
Contents

Preface i

1) Introduction 1

1. 1) Complexity Theory 1

1. 2) Boolean functions and Boolean algebra 7

1. 3) Boolean networks 18

Bibliographic notes 25

2) Combinational Network Complexity 27

2. 1) Simulation results 28

2. 2) Complexity results for almost all Boolean functions 42

2. 3) Relating network size and network depth 68

2. 4) Lower bounds on specific Boolean functions 74

2. 5) Some upper bounds on combinational complexity 100

Bibliographic notes 115

3) Monotone Network Complexity 117

3. 1) Bounds for almost all monotone Boolean functions 122

3. 2) Replacement rules 147

3. 3) The monotone complexity of sets of functions 154

3. 4) Linear lower bounds on single output functions 172

3. 5) Superpolynomial bounds on single output functions 195

3. 5. 1) The lattice method 196

3. 5. 2) The Andreev lower bound method 224

3. 5. 3) Conclusion 232

3. 6) Relating monotone and combinational complexity 238

3. 6. 1) Standard circuits and pseudo − complementation 239

3. 6. 2) Slice functions 243

Bibliographic notes 269

4) Formulae 271

4. 1) Bounds on formula size for all Boolean functions 272

4. 2) General lower bound techniques 280

4. 2. 1) The Neciporuk bound 281

4. 2. 2) The Hodes/Specker/Pudlak lower bound 293

4. 2. 3) The Fischer/Meyer/Paterson lower bound 303

4. 3) Formula size and depth 322

4. 4) Upper bounds for symmetric functions 330

4. 5) Bounds for bases other than B2 343

4. 5. 1) The Khrapchenko bound 344

4. 5. 2) The Andreev bound 347

Bibliographic notes 351

5) Bounded − Depth Networks 353

5. 1) Introduction 353

5. 2) Universal bounds on bounded − depth formulae 357

5. 3) Exponential lower bounds on parity functions 364

5. 4) Consequences of the parity function lower bound 372

5. 5) Bounded − depth { /\ , ⊕ } − formulae 382

Bibliographic notes 394

6) Planar Networks 396

6. 1) Introduction 396

6. 2) Relations between planar and combinational complexity 397

6. 3) Bounds on planar network complexity 405

6. 4) Planar networks and VLSI circuits 413

Bibliographic notes 420

Bibliography 422

List Of Figures

Figure 1. 1 3

Figure 2. 1 38 Figure 2. 7 99

Figure 2. 2 82 Figure 2. 8 (a) 102

Figure 2. 3 79 Figure 2. 8 (b) 103

Figure 2. 4 86 Figure 2. 9 108

Figure 2. 5 87 Figure 2. 10 109

Figure 2. 6 88 Figure 2. 11 114

Figure 3. 1 137 Figure 3. 6 180

Figure 3. 2 175 Figure 3. 7 181

Figure 3. 3 176 Figure 3. 8 184

Figure 3. 4 178 Figure 3. 9 241

Figure 3. 5 179

Figure 6. 1 400 Figure 6. 4 403

Figure 6. 2 401 Figure 6. 5 406

Figure 6. 3 402 Figure 6. 6 411

i

Preface

Quam multafieri non posse, priusquam suntfacta, judicantur?

Pliny TheElder

Historia Naturalis, VII, 1

From the early work of George Boole on the algebra of logic through
to the present, the study of discrete, particularly Boolean, functions
and their realisation has been actively pursued by numerous
researchers. Yet, despite the pioneering investigations of Shannon,
Riordan and others in the 1940s, this subject was largely neglected as
a separate mathematical discipline for over two decades outside the
Soviet Union; there the distinguished contribution of one generation of
theoreticians laid the foundations of Boolean complexity theory. It is
only in the last 15 years that this study has come to be widely recog-
nised as a fundamental concern within the realm of modern computa-
tional complexity theory.

Since the appearance of Savage (1976), the first general survey
of Boolean function complexity, there have been enormous advances
in this theory coupled with the growth of new topics. Two areas in
particular serve to illustrate these developments: the study of bounded-
depth networks, which has led to important results in the domain of
structural complexity; and the theory of monotone networks, which
below occupies a significant portion of the text. The abundance of

ii

new results in the latter field, most notably the work of Razborov and
Berkowitz, has strengthened the argument that a new book taking
account of these and other advances is required.

My aim in writing this monograph was originally to give a
comprehensive survey of all major results, relevant to the sphere of
Boolean network complexity, up to the end of 1987. Unfortunately
considerations of space have made it impossible to include detailed
presentations of every pertinent topic. It has thus been necessary to
omit a number of subjects either on the grounds that they no longer
have the significance they once did, e.g synchronous combinational
complexity; or because they could not be treated adequately in the
context of a general work. The main victim of the second policy is
the growing field of uniform circuit complexity; this, I believe, is sub-
stantial enough to merit a book to itself.

As far as possible I have tried to make the material self-con-
tained, however some familiarity with discrete mathematical topics;
sets, relations, probability theory and combinatorics, is assumed.

The opening rhetorical question is quoted not out of immodest
pride on having completed the text, rather out of a sense of relief that
30 months work is finished; that this occasion should arise often
seemed, while writing, to be one of themulta fieri non possejudi-
cantur! A ll too often is it left unsaid that a book of this nature is the
work of the author only in the narrow sense that he chooses the
words and is responsible for the errors. It is therefore a pleasure to
thank the many individuals who have helped me in the preparation of
the text; in particular Mike Paterson, for invaluable comments on the
first drafts and for contributing a number of new proofs of existing
results; Sacha Razborov, for pointing out some misconceptions in the
original draft of Chapter(3); Ingo Wegener, who generously supplied a
copy of his own (excellent) recent volume covering similar topics;

iii

Stassys Jukna who kept me informed of and provided several, other-
wise unobtainable, significant papers which have appeared recently in
Soviet technical journals; first Rosemary Altoft and later Andrew Car-
rick of Academic Press for tolerating the slow progress of the
manuscript and the frequently revised "final" dates of completion; and
finally my colleagues in the Computer Science department of Liver-
pool University for many thought provoking discussions on text-for-
matting, complexity theory and other matters too numerous to men-
tion.

P.E.D

Liverpool, June 1988

. . . the reader who has got as far as the preface and been

discouraged by that, has spent money on the book; he

wishes to know how he is to be compensated for his expen-

diture. I can only remind him that he knows of several ways

of using a book without actuallyreading it: he can use it to

fill a space in his library where, neatly bound, it is sure to

look good; or he may leave it lying upon a table to be seen

by erudite friends. Or finally he can review it; this must

surely be the best option. . .

Arthur Schopenhauer

Preface to the 1st Edition of
Die Welt als Wille und Vorstellung

1

Chapter 1

Introduction

. . . they hadbuilt their hope of heaven onthe

binary systemand thecomputer, 1 and 0, Yes andNo. . .

Norman Mailer

The Armies of the Night

1.1) Complexity Theory

In very broad terms complexity theory is that field of Computer
Science concerned with formally reasoning about how "difficult" spe-
cific problems are to solve. In order to make this rather general
description more precise one must consider the following questions.

Q1) How is a "problem" specified?

Q2) Whatdoes a "solution" consist of?

Q3) How is "difficulty" being measured?

For our purposes any problem can be viewed as associating a
particular result or output with each valid input, that is as a function
(f) from some domain of input values (I) to some range of output
values (O). In this book we are exclusively concerned with func-
tions for which both input and output values are encoded as finite
strings of Boolean/binary values i.e 0 (or False) and 1 (or True). The
functions where the result is a single Boolean value will in this sec-
tion be referred to asdecision problems. These correspond to

2 Introduction

problems which ask whether some property is true of the input, e.g is
a positive integer, encoded in binary, a prime number. The size of a
problem instance is defined to be the length of its input. The class of
functions introduced above will be considered in greater detail in Sec-
tion(1.2).

With this approach "solving a problem" is equivalent to comput-
ing some functionf, and by a solution or computation we mean a pre-
cisely specified sequence of instructions which given some input string
x returns the resulty such thatf = y. Such a sequence is called an
algorithm for f.

Computation is considered as performed on abstract machines or
models of computationwhich encapsulate intuitive notions of com-
puter operation without reference to any specific realised architecture.
Undoubtedly the best known of such models is that proposed by Tur-
ing (1936). The definition below differs from it only in minor techni-
cal details.

Definition 1.1:A k-tape Turing Machine (TM) is defined by a 7-tuple:

M = (Q, Γ, B, q0,δ , qA, qR)

where:

Q is a finite set of states.

Γ is a finite alphabet of tape symbols (we shall assume
Γ = {0, 1})

B ∈/ Γ is the blank symbol.

q0 ∈ Q is the initial state.

δ : Q × {Γ ∪ {B}} k+1 → Q × {Γ}k × {L,R,S}k+1 is the state transi-
tion function.

3

qA, qR ∈ Q are final states.qA is the accept state andqR the
reject state.

M has aninput tape and k work-tapes. Each tape is divided
into infinitely many cells numbered .. . ,−2,−1, 0, 1, 2, . . . A cell can
record precisely one symbol at a time.Each work-tape is scanned by
a two-way read-writehead,and the input tape by a two-way read-only
head. The operation ofM is supervised by afinite control. (Figure
1.1) •

Figure 1.1

M solves a decision problem as follows.

Initially all tape heads are positioned at cell 0 on their corre-
sponding tapes. Cells 0.. n − 1 of the input tape contain the input
data, x and all other cells contain the blank symbol. The initial state
is q0.

In a single computation step (ormove)the following actions are
performed.M reads the symbol at the head position on each tape. The

4 Introduction

current state and thek + 1 symbols read are used to determine the
next state of the finite control according toδ . The transition function
also determines which symbol is written to each of thek work-tapes
and whether a tape head moves one cell left (L), or one cell right (R)
or remains stationary (S).

Operation ceases whenM enters one of the final statesqA or qR.
In the former caseM is said toaccept x, corresponding tof = 1, in
the latterM is said toreject x, which corresponds tof = 0.

The set of input strings accepted byM is often referred to as
the language recognisedby M.

Note that we have defined computation in terms of decision
problems and not arbitrary functions.These can be catered for by
including an additional tape for printing output.The modifications are
straightforward and are left to the reader.

The behaviour of the machine described in Defn(1.1) is deter-
ministic since for any giv en configuration of current state andk + 1
symbols scanned by the tape heads there is exactly one move that can
be made usingδ . Another important model, in complexity studies, is
the non-deterministicTuring machine. The definition of this is identi-
cal to Defn(1.1) except thatδ is now a function from

Q × {Γ ∪ B}k+1 → subsets of Q × {Γ}k × {L,R,S}k+1

The interpretation of this being that for any single configuration there
may be a choice of many moves available. An input is accepted if
some sequence of moves terminates in the accept state.

These models provide the basis for more rigorously defining
"difficulty", namely thecomplexity measures (Non)-deterministic Time
and (Non)-deterministic Space.

