rgad SOA, as the set of formu-
lae S OA_; defining it and so writ&s_; OS.

We wse BD,(S) to denote the size (number of gates)SIA,;
for f OB, BD( f) is defined in the obvious way from this. e

There are tw points which should be noted about this model. First
the class/\; does not correspond with the form of the ringsupaa-
sion. Thelatter does not permik[d 1 inside a product; clearly direct
implementations of the ringsum expansion form a subseét;of This
contrasts with, and M,. Secondly BD,( f) is at most polynomially
larger thanBD,,,( f ). Thisis immediate from the fact that,

r<s

x = 10 (A (10x))

|
cf De Mogan’s Laws and the identityx= 1[I x.

It is obvious that parity functions, and heneenflies reducible to par
ity functions, hae mlynomial complexity in this model. Razbero
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(1986) irvestigated the question of whether some simple function
could be shen to require exponential siz&, formulae. This section
presents the x@ (Q(n**2)) lower bound preed by hHm for the
majority function. Our proof follws the simplified approach con-
structed by Paterson (1986) which yields a slightly imgdolower
bound. It is verth noting that the style of the proof is forced to be
radically different from the arguments of Furst, Hastad et al., sihce
can not be determined from a strict subset of its inputs and so there
can be no analogue of, foxample, Hastad’ Main Lemma. Whereas
results for {A,V,-} were obtained by largely combinatorial tech-
niques, the lower bound pred by Razborw employs ideas from lin-

ear algebra, exploiting the correspondence between computation using
{N\,0,1} and formal polynomials v& the field GF(2). The reader

will obsene sme similarities to Razbovts methods for reasoning
about monotone netwk compleity, given in Section(3.5.1); specifi-
cally the mapping ofA, formulae into a set-theoretic construct; and
using the fact that this can begaded as computing an approxima-
tion to the function considered.

Definition 5.5:For f 0B, let
[ f1=1{a0{0,3": f(a)=1}

For HOB, and f 0B, the distanceof f from H is given by
o(f,H) = min{|fOg|:g0OH} (5.26)

A regular patternof depthk, M, is a £quence,
M = <My, My, ....,M;Mq, My, 0 > (5.27)
whereM; 0B, {x;,10x:1<i<n}0M, and;: 2"~ _ M;.

If HOM,;_; then thediscrepancyof H with respect toM,_;,
O(H,i) is,
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S(H,i) = [M(H)D * f (5.28)

where *=0 if i is odd and/\ otherwise. Br a regular patterriyl, as
in (5.27) thediscrepancy ofM, denotedA(M ) is

A(M) = max max d(H,i) (5.29)

1<i<k HOMi,

Finally the outer caoer of M is the set of functions comprising,.

Comparing these with Definitions (3.12-13) the faflog lemma
is analogous to Lemma(3.15).

Lemma 5.9For al regular patternsM, of depthk having outer coer
My and for all f 0B,

p(f’Mk)

BD(f) = ACM)

Proof: Let S be aiy A, formula realisingf. With each sub-formula,
T, of S, where T OA;, we asociate a functiorf" OM;. Subsequently
fr will denote the function computed by a sub-formdia so hat

fS: f.

For TOA,, fy, is defined inductiely as follows:
fM=1f ifi=0

fM=n({fy:wOT}) i>0 (5.30)
We daim that for eacl,
| f10 fr] < BD(T)A(M) (5.31)

fM is the "approximation" tof; when the computation by is mod-
elled by a computation using the regular pattern(5.31) asserts that
the number of points i{0, 3" on which f; and its approximation
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differ can be bounded in terms of the discrepaoicthe regular pat-
tern M, cf the role ofA, o_ andd, in the proof of Lemma(3.15).

(5.31) is established by induction onfor T OA;. The inductve
base,i =0, is trivial sincef;=fM and so the LHS of (5.31) is equal
to 0. Assuming (5.31) for all depthsi 9ve shaev it holds fori also.
Clearly, the LHS of (5.31) is at most

>IN Of I+ * ' OM({fy':v O]
VOT v aOT

i.e the total number of differences introduced in the sub-formulde of
plus the number of me differences introduced.

From the Inductie Hypothesis, (5.28) and (5.29) this is at most,

> BDu(V)AM) + AM)
v OT

which is BD,(T)A(M ) as daimed.
The lemma na follows from (5.26) sincef" OM, and so,

S p(f, My)

> - 7 R/
BD(f) = A O
We mow define a regular pattern of degthfor which large laver
bounds on distance and small upper bounds on discrepamc be

proved.

P(d) denotes the linear space consisting of the set of formal
polynomials in <;,...,X,> over GF(2) having degree at most.
Any g OP(d) has the form,

I
=cO0m
g=cO0m

wherem; is a monom of size at most and ¢ [1{0, 3. It is natural to
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equate such polynomials with the Boolean functiony te@resent.

Recall the following tw facts concerning this linear space:

¥V g,hOP(d) gOhOP(d) (5.32)

V c0{0, 1}, gOP(d) cAgOP(d) (5.33)

M = <|\/|0,...,|\/|k;|_|1,...,|_|k>
is defined as follws.

For some parameter, to be fked subsequently set

My = My, =P(r!) V j20 (5.34)

M; will be defined so that

H n-r
Hngz,\;ﬂlx O(H,i) <2 (5.35)

Wheni is odd this is relately easy; forH [0 M;_; simply set
M(H) = fEHf (5.36)

From (5.32) and (5.34) we VY& IN;(H)OM; and from (5.28)
o(H,i)=0.

That N, can be chosen to satisfy (5.35) whenis even is
slightly harder to pree. This fact is established in,

Lemma 5.10:For any HOP(d) there is someg JP(dr) such that
|f/D\H fOgl<s2™".

Proof: (Paterson, 1986) ¢f H O P(d) let h=f/D\H f and
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*

H™ = { O e.-f:ie0{0,3)

so thatH" is the linear subspace spanned {pyf: f OH}. Obvi-
ously for allgOH" g A h=0.

Now let,

Null = {a 0{0, 3": h(a )=0}

We daim thatV a ONull
{qOH :q(a)=1}| = |[H |2 (5.37)

To se this note that,
h(a)=0 [ El f OH s.t f(a)=0

So for thisf and ay qOH", (qO-f)(a)#q(a) and qO-f OH"
sinceH” is a linear space. (5.37) is immediate from these favts.

From (5.37) it is clear that for eac®d Null we can find some
qOH" for which,

|ISn{g:a(B)=1}| 2 |S|/2 (5.38)

Using (5.38) we can identify a sequence of functigps...,q, in H’
(for ary r=1), such that f0|g’=_\_r/1qi it holds,
|-hAg|=(@-2")|-hl and dAh=0 (5.39)

This follows since obously we can construct a sequence of pairwise
disjoint sets,Def, i=1,2,...r for which

| Def, | = | Null |/2
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So from (5.38), for eachdi<r, there is somey; OH™ with which
|Def n { B:ai(B)=1} 2| Null [/2*

Setting g’ :,\rllqi, we have
1=

|=h|

=hAg] :

\Y]
NI =
M-

|-h|(1-27)

Also h A (_\r/lqi )= _\rllh G =0.
i= i=

r

Lemma(5.10) follavs by choosingg:—'g':_/\l—-qi. For with this

choice,g OP(dr) and h<g, i.e
g(a)=00 dg(a)=10 h(a)=0
thus,

lhOg| = o 0{0,3":h(a)=0and d ) =1}|

= |=h|-K{ 4 0{0,3":~h(B)=1and d(B)=1}|

IN

|=h|=]=-hAg| < |=-h|/Z

2n—r

IN

since ph|=|Null|£2". O

Lemma(5.10) shows that for=2j we can definell; to satisfy
S(H,i)< 2" for all HOM,_, = P(r’™).
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Corollary 5.1: For al f OB, using the regular patterm], of depthk
just defined

. p(f, M)
BD(f) = Zn—rk
Proof: Immediate from Lemmas(5.9) and (5.10).

In order to prge the existence of a symmetric Boolean function
having large distance iM, Razborw (1986) introduces a linear map-
ping, R: B, - Mg, here M, is the set of Boolean matrices whose
rows are labelled with the elements Af1{0, 1}" and whose columns
are labelled with the elements oB[{0,1}". Paterson (1986)
employs a simpler linear mapping which is used teloln what fol-
lows #(a ) denotes the number of positions anJ{0, 1}" which are
equal toc (c 0{0, 1}) and for

a=<a,...,a,>0{0, 1"
y, is the monotone Boolean function,
Va(Xn) = N X
irg=1

Let AO{0,1", BUO{0,1". For a=<ay,...,a,>0A, and
B=<Db,,...,b,> 0B define,

a@ﬁ = <a1/\b1,...,an/\bn>

i.e the bit-wise conjunction of and .

The linear mappindR: B, - Mg is given by,
R(f),s = f(adp) o UOA g0OB

Lemma 5.11:



The Basis {\, ®} 391

i) If f<-Ty,, and #(a&p)>d, for eacha OA, 0B, then
R( f)=0, the zero matrix.

i) rank(R) < 1.
Proof: (i) is olvious. For (ii) let¢{ OA and £ OB. R,.=1 if and
only if,

O, < Orq¢

Therefore the @ of R(y,) indexed by ¢ consists entirely of @
unlessg, <9,. If §, <9, then the column oR indexed by & contains
the \alue y,(¢) regadless of the value of. It follows that all non-
zero rows ofR are identical establishing (iia

Lemma 5.121et A=B={a 0{0, }":#,(a)=s}, for some parameter
sto be fixed. Iff OB, which satisfiesY a« {0, 1}"

#(a)=s O f(a)=1
s<#(a)<2s O f(a)=0

LN
00

Proof: For eacha OA, g UB, R, ;=1 if and and only ifa = 3. O

(5.40)

thenR( f ) has full rov rank

The significance of the linear mappirg, is due to the fact that there
is a close connection betweenwroank and distance.aerson (1986)
describes an ejant method of establishing this by exploiting the
properties of a simple linear transformatioh; B, — B,. Using the
notationa < B as a shorthand foa, <b; V 1<i<n, where

a=<a,...,a,>, B=<b,,...,b,>0{0, 1"
T is defined by
T(a) = O f(B) (5.41)
B<a
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The useful properties of this transformation are summarised in,
Lemma 5.13:
DT=ya
i) T=2a,
)vfOB,T=f
iv) f OP(d) O T<-Tgy
Proof:
i) T(Z)zﬁDzda(,B). Thus T(Z)=1 if and only if a<Z. The only

prime implicant of this function is the monom\ R
irg=

0 ya($)

1374

i) T({)

O 1=9
e «({)

The last equality holds since the in@n{¢&:a<é<} is either

empty or contains>actly 2 members.t=0 in the latter case if and
only if { =a.

iii) Immediate from (i) and (ii) using the linearity dt

iv) From (i) and (ii) T transforms the produci,(X,) to the monom,

obtained by deleting geted literals,y, (X, ); in the reerse direction
T replaces the monom, by the productd,. Thus if gOP(d) then

r
g=_D1 m;, wherem, is a monom containing at modtvariables, hence
1=
;
T=0T
i=1

where T(m;) =3, for somea;. Each of these products is 0 foryan
assignment containing more thdnl's, and soT<-Ty,;. O



The Basis {\, ®} 393

Lemma 5.14: Y, is such thafl satisfies (5.40) of Lemma(5.12).
Proof: T(a)= [Ea T (a). If #,(a)=s then eery p<a has

#,(B)=s with equality if and only ifa=p3. Thus eachf<a has
#.(B)<n-s and soT) ((B)=0 unless B=a. If #y(a)>s, then
#.(a)<n-sand thus,T)_(B)=0 for every f<a in this case.o

Theoem 5.11:Let | =[k/20 If 2s+r' < n then
. M.,
BDy(The) > 1 2"

Proof: Let T,_; be written as,

Ths = q)gm% Og

whereg OP(r').

Note that ap f OB, can alays be written in this form; simply use

the identity f =( _f(D)_l J,)00.
With this, it follows that

min [Th-sOh| = min|®]| (5.42)
hOP(r')

Now considerT, we havefrom Lemma(5.13) (i) and\(,

T= 0,608

whereg' <-Tj,,.
Thus, sinceR=ROR, from Lemma(5.11)(i),
R= 0OR

pl®

and nov from Lemma(5.11)(ii), Lemma(5.12) and Lemma(5.14)
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follows that ngg (5.42) and Corollary(5.1) no yield the theo-

rem. 0O

Corollary 5.2: For all constant,k> 3,
BD(MAJ,) =exp (Q(n"¢?))

Proof: Let r, s, | be as in Theorem(5.11) and set2m-2s. Con-
sider a minimalA, formula, S, realising MAJ,. Under the partial
assignment,z, which setsx, =0 for each ki<m-2s, S” computes
the functionTy_. Thus,

BD,(MAJ,) 2 BD(Tn)

Note that 2-1>k-2. In Theorem(5.11) fixr=OmY?Y0 and
s=0O(m-r' - 1)/20 From the theoremBD,(Tm ;) = E;Ezf-m_

1 s
For pZE_E’ it holds,

D 0
log []Dmgzr‘m 0= r-2mgf/log,2+0(mp’)
o5y g

and this isQ(r).
It follows that,

BDL(Ths)zexp (Q(m?))

: . . n
Now the Corollary is established by observing th‘&tng for
some constant >0, thus BD,(MAJ,)=exp (Q (nY*2)) dso. O
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5.6) Bibliographic Notes

Although it has not been discussedemsvely abose there is a con-
siderable literature emring the realisation of Boolean functions by
DNF. The use of Programmable Logic Arrays (PLAs) as a method of
building complex VLSI systems has led to somevikal of interest in

this area. The classical DNF minimisation algorithms are those
described by Karnaugh (1953), McClegk(1956) and Quine (1952,
1955). Other approaches are presented in AndiEe83, 1984), Gim-

pel (1965), Kiznetso (1983b), Nguen (1982) and (Rhyne et al.,
1977). Zhuralev and Kogan (1985) consider DNF for functions with
large numbers of implicants. Ardo and Bredeson (1978) andihg

and Muro@g (1979) discuss issues redat to PLA design. Zhukdev
(1979) considers certain algorithms utilising DNF representatioas. V
ious results on the number of distinct DNFs within certain classes are
proved by Chukhros (1982, 1984). Techniques for estimating the
complity of DNF are presented in Mamato (1979b) and
Sapozhend (1968).

The ringsum expansion has not attracted the saoheéme of
work, havever minimisation techniques for this normal form are con-
sidered by (Bioul et al., 1973), (Bw et al., 1967), (Fleisher et al.,
1983), Jagdeesan and Chuang (1970), Mukhopadhay and Schmitz
(1970), Rpalonstantinou (1979), Schmookler (1969) and Saluja and
Ong (1979).

The known results on monotone bounded-depth orésvhae
been superseded by the work of Razloamd Hastad; Boppana
(1986) and Yo (1983) had pred exponential lower bounds for
threshold functions; Valiant (1983) mes smilar results for certain
clique functions when realised by depth-3 raks.
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Smolensk (1986) generalises Razbor¢1986) by showing that
depthk networks with -,V and mod pgates (forp prime) must hee
exponential size to compute theod-r functions for ag r#p™.
Razbore (1987) considers the realisation of Boolean functions/\py
formulae, for functions which are "complex” in the sense that related
combinatorial structures associated with the functione h@teresting
extremal properties. The paper pnes the existence of polynomial
size formulae for the functionsxamined.

A more paverful bounded-depth model, in which unbounded
fan-in threshold functions provide the basis operations, has been intro-
duced by Parberry and Schnitger (1985). As yet no neialtdower
bounds hee keen obtained for this.

A different model, in which arbitrary unbounded fan-in gates are
permitted, is considered by Hromkc (1985) and Chandra et al.,
(1983). The latter paper pres snall superlinear bounds fam-input,
n-output prefix functions.
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Chapter 6

Planar Netwrks

En toutechose il faut considrer la fin.
Jean dela Fontaine
Fables, Il1,5

Le Renard et le boue

6.1) Introduction

In this, concluding, chapter we examine a rmetw model which
imposes an, at first sight, rather artificial restriction: that the arksy
consisting of 2-input gates, do not contairy gair of wires which
cross. In graph-theoretic terms the undirected graph formed by the
nodes and their interconnecting wires is pldhan Chapter(4) it \as
obsened that much early work relant to the study of formula com-
plexity was deeloped in terms of relay-contact schemes; & robso-

lete technologyln contrast to this, the planar network restriction is of
interest because of close links between it and the complexity issues
pertaining to computational models of a recently proposed technology:
VLSI circuits. It is not the aim of this xé to consider ®ensvely
existing work on VLSI compleity. The reader interested in a detailed
examination of this topic should consult Ullman (1984). Background
on VLSI circuits may be found in Mead and Cayw(1980). V& will

a) A more rigorous technical formulation of the term planar networkvisn gubse-
guently at the start of Section(6.2)
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be content to outline the relationship between planar network com-
plexity and one class of VLSI models.

Below, in Section(6.2) some results connecting planar and com-
binational networks are presented. Section(6.3) considers asymptoti-
cally matching upper andwer bounds on the size of planar netks
realising agy Boolean function. The lower bound is from McColl
(1985a); the upper bound from McColl andtétson (1987). A brief
ovaview of VLSI models and their relation to planar networks is
given in Section(6.4) which also examines som&véo bound results.

6.2) Relations between Planar and Combinational Complexity

In what follows to ®oid unnecessary verbiage we say thas ater-
minal node of a netark S if v is an input or an output d.

Definition 6.1: Let S be an Q-network (Q [ B,) computing some
function f OOB,, with | =<i,,...,i,> the set of input nodes & and
t the unique output node. Supposeis a finite region of the plane
with 77 bounded by a simple, closed cery. An embedding,p, of S
onto 77 is specified by 2 mappingLACE and ROUTE PLACE is
an injectve mapping associating each node,of S with some point
PLACHK V) on rm; if v is a terminal node theRLACK v) must lie on
the bounding cumy y, otherwise PLACEv) must be properly con-
tained within, i.e not on the boundarlROUTE is also injectre and
maps wires ¥, w> of S onto simple connected curves inin such a
way that ROUTH <v,w>) has one endpoint located &L.ACHVv)
and one endpoint located B ACE w). With these tw exceptions,
ROUTH < v,w >) contains no pointa such thatPLACEu)=a for
ary nodeu of S.