5

Definition 1.2: Let f : {0, 1}* → {0, 1} be a decision problem andT, S
functions fromN to N. f is computable in deterministic timeT (space
S(n)) if f can be computed by a deterministic TM which halts after at
most T moves (scans at mostS(n) cells on any work-tape) for all
inputs of sizen.

f is computable in non-deterministic timeT (spaceS(n)) if there
is a non-deterministic TM,M, such that for any input x of sizen with
f = 1, x is accepted by some sequence of at mostT moves (x is
accepted by some sequence of moves which scan at mostS(n) cells
on any work-tape). •

Since the input tape is not considered in measuring space one
can sensibly consider computations which use spaceS(n) < n.

For functionsT, S as above, the decision problems computable
in deterministic timeT (spaceS(n)) comprise thecomplexity classes
DTIME(T(n)) (resp. DSPACE(S(n))). Analogously one has the
classesNTIME(T(n)) and NSPACE(S(n)) for non-deterministic com-
putation.

Abstract complexity theory is largely concerned with the proper-
ties of and relations between complexity classes, e.g hierarchy theo-
rems dealing with which classes are properly contained in others. We
conclude this brief review by describing two of the important concerns
in this area.

Let:

P =
∞

k=1
∪ DTIME(nk) ; NP =

∞

k=1
∪ NTIME(nk)

P corresponds to the class of deterministic polynomial time
computable decision problems, which are usually regarded as being
the only problems with feasible algorithms. The classNP contains

6 Introduction

many classical combinatorial and optimisation problems for which no
efficient deterministic solution is known; it can be regarded as the
class of polynomial timeverifiable problems. For example the prob-
lem of deciding whether a given n-vertex graph is 3-colourable is in
NP, since one may non-deterministically "guess" a 3-colouring and
(deterministically) check if it is correct. The "guessing" stage avoids
the combinatorial explosion involved in checking every individual
colouring in turn. No deterministic method of achieving this is
known.

It is clear thatP ⊆ NP, and although it seems probable that
P ≠ NP this has yet to be proved. This could be shown by exhibiting
a decision problem in the classNP − P. The seminal paper of Cook
(1971) introduced the concept ofNP-complete decision problems,
which are essentially the most difficult problems inNP. A decision
problem f is NP-complete if:

NP1)
f is in NP.

NP2)
∀ g in NP there exists a deterministic polynomial time com-

putable function,τ , which transforms instancesx of g to poly-
nomially larger instances off in such a way thatg holds if and
only if f holds.

If such a transformation exists theng is said to bepolynomially
reducible to f (g ≤p f). This relation is transitive, so to prove a deci-
sion problemNP-complete it is sufficient to exhibit a transformation
from a known NP-complete language. With these conceptsP ≠ NP if
and only if someNP-completef is not in P.

Another important containment issue concerns the relation
between space efficient computation andP. Define

7

DLOGSPACE= DSPACE( logn + 1)

Note: All logarithms are to the base 2, unless otherwise stated.

Just asP corresponds to the set of decision problems for which
fast sequential algorithms exist, so DLOGSPACEseems to embody
the class of decision problems for which efficient parallel time algo-
rithms exist. It is known thatDLOGSPACE⊆ P and again the inclu-
sion is thought to be proper. Cook (1974) introduced the class of
problems LOGSPACE-complete for P via logspace transformation.
This is defined similarly to the propertyNP-complete except that the
transformation must be computable inDLOGSPACE. The contain-
ment issue of P versus LOGSPACE can be formulated as
P ≠ DLOGSPACEif and only if someLOGSPACE-completef is not
in DLOGSPACE.

The class PSPACE consist of those decision problems com-
putable in polynomial space. By the result of Savitch (1970), it is not
necessary to distinguish between deterministic and non-deterministic
machines for this class. It can be shown that
DLOGSPACE≠ PSPACEand so at least one of the inclusions below
is strict.

DLOGSPACE⊆ P ⊆ NP ⊆ PSPACE

The model of computation we are concerned with in this text is
Boolean networks which will be formally introduced in Section(1.3).
The relations between TMs and this model will be considered in
detail in the next chapter.

8 Introduction

1.2) Boolean Functions and Boolean Algebra

Xn denotes ann-tuple of Boolean variables <x1, x2, . . . ,xn >, i.e
variables taking values from {0,1} (equivalently {False,True}). Any
function f (Xn): {0, 1}n → {0, 1}m is called an n-input, m-output
Boolean functionover Xn. For brevity the cases wherem = 1 will
simply be referred to asn-input Boolean functions or just Boolean
functions where there is no risk of ambiguity. These correspond to the
decision problems of the previous section, restricted to inputs of size
n. Bn,m will denote the set of alln-input, m-output Boolean functions
and Bn the set ofn-input Boolean functions. It is easy to show that
|Bn,m| = 2m2n

and hence |Bn| = 22n
. Table(1.1) gives the 16 functions in

B2 defined in terms of arithmetic over the 2 element fieldGF(2).

A quite frequently used representation of Boolean functions is a
truth-table, in which the value of the function for each possible input
assignment is given explicitly. The examples in Table(1.2) are the
truth tables for the functions∧, ⊕ in B2 and ¬ (negation) in B1. In
general a truth table forf in Bn,m has 2n rows, one for every input
assignment, andn + m columns,n for the values ofXn and m for out-
put values.

x1 x2 ∧ ⊕ x1

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 0 0

Table(1. 2)

9

Symbol Name f

0 Constant 0

1 Constant 1

π1 Projection x1

π2 Projection x2

π1 Projection 1+ x1

π2 Projection 1+ x2

∧ Conjunction (AND) x1 . x2

∨ Disjunction (OR) x1 + x2 + x1 . x2

¬∧ NAND 1 + x1 . x2

¬∨ NOR (1+ x1). (1 + x2)

⇒ Implication 1+ x1 + x1 . x2

⇐ Implication 1+ x2 + x1 . x2

⇒ Implication x1 + x1 . x2

⇐ Implication x2 + x1 . x2

⇐⇒ Equivalence 1+ x1 + x2

⊕ Exclusive-or x1 + x2

The16 Functions InB2

Table (1. 1)

Given any α = < a1, . . . ,an > in {0, 1}n, f is the result obtained
by fixing xi = ai for each 1≤ i ≤ n. α is called anassignmentto Xn.
An assignmentα is said tosatisfy f if f = 1.

A partial assignment,π is an assignment of constants to some
subset ofXn. |π | denotes the number of variables fixed byπ and f |π

the function inBn−|π | obtained as a result.f |π is called asubfunction

10 Introduction

of f. f ∈Bn is said to benon-degenerate if for all x ∈Xn, f |x:=0 ≠ f |x:=1

and degenerate otherwise. B̂n denotes the set of non-degenerate
Boolean functions. It is easy to show that |Bn − B̂n | = o(|Bn |).

Order relations≤, < are defined over Bn as follows:

f ≤ g ⇐⇒ ∀ α ∈ {0, 1}n f = 1 ⇒ g = 1

f < g ⇐⇒ f ≤ g and ∃ α ∈ {0, 1}n

for which f = 0 but g= 1

It is easy to verify that ≤ is a partial order i.ef ≤ f; f ≤ g, g ≤ h
⇒ f ≤ h; f ≤ g, g ≤ f ⇒ f = g.

(P1)-(P9) below describe some of the fundamental properties of
the Boolean operations∧ , ∨ and ¬. f, g, and h are arbitrary Boolean
functions.

P1) i) f ∧ g = g ∧ f; (Commutativity)
ii) f ∨ g = g ∨ f

P2) i) (f ∧ g) ∧ h = f ∧ (g ∧ h); (Associativity)
ii) (f ∨ g) ∨ h = f ∨ (g ∨ h)

P3) i) f ∧ (g ∨ h) = (f ∧ g) ∨ (g ∧ h); (Distributivity)
ii) f ∨ (g ∧ h) = (f ∨ g) ∧ (f ∨ h)

P4) i) f ∧ f = 0; (Complement)
ii) f ∨ f = 1

P5) i) f ∧ f = f; (Idempotency)
ii) f ∨ f = f

P6) i) f ∧ 0 = 0; (Constant)
ii) f ∨ 1 = 1

11

P7) i) f ∨ 0 = f; (Identity)
ii) f ∧ 1 = f

P8) i) (f ∧ g) = f ∨ g; (De Morgan′s Laws)
ii) (f ∨ g) = f ∧ g

P9) i) f ∧ (f ∨ g) = f; (Absorption)
ii) f ∨ (f ∧ g) = f

The correctness of (P1-P9) is easily established by inspecting
the truth-table for each relation.An easy induction on the number of
operations shows that De Morgan’s Laws can be generalised to arbi-
trarily long finite expressions.

Observe that the properties are divided into pairs in which the
second is obtained by interchanging∧ and ∨, 0 and 1 in the first.
This is the so-calledprinciple of duality and is a frequently applied
technique in deriving identities for Boolean functions.Property(P9)
may be more generally stated as:

If f ≤ g then: f ∧ g= f and f ∨ g= g. This will be the form used
subsequently.

The dual of a Boolean functionf is the Boolean function:
f̃ (Xn) = f (x1, x2, . . . , xn)

A function isself-dual if f̃ = f.

f is affine if f may be expressed in the form:

a0 ⊕
n

i=1
⊕ yi

wherea0 is a constant andyi is either a constant or the variablexi .

We now consider more concise methods of specifying Boolean func-
tions. A literal is either a variable xi or its complementxi . Let
Ω = {w1, w2, . . . , wr} ⊆ Bk. A Boolean Ω-expression over Xn is any

12 Introduction

expression constructed according to the rules below:

C1) ∀ xi ∈ Xn xi is anΩ-expression.

C2) If w ∈ Ω and e1, e2 , . . . ,ek are Ω-expressions thenw(e1, . . . ,ek)
is also anΩ-expression.

Clearly any Ω-expression represents a uniquen-input Boolean
function.

Ω is called alogical basis. A basis is said tocover Fn ⊆ Bn if
ev ery f in Fn is represented by someΩ-expression. Abasis iscom-
plete if it covers Bn for every n. A distinction is made between com-
plete bases which contain constant functions (weak-complete) and
those which do not (strong-complete).The problem of characterising
complete bases was solved by Post (1941).The result is stated below
without proof:

Fact 1.1: Ω is a complete basis if and only ifΩ satisfies all of:

i) ∃ w in Ω such thatw(0, 0, . . . , 0)= 1.

ii) ∃ w in Ω such thatw |xi=0 ≤ w |xi=1 for somexi 1 ≤ i ≤ k.

iii) ∃ w in Ω such thatw is non-affine.

iv) ∃ w in Ω such thatw is not self-dual.

v) ∃ w in Ω such thatw(1, 1, . . . , 1)= 0.

Tw o other methods of representing Boolean functions areDis-
junctive Normal Form (DNF) andConjunctive Normal Form (CNF).

A product is a function of the formy1 ∧ y2 ∧ . . . ∧ yk, where
{y1, . . . ,yk} is a set of literals not containing bothxi and xi for any i.