If (=<2z,,2,,...,Z,,1,> IS a gven ordering of the terminal
nodes ofS, then an embedding respects? if the terminal nodes of
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S occur in the cyclic order gen by ¢ for p(S).

Definition 6.2: Let S be an Q-network and ¢ be the ordering
<Xqi,...,%,t> of the terminal nodes 0%6. S is a planar Q-network
if and only if there gist a regjion  with boundaryy, as in Defini-

tion(6.1), and an embedding =( PLACE ROUTE) of S onto m

which respectg and such that: for all distinct pairs of wires/,<v>

and <h,u> in S the cunes PLACH<v,w>) and PLACE < h,u>)

have o points of 7 in common, except possibly endpoints.

With this formalism established we can introduce the particular com-
plexity measures which are considered in this chapter

PCq(S) denotes the number of gates in the plaQanetwork S. For
f OB,

PCqo(f) = min{PCq(S) : Srealises f}

If f is not computable by a pland2-network then the quantity
PCq( f) is undefined. As previously iQ=B, then we use simply
PC(S) and PC( f) to denote these measures. Similarly in this case
we refer to planar networks rather than pla@anetworks.

With the eception of the following proof, anplanar netwrk
will be considered as already being embedded to conform to the defi-
nition abwe. For ary gate, g, of a planar network we distinguish the
two nodes supplying the inputs af as theleft input node,Left(g),
and theright input node,Right(g). Left(g) is found by considering
g as a single output gate and rotating the output wire clockwise;
Left(g) is the first input ofg encountered.

The following result establishes amimportant &cts: thatPC( f )
is aways well defined, i.every f 0B, can be computed by a planar
network; and thatPC( f ) is "not much greater" tha@( f ).
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Theoem 6.1: (Lipton and Tarjan, 1980) For allf OB,
PC(f)=0(C(f)?).

Proof:? Let f OB, and S be a minimal combinational network realis-
ing f. Consider the following, not necessarily planambedding of
S onto the real plane.

Patition the nodes ofS into levels Lhy=<X;,...,.%>,...,Lp
as described in Chapter(1).

The PLACE component of the embedding maps nodesf S,
to points {,,y,) of R% All nodesv in level L; are mapped to posi-
tions (x,,y;). In this y;>y;,, for all 0<i<D(S) and for i=0 the
input nodes ha the x co-ordinate set so as to respect the left to right
ordering < ,...,X,>. The wires ofS are embedded as straight lines
connecting nodes. It is assumed that #eoordinates of nodes are
configured so that no embedded wire intersects with an embedded
node (other than at endpoints) and that foy given point of R?
which is not the image of a node, at most 2 wires cross it.

It should be clear that the embedding describedrellan be
constructed for an network S. This embedding has the folling
properties.

E1l) A simple closed cue; y, can be drawn so that all terminal
nodes lie ony, these occurring in the prescribegiclic order
FurthermoreS is embedded onto thegien r enclosed byy.

E2) Sinceall wires are straight line gments, ay pair of wires hae
at most one point in common, other than end-points.

(E1) and our construction establish that an embedding respecting the
correct cyclic order has been defined. This embedding may not be
b) Lipton and Tarjan (1980) does notgias pedantic a description of the embedding

process as our proof does. The reason for the detailed presentatiplaiisesl follav-
ing the theorem proof.
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planar howeve since S contains exactly €( f) wires it follows from
(E2) that there are at most

C(f)(2C(f)-1)=0(C(f)?)

pairs of wires which cross. If we re-impose direction on the embed-
ded wires then a typical crossing appears similar to that depicted in
Figure(6.1).

Crossing Environment

Figure6.1

To complete the proof it suffices to shahow any aossing may be
simulated by a small planar netek. This is accomplished by the net-
work of Figure(6.2).

From the properties ofl] it is clear thatreqg,)=requ) and
reqg,)=res(Vv) in Figure(6.2).

Now noting that all edges in the embedding are directeaviido
wards", since it has been constructed to respect the partiti@irab
levels, the action of replacing each crossing by the cx@sswetwork
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Planar Crossover Network
Figure 6.2

of Figure(6.2) does not introduce vyardirected cycles. The me
embedding, which results by replacing each crossing {gaa ganar
realisation of some combinational netk, T, computing f. Thus,

PC(f) < PC(T)

IN

3C(f)(2C(f)-1)+C(f)

6C(f)>-2C(f)

O(C(f)?) O
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To e wly some care must bexercised in constructing the initial
embedding ofS used in the theorem pred aove, consider the sub-
network embedded as in Figure(6.3).

Figure6.3

Suppose the crossing at is directly simulated by the netnk
of Figure(6.2) without an other changes being made to the embed-
ding. This would result in the scheme depicted in Figure(6.4).

The nev sub-netvork, although clearly planars not admissible
since the nodes & g4, d> constitute a directed cycle. Thus in con-
structing a planar realisation it is not sufficient merely to remal
crossings from an arbitrary embedding because this may introduce
cycles.

One could define an alternati nodel, superficially similar to
the planar restriction, in which the cost of a&egi network embedding
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Figure6.4

includes the total number of crossing pairs as well as the number of
gaes. Formally gien a retwork S and p=(PLACE ROUTE), an
embedding ofS a mmplexity measureX, is defined as:

Xa(S, p) =Cqo(S)+[{(v,w): ROUTHY) crosses ROUTEW)} |
In this v andw are distinct wires irs. For f OB,
Xo(f) = min mSin{XQ(S, p) . S omputes £
P
Obviously Xq( f) < PCq( f). Noting behwiour such as that depicted

in Figures(6.3, 6.4) McColl (pers. comm.) has posed the woitp
guestion.
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Open Poblem: Does there exist gnfamily, [ f,], of Boolean func-
tions for whichPCq( ) is defined and such that

Xo(f) = o(PCo(f))? .

No examples of this are known, but it has yet to beveiathat
Xo(f)=0(PCqu(f)), even in the caseQ =B,.

Theorem(6.1) uses a basis of 2-infditgates to implement a
planar crosseer network; a planar network with ordered inputs
<Xx,y> and ordered outputs ¥ x>. McColl (1981) completely char
acterises those bas€xl[] B, from which such crosser networks can
be constructed.

Theoem 6.2:(McColl, 1981) A planar crosser can be constructed
from a basiQ [ B, if and only if at least one of the follong holds:

i) Q is complete.
iy Qn{0,00}=z0.
iy  {A,0,0}0Q.
iv) {Vv,O0,0}0Q.

Proof: (Outline) It is easy to erify that aly basis satisfying one of

the conditions ab@ permits a planar realisation dfi or [11. This

can then be used in the scheme of Figure(6.2) to construct a planar
cross@er. The proof of necessity reduces to considering the sets

S ={NV,0O}
S ={ANV, 0O}
S ={AN 00}
S, ={NV,0O}
S ={AV, 0O}
S ={Vv,0O,0}
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where for eachk (1<k<6) and ag QO S, it may be shan that a
planar crosseer is not constructible. The gument used to establish
this considers the ordered sequences of 2-input functions that may be
obtained as outputs of planar network&rosuch bases and pres

that gven the ordered inputs x y> the order cannot be versed in

ary admissible output sequencel

6.3) Bounds on Planar Network Complexity

As with the network forms examined in earlier chapters asymp-
totically matching upper and lower bounds on

PC(B,) = max{PC(f): f OB,}

have keen preed. This section presents both of these results, which in
combination establish that

PC(B,) = O(2") (6.1)

the lower bound holding for almost aitinput functions. Comparing
this lower bound with the upper bounds of Theorem(2.7) and Theo-
rem(4.2) it may be seen that in general planar oidsvare less &f
cient than either combinational networks or formulae. This result is
from McColl (1985a) and employs Shanmordounting argument in
conjunction with a technique for concisely encoding planar oritsv
containing gactly m gaes. Inderving this we can restrict attention

to B,; those f OB, which are non-dgenerate.

In order to imprge the lower bound on planar neirk size
implied by Theorem(2.6) we need to shthat there are significantly
fewer planar networks containingactly m gaes than there are com-
binational networks of sizen. To accomplish this McColl (1985a)
defines the following relations between nodes in a planaronletw
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Let S be a planar network, with unique output nddend let N
be the set of nodes i8. For v, w in N we say thatv — w if and
only if v=w or there is a directed path fromto w in S. Now aup-
pose thatv, w are in N but neitherv —— w nor w — v hold. In this
case define,

M(v,w) = {mON:v-—mad w- m}

For any gppropriatev and w, M(v,w)#[ sincetOM(v,w). Fur
thermore, sinces is planar it cannot contain yarsubgraph homeomer
phic to that of Figure(6.5).

Figure 6.5
So there is a uniqueate y(v,w) OM(v,w) for which

Vs g(V,W) ;5 W g(v,w) ; Y mOM(v,w) u(v,w) — m

We @n nav define an ordering relatiolll over the nodesN of
S. Forv, win N vidw if and only if (6.2) or (6.3) belw hold.