A sum is a function of the formy1∨ . . . ∨ yk. Conventionally a
product (sum) containing no literals is defined to be the constant func-
tion 1 (0).

13

The associativity of∧ and ∨ ensures that these expressions are
unambiguous. Henceforward we shall omit the explicit use of∧ in
specifying products and regard ∧ as having greater precedence than∨
to avoid excessive use of brackets.

Now consider any Boolean functionf. Suppose{α (1), . . . ,α (r)} is
the (finite) set of assignments which satisfyf. Clearly:

f = p1 ∨ p2 ∨ . . . ∨ pr

wherepi = 1 if and only if the assignment toXn is α (i). Each pi can
be represented as a product ofn literals, y1, . . . ,yn where yj is xj if

a(i)
j is 1 andyj is xj otherwise.

Disjunctive Normal Form is the representation off as a sum of
products. The method above shows that any Boolean function may be
so expressed. CNF involves writing f as a product of sums. By con-
sidering those assignments which make f = 0, f may always be
expressed in this way.

There are in general many different ways of expressing f in
DNF or CNF. Sev eral methods of minimising the number of product
terms were developed in the field of switching theory. These are cen-
tered around the concept of prime implicants and prime clauses.

A product of literals,p, is an implicant of f if p ≤ f. p is a
prime implicant if p ≤ f and no product of any proper subset of the
literals definingp is an implicant off. Similarly any sum of literals,q,
for which f ≤ q is an implicand of f, minimal implicands being called
prime clausesof f.

For any f ∈Bn, PI(f) will denote the set of prime implicants of
f and PC(f) the prime clauses.

Fact 1.2: ∀ f ∈Bn

14 Introduction

i) f =
p ∈ PI(f)

∨ p

ii) f =
q ∈ PC(f)

∧ q

Proof: i) From the definition of implicant it is clear that the right-
hand side is≤ f. To show f ≤

p ∈ PI(f)
∨ p, let α ∈ {0, 1}n such thatf = 1

and consider the product,m, of literals {y1, . . . ,yn} which is 1 if and
only if the assignment toXn corresponds toα . Certainly m is an
implicant of f. The definition of prime implicant establishes that there
is some subset of the literals definingm whose productm′ is in
PI(f). Sincem ≤ m′ this proves (i).

ii) Follows by a dual argument since

PI(f̃) = ∪ { q̃ : q ∈ PC(f)}

An important problem in switching theory is to construct a min-
imal (number of products) DNF representation off from its truth-
table. Karnaughmaps (Karnaugh, 1953) and the tabular method of
Quine (1952), (1955) and McCluskey (1956) are techniques which are
feasible only for small values ofn. The corresponding decision prob-
lem (i.e Doesf have a DNF representation which contains at mostK
products, for some specifiedK?) is known to beNP-complete as
shown by Gimpel (1965) and Masek (1978).

Another normal form, first proposed by Zhegalkin (1927) is the
ringsum expansion. This uses the weak-complete basis{1, ∧, ⊕} in
B2 as opposed to the strong-complete basis{∧, ∨, ¬} employed in the
normal forms above. The ringsum expansion can be constructed for
any f as follows.

15

Let {α (1), . . . ,α (r)} be the set of assignments which satisfyf and
p1, . . . ,pr the products of literals defined from these as previously.
Then:

f = p1 ⊕ p2 ⊕ . . . ⊕ pr (1.1)

since for any assignment toXn at most one of these products is true.

Occurrences of negated variables can be eliminated by using the
identity x = x ⊕ 1. Finally using the fact that∧ distributes over ⊕,
(1.1) reduces to:

f = a0 ⊕ m1 ⊕ m2 ⊕ . . . ⊕ mt

where a0 is a constant and eachmi is a product of un-negated vari-
ables. Such a product will subsequently be referred to as amonom
and the dual construct for sums as aclause. For a monom m, var
will denote the set of variables inXn which occur inm; similarly var
will denote the set of variables in a clausec.

An important subset ofBn is the class ofmonotoneBoolean
functions,Mn. f is monotone if and only if:

∀ xi ∈ Xn f |xi=0 ≤ f |xi=1

Lemma 1.1:If f ∈ Mn then no prime implicant off contains a negated
variable.

Proof: Let f ∈ Mn and without loss of generality suppose
m = x1 ∧ p(Xn − {x1}) is a prime implicant of f. Since x1 ∧ p ≤ f and f
is monotone sox1 ∧ p ≤ f (by considering any assignment which fixes
all of the literals inp to 1). It follows thatx1 p ∨ x1 p ≤ f but

x1 p ∨ x1 p = (x1 ∨ x1) ∧ p = 1∧ p = p

and this contradicts the assumption thatm was a prime implicant.

16 Introduction

A similar result holds for prime clauses of monotone Boolean
functions.

Corollary 1.1:

i) ∀ f ∈ Mn
p ∈ PI(f)

∨ p is the minimal DNF representation off.

ii) ∀ f ∈ Mn
q ∈ PC(f)

∧ q is the minimal CNF representation off.

Proof:

i) Supposeh =
r

i=1
∨ mi is a DNF representation off which contains

fewer than |PI(f)| products. From Lemma(1.1) it may be assumed
that no product ofh contains a negated variable. Sincer < |PI(f)|
there must be some prime implicant off, p say, which is not in
{m1, . . . ,mr}. Consider the assignmentα to Xn which sets exactly var
to 1 andXn − var to 0. By the assumption thath = f, h = 1 and so
somem in {m1, . . . ,mr} must equal 1 underα , but thenvar ⊂ var and
now by changingα so that additionally the variables invar − var(m)
are all 0 a contradiction results sinceh(α) = 1 but f(α) = 0.

ii) Duality.

Lemma 1.2:Let Ω = {∧, ∨, 0, 1} ⊆ B2. Any Ω-expressione(Xn) spec-
ifies a monotone Boolean function.

Proof: Since 0, 1,xi are all monotone it is sufficient to prove that
f ∨ g and f ∧ g are both monotone iff and g are monotone. Only the
former need be shown, the latter case following by a dual argument.

Let h = f ∨ g for any monotonef and g. Consider any xi in Xn.

h |xi=0 = f |xi=0 ∨ g |xi=0

From the definition of∨, any assignment which satisfiesh |xi=0

must satisfy at least one off |xi=0, g |xi=0. As f and g are both

17

monotone, the same assignment must satisfyf |xi=1 ∨ g |xi=1, and so:

h |xi=0 ≤ f |xi=1 ∨ g |xi=1 = h |xi=1

Corollary 1.2: f ∈ Mn ⇐⇒ f̃ ∈ Mn

Proof: Easily derived from Lemma(1.1), DeMorgan’s Laws and
Lemma(1.2)

Combining Lemma(1.1) and Lemma(1.2) yields:

Theorem 1.1: f is monotone if and only iff can be represented by a
{∧, ∨, 0, 1}-expression.

Another important subset ofBn is the class ofsymmetric Boolean
functions. f is symmetric if its output only depends on the number of
inputs which are true. Thus for any permutationσ of < 1, 2. . . ,n >

f = f

if f is symmetric.

Sn will denote the class ofn-input symmetric Boolean functions.
Any f in Sn can be succinctly described by a binary word of length
n + 1, w = w0w1

. . .wn, the wi bit giving the value off when exactly i
inputs are 1.w is called thespectrumof f. By considering the number
of distinct spectra it follows that there are 2n+1 functions in Sn.
Examples of symmetric Boolean functions are:

Cn
k(Xn) = 1 ⇐⇒

n

i=1
Σ xi = 0(mod k)

En
k(Xn) = 1 ⇐⇒

n

i=1
Σ xi = k

18 Introduction

Tn
k(Xn) = 1 ⇐⇒

n

i=1
Σ xi ≥ k

In all cases the summation is arithmetic.Tn
k is the k-th threshold

function. These are the class of monotone symmetric functions.Tn
n/2

is themajority function (denotedMAJn).

Arithmetic functions can easily be represented as multiple out-
put Boolean functions by encoding the input data in binary e.g ifXn

and Yn are disjointn-tuples of Boolean variables then:

ADD(Xn, Yn) {0, 1}2n → {0, 1}n+1

denotes the Boolean representation of integer addition.

Graph-theoretic problems are normally encoded using an adja-
cency matrix to represent ann-vertex graph. Thus let

XU
n = { xij : 1≤ i < j ≤ n } ; XD

n = { xij : 1≤ i , j ≤ n }

GU is a function fromXU
n to n-vertex undirected graphs,GU(XU

n) con-
tains an edge{i , j} if and only if xij in XU

n is 1. GD(XD
n) is the n-ver-

tex directed graph defined in a similar manner.

1.3) Boolean Networks

Let Ω ⊆ B2. A Boolean Ω-network, T, is a directed acyclic
graph containing 2 disjoint sets of nodes;I is the set of nodes with
in-degree 0 (theinputs of T); G is the set of nodes with in-degree 2
(the gates of T). Each xj in Xn is associated with exactly one input
node i j in I , any remaining input nodes are associated with constant
functions. Each gate g of T is associated with some functionh in Ω,
denoted byop(g) = h or g is an h-gate. If g is a gate then the inputs
of g are gL (Left) and gR (Right). For any node v of T, the number
of edges (orwires) leaving (entering)v is termed the fanout (fanin) of

19

v, and is denoted byφ (v). The fanout (fanin) of a network is the
maximal fanout (fanin) of any node. Any node with fanout 0 is
called anoutput of T. Ω is thebasisof T.

If v, w are nodes such that there is a wire <v, w > from v to
w, v is said to be apredecessoror input of w; similarly w is said to
be a successoror output of v. This will also be referred to as "v
entersw". A node v is anancestor(resp. descendant)of a nodew, if
there is a directed path fromv to w (resp. fromw to v).

For brevity we shall subsequently refer to "the inputxj of T"
rather than "the input ofT associated withxj" and to Xn instead ofI ,
as the inputs ofT. Similarly we shall not make the ordering of gate
inputs explicit, unless significant.

If Ω = B2 then T is a combinational network.If Ω = {∧, ∨} then
T is a monotone Boolean network.

With each node,v, of an Ω-network T a Boolean function
res(v)(Xn) is associated as follows:

res(v)(Xn) =







0 if v is an input nodelabelled0

1 if v is an input nodelabelled1

xi if v is the inputxi of T

res(v1) op(v) res(v2) otherwise

wherev1, v2 are the inputs ofv.

An Ω-network T computes or realises{f i} in Bn,m if and only if
there arem nodes <v1, . . . ,vm > in T such thatres(vi) = fi . It is clear
from Theorem(1.1) thatf is monotone if and only iff can be com-
puted by a monotone Boolean network.

It will be assumed that any Ω-network T computing a single
output Boolean function contains exactly 1 output nodet this being
the unique node whose result isf.

20 Introduction

For notational convenience the remainder of this section will be
couched in terms of single output Boolean functions, however it is
trivially verified that the results and concepts introduced generalise to
m-output functions.

The two complexity measures of interest arenetwork sizeand
depth. For an Ω-network T these are respectively:

CΩ(T) = |{ g : g is a gate nodein T }|

DΩ(T) = Length of longest directedpath inT

It will sometimes be convenient to consider the nodes of a net-
work as partitioned intolevels L0, . . . ,LD; L0 being the input nodes,
Li those gates which receive an input from a node inLi−1 and a node
in Lj for somej ≤ i − 1.

The nodes of a network are said to be labelled intopological
order if each node,u, is assigned a distinct numbern such that: for
all edges <u, v > in the network the numbering satisfiesn < n(v).

For any Boolean functionf:

CΩ(f) = min {CΩ(T) : T computes f}

DΩ(f) = min {DΩ(T) : T computes f}

whereΩ = B2 these will be denoted simply byC(f) and D(f). C(f)
is thecombinational complexity of f.

An Ω-network T, computing f, is optimal if CΩ(T) = CΩ(f).
The following lemma summarises some important properties of opti-
mal combinational networks.

Lemma 1.3:Let T be an optimal combinational network computing
f ∈Bn, where T contains at least one gate node.T satisfies all of the

21

following:

i) No two nodes ofT compute the same function ofXn

ii) Every gate computes a function of the form:

(ya
1 ∧ yb

2)c (∧ − type) or (y1 ⊕ y2)
d (⊕ − type)

where{a, b, c, d} ∈ {0, 1} and ye = y if e = 1 and y otherwise.

iii) No gate receives two inputs from the same node.

Proof:

i) If v1 is a node and v2 is a gate such that
res(v1)(Xn) = res(v2)(Xn) then the network T′ constructed by deleting
v2 together with all wires <v2, w > from T and adding wires <v1, w >
still computesf but contains one fewer gate.

ii) The only functions in B2 which are neither∧-type nor
⊕-type are constant functions or projections. It will be shown that
nodes computing constant functions or gates computing projections
may be eliminated by "absorbing" their result into successor gates.

Supposeres(u) ∈ {0, 1} for some nodeu of T. Let v be any
successor of u and w the other input of v. Then:
res(v) ∈ {0, 1,res(w), res(w)}. In the first two cases the gate v may
be deleted, replaced by a constant function and the wires <u, v >,
< w, v > removed from T. In the remaining casesv may be replaced
by the appropriate projection of (w, w) and again the wire <u, v >
may be deleted.

To complete the proof of (ii) it remains to eliminate instances of
projections. Clearlyany projection of the form π1, π2 can be
removed, so it is sufficient to consider only projections of the form
π1. Let op(u) = π1; r, s be the inputs ofu; and v and w as before. In
this case:

22 Introduction

res(v) = res(r) op(v) res(w)

= b(res(r), res(w))

for someb ∈ B2 depending onop(v).

Now T can be re-wired as follows: Delete the wire <u, v >; add
a wire < r , v >; replacev by a b-gate.

In both cases every wire < u, v > is eventually removed so u has
fan-out 0 and can be eliminated.

iii) ∀ h ∈ B2 h ∈ {0, 1,g, g}. Thus any gate both of whose
inputs are from the same node can be replaced by a constant function
or projection and thence from (ii) eliminated.

The definition above restricts consideration to networks with
fan-in 2, but allows unlimited fanout. The limitation on fan-in is eas-
ily justified since in practical terms it is costly to manufacture gates
with large numbers of inputs. Furthermore since a finite number of
2-input gates can compute any function in Bk, permitting larger con-
stant fanin could only reduce combinational complexity and depth by
a constant factor.

The next two results indicate that these complexity measures are
fairly insensitive to the choice of complete basis used and to restrict-
ing node fanout to be at most 2.

Lemma 1.4:Let Ω1 and Ω2 be complete logical bases fromB2 and let
f be a function inBn. There are constantss and d such that:

CΩ1
(f) ≤ sCΩ2

(f)

DΩ1
(f) ≤ dDΩ2

(f)

23

Proof: Let T be an optimalΩ2-network realisingf and let

REM = Ω2 − Ω1 ⊂ B2

Since Ω1 is logically complete, any function b in REM can be com-
puted by some 2-inputΩ1-network, which contains at mosts gates
and has depth at mostd, for some constantss and d depending on
Ω1, Ω2. It follows that T can be transformed into anΩ1-network by
replacing each gate u, with op(u) in REM, by the appropriateΩ1-net-
work. Clearly this increases the size and depth ofT by at most the
factors stated.

Lemma 1.5:Let T be an Ω-network computing f ∈ Bn,m. For
any constant t ≥ 2 there is an{Ω ∪ I } -network T′, where I denotes
the single argument identity function, which satisfies:

i) T′ computesf.

ii) C{Ω ∪ I } (T′) ≤ 

1 +

1

(t − 1)



CΩ(T) +
(m − 1)

(t − 1)

iii) D{Ω ∪ I } (T′) ≤ (1 + logt 2) DΩ(T) + logt m

iv) Every node,u, of T′ has fanout at mostt.

Proof: See Hoover, Klawe, Pippenger (1984).

One important class of restricted fanout models are Boolean for-
mulae.

A formula over the basisΩ is defined in the same way as a
BooleanΩ-network except that gate nodes have fanout at most one.

The set ofΩ-formulae is isomorphic to the set ofΩ-expressions
defined previously. Noting this correspondence it will frequently be
more convenient to adopt the following inductive definition of Ω-for-
mula.

24 Introduction

Definition 1.3: Let Ω ⊆ B2. An Ω-formula L over Xn is any expres-
sion generated by repeated application of the the rules below:

i) ∀ xi ∈ Xn xi is anΩ-formula.

ii) c ∈ {0, 1} ∩ Ω is anΩ-formulae.

iii) If {π1, π2} ∩ Ω ≠ {} and L is an Ω-formula, then ¬L is also an
Ω-formula.

iv) If L is anΩ-formula then (L) is also anΩ-formula.

v) If * ∈ Ω which depends on both its arguments (i.e is not a con-
stant function or projection) andL1, L2 are Ω-formulae then
L1 * L2 is anΩ-formula. •

LΩ(G) will denote the number of 2-input gates occurring in an
Ω-formula G, this being precisely one less than the total fanout from
the input nodes. In terms of Defn(1.3),LΩ(G) is the number of times
rule (v) is applied in constructingG. LΩ(f) will denote theΩ-for-
mula size of a Boolean functionf. As before, if Ω = B2, then the
notationL(G), L(f) will be used. Formulae are examined extensively
in Chapter(3).

Finally we consider a significant difference between TM compu-
tation and Boolean networks.

Let f : {0, 1}* → {0, 1} be a decision problem. Thefamily of
Boolean functions corresponding tof is the infinite sequence

[fn] = < f (1), f(2), . . . f(n), . . . >

f(n) is the Boolean function obtained by restrictingf to inputs of
size n. A family of Boolean functions hasΩ-network size (or depth)
G(n) iff

∀ n CΩ(f (n)) = G(n) (or DΩ(f (n)) = G(n))

25

We define the complexity classes Ω − SIZE(G(n)), resp.
Ω − DEPTH(G(n)) as being the sets of families of Boolean functions
computable withΩ-network size (depth) at mostG(n). Thusa family
of Boolean functions is regarded as being computed by a sequence
< T1,T2, . . . ,Tn. . . > of BooleanΩ-networks,Tn realising f(n), the net-
work complexity of f being defined with respect to this sequence.
However the TM complexity off is defined with respect to asingle
TM, viz f ∈ DTIME(T(n)) if there exists a DTMM which acceptsf
and makes at mostT moves on any input of lengthn.

Formally this situation is described by saying that TMs are a
uniform model and Boolean networks anon-uniformmodel of compu-
tation.

All decision problems may be solved by networks but it is well
known that some decision problems are notTM-computable. A less
extreme consequence of non-uniform behaviour is that there are deci-
sion problems which may be solved much more efficiently by net-
works than by TMs and so reasonable simulations of networks by
TMs cannot exist, see e.g Meyer and Stockmeyer (1973), Fischer and
Rabin (1974). Uniform circuit complexity theory attempts to rectify
this situation by constraining the members of a family of networks to
be "similar". e.g a family of networks computing [fn] is uniform if
there is a DTM which given n, encoded in unary, can construct some
standard encoding of then’th network within some time bound
depending on the network size. This is one of the most rapidly
expanding areas of complexity theory and an adequate description is
beyond the scope of this text. The interested reader is referred to the
paper of Borodin(1975) which introduces some of the fundamental
concepts and those of Cook (1979), Pippenger (1980) and Ruzzo
(1981).

26 Introduction

Bibliographic Notes

For further background on computational complexity theory the
reader is referred to Aho, Hopcroft and Ullman (1974) and Hopcroft
and Ullman (1979). Machtey and Young (1978) is an advanced level
description of modern abstract complexity theory. Garey and Johnson
(1979) presents a comprehensive account of NP-completeness. Classi-
cal switching theory is surveyed in the texts of Friedman (1975), Har-
rison (1965) and Miller (1965).

There are a number of fields of relevance to Boolean network
complexity which will not be examined in any detail in this book.
The most important of these are algebraic complexity, which studies
computational complexity of networks in which general arithmetic
functions are available as base operations, this area being covered in
the text of Borodin and Munro (1975); and also VLSI complexity as
described in Ullman (1984).

27

Chapter 2

Combinational Network Complexity

.I shall tell you

A pretty tale. It maybethat youhave heardit ;

But, since it serves mypurpose, I will venture

To stale′t a little more

Cori-

olanus I, i , 92 − 95

Combinational networks as introduced above are the basic com-
putational model examined in this book. The present chapter is mainly
concerned with relations involving network complexity measures and
also the combinational complexity of some particular Boolean func-
tions.

In Section(2.1) simulations of Turing Machines by combina-
tional networks are considered; the main results presented being the
theorem of Fischer & Pippenger, which relatesDTIME to network
size, and that of Borodin relatingNSPACEto network depth. Follow-
ing this various relations amongst network complexity measures are
considered. The section concludes with a description of the Skyum
and Valiant (1984) results concerning reductions between families of
Boolean functions.

Section(2.2) is concerned with estimating the worst-case com-
plexity of Boolean functions. The important theorem of Shannon,
showing that "almost all" functions inBn have combinational com-
plexity Ω (2n/n) is proved here. A matching upper bound is provided
using a construction due to Lupanov. In the same vein general upper
and lower bounds on network depth are given. Thetheorem of Pater-
son and Valiant relating network size and depth is expounded in

28 CombinationalNetworks

Section(2.3).

The concluding sections of this chapter deal with the combina-
tional complexity of some specific Boolean functions: The lower
bound arguments of Schnorr, Paul, Stockmeyer and Blum are exam-
ined in Section(2.4); efficient networks for certain arithmetic and all
symmetric functions being given in Section(2.5).

2.1) Simulation Results

The complexity measures deterministic TM-time and space
reflect intuitive notions of the temporal and spatial requirements of
particular computations.In this section the relation between these
measures and combinational network complexity is examined. First
some further terminology is required.