Vo W (6.2)
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A(Vo0—sworw — V)
and
vV — Left( u(v,w))
and
W - Right( u(v, w))

(6.3)

I
I o

Lemma 6.1:The relation[d totally orders the noded\, of any panar
network S.

Proof: Exercise. O

It is immediate from this lemma that we can assign to each npde,
of an m-gate planar netark S, a uniqgue number A(u), with
1<A(u)<n+m, where

A(u) = [{vON:vOu}|
Clearly A(t)=n+m.

Definition 6.3:Let N be the set of nodes in aminput, m-gate planar
network S. The RL-specificationof S is the sequence oh+m-1
ordered pairs,

<R, L;>; - <Rymn Lpem1>
where

R=[{vON:A(Right(v)) =i} |
Li=[{vON:A(Left(v))=1}]|

Informally R (L;) is the total number of ajes for which the node
labelled i by A supplies the right (left) input. Obviously for each
1<isn+m-1 we have R +L;>0 dnce eery node, &ceptt, has
fan-out at least 1. In addition sincereey gate has exactly one left
input and exactly one right input it holds that
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n+m-1 n+m-1

2 R=2 L=m (6.4)

i=1 i=1

Lemma 6.2:Any RL-specification describes the graph structure of at
most one planar netwk.

Proof: Suppose the contraryet P be the RL-specification of 2 dif-
ferent n+ m node graph structure§ and H say Define G(k) to be
the structure consisting of the nodes:

A1), ..., 274k)

from G and the left-right ordered sequence of directed edgemépa
these nodes. Should an edgevieg a node in this set enter atg
not in G(k) then the other endpoint is labelled(l) according to
whether the edge forms thHeight (Left) input of its destination aje.
The structureH (k) is defined analogousiyWe alopt the cowention
of definingG(0) and H(0) as the empty graph.

Since G and H have dstinct graph structures there must be
some waluek, 1<k<n+m, for which

G(k-1)=H(k-1) : G(k)# H(k)

To prove the lemma it is sufficient to shothat G(k) is solely deter

mined by G(k-1) and the RL-specification P. For then, since
G(0)=H(0), we hae G(k)=H(k) for each &k<n+m, contradict-
ing the assumption th& and H are distinct. Note thaG=G(n+m)

andH=H(n+m).

To dbtain G(k) from G(k-1) the node A™'(k) has to be
added. Suppose that the ordered sequence of edges directed out of
G(k—-1) oontains a consecug mair labelled 4,r>. From the defini-
tion of IO the leftmost such pair from the input edges for the node
A7Y(k), which is a gate. Therefor&(k) is formed by adding this
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gae and an ordered sequence Rf+L, edges directed out of it.
These edges do not enteryagate inG(k) and are labelled, in order
with the sequence

<r,r,....r,11,...I>

there beingR, r's and L, I's. If no gppropriate pair of edges is pre-
sent then, again from the definition @, A7(k) is an nput node
which is placed to the right d&(k —1), together withR,+ L, outgo-
ing edges labelled as before, to fo@®(k).

The argument alve gplies equally toH(k). Hence we conclude that
starting fromG(0)=H(0) and following the procedure abeg using
P, results in tw identical graph structures

G=G(n+m)=H(n+m)=H O

Theoem 6.3:(McColl, 1985a) For almost alf OB, for all ¢>0 and
n sufiiciently lamge,
!

PC(f) 2 e

Proof: We proceed by counting the number of distinct planar nets

with n inputs and gactly m gates. A planar network being completely
specified by describing its graph structure and the operation associated
with each gates, it folles that RL(n, m)16™, where RL(n, m) is the
number of diferent RL-specifications formn-input m-gate planar net-
works, is an upper bound on this quantity

Any RL-specification may be weed as a pair of partitions of
m into n+ m-1 non-naaive integers, cf (6.6) abee. The total num-

+2m-2
ber of such partitions i%ﬂ m ghence
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m+2m—2ﬁ
<
RL(n,m)_D m -

It follows that the number of distinct planar networks withnputs
and at mostM gaes does notxeeed

M m+2m—2ﬁ m
ZD m D16

m=0

Since M >n this quantity is asymptotically

8M
@MﬁmMsiz
UM O VM
So if M < %—egzn then the total number of different networks is

o(|B,|) and this prees the theorem.o

By using a more detailed countinggament McColl (1985a) sk
that the contant actor 1/8 may be increased to Jd&j where
_5(v5-1)
18-8V5
Savage (1981) decribes an upper bound of (1272on PC( f),
asymptotically matching the wer bound of Theorem(6.3). &Vrnow
present a slightly bettedthough not optimal, construction based on
ideas mentioned in McColl (1985a).

log,; 2 being 0.172618 - -.

Given aay f OB, with aguments X,=<X;,...,X,> define
functionsgy, and g; in B,_; with arguments &, ,...,X,.;> by,
do = F97%(x, ... X))

01 =0go le":ZI(X11---,Xn—1)
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It is trivial to verfiy that for ap f OB,
f=000(9AXx) (6.5)

We may emply relation (6.5) as the basis of a recuesoonstruction
yielding a planar network fof. This is that network which results by
simulating each crossing in the netk of Figure(6.6) with the
crosswoer previously described.

Figure 6.6
Theoem 6.4:For al f OB, PC(f)<4.2.
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Proof: Consider the network of Figure(6.6). Assuming that the sub-
functions, f%=% and fM=1 are both realised by planar nets,
using the construction recwsly, the only crossings that occur are
those which arise by placing the inputs for the woekta computing

these subfunctions. The total number of crossings arising in #ys w
n-2

is exactly > k=(n-1)(n-2)/2. Each of these crossings is simulated
k=1

by the 3 gate crosser network.

Let a, denote the total number of gates in the final ety obvi-
ously PC( f )<a,. From Figure(6.6) and the fact that each crossing is
simulated by a 3 a@e network, it is immediate that the recurrence
relation belav describes the behaviour af,.

3(n—12)(n—2)+3

an = 2an—l+

or equvalently
_3(n-1)(n-2) +3

an—Zan_l - 2 (66)
Relations such as (6.6) Vea @neral solution of the form,
a, = A2"+c,n*+c n+c¢, (6.7)

For some constant®\, c,, ¢; andc,.

Combining (6.6) with (6.7) and equating disénts of n, for
0<k<2 we dotain

C2=Cl=_3/2 ; CO=_6

Hence,

a, = A'->— - _56 (6.8)
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To dbtain the value ofA note thata,=1; ary 2-input Boolean func-
tion can be realised using a singlatey the resulting network clearly
being planarSubstituting this is (6.8) ges A=4 hence,

3n* 3n _

an:4.2’]_7 > 6

and hencePC( f )<4. 2" as claimed.o

By computer analysis McColl and Paterson (1987) establish that for
all fOB,, PC(f)<10. By combining this ne boundary condition
with a more sophisticated recwsiimplementation of relation (6.5)
they obtain the best upper bound kmo to date:PC( f ) < (61/48) 2.

In summary the results of McColl (1985a) and (McColl and
Paerson, 1987) establish that

0.172.2 < PC(B,) < 1.271.2

6.4) Planar Networks and VLSl Circuits

Thompson (1980) pioneered the systematic study of VLSI combple
presenting a formal model of VLSI circuits, defining comijile mea-
sures based upon this andveeping techniques for proving \er
bounds on these with respect to computationally interesting functions
such as sorting. The work of Brent andurlg (1981), Millemin
(1980) and (Lipton and Sedgek, 1981) produced variants of
Thompsons nodel and gverise to further lower bound results.

The largest of these bounds were quadratic, in the number of
inputs and outputs, and referred to the proddTt; here A is some
measure of the area (amount of silicon) required to realise the func-
tion by a VLSI chip;T an interpretation of the time taken. \wever
the torrent of AT?=Q(n?) results produced between 1980 and 1981
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has not continued to the present andvnbis particular stream of
VLSI theory appears to ke died up.

One can attempt to account for the current lack of interest in
such results in a number ofays; that existing methods are incapable
of producing lower bounds ab(n?) and no progress has been made
in constructing more powerful approache®afs only a partial >@la-
nation - we hae sen that a similar block exists in proving superlin-
ear lower bounds on combinational complexity but there has continued
to be some aatity within the complexity theory of Boolean nedvks
- howeve two ather reasons could be proposed. Firstgsearch into
VLSI complexity theory has dersified oser a rumber of related areas
e.g the study of formal models of parallel computation (see Gibbons
and Rytter (1988) for a swy d this field), although arguably this is
a onsequence rather than a cause. The second reason may be the
close connection xhibited betweenAT? lower bounds and Veer
bounds on planar network size invage (1981). Saage, building on
work of Lipton and Tarjan (1979, 1980), unified a number of results
on VLSI complexity and established thatyalower bound on planar
network size held also for the measuAd?. In mary cases the net-
work lower bound was easier to desi compare the bound on imger
multiplication gven below with the sophisticated analysis required to
obtain theAT? bound directly (Brent and Kung, 198%1).