A DTM, M , is oblivious if the vector <h1 , . . . , hk+1 > of tape
head positions depends solely on the input size and the number of
moves made. As before letf (n) denote the restriction of some deci-
sion problem, f , to inputs of sizen. A relation between deterministic
TM-time and network size is established in two stages:

SIM1)
By relating C(f (n)) to the time complexity of an oblivious

DTM computing f .

SIM2)
By exhibiting an efficient simulation of arbitrary DTMs by

oblivious DTMs.

Both simulations were first presented by Fischer & Pippenger
(1979); Our description follows that of Schnorr (1976a) in which a
careful analysis of constant factors is made.

Simulations by networks 29

It is convenient to view the transition function,δ , as describing
a simple program consisting of numbered instructions falling into one
of the following categories.

1) Actions: (s, F , t): interpreted as instruction numbers consists of
performing some actionF followed by a jump to instruction
numbert. Here F is one of:

a) Move the head on tapej right (Rj)

b) Move the head on tapej left (L j)

c) Thehead on tapej prints e ∈ {0, 1} (P j (e))

d) Thehead on tapej prints the symbol scanned by the head
on tapei (TRj (i))

e) Halt (in which caset = s)

2) Tests: (s,T, r , t): interpreted as instruction numbers is "If T
then go tor else go tot". Tests,T, are of the form:

Q j (e) Does thehead ontape j observe e∈ {0, 1,B} ?

Clearly any move of δ can be encoded as a finite sequence of
Actions and Tests and so the transition function gives rise to a pro-
gram which mimics the behaviour ofM . For an arbitrary DTM,M , p
will denote the corresponding program and |p| the number of instruc-
tions contained therein. Instruction number 0 is the initial instruction,
and since we are considering decision problems, two instructionssA,
sR are identified as halt and accept, halt and reject.When discussing
the execution of such a program we shall refer to the number
labelling the current instruction as thestate of p. Tp(n) will denote
the worst-case running time ofp on inputs of sizen.

Theorem 2.1: (Schnorr 1976a) Letf : {0, 1}* → {0, 1} be any decision
problem.\/- oblivious Turing programs,p, which computef :

30 CombinationalNetworks

C(f (n)) ≤ 7 |p| Tp(n)

Proof: Since p is oblivious there is a function,pos(i , j , n),
0 ≤ i ≤ Tp(n), 1 ≤ j ≤ k + 1 which gives the position of thej ’th tape
head afteri steps on all inputs of sizen. Consider the following n-
input Boolean functions, whereα ∈ {0, 1}n:

A(i , s)(α) ⇐⇒ After i steps withinput α p is in state s

B(i , l , j , e)(α) ⇐⇒ After i steps withinput α e is in cell l of tape j

For each i 0 ≤ i ≤ Tp(n) define Ci to be the set of Boolean functions
over Xn:

Ci = {A(i , s), B(i , l , j , e) : \/- s, l , j , e }

The program terminates in one of the final statessA, sR. From
the definition ofA(i , s) above we hav e:

f (n)(Xn) = A(Tp(n), sA)(Xn)

It is thus sufficient to prove that \/- 0 ≤ i ≤ Tp(n)

C(Ci) ≤ 7|p|i

Every function inC0 is either a variable xi or a constant function so
C(C0) = 0. Assume it has been established thatC(Ci) ≤ 7|p|i for some
0 ≤ i < Tp(n). It must be shown that:

C(Ci+1) ≤ C(Ci) + 7|p|

i.e given a combinational network computingCi , the functions
A(i + 1,s) \/- statess, and B(i + 1, l , j , e) \/- l = pos(i , j , n) can be com-
puted using no more than 7|p| 2-input gates. Obviously
B(i + 1, l , j , e) = B(i , l , j , e) if l ≠ pos(i , j , n).

Simulations by networks 31

A(i + 1,s) is equal to,

(t,F ,s) ∈ p
∨ A(i , t) ∨

(t, Q j (e), s, r) ∈ p

∧ l = pos(i , j ,n)

∨ A(i , t) ∧ B(i , l , j , e) ∨

(t, Q j (e), r , s) ∈ p

∧ l = pos(i , j ,n)

∨ A(i , t) ∧ B(i , l , j , e)

Thus the state at timei + 1 is s if and only if the state at timei is t
and t is an action or test ending in states.

If ac, te denote the number of actions and tests inp then it is
easy to see that the set of functions{A(i + 1,s) : \/- s ∈ p} can be
computed using at mostac + 4te gates fromCi .

The functionsB(i + 1, l , j , e) where l = pos(i , j , n) can be repre-
sented by:

B(i + 1, l , j , e) = Changed∨ B(i , l , j , e) ∧ Unchanged

where:

Changed=
(r , P j (e), s) ∈ p

∨ A(i , r) ∨
(r , TRj (j ′), s) ∈ p

∧ l ′ = pos(i , j ′,n)

∨ B(i , l ′, j ′, e)∧A(i , r)

Unchanged=
(r , P j (f), s) ∈ p

r , TRj (m), s) ∈ p

∧ A(i , r)

If pr , tr denote the number of print and transfer actions inp then,
observing thatB(i , l , j , 0) = B(i , l , j , 1) the sets:

{Changed: \/- l , j , e } ; { Unchanged: \/- l , j , e }

can be computed fromCi using at most pr + 2tr , pr + tr gates

32 CombinationalNetworks

respectively. Thus all the functions:

{B(i + 1, l , j , e) : \/- j , e, l = pos(i , j , n)}

can be derived using no more than 2pr + 3tr + 2k new gates.

The 2k term entering sinceB(i , l , j , e) must be updated for each
of the k work-tapes and this requires one∧-gate and one∨-gate for
each tape. Combining these bounds yields:

C(Ci+1) ≤ ac + 4te + 2pr + 3tr + 2k + C(Ci)

≤ 6|p| + 2k + C(Ci)

≤ 7|p| + C(Ci)

This last holds since we can assume that for each tapej there is at
least one instruction to print on tapej and at least one instruction to
read (i.e transfer or test) from tapej , otherwise tapej plays no part
in the computation. Thus the input tape, which is read-only, need not
be counted in the above exposition and additionally it follows that
2k ≤ |p|.

This completes the proof thatC(Ci) ≤ 7|p|i .

With Theorem(2.1) the combinational complexity of [fn] is seen to be
only a constant factor larger than the time required by an oblivious
DTM recognising the related decision problem.To obtain a relation
between networks and arbitrary DTMs an efficient simulation of these
by oblivious machines is used. This will entail some slight loss in
speed.

Theorem 2.2: (Fischer/Pippenger 1979) For all DTMs,M , computing
f : {0, 1}* → {0, 1} −− −− a DTM, OBM, such that\/- n:

Simulations by networks 33

i) OBM is oblivious

ii) \/- x ∈ {0, 1}n OBM acceptsx if and only if M acceptsx.

iii) If p, obp are the programs arising fromM and OBM respec-
tively then:

Tobp(n) = O(Tp(n) logTp(n))

Proof: The method is essentially an oblivious version of the Hen-
nie/Stearns (1966) simulation ofk-tape DTMs by 2-tape DTMs. Let
M be a k-tape DTM with programp running in timeTp(n). OBM is
a (k + 1)-tape DTM with a tapeOTBj for each tapeT j of M and one
additional work-tape for temporary storage.Each tape ofOBM con-
sists of 3 tracks and is divided into segments numbered
. . . ,−3,−2,−1, 0, 1, 2, 3. . .Segment 0 contains 1 tape cell per track;
segmenti (i ≠ 0) contains 2|i |−1 tape cells per track. The section of a
track contained within a segment is termed ablock.

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

The tape alphabet ofOBM is {0, 1,B, #}, # being a special
"empty" symbol, the # andB symbols are printable, merely for tech-
nical convenience.

A cell within a track of OBTj either contains a symbol in
{0, 1,B}, in which case it corresponds to some cell onT j containing
the same symbol, or it contains the # symbol. A block isfull if it

34 CombinationalNetworks

contains no # symbol,empty if it contains solely # symbols. A seg-
ment is clean if it contains 1 or 2 full blocks with the remaining
blocks being empty. A segment issaturated (voided)if it consists of
3 full (empty) blocks.

Initially the first track ofOBTj corresponds exactly to the start-
ing contents ofT j , all other tracks being empty. Thus all segments
are clean to begin with. The simulation of the computation onT j by
OBTj is identical for all tapes. The simulating program,obp, is con-
structed so that all of the following hold after each simulation step.

S1) Every block is empty or full.

S2) The content of T j is formed by concatenating full blocks of
OBTj commencing with the smallest numbered segments and
lowest track within a segment.

S3) All tape heads scan segment 0 which contains the symbol
scanned by the corresponding head inM .

The simulation process is built around a recursively defined pro-
cedureSim(r) which will satisfy (S1-S3) on completion and addition-
ally:

S4) Sim(r) simulates 2r steps of p, nev er moving outside segments
±(r + 1). On completion segments−r , −r + 1, . . . ,r − 1,r are all
clean. The number of full blocks within any segment changes
by at most one.

Sim(r) is defined as follows: Clean(r) performs the actions
below:

The notation "segment(±s)" is a shorthand for "segment(+s)
resp. segment(−s)". Note that since the simulation must be oblivious
the head movement must be made for both possibilities even though
at most one will affect OBTj .

Simulations by networks 35

if r = 0 then
Simulate one step ofp ensuring that (S1-S4)
hold for segments -1,0,1

else
Sim(r − 1); Clean(r);
Sim(r − 1); Clean(r)

fi

if segment(±r) is saturatedthen
combine two blocks into one block
and copy to segment±(r + 1)

else ifsegment(±r) is voidedthen
bisect a block of segment±(r + 1)
and copy these blocks to segment±r

fi

If Sim(r) is correct then the simulation can be performed by

activating Sim with r =  logTp(n) . Correctness is proved by induc-

tion on r 0 ≤ r ≤  logTp(n) .

First suppose that whenever Sim(r) is called segments
−(r + 1),−r , . . . ,r , r + 1 are clean and that (S1-S3) hold.This is the
situation that holds before any simulation is carried out, and hence on
the very first call ofSim(r − 1), . . . ,Sim(0). Induction is used to show
that (S1-S4) holds on the completion ofSim(r). Clearly Sim(0) can be
realised so that (S1-S4) are true afterSim(0). SupposeSim(r − 1)
behaves correctly. To prove Sim(r) works it is sufficient to show that
both calls onClean(r) can be carried out. Certainly the first call can
be performed sinceSim(r − 1) does not affect segments±(r + 1) which
are initially clean by the inductive hypothesis. The second call of
Clean(r) can only fail if both segmentsr , r + 1 (resp.−r , −r − 1) are

36 CombinationalNetworks

saturated (or voided). Priorto this second call, segments±(r + 1) are
accessed only on the first call ofClean(r). Suppose this call saturated
(voided) segment ±(r + 1). Then 2 blocks in segment ±r must be
emptied (filled) by this call. By the inductive hypothesis, since (S4)
holds for Sim(r − 1), at most one of these blocks can become full
(empty) on the second call ofSim(r − 1). Thereforethe second call
of Clean(r) can be carried out.

To complete the proof of the theorem it remains to describe an

effective program obp which imitates Sim( logTp(n) ) (i.e one
which does not use recursion) and to boundTop(n). Such a program
can be readily described after observing that every 2r -th simulation
step is followed by a sequence of calls
Clean(1), Clean(2) ,. . . , Clean(r + 1). This yields:

program obp
t : = 0;
repeat
t : = t + 1;
Sim(0);
m : = max { i | 2i divides t} + 1;
Clean(r) for r from 1 to m

until finished

Clean(j) requires at mostO(2 j) steps to complete and is called
2r− j+1 times within the first 2r simulation steps. ThusO(2r logTp(n))
steps are sufficient to carry out allClean(j) \/- 1 ≤ j ≤ r .

The total number of remaining steps ofobp during the first 2r

simulation steps is bounded byO(2r logTp(n)). Thus the entire obliv-
ious simulation can be performed in:

O(Tp(n) logTp(n)) steps

Simulations by networks 37

Corollary 2.1: If f ∈ DTIME(T(n)) then

C(f (n)) = O(T(n) logT(n))

Thus lower bounds on combinational complexity ofG(n) say,

yield lower bounds ofΩ


G(n)

logG(n)



on deterministic time.

We now turn to the relation between network depth and non-
deterministic space.We recall that if R is a binary relation over a set
A, the (reflexive) transitive closure ofR is the relation:

R* = I ∪ R ∪ R2 ∪ . . . ∪ Ri . . .

If A is a finite set containingn elements thenR can be encoded as an
n × n Boolean matrix,M , in an obvious way. It is well known thatR*

is encoded by the matrixM * defined byM * = (I + M)n−1

Theorem 2.3: (Borodin, 1975) If f is computable by a NDTM using
space,S(n) ≥ log n, then f (n) can be realised by a combinational net-
work of depth:

D = O(S(n)2)

Proof: Let M be a NDTM computingf in spaceS(n) ≥ log n. Since
it does not affect the spatial requirements it may be assumed thatM
has precisely one work-tape. Let x1, . . . ,xn be the symbols on the
input tape at the start of a computation, andq = |Q|. SinceM operates
within spaceS(n) the total number ofconfigurationsof current state,
head positions and work-tape contents is exactly N = q. n. S(n). 3S(n)

Let ID denote this set of configurations and define a relationNext
over ID × ID by:

< i , j > ∈ Next⇐⇒ there is a move from configuration numberi
to configuration numberj .

38 CombinationalNetworks

PATH will denote theN × N Boolean, matrix encodingNext* ,
thus PATHij = 1 if and only if there exists a sequence of moves start-
ing in configuration i and terminating in configurationj . Thus
PATH = (NEXT+ I)N .

Given these concepts it is clear that the problem of determining
whether the inputx1

. . .xn is accepted is equivalent to determining if
there is a path from the corresponding starting configuration to some
accepting configuration. Consider the network of Figure(2.1) in which
{f1 , . . . , fr } denote the accepting configurations.

It remains to specify how the inputs xi are connected to the
inputs of the transitive closure network and to establish the depth
bound.

Let i be the number of any configuration in which the input
tape head scansxk.

xk is connected toNEXTij ⇐⇒ there is a move from i to j only
if xk = 1

xk is connected toNEXTij ⇐⇒ there is a move from i to j only
if xk = 0

NEXTij is set to 1 (0)⇐⇒ there is (is not) a move from i to j
regardless of the value ofxk.

Clearly with these settings the network above computes
f (n)(Xn). Its depth isO(S(n)2) since thePATH matrix can be com-
puted using logN + 1 lev els of Boolean matrix product and a single

product can be realised by a network of depth log N  (e.g using the
"obvious" Boolean matrix product network). Since the number of
accepting configurations is certainly no more thanN, so logN depth
suffices to compute the final∨-stage. The depth bound now follows
since:

Simulations by networks 39

Figure 2.1

log N = S(n) log 3+ log (q. n. S(n)) = O(S(n))

In combination Corollary(2.1) and Theorem(2.3) show that large
enough lower bounds on Size and Depth provide superlinear lower

40 CombinationalNetworks

bounds on Time and Space.

The next theorem presents general relationships between the
important network complexity measures.

Theorem 2.4:\/- f ∈ Bn

CΩ(f) ≤ LΩ(f) < 2DΩ(f)

Proof: The first inequality is immediate since formulae are a restricted
type of network. The second is obtained by observing that a formula
of depth DΩ(f) can be obtained from a network of the same depth
simply by duplicating each node until none has fanout exceeding 1
and noting that the binary tree which results has less than 2DΩ(f)
nodes.

By considering the function
n

i=1
∧ xi it can be seen that these

inequalities are the best possible. Inequalities in the other direction are
examined in Section(2.3).

We conclude this section by examining reductions between fam-
ilies of Boolean functions. The ideas presented below are developed
in Skyum and Valiant (1985).

Definition 2.1: Let f (Xn) and g(Yp) be n-input and p-input Boolean
functions, wherep ≥ n. f is a projection of g if there exists a map-
ping σ : Yp → {Xn, x1, . . . ,xn, 0, 1} such that f (Xn) = g(σ (Yp)). If the
mappingσ does not contain negated variables in its range, thenf is a
monotone projection of g. A family of Boolean functions [fn] is a
projection of another family [gn] if each f (n) is a projection of some
g(p). If H is a set of families, the family [fn] is universal for H if
ev ery family in H is a projection of [fn]. •

Projections between families provide a natural and precise
framework for investigating reducibility between Boolean functions.

Projections between functions 41

The concept of universality, as defined above, requires some strength-
ening to cater for ideas of computationally efficient reductions.p-pro-
jections provide one method of achieving this. A family [fn] is a p-
projection of a family [gn] if t here exists a polynomialq, such that
each f (n) is a projection ofg(p) for some p ≤ q(n). Using this notion
a stronger form of universality, p-universality, can be defined in the
obvious way. As was observed in (Skyum & Valiant, 1985), the fact
that a family [fn] is p-universal for a classH may provide one mech-
anism for resolving a number of open problems concerning the com-
plexity of specific functions and the relation between various complex-
ity classes. For example the following non-uniform analogue of the
classNP is introduced.

Definition 2.2: Let f (Xn) and g(Yp) be as Defn(2.1). g defines f if
and only if:

f (Xn) =
α ∈ {0,1} p−n

∨ g(Xn ,α)

This reflects the idea of "searching" through a, possibly exponential,
number of choices. A family [fn] is said to bep-definableif for some
polynomial t(n), each f (n) is defined by some functiong, for which
C(g) ≤ t(n). pD will denote the class of allp-definable families. A
family [fn] is p-completefor a class of families, H , if and only if
[fn] is in H and is p-universal for H . •

Informally, just aspC, the class of families which have polyno-
mial combinational complexity, can be seen as a non-uniform version
of P, so the classpD may be interpreted as a non-uniform analogue
of NP. Since any family trivially defines itself one has immediately
pC ⊆ pD. From Corollary(2.1) it may be shown that to separate the
classespC and pD is to separateP and NP, although the converse
may not be true. The families p-complete for pD form a core of

42 CombinationalNetworks

problems which are the "hardest" inpD, in the sense that if any one
of these were inpC then pC = pD. The following elegant result
from (Skyum & Valiant, 1985) identifies a specificp-complete family
in pD and is similar in spirit to Cook’s Theorem (Cook, 1971).

Theorem 2.5:Let Xn,n, Yn,n be disjoint sets ofn2 Boolean variables.
SAT(Xn,n, Yn,n) is the Boolean function which is 1 if and only the
CNF over Z = {z1, z2, . . . , zn}defined from assignmentsα to Xn,n, β
to Yn,n by:

R2n2+n(α , β , Z) =
n

i=1
∧ (

n

j=1
∨ α ij z j ∨ β ij z j)

has a satisfying assignment for someγ ∈ {0, 1}n.

SAT(Xn,n, Yn,n) is p-complete forpD.

Proof: Omitted.

A family of functions can be shown to be p-complete for pD
by exhibiting ap-projection from a known p-complete family forpD;
it may be observed that many of the classical polynomial reductions
used to prove certain decision problemsNP-complete can be adapted
with little difficulty to yield p-projections from the correspondingpD
family. In Chapter(3) some examples ofp-projections between mono-
tone Boolean functions will be presented; these are of interest in
deriving lower bounds for particular families and as a means of refor-
mulating the question P = ? NP. Non-uniform analogues of
DLOGSPACEand PSPACEmay also be defined.

2.2) Complexity Results For Almost All Boolean Functions

The results proved in Sect(2.1) establish thatΩ-networks, for
any complete Ω ⊆ B2, are a reasonable computational model in that
lower bounds on Size and Depth, of sufficient magnitude, imply non-

Bounds on almost all functions - Size 43

trivial lower bounds on Time and Space. As we have observed previ-
ously, the non-uniform nature of this model means that upper bounds
on Size and Depth do not necessarily permit corresponding bounds on
Time and Space to be inferred.Thus to strengthen the assertion that
Boolean networks are a reasonable model we should consider the
questions below:

B1) What is the asymptotic value of

C(Bn) = max { C(f) : f ∈ Bn }

B2) What is the asymptotic value of

D(Bn) = max { D(f) : f ∈ Bn }

Obviously if C(Bn) = O(nk) for some fixed k, then combinational net-
works would be an inappropriate model in which to attempt to resolve
the questionP = ? NP.

This section is mainly devoted to determining these quantities.
A lower bound onC(Bn) is giv en by a result of Shannon (1949). The
counting argument introduced there is central to many other similar
lower bound proofs. A matching upper bound is proved using the
methods of Lupanov (1958). A lower bound onD(Bn) is deduced
from a lower bound onL (Bn) the analogously defined measure for
formulae, using Theorem(2.4). A matching upper bound is provided
by the construction of Gaskov (1978) improving the uniform method
of McColl (1976), McColl and Paterson (1977)

An important property of all these lower bound results is that
they hold for "almost all" f in Bn, i.e

SupposeΠ is a property of Boolean functions andP(n) denotes:

|{ f ∈ Bn : Π is trueof f }|

44 CombinationalNetworks

Π is said to hold for almost allf in Bn if:

n → ∞
lim

P(n)

|Bn|
= 1

Theorem 2.6: (Shannon, 1949)\/- ε > 0 and n sufficiently large. For
almost all f ∈ Bn,

C(f) >
(1 − ε)2n

n

Proof: We proceed by estimating the number of distinct optimaln-
input networks containing at mostM gates. Since each such network
can be minimal for at most one Boolean function we can then argue

that if M ≤
(1 − ε)2n

n
for any ε > 0, then the number of distinct net-

works available is only o(|Bn|), and this will be sufficient to prove the
theorem.