A VLSI chip may be viewed as a set wflayers, each layer
containing gates and wires. If awwires cross the must lie on difer-
ent layers. A constant parameter called thmimum featwr width,
denoted A, controls certain characteristics of the embedding aieg
and wires into layers: each wire must be of width at leasind
¢) This comparison is slightly uaif since Brent and Kung produce a lower bound on

the productAT?? for all  =0; Saage correlates Area-Time products with planar net-
work size only fora =1 in this case.
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separated from gnother wire by a space of width. Any gate occu-
pies area at least’. The chip realises a sequential machine, thus the
output of a gte at some timé may provide the input of some other
gae at timet+1. For the computation of a functiod OB, we
assume a chip haxatly n input ports and m output ports; the input
values being supplied exactly oncé& denotes the chip area, thus
A=pA? for some walue p. T denote the number of iterations éak
for the computation to complete. idge (1981) describes Wwoan
equivaent combinational network can be constructed by breaking
feedback loops and using copies of a chip in sequence; the inputs
for thet+1 copy being supplied by the outputs of gates on thie
copy. From this method we ke,

Theoem 6.5:(Savage, 1981) For allf OB, ,,
C(f) < v(AA)T(T) O

Theoem 6.6:(Savage, 1981) For allf OB, ,
PC(f) = O(AT?(f))

Proof: (Outline) Given any VLSI circuit realising f in areaA and T
iterations theT copies, in the construction described \aomay be
embedded so that the total number of crossing wirg®(i&T?). In
combination with Theorem(6.5) thisvgs the upper boundn

Theorem(6.6) shows that lower bounds on the Area-Time product can
be deduced from lower bounds on planar oekwsize. D conclude

this chapter we describe a general approach to proving such bounds
and illustrate its application to integer multiplication.

An important tool in all existing lower bound approaches is the
following well-known result due to Lipton and Tarjan (1979).
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Theoem 6.7: (Planar Sepator Theoem) Let G(V, E) be ax n-vertex
planar graph in which eachenex vV is assigned a non-gdive
cost, c(v), and letwt(G)= > c(v). There is a partition o¥ into 3

v Qv
sets, A, B and C satisfying the following properties.
2wt(G
) S )< MG
VOA 3
2wt(G
iy S o) < 2MG)
vOB 3
i) | C|<V8n.

iv) A and B are sepanted by C;that is @ery path from a ertex in A
to a \ertex in B must go through someeitex in C.

Lipton and Tarjan (1980) described vhahis result could be
applied to obtain quadratic bounds on the planar network caityple
of certainm-output functions.

Suppose we wish to pre a bwer bound for somef OB, ..
Consider ap planar network realisingf. Assign unit cost to some
subsetV of the input nodes and some sub®étof the output nodes.

To dl other nodes assign cost 0. Applying the planar separator theo-
rem we can subsequently identify collectioksV, Y'TOW which

are separated by some set a@ftag C. Now |C|<V/8(PC(f)+n)

and if some subfunction of, g: X' - Y' has sufficiently man points

in the image of its domain then we may be able to apply the pigeon-
hole principle to argue thaC||=Q(n). If this is so then it folles

that PC( f )= Q(n?).

Of course in order for this approach to be successful the struc-
ture of f must be such that an appropriate subfunct@mcan alvays
be identified rgardless of which variables result X' andY'.
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A class of suitable functions has been identified byag&a

Definition 6.4: Let f OB, with input \ariables X, and outputs
Yn=<VYi,...,¥Yn>. LetVOX, andWOY,. f has aw-flow (with
respect toV [ 1 W) if and only if: for all partitions ofV [JW into 2
sets A and B such that

2(M[+ W) 2(M]+ W)

Als —— ; |B|s ————
e Bls =2

there aist X'OANnV and Y'OBnW (or X'OBnV and
Y' O An W) such that for some assignment,to X, — X' the subfunc-
tion g= f": X' = Y’ has at least"2points in the image of its domain.

f OB,m has aw-flow if appropriate subset¢ andW exist.
Theoem 6.8:(Savage, 1981) Iff OB, has aw-flow then

PC(f) = W§2—O(n+m)

Proof: Let f OB, have a w-flow with respect to subset¢ of X,
and W of Y,,. Consider an optimal planar nedvk, T, realising f. It

is corvenient to mak a mnor modification toT in order to simplify
the proof; arrange thatvery input nodex; of V has fanout xactly
one, @ery output nodey; of W has fanin exactly one and thategy
path from ag such input to ay such output contains at least one
other node. These alterations can be carried out using at rmtost
extra cates. S will denote the neterk resulting by modifyingT in
this way.

Assign unit cost to each node Y[ W and a cost of zero to
evay other node inS. Applying the Planar Separator Theorem parti-
tions the nodes o8 into 3 setsA”, B" andC" which satisfy
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|anDwnsﬂQ?M (6.9)
|WnNDWHng?M (6.10)
|C"| < V8{PC(S)+n) (6.11)

In addition A" and B" are separated bg". A" [ ] B" may not
contain eery node inV []W since some of these may vieakeen
allocated toC". Let U=C" n (V [JW). From the way S has been
constructed each DU has eitherdnin 1, if it is an output, orahout
1, if it is an input node. Rearrange the partition so that the nodes in
U are distributed wer A" and B" to presere (6.9) and (6.10). This
rearrangement may result iA” and B" no longer being separated,
howerer this can only happen if the unique input (output)of some
nodeu U is in A" andu is assigned tdB'" or vice-\ersa. Thesepa-
ration property can mo be restored by maing v to C”. Let A, B
and C denote the ne partition which results after mvong U out of
C" and additional nodes, as necessanypo C'". Clearly (6.9), (6.10)
and (6.11) still hold for this me separating partition sinceC|| < |C"|.
Additionally let

A=AnNLwW) ;: B=BnNvLW)

A and B form a partition ofv [ ] W satisfying the conditions of
Definition(6.4)?

d) The restructuring of is required to ensure that the partition just described can be
constructed. Lipton and Tarjan (1980) ye® lower bounds directly without this modifi-
cation, haevever the analysis used in the final stages of their proofs becomes more com-
plicated as a result.
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S realisesf and f has aw-flow, therefore, without loss of gen-
erality, we an find X'JAnV, YYOBnW and a partial assignment
 fixing X,,— X' so that the subfunctiog=f": X' . Y’ has at least
2" points in the image of its domain. Consider the sub-networ®of
containing only those nodes which are ancestors of nod&s. inn
this sub-network, sinceX' and Y' are separated,very path from a
node in X' must encounter a age in C. It follows that if
<Z,2,...,Zc> is ome ordering of the gates i@ then wer all
assignments toX' there are at most!? distinct values that this
sequence can take. Wever the values taken by these gates com-
pletely determine thealues at the outputg’. It follows that £!>2"
thus €|=w. Hence from (6.11) and our earlier observation that
IC|<|C"]| it follows thatPC( f )=w?/8-0O(n+ m) as equired. O

Definition 6.5:Let f O0B,.s, Which hasn data inputs, <x;,...,X,>;
s=0 shifting inputs, <z;,...,z;>; andn outputs <y;,...,y,>. f is a
shifting functionif for all 0<k<n there is an assignment to the shift-
ing inputs with whichy;,, : =x for each Ki<sn-Kk.

Theoem 6.9: Let f OB, be a shifting function.f has an
(n/18)-flow.

Proof: (Below we asumen is even). Let V={x;,...,Xy»} and
W ={Yu2:1,--.,Yn}. Consider ag partition of V [ ]W into two sets,
A and B, satisfying

2n

1Bl = =

1Al < 2N
3 3

Let Ax=AnV, A/=AnW, By=BnV and B,=BnW.
Without loss of generality it may be assumed thA{<g|B| and
| Ax [=]| Ay |. With these assumptions we thereforgeha
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<|Al<

wIl >
NI S

and so Ay |2g. In addition,

|By[ = n—|A[-[Bx]| 2

ol S

Given x, DAy and y, OBy there is exactly onealer in the
range kr<n/2 for whichqg=p+r. We all the triple <p,q,r> in
this case amatch. Since |Ax|=n/6, |By|=n/6 the total number a
possible matches is at leagi36. Hovever there are onlyn/2 choices
for the value ofr so there must be somalue |, 1<l <n/2 which
forms a match with at leasi’18 pairs of indices imAy x By. Thus for
this value ofl we can findk=n/18 inputsX'=<x; ,...,%, >0 Ay for
which

Y' =<V, Yis > 0By

Since f is a shifting function and none of the shifting inputs occur in
V the variables ¢;,...,z;> may be fixed to realise a shift bly
places, the remaining inputs, aparts froth can be fixed arbitrarily
The resulting subfunctiorg: X' — Y' has exactly B! points in the
image of its domain and sinc&'||=n/18 this prees the theorem.o

Corollary 5.1: If f OB.sy, IS @ shifting function then

2
n
PC(f) 2 — —-0O(n |
(1) 2 gz -0
Corollary 5.2: Let MULT 0By, ,,-; be the integer multplication func-
tion.

2

n
PC(MULT) 2 —— -0
(MULT) 2 o = O(n)
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Proof: The firstn inputs of MULT may be rgaded as data inputs,
the remainingn inputs as shifting inputs. The sub-function formed by
considering only then least significant bits of the 2~ 1)-bit output
tuple defines a shifting functiom

Bibliographic Notes

The proof of Theorem(6.3) can be readily adapted towsho
X(f)=Q(2") for almost allf O0B,. The "proof' in Mamate (1975)
which purports to establisK, y ( f)=0(2"n) contains a number
of serious errors. McColl (1985a) further shows that Theorem(6.3)
continues to hold for more general forms of planar network in which
multiple copies of inputs are permitted, provided the total number of
input nodes allwed is o(2"logn). When O(2"/logn) inputs nodes
are used the formula size upper bound of Theorem(4.2) applies.

Savage (1981) also impkes the lover bound on the planar
complity of Boolean Matrix Product originally gen by Lipton and
Tarjan (1980), as well as transforming VLSI lower bounds of
Vuillemin (1980) to planar netwrks. Alsoin the field of VLSI com-
plexity, Kramer and ®n Leeuwen (1983) obtain an analogue of
Lupanovs results on combinational complexity for VLSI circuits.

Planar monotone networks were first considered in McColl
(1985b). There an exactale for the planar monotone complexity of
T) is obtained. It is also pved that T, for 3<k<n-2 cannot be
computed by networks (of 2-inputaggs) which are simultaneously
monotone and planarBeynon and Buckle (1987) describe arieef
tive pocedure which decides if nrgiven f [IM, is planar monotone
computable. Their results establish that

PCin, vy( f)=0(n")
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for ary f OM, for which this is defined. The bestwer bound for
this measure is

PCip vy (T3)=Q(1?)

from McColl (1985b). At present no Shannon style countimaent
has been diseered.

"Ev démed "Qyeavew Aaumov gaoc neiioio,
"EA YoV vuxta pgiaivav ém {e10wpov %poupav

[lliad, viii, 485-6
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Summary of Notations

The following lists summarise notation which is in use throughout most
of the text abwe. Notation which is specific to only one chapter is not
included.

1) Boolean functions and sets of functions

B, Set of all n-input single output Boolean
functions

Bnm Set of alln-input, m-output Boolean func-
tions

M, Set of alln-input single output monotone
Boolean functions

Mnm Set of all n-input m-output monotone
Boolean functions

S, Set of alln-input symmetric Boolean func-
tions

f Dual function off OB,

flm Subfunction off induced by partial assign-
mentsr

for-f Negation (complement) of (0B,

[ f.] Family of Boolean functions

f () n'th member of family [f, ]

m Projection functionr( X, y) =X

1 Projection functionz,(x,y)=y



COMP
CONV
DHC
DIVN
Ex
MULT
PM
SAT

il
k

UHC

Yo

Logical not (ngaion or complement)
Conjunction

Disjunction

Left implication

Right implication

Equwvalence

Exclusve a

gUel1;el{0,1, f OB,

Integer addition

Boolean Matrix Product
Congruent mod

Comparison

Boolean cowolution

Directed Hamiltonian cycle
Integer division

Exactlyk

Integer multiplication

Perfect matching (=Logical permanent)
Satisfiability

Thresholdk

Undirected Hamiltonian cycle

<Xp,...,% >, ordered set ofn Boolean
variables
Assignmentg =<a,,...,a,>0{0, }"

A %@ 0{0 1

{i:aq=
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>s

(x M &)

i=1

2) Complexity relations and classes

Combinational network comptay (of net-
work or function)

Q-network complexity

Monotone network complexity
Combinational network depth

Q-network depth

Formula size (wer basisB,)

Q-formula size

Monotone formula size

Deterministic polynomial-time computable
Non-deterministic polynomial-time com-
putable

When f, g are functiondN — N.

f(n) =0 (g(n)) if and only if there is a constaat> 0 uch that for

alln, f(n)<c.g(n).

f(n)=Q(g(n)) ifand only ifg(n) = O ( f(n)).

. ... T(n)
f(n) = fand only if lim ——= =0
(n)=o0(g(n))ifand only i lim. an

f(n)=w(g(n))ifand only ifg(n)=0o( f(n)).
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3) Miscellaneous

CNF
DNF
I(f)
op(9)
PC(f)
PI(f)
res(u)
var(h)

Conjunctve Normal Form

Disjunctve Normal Form

Set of implicants off OB,

Operation associated with gajen a network

Set of prime clauses df (1B,

Set of prime implicants of 1B,

Boolean function computed by nod®f a network
Set of variables defining a monom or clase

Fanout of nodei in a network
Arbitrary logical basis

f(a)=1 0 g(a)=1foralla 0{0,1"
Set of all subsets of a (finite) set

Smallest integer which sx
Largest integer which isx
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Bibliographic Categories

The following inde is intended to summarise the bibliographic entries
which are releant to various specific areas within the field of Boolean
complity theory The numbers next to headings refer to the bibliogra-

phy ordering and are not page numbers.

Bounded-depth netovks

- {A, 0}
- arbitrary basis
- DNF

- monotone

- ringsum gpansion

Combinational networks and compiley

- Arithmetic functions

3,4, 35, 48, 51, 64, 80,
89, 110, 118, 155, 157,
175,177, 184, 211, 234,
237, 315, 320, 333, 375
239, 268, 269

50, 117
10,11, 15, 16, 53, 54,
128, 158, 190, 192, 193,
229, 243, 263, 264, 281,
288, 355, 377, 380, 381
36348, 374
3079, 86, 121, 213,
236, 287, 296, 379

44,75, 186, 191, 219,
220, 225, 230, 231, 235,
241, 249, 257, 273, 285,
290, 291, 301, 303, 308,
314, 336, 344

9, 18, 24, 45, 126, 136,
160, 289, 304, 316, 317,
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Disjoint variable sets
Hierarchies
Lower bounds

Q-networks

Relationships to other models
Restricted &n-out

Synthesis

Upper bounds

Combinatorics and graph theory

Complexity theory

abstract
algebraic

Boolean
Parallel
uniform

334, 335, 357, 368, 369
244, 342

197242, 362

17, 32, 106, 107, 129,
245, 276, 297, 299, 302,
309, 325

34,156, 210

38, 40, 84, 298, 313
114149

5294, 95, 99, 102, 171,
176, 179, 181, 183, 216,
221, 222, 223, 224, 272,
273, 275, 312, 321, 339,
340

120, 135, 136, 159, 171,
215, 292

25,47,77, 78, 115, 144,
168, 265

2, 58, 59, 85, 92, 111,
148, 208, 232, 233, 295,
337, 345

2021, 116, 186
39122, 165, 166, 300,
346, 347
41293, 319, 366
61,91, 97
60,74, 251, 286



Depth

- Monotone

Formulae

- Lower bounds

- Monotone

- Synthesis
- Unate

Upper bounds

Monotone Netwrks
- Disjoint variable sets
- Lower bounds

467

9,22, 29, 41, 62, 76, 93,
125, 141, 182, 194, 195,
198, 202, 214, 256, 258,
259, 307, 322, 323, 324
4243, 127, 196

131132, 140, 154, 172,
180, 212, 217, 218, 254,
262, 277, 318, 327, 371
372, 378

13, 19, 49, 56, 57, 83, 108,
112, 113, 137, 138, 139,
146, 147, 187, 189, 205,
226, 260, 261, 271, 282,
305, 326, 354, 359
4956, 88, 142, 178, 271,
278, 279, 349

6581, 173, 174
1357, 133, 134, 137,
138, 187, 261, 271, 326,
370

88, 133, 134, 142, 173,
174, 246, 247, 349, 351

31,66, 164, 283, 306

90

8,12, 14, 33, 67, 69,
101, 123, 161, 162, 170,
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- Multivalued
- Number of monotone functions

- Planar
- Relationships to other bases

- Replacement rules
- Sorting
- Upper bounds

Planar Netwrks

Switching theory

VLSI

206, 207, 227, 228, 238,
252, 255, 266, 267, 270,
328, 329, 332, 352, 360,
361, 363, 367, 376
6,7

6, 55, 63, 98, 100, 103,
104, 105, 143, 144, 145,
150, 151, 358, 373
28201

26, 70, 71,72, 73, 82,
270, 328, 341, 350, 364,
365

27, 68, 207, 238
5,23, 161, 240, 352

5, 23, 119, 240, 248, 250,
338

169,188, 199, 200, 203,
294

1, 37, 87, 96, 109, 130,
153, 163, 209, 253, 280,
310, 311, 353

46,152, 167, 204, 330,
331, 343, 356



Abullaev, D.A.
Aho, A.V.
Ajtai, M.
Aleksee, V.B.
Alon, N.

Alt, H.
Andreey, A.E.

Arevalo, Z.
Aslanjan, L.A.
Avgustinovich, S.V
Avizienis, A.

Babai, L.
Baker T.
Barak, A.B.
BatcherK.E.
Beame, P.\W
Berge, C.
Berman, L.
Ben-Or M.
Berkowitz, S.
Beynon, WM.
Bini, D.
Bioul, G.
Bloniarz, P

Author Index

422

25,422

269, 337, 422

268,422, 423

120, 195, 196-224, 232, 238, 269, 423
115, 423

121,195, 224-232, 238, 269, 272, 343,
347-351, 394, 423

394, 423

424

424

116, 424

351, 424
355-356, 424
70, 424, 448
245424

115, 424

254, 297, 424
451
422

121, 238, 239, 243-244, 248-249, 425
268,421, 425
425

394, 425

184, 352, 425

469
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Blum, N.
Boppana, R.

Born, R.C.
Borodin, A.

Bredeson, J.G.