To start an upper bound on the number of such networks con-
taining exactly m gates is obtained. Let the gates be numbered
1, 2 , . . . ,m. Any network can be completely specified by describing
for each gate its operation and the two nodes which supply its inputs.
From Lemma(1.3)(ii) there are 10 choices of operation for each gate
and thus 10m distinct labellings. The inputs for a gate are either from
an input node or from one of them − 1 other gates. Sothere are no
more than (n + m − 1)2m interconnection schemes, giving at most
10m(n + m − 1)2m optimal networks. Now since the gates have been
numbered 1,2 , . . . ,m each distinct optimal network is countedm!
times in this analysis. It follows that the number of distinct optimaln-
input combinational networks with at mostM gates does not exceed:

S(M) =
M

m=0
Σ 10m(n + m − 1)2m

m!

Bounds on almost all functions - Size 45

S(M) is asymptotically equal to the last term in the summation above.

It is easy to verify that ifM ≤
(1 − ε)2n

n
, for any ε > 0, then S(M) is

at most 2(1−ε)2n
, which is o(|Bn|) as desired.

The approach employed in this proof is extremely robust and
may be used to derive lower bounds on the complexity of almost all
functions for subsets ofBn, such asMn, when realised by combina-
tional or restricted forms of networks, e.g formulae. Such applications
involve the estimation of two quantities: supposeHn ⊆ Bn, which is
"well-behaved" in a sense we will not precisely specify (however all
specific choices ofHn, such asMn, which are examined subsequently
will be "well-behaved"). Further suppose thatA is a class of Boolean
networks, which can realise any function in Hn. For a network T in
A, A(T) will denote the number of gates inT; A(f), for f ∈ Hn, will
denote:

min { A(T) : T ∈ A and T realises f }

Shannon’s argument shows that a lower bound onA(f), which holds
for almost all f ∈ Hn, can be obtained from:

B1) A lower bound on |Hn|

B2) An upper bound on |{ T : T ∈ A, A(T) = m }|

For example if A is the class of combinational networks, we
have:

Corollary 2.2: For almost all f ∈ Hn:

C(f) ≥
log |Hn |

log log |Hn |

Lupanov (1958) gives a construction which asymptotically
matches Shannon’s lower bound so that the multiplicative constantc

46 CombinationalNetworks

in the bound
c. 2n

n
cannot be proved to be greater than 1. First we

show how to construct a network of sizeO(2n) for any n-input
Boolean function.

Consider the set of all 2n products of lengthn (i.e containingn
literals) over the set{x1, . . . ,xn, x1, . . . ,xn}, so that for each product,
p, in this set and eachi , exactly one of the literalsxi , xi occurs in p.
Each p has the form:

p = (x1)
a1 ∧ . . . ∧ (xn)

an

where (xi)
ai is the literalxi if ai is 1, and the literalxi otherwise.

For two such productsp, q, of length n − i + 1, over the literal
set

{x i , . . . ,xn, xi , . . . ,xn}

we define a lexicographic ordering≤L by:

p ≤L q ⇐⇒

(p = q) or

(p = xi ∧ p′ and q = xi ∧ q′) or

(p = (xi)
a ∧ p′ and q = (xi)

a ∧ q′ and p′ ≤L q′).

where p′, q′ are products not involving xi or xi

In this ordering no product is≤L x1
. . . xn and every product is

≤L x1
. . . xn.

The n-ordered network Un is a combinational network with
inputs {Xn, x1, . . . ,xn}, 2n outputs <t1 , . . . , t2n > for which res(ti) is
the i ’th product in the≤L ordering (sores(t1) = x1

. . . xn).

Un is inductively defined as follows:

Bounds on almost all functions - Size 47

U1) If n = 0 then Un is a single node computing the constant func-
tion 1.

U2) If n> 0 then Un is formed by adding 2 new ∧-gates, t2i−1, t2i

and wires

< xn, t2i−1 > ; < ti , t2i−1 > ; < ti , t2i > ; < xn, t2i >

to Un−−1 for each 1≤ i ≤ 2n−1.

Clearly the node computing 1 and the∧-gates of Un form a
complete binary tree with 2n leaves and thus contains 2n+1 − 1 gates.
Together with then gates to compute{x i | 1 ≤ i ≤ n} this gives:

C(Un) = 2n+1 + n − 1 ≤ (1 + ε) 2n+1 \/- ε > 0

Any f could be realised fromUn just by ∨-ing all the outputs which
correspond to satisfying assignments off , but the resulting network
would contain too many gates. The solution adopted in Lupanov
(1958) optimisesUn by employing an expansion off which has
become known as theLupanov decomposition.

An important function which is used frequently below is the
equivalence function,δα (Xn), which tests if an assignment toXn is
exactly the same asα in {0, 1}n. Formally, for α = < a1 , . . . ,an >:

δα (Xn) =
n

i=1
∧ (xi ⇐⇒ ai)

To simplify the notation we shall useY to denote the subset
{x1, x2 , . . . ,xk} of Xn and Z to denote Xn − Y, so that
f (Xn) = f (Y, Z).

Let f be any Boolean function.\/- 1≤ k ≤ n, f (Y, Z) may be
defined by a Boolean matrix,M(f), having 2k rows and 2n−k

columns. Eachrow is labelled with a distinct member of{0, 1}k, cor-
responding to an assignment toY. Similarly each column is labelled

48 CombinationalNetworks

with a distinct member of{0, 1}n−k corresponding to an assignment to
Z. For the i ’th row let α i be the associated assignment and letβ j be
that which labels thej ’th column. The (i , j) entry of M(f) is then
just the value of f (α i , β j). It will be convenient to refer to
row/columns by the assignments labelling them.

For some s, to be fixed later, partition the rows of M(f) into d
blocks R1, R2 , . . . , Rd. Ri containss consecutive rows (1 ≤ i < d) and

Rd contains at mosts rows, henced ≤
2k

s
+ 1. Any such block will

be termed arod. For each rod Ri the function, rodi (Y, Z) is giv en
by:

rodi (Y, Z) =
α ∈ {0,1}k ∩ Ri

∨ δα (Y) ∧ f (α , Z)

i.e rodi (Y, Z) is f (α , Z) if the assignmentα to Y corresponds to
some row in Ri , and is 0 otherwise.

Since
d

i=1
∪ Ri = {0, 1}k, so f (Y, Z) =

d

i=1
∨ rodi (Y, Z). Every rod

contains at mosts rows and exactly 2n−k columns; if k is "small"
compared tos then many of the columns of lengths in Ri must be
identical.

Let <r i ,1, r i ,2 , . . . ,r i ,s > be the rows in the rod Ri . For
v = < v1 , . . . ,vs > in {0, 1}s, the (i , v) − pillar of M , denoted Pi ,v is
the set of columns inM(f) which satisfy:

p ∈ Pi ,v ⇐⇒ \/- 1 ≤ q ≤ s (r i ,q, p) = vq

(Informally Pi ,v is the set of columns which when intersected withRi

yield the sames-tuple, v.)

Note that if v and u are different elements of{0, 1}s then the
sets Pi , u and Pi ,v are disjoint. We can now define a function

Bounds on almost all functions - Size 49

pillar i , v(Y, Z) by:

pillar i , v(Y, Z) =
β ∈ {0,1}n−k ∩ Pi ,v

∨ δ β (Z) ∧ rodi (Y, β)

Thus:

rodi (Y, Z) =
v ≠ 0
∨ pillar i ,v(Y, Z)

(where0 = < 0, 0, . . . , 0 >)

Now pillar i ,v(Y, Z) can only equal 1 when the assignment to
(Y, Z) selects both a column inPi ,v (using Z) and a row in Ri (using
Y) whose intersection inM(f) equals 1. We can thus express
pillar i ,v(Y, Z) as the conjunction of a function over Y and another
function over Z, viz:

pillar i ,v(Y, Z) = row − matchi ,v(Y) ∧ col − matchi ,v(Z)

where

col − matchi ,v(Z) =
β ∈ {0,1}n−k ∩ Pi ,v

∨ δ β (Z)

row − matchi ,v(Y) =
α ∈ {0,1}k ∩ Ri

∨ δα (Y) ∧ v(α)

v(α) being the point withinv selected by the row labelledα in Ri , so
if α is the row r i ,q, then v(α) = vq.

In summary f (Y, Z) may be written as:

d

i=1
∨ rodi (Y, Z) =

d

i=1
∨ (

v ≠ 0
∨ pillar i ,v(Y, Z))

=
d

i=1
∨ (

v ≠ 0
∨ [row − matchi ,v(Y) ∧ col − matchi ,v(Z)]

and this is the (k, s)-Lupanov decomposition off (Xn).

50 CombinationalNetworks

Theorem 2.7:(Lupanov, 1958) \/- ε > 0 and n sufficiently large:

\/- f ∈ Bn C(f) <
(1 + ε)2n

n

Proof: Let f ∈ Bn and consider the (k, s)-Lupanov decomposition of
f (Y, Z). k and s will be fixed subsequently to obtain the desired
bound. From this expansion we can build a network realisingf in the
following stages:

L1) Construct the k-ordered network Uk with inputs Y and the
(n − k)-ordered network Un−−k with inputs Z. These contain no
more than (1+ ε)(2k+1 + 2n−k+1) gates in total.

L2) For each i , v compute row − matchi ,v(Y) by ∨-ing together the
appropriate outputs ofUk . Since row − matchi ,v has no more
than s satisfying assignments it can be computed with at most
s − 1 additional gates, giving no more thand. s. (2s − 1) ≤ 2k+s

extra gates to compute all of them.

L3) Similarly compute all thecol − matchi ,v(Z) by ∨-ing the appro-
priate outputs ofUn−−k . Since these correspond to columns in
Pi ,v, for eachi ev ery output ofUn−−k is used at most once (recall
that if v ≠ u then Pi ,v and Pi ,u are disjoint). Thus withi fixed
all the col − matchi ,v can be computed with an additional 2n−k

gates and therefore≤ d. 2n−k over all.

L4) Conjoin ev ery row − matchi ,v(Y) to its correspondent
col − matchi ,v(Z), using at mostd. 2s gates.

L5) Finally compute f (Xn) by ∨-ing all the functions computed in
stage (L4). This adds at most a furtherd. 2s gates.

Recalling thatd ≤
2k

s
+ 1 and summing each contribution, the

reader may easily verify that this gives:

Bounds on almost all functions - Size 51

C(f) ≤ (1 + ε)(2k+1 + 2n−k+2 + 2s+1) + 2k+s(1 +
2

s
) +

2n

s

Choosingk =  3 logn  and s =  n − 5 logn  leaves:

C(f) ≤
2n

n − 5 logn
+ o


2n

n



Thus for allε > 0 and sufficiently large n:

C(f) <
(1 + ε)2n

n

The lower bound onD(Bn) is a consequence of the following
lower bound on the complexity of almost alln-input formulae over
B2.

Theorem 2.8:(Riordan and Shannon, 1942) For almost allf ∈ Bn

L (f) >
2n

log n

Proof: See Chapter(4), Theorem(4.1).