Breitbart, Y.Y
Bremer H.
Brent, R.
Brown, WG.
Brustmann, B.
Bublitz, S.
Buckle, J.

Chandra, A.K.
Chiang, K-W
Chuang, YH.
Chukhraoy, I.P,
Church, R.

Commentz-WalterB.

Conway L.
Cook, S.A.

Davio, M.
Dedekind, R.
Denenberg, L.

Deschamps, J.P

Dudich, VN.
Dunne, FE.

74, 76, 90-99, 116, 161, 425
121, 195, 196-224, 232, 238, 269, 394, 423,
425, 426
426
25, 26, 37-39, 426
394, 423
115, 426
116, 426
68-69, 413, 414, 426
170427
377,427
351, 427
421, 425

373-377, 395, 427
427

394,434
394, 427

123, 427

272, 323-330, 428
396, 443

6, 25, 42, 115, 424, 428

394, 425
118, 119, 123, 428
428
394, 425
428
120,121, 149-154, 172-191, 239, 242-243,



Edenbrandt, A.

Ehrenfeucht, A.

Elspas, B.
Erdos, P
Even, S.

Fagin, R.
Finikov, B.I.
Fischer M.

Fleisher H.
Fortune, S.

Friedman, A.D.

Friedman, J.
Furst, M.

Gal, S.
Galbiati, G.
Galil, Z.
Garey, M.
Gaslov, S.B.
Gavrilov, M.A.

Gershlovich, Y.B.

Gibbons, A.M.
Gilbert, E.N.
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58, 430
209, 297, 430
394, 430
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431, 438
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395, 427
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270, 431
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431

432

413, 432

123, 432
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119, 123-133, 136, 432
116,272, 280, 288-289, 433
25,433

356, 364-372, 377, 381, 433
32,433

272, 280, 293-303, 351, 433
115424, 428, 433

25, 224, 356, 422, 433, 434
395, 434

116,433
434
434

394, 434
119, 434
25,431

269, 434
115, 434

116, 434
352, 435
14, 394, 435



Karp, R.M.
Karpova, N.A.
Karpovski, M.G.
Kautz, HW

Kasim-Zade, O.M.

Khasin, L.S.
Khazotskii, VE.
Khrapchenko, \M.
Klawe, M.
Kleiman, M.
Kleitman, D.
Kloss, B.M.
Knuth, D.
Kodanpani, K.L.
Kogan, A.Y.
Kohavi, I.
Komlos, J.
Korobkov, V.K.
Korshuna, A.D.
Kramer M.
Krichevskii, R.E.
Kriegel, K.
Kuck, D.J.
Kung, H.T
Kuznetse, O.P.
Kuznetse, SE.

Ladner R.E.
Lagarias, J.C.

473

224, 433

115,435

435
58, 430

435

337-339, 435

431
111,115, 272, 337, 343, 344-347, 435, 436
377-378, 430, 433
339, 436

119, 123-124, 125, 140, 432, 436, 437
289-290, 437

58, 308, 437

437
394, 460

394, 430

269, 337, 422
123,437

68,119, 124, 147, 437
421, 437

331, 337, 437, 438
438

68-69, 427
413, 414, 427, 434
431

394,438

100,101-111, 438
425



474

Lai, H.C.
Lamagna, E.A.
Langheld, E.
Lenz, K.
Levey, SY.
Lingas, A.
Lipton, R.
Long, D.
Lupana, O.B.

Machtey, M.
Madatjan, H.A.
Malyshey, V.A.
Mamatw, Y.A.
Markov, A.A.
Markowsky, G.
Maruyama, K.
Masek, WJ.

McCluskey, E.J.

McColl, W.E

McKinney, M.H.

Moskaley, E.S.
Mead, C.
Mehlhorn, K.

438, 444

161, 269, 438

439

270, 439
439

119, 439

395, 399-401, 413, 415, 418, 420, 427, 439
269, 439
42,45-50, 51, 58, 116, 119, 136-138, 274,
278-280, 354, 356, 357, 359-360, 360-363,
439-441

25, 441

441

351,437, 441

290,394, 420, 441, 442

269,442

119, 123-124, 140, 437

68-69, 427

14442

14,394, 442

43, 51-58, 64-65, 70, 245, 268, 339, 352,
397, 403, 404-405, 406-410, 410-412, 420,
421, 442, 443

394,451

435

396, 443

120, 148-150, 157-160, 166-170, 269, 351,
443



Meyer, A.

Miller, R.E.
Mirwald, R.
Moran, S.
Muchnik, B.A.
MukhopadhyayA.
Muller, D.E.
Munro, I.
Muroga, S.

Nakasima, A.
Neciporuk, E.I.
Nguen, K.A.
Nigmatullin, R.G.
Noe, PS.

Ofman, Y
Okol'nishnikova, B.
Ong, E.H.
Orlov, V.A.

Pan, V. Ya.

Pgpakonstantinou, G.

Paberry; 1.
Paerson, M.S.

Paz, A.

475

25, 272, 280, 303-322, 331, 354, 430, 443
25,443

270, 443

377-380, 443

443

394, 444

58,70, 100, 111-114, 115, 444, 448

6, 426

394, 438, 444, 460

271, 444
166, 272, 280, 281-293, 347, 352, 444-445
394, 445
116, 445
394451

116, 434, 446
381, 446
394, 451
115,446

425

394, 446
395, 446

27,43, 51-58, 65-67, 68, 70-73, 120, 148,
156-160, 245, 269, 272, 280, 282-284,
303-322, 331, 344-346, 383-393, 397, 412,
430, 443, 446-447
394, 430



476

Paul, W.

Paull, M.C.
Peterson, G.L.
PippengerN.J.

Poltervich, \/\M.

Pooch, U.W
Post, E.L.
Pratt, VR.
Preparata, F.P
Pudlak, P
Pulatw, A.K.
Pupyre, E.I.

Quine, W.V

Rabin, M.O.
Ramsg F.P.
Razbore, A.A.

Red’kin, N.P
Reitet B.
Reznik, V.
ReischerC.
Rhyne, T.V
Riordan, J.
Rivest, R.L.
Rodl, V.

Romanlevich, H.M.

75,76, 77,90, 93, 116, 352, 431, 447
439

331, 447

25,27-28, 32-36, 116, 136, 139-140, 161,
269, 339, 377-378, 430, 433, 436, 447-448
432
394, 451

11-12, 448

269,323, 448
58, 70, 100, 111-114, 115, 444, 448
272, 280, 293-303, 331, 351, 424, 448
449
449

14, 394, 449

25,430
296-298, 449
120,195, 196-224, 232-233, 269, 352,
383-393, 395, 449-450
116, 119, 140-146, 352, 450
426
450
451
394, 451

50, 271, 273-274, 451

270, 451
351, 424

451



Rudich, S.
Ruzzo, WL.
Rytter, W.

Saluja, K.K.

Sapozhenko, A.A.

Sarkisjan, G.Z.
Sattler J.
Savage, J.E.

Savitch, WJ.
Saxe, J.B.
Schmitz, G.

SchmooklerM.S.

Schnitger G.
SchnorrC.P

Schonhage, A.
Schirfeld, U.
Scidmore, A.K.

Sedgewick, R.E.

Selman, A.
Seth, S.C.
Sethi, I.K.
Seysen, M.
Shamir E.
Shannon, C.E.

Shelah, S.

477

451
25,451
413, 432

394, 451
394, 451
451
272, 323, 330, 428
116, 261, 269, 272, 280, 288-289, 410, 413,
414-415, 416-418, 420, 433, 438, 452
7,452
354-356, 372, 377, 431
394, 444
394452
395, 446
28, 29-32, 74, 76, 77-79, 116, 119, 269, 270,
443, 452-453
115, 453
272, 280, 290-293, 453
426
413, 439
356, 424
437
453
116, 425
70, 424, 453
27,42-45, 50, 119, 271, 273-274, 405, 451,
453
428



478

Shestaky, V.. 271,453

Sholoma, L.A. 115,116, 453-454

Simovici, D. 451

Sipser M. 354-356, 372, 377, 381, 431, 454

Sklansky, J. 116, 454

Skyum, S. 27,40-42, 269, 373, 454

Smolensk, R. 395, 454

Snir, M. 119, 434, 453

Solovay, R. 355-356, 424

Soprunenko, E.P 454

SpeckerE. 272, 280, 293-303, 433

SpencerJ. 209, 297, 430

Spira, FM. 52,70, 116, 323, 455

Stearns, R.E. 32,433

StockmeyerL. 25,74, 76, 77-89, 184, 354, 373-377,
377-378, 427, 430, 443, 455

Stone, HW 58, 430

Strassen, V 115, 453

Subbotovskaya, B.A. 343, 347, 351, 455

Szemeredi, E. 269, 337, 351, 422, 424

Tardos, E. 224, 455

Tarjan, R.E. 269, 399-401, 414, 415, 418, 420, 439, 455

Tawel, M. 394, 431

Thompson, C.D. 413, 455-456

Tiekenheinrich, J. 120, 172, 191-192, 456

Tkache, G.A. 356,456

Toom, A.L. 116, 456

Trakhtenbrot, B.A. 456



Turing, A.M.
Ugolnikov, A.B.
Ulig, D.
Ullman, J.D.

Valiant, L.G.

Van Leijenhorst, D.C.

Van Leeuwen, J.
Van Voorhis, C.C.
Vascenko, V.P
Vilfan, B.
Vishkin, U.

\oigt, B.
Vranesic, Z.G.
Vuillemin, J.

Waack, S.
Wallace, C.S.
Ward, M.
Wechsung, G.
Wegener I.

Weiss, J.
Wigderson, A.
Winograd, S.

479

2,456

140,239, 263, 265-267, 456-457
116, 457
25, 26, 356, 396, 422, 434, 457

27, 40-42, 68, 70-73, 115, 161, 239,
244-248, 269, 333-337, 373, 394, 447,
448, 454, 457-458
333, 458
421, 437
269, 458
458
280, 294, 458
373-377, 427
458
427
413, 421, 458

438

116, 458

123, 458

351, 458
65-67, 121, 165, 166, 170-171, 224, 232,
239, 244, 249, 251-252, 258, 259-260, 261,
269, 270, 377, 427, 439, 447, 458-459

120, 161-164, 459

352, 435

459



480

Yablonskii, C.\ 116, 459-460
Yamamoto, K. 460

Yao, A.C-C. 356, 364, 372, 394, 460
Yao, F.F 460
Yatsunw, A.l. 451

Yeager J.D. 394,431
Young, M.H. 394, 460
Young, P 25, 441
Yunosw, D. 422
Zakharwa, E.Y. 460
Zhegdkin, 1.1. 14, 460

Zhuravley, Y.I. 394,432, 460



Absorption property
addition

affine

algorithm

almost all

ancestor

AND (N)

N\ -type function
Area-Time compleity
arithmetic functions
assignment
associatie poperty

Basis

bipartite graph
Boolean algebra
Boolean function

Boolean matrix product

Boolean Q)-network
Boolean sum
Boolean product
Boolean wariable
bottom level fanin
bound pair
boundary

481

Subject Index

10
18107-111, 115,
116, 374
11
2
43

19
8
20
413-5

18, 115, 116

9
10

1118
170
7-18
7-18
120, 149, 155-160

18-25
12, 165
12, 45
7

370

125
377-378



482

bounded alternation
bounded-depth formula
bounded-depth netwk
- {/\ ' Vv ’ _'}
- Upper bound (all functions)
- Lower bounds
-{N\, 0,1}

Canonical slice function
central slice function
centre (of sphere)
chain

clause

clique function

CLOSEL f)

collector
combinational complety
and Depth

and Formula size
Lower bound
Upper bound
combinational netark
commutatve property
comparison function
complement
complement property

357
357
117,353-395
353-382
359-363
364-381
382-394

251-253
251, 253-258
58
124
15
195, 213-218, 250,
252, 254-255,
290-293
197, 200-208,
209-213
94
20,27-116
39, 68, 70-73
39
36, 43-45, 74-99
45-50, 100-115
19,27-116, 117
10
374
911
10



complete (logical) basis
complexity class
complexity @p
complexity hierarch

complexity measure
complexity theory
congruent modk (Cy)

conjunction
conjunctve expansion
conjunctve mrmal form (CNF)

constant-depth, polynomial-size
constant-depth reduction
constant function

constant property

convolution

counting agument

cover (of basis)

cyclic convolution

De Moman’s Laws
decision problem
Dedekinds problem
degenerate Boolean function
depth

- Lower bound

- Upper bound (schemes)

11, 22
5,24
63-68
5, 63-68, 120,
146-7, 381-382
4, 20, 39
1
17, 89, 322,
331-333
8
51
12-13, 15, 357,
359-360
373-382
373
8
10
119,160-164
42-45
11
160-164

483

10, 240, 344, 383

1,7,24

118-119]122-133

9, 65-66
2036-40, 50-64
50

52-58



484

- Upper bound (netarks)
depth-urnversal
descendant
determinant DET)
deterministic
Direct Matrix Product DMP)
disjunction
disjunctve expansion
disjunctve rormal form (DNF)

distributve poperty
division
DLOGSPACE
DSPACE

DTIME

dual function

embedding

equivaence (11)
equvaence functiond,)
exactly k (EY)
exclusive-or ()

[-type function
explicitly defined
expression

Family (of functions)
fanin
fanout

58-63
115

19
289-290
4
171-172
8

5172
12-13, 15, 357,
359-360
10
115
6, 42
5
5,24, 36
11

397-398
8
46-47
17
8
20
74
11

24,75
18,22
18,23



finite state transducer
first node
formula

formula size
- and depth
Lower bound (almost all functions)

- Lower bounds{\, V, -)
- Lower bounds,)
- Upper bound (all functions)
- Upper boundsH,)
- Upper bounds (monotone)
free input functions
free path
free split
free O
free 1

Gate
graph
graph theory

Hamiltonian circuit
Hamming distance

(h, k)-disjoint set of sums
homogeneous formula

485

104
155
23-24117,
271-352
24, 271-352
39, 68-70, 322-330
50, 272, 273-274,
280-322
343-351
281-322
274-280
330-333
334-343
165, 224, 232
94
94
125
125

18
18
117

250, 252, 255-257,
355
341
165-170
295
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Idempotenyg

identity

implicand

implicant

incomplete (logical) basis
inductive cate elimination

input
isomorphic formulae

k-formula
k-sensitve function

Language

last node

lattice method

left implication]( )
level

lexicographic ordering
local coding

literal

logical basis
LOGSPACEcomplete
Lupanos decomposition

Majority (MAJ,)

marriage problem

10
10
12
12
11
75, 116, 147, 154,
172
18
295

296
302-303306, 321

4
155

196-224, 232
8
20

45

119, 136-140
11

11

6

46-4978-280

17, 89, 184-191,
269, 306, 333-337,
343, 393

280
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merging netwark 245
model of computation 2
monom 15
monotone 15
monotone basis 16, 118
monotone Boolean function 15-17
monotone Boolean netwk 19,117-270
monotone network complay 117-270

- and combinational compiay 238-268

- Lower bound (almost all) 122

- Lower bounds (sets) 154-172

- Lower bounds (single output, linear) 172-192

- Lower bounds (single output, superlinear)  195-238

- Upper bound (combinational netvks) 136-140

- Upper bound (monotone netvks) 140-146192-194
monotone formula
monotone projection 40
multiplication 115116, 119,

374, 415, 420

n-ordered netwrk 46
NAND (= N) 8
negaion (—) 9, 224, 269
network 18
network depth 20
network size 20
node 18
non-deyenerate %5-66
non-deterministic 4
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non-uniform
NOR (=V)
NP
NP-complete
NSPACE
NTIME

Oblivious

occurences (of literal in formula)

optimal netvork
OR (V)

oracle

output

P

pC

pD
p-complete
p-definable
p-projection
p-universality
parallel prefix
parity function

partial assignment
perfect matching

planar crosseer
planar monotone computation

2442

8

5,40

625, 41, 118, 249
5, 36

5

28
282
20
8
355-356
18

5, 354
41
41
41
40
40
40
100-104
346, 356, 359-360,
364-372
9
195, 213, 218-224,
268
401, 404-405
421



planar netwrk

planar network compity

and combinational neterks
Lower bound (almost all functions)
Lower bounds

Upper bound

planar separator theorem
polynomially reducible
polynomial time
polynomial-time hierarch
predecessor

PREFIX

prefix problem

prime clause

prime clausexdension

prime implicant

prime implicant g&tension
principle of duality
probabilistic method

problem size

product netwrk

programmable logic array (PLA)
projection

projection functions#; etc)
pseudo-complement

PSPACE

Quadratic Boolean form

117,398
396-421
397-405
405-410
416-420
410-412
415
6
5
354-356
18
273
100-104
12,15
152
12,15
152
11

209, 364-372

2
100-104
394
40

8

12239-243

7,42, 354

270

489
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Ramsg property
random assignment
reducing assignment
regular lattice
relatvisation
relay-contact netark
replacement rule

restricted model
restriction (of function)
right implication (J)
ringsum gpansion
RL-specification

Satisfiability GAT)

satisfying assignment
scheme

self-dual

Shannon function

shifting comwvolution

shifting function

simulation (TM space by Depth)
simulation (TM time by Size)
size

slice function

space complaty

spectrum

sphere

296
365
365
196
354-356
271
120, 147-154,
164, 239
117
294
8
14270, 286-287
407

41, 250, 252-253,
257-258
9
51
11
115
160
418
36-39
28-36
2039
121, 239, 243-263
4
17377
58



split

Stable Marriage Problem
standard circuit
strong-complete basis
subfunction

successor

switching theory

symmetric Boolean function

sympathetic basis

Threshold functionT})

TIED (and properties)
time compleity
topological order
transitve dosure
truth-table

Turing machine

Uniform circuit compleity
universal function

universal circuit

Variable

491

94
288-289
121, 239-243
11
9
18
14
17,77, 100,
112-114, 281, 293,
303, 330-343,
377-380
265

17, 89, 118,
172-191, 192-194,
322, 330, 331,
337-343, 347
126-130
4
20
36374
8-9
2

24
40, 115
115
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Weak-complete basis
well-formed string
wire

wire counting

Value function
VLSI

11
125
18
172, 177-183

170-171
26,396, 413-415