Corollary 2.3: For all ε > 0 and sufficiently large n. For almost all
f ∈ Bn:

D(f) > n − log logn

Proof: Immediate from Thm(2.4), using L (f) ≤ 2D(f), and
Thm(2.8).

The upper bound of Gaskov (1978) which matches this lower
bound to within an additive constant is based on a construction of
Lupanov (1973). This method is non-uniform unlike the earlier upper
bound McColl and Paterson (1977), which showed D(Bn) ≤ n + 1, and
was built around the notion of formula schemes. Below we describe

52 CombinationalNetworks

both constructions.

Definition 2.3:A formula schemeis a directed acyclic graph in which
nodes have in-degree 2 (gates) or 0 (inputs). All gates have out-
degree at most 1. LetHn ⊆ Bn. A formula scheme,Cn, covers Hn

over the basisΩ ⊆ B2 if and only if for each f ∈ Hn the gates ofCn

can be assigned operations inΩ so that the resulting formula realises
f . •

We shall construct a formula scheme which covers Bn over the
basisB2 and has depthn + 1. As regards schemes this depth bound is
very close to optimal; an easy counting argument can be used to show
that any formula scheme with the required property must have depth
at leastn − 1.

In describing the construction the correspondence between
Ω-expressions and formulae, as given in Defn(1.3), will be used. It
should be clear throughout that the method presenteddoesdescribe a
scheme.

Let Y = < y1 , . . . , yk > and Z = < z1 , . . . , zm > be disjoint sets
of Boolean variables andf (Y, Z) ∈ Bk+m. The disjunctive expansion
of f (Y, Z) about Z is given by:

f (Y, Z) =
α ∈ {0,1}m

∨ δα (Z) ∧ f (Y,α)

The dual,conjunctive expansionof f (Y, Z) about Z, is defined to be:

f (Y, Z) =
α ∈ {0,1}m

∧ (δα (Z) ∨ f (Y,α))

whereδα (Z) denotes the complement ofδα (Z).

Suppose that, following Spira (1971b), one attempts to build a
formula of minimal depth forf (Y, Z) using these expansions as the
vehicle for a recursive construction. Eachδα , δα term being in effect

Bounds on almost all functions - Depth 53

a product or sum ofm literals (sinceα ∈ {0, 1}m) it can be realised in

depth  log m . To compute f (Y, Z), formulae for each subtermδα ,
f (Y,α) can be constructed in parallel and joined together using one
extra level. Finally all the 2m subterms must be collected, this requir-
ing depthm. Thus the following recurrence relation results:

D(f (Y, Z)) ≤ 1+ m+ max{ log m,
α ∈{0,1}m

max {D}}

≤ 1+ m+ max { log m, D(g(Y))}

for someg ∈ Bk.

By choosing a suitable partition ofXn, Spira was able to con-
struct a formula scheme covering Bn over B2 with depth n + log* n.
The log* n arises through the additional level of gates, used to pair the
δα , δα to their correspondingf (Y,α) terms, at each recursive step.

The scheme developed in (McColl and Paterson, 1977) elimi-
nates these levels by applying an ingenious optimisation to the basic
recursive construction.

Let δα (Z) ∧ f (Y,α) be a single term of the disjunctive expan-
sion aboutZ. For any W ⊆ Y we may express f (Y,α) as a product
of 2|W| terms by using the conjunctive expansion of f (Y,α) about W.

δα (Z) ∧ f (Y,α) = δα (Z) ∧
β ∈{0,1} |W|

∧ [δ β (W) ∨ f (U, β ,α)]

whereU = Y − W.

Unfortunately this is a product of 2|W| + 1 terms and would
require additional depth of |W| + 1, as before. The novel solution
adopted is to discard one of the subterms [δ β (W) ∨ f (U, β ,α)], leav-
ing a product of 2|W| terms, realisable with additional depth only |W|.
By alternating disjunctive and conjunctive expansions in the recursion

54 CombinationalNetworks

this process of term disposal may be employed at each stage to guar-
antee that the number of terms in a sum or product is an exact power
of 2.

Of course the resulting formula will not realisef (Y, Z) but will
merely be an "approximation" to it, having depthn. The final stage is
a remarkable result which shows thatf (Y, Z) can be recovered from
the approximation,f * , simply by ⊕-ing f * with a suitable "correct-
ing" function, R, also constructed in depthn by using the method
recursively. The depth of the final scheme will be:

D(f (Y, Z)) ≤ max {D(f *), D(R)} + 1 ≤ n + 1

We need to define a partition of{R0, R1, . . . ,Rp} of Xn. The actual
elements inXn ∩ Ri are not important, however the relative sizes of
the partition components must satisfy several criteria. For 0≤ i ≤ p,
let r i denote |Ri |. For our purpose, any sequence
< r0, r1, . . . ,r p > ∈ {N} p+1 of component sizes which meets the follow-
ing is suitable.

i

j=0
Σ r j will be denoted bySi .

G1) r0 = r1 = 2

G2) Sp = n

G3) r m ≤ 2Sm−2 for m ev en and ≥ 2

G4) r m ≤ 2Sm−2 − 2Sm−3 for m odd and≥ 3

The particular sequence employed is defined by the rules:

Seq1)
r0 = 2

Seq2)
r i = i + 1 0 < i < p

Bounds on almost all functions - Depth 55

Seq3)
r p = n − Sp−1

where p = max {q ∈ N : 1 +
q(q + 1)

2
< n}

The choice of sequence affects the additive term for the depth
of schemes over bases other thanB2.

Definition 2.4: Let S= {R1, R2, . . . ,Rk} where Ri ⊆ Xn \/- 1 ≤ i ≤ k. A
Boolean functiong(Xn) is S-simpleif g(Xn) = 0 whenever Ri = 0 for
any 1 ≤ i ≤ k, (0 denotes <0, 0, . . . , 0>). •

Note thatS is not required to be a partition ofXn or to consist
of disjoint subsets.

Lemma 2.1:Let {R0, R1, . . . ,Rm} (where m ≥ 1) be disjoint subsets of
Xn whose cardinalities <r0, r1, . . . ,r m > satisfy conditions (G1), (G3)
and (G4) above. If g(R0, . . . ,Rm) is {R1, . . . ,Rm}-simple then there is
a formula for g which is:

Case a:(m odd) A disjunction of 2r m − 1 subformulae, each of depth
Sm−1.

Case b: (m ev en) A conjunction of 2r m − 1 subformulae, each of
depthSm−1, and one additional subformula of depthSm−2.

Proof: By induction on m. Consider the two possible expansions of
g(R0, . . . ,Rm) about Rm. In Case(a) we have:

g(R0, . . . ,Rm) =
α ≠0
∨ δα (Rm) ∧ g(R0, . . . ,Rm−1,α)

and in Case(b)g(R0, . . . ,Rm) is equal to,

δ0(Rm) ∧
α ≠0
∧ [δα (Rm) ∨ g(R0, . . . ,Rm−1,α)]

If m = 1, Case(a) applies and then from (G1):

56 CombinationalNetworks

g(R0, R1) =
α ≠0
∨ δα (R1) ∧ g(R0,α)

and this is a disjunction of 3 subformulae each of which is realisable
by a formula of depth 2 over the basisB2, since, again using (G1),
the termsδα (R1), g(R0,α) are both inB2.

This establishes the inductive base. Now suppose the lemma
holds for all values <m and let m > 1 be odd. From the inductive
hypothesis, the componentg(R0, . . . ,Rm−1,α) of Case(a), may be
expressed as a conjunction of 2r m−1 − 1 subformulae, each of depth
Sm−2 and an additional subformula of depthSm−3. Thus g(R0, . . . ,Rm)
is equal to

α ≠0
∨ δα (Rm) ∧ δ0(Rm−1) ∧

β ≠0
∧ [δ β (Rm−1) ∨ g(R0, . . . ,Rm−2, β ,α)]

Now δα (Rm) is effectively a product ofr m literals, andδ0(Rm−1) can
be realised by a formula of depthSm−3. From (G4) r m ≤ 2Sm−2 − 2Sm−3,
so the sub-expressionδα (Rm) ∧ δ0(Rm−1) can be computed by a for-
mula of depthSm−2.

From the inductive hypothesis the sub-expression

β ≠0
∧ [δ β (Rm−1) ∨ g(R0, . . . ,Rm−2, β ,α)]

is a conjunction of 2r m−1 − 1 subformulae each realisable in depthSm−2,
thus the complete term can be computed by a formula of depth
r m−1 + Sm−2 = Sm−1, which proves the inductive step for the case where
m is odd.

The case ofm being even follows almost directly from the sec-
ond expansion after observing that theδα terms can be realised in
depthSm−2.

Bounds on almost all functions - Depth 57

The importance of this lemma is the part it plays in the proof of the
next result.

Theorem 2.9:\/- n > 4 if g(Xn) is {R1, R2, . . . ,Rp−1}-simple (where the
Ri have cardinalities agreeing with the sequence <r i > giv en by
Seq1-Seq3 above), then there is a formula realisingg(Xn) which has
depthn.

Proof: Since n > 4 it follows that p > 1. Expressg(Xn) as a disjunc-
tive (resp. conjunctive) expansion aboutRp if p is odd (resp. even).
From Lemma(2.1) each of the 2r p components of the expansion can
be realised by a formula of depthSp−1. Thus g(Xn) can be realised be
a formula having depthSp−1 + r p = n.

The approximation tof (Xn), as described in the proof outline,
will be some {R1, . . . ,Rp−1}-simple function g(Xn), which Thm(2.9)
shows can be realised in depthn. In order to achieve the desired
depth bound ofn + 1 for any f we must show how to recover f from
its simple approximationg.

Lemma 2.2:Let {R1, . . . ,Rk} be disjoint subsets ofXn. \/- f (Xn) there
exist functions:

f1(Xn − R1) , . . . , fi (Xn − Ri) , . . . , fk(Xn − Rk)

such that the function

g(Xn) = f (Xn) ⊕
k

i=1
⊕ fi (Xn − Ri)

is {R1, . . . ,Rk}-simple.

Proof: (By induction onk ≥ 1)

Inductive Base: k=1

Define f1(Xn − R1) to be the function

58 CombinationalNetworks

f |R1=0(Xn − R1)

then certainlyg(Xn) = f (Xn) ⊕ f1(Xn − R1) is {R1} − simple.

Inductive Step:Suppose the result holds fork − 1 and so there exist
f1(Xn − R1) , . . . , fk−1(Xn − Rk−1) such that\/- j , 1 ≤ j ≤ k − 1,

Rj = 0 ⇒ f ⊕
k−1

i=1
⊕ fi = 0

Define fk(Xn − Rk) by:

fk(Xn − Rk) =







0 if some Ri = 0 (1 ≤ i ≤ k − 1)

g |Rk=0
k−1 (Xn − Rk) otherwise

Clearly fk has the desired property.

Theorem 2.10:For all n ≥ 1 there is a formula scheme of depthn + 1
which covers Bn over basisB2.

Proof: For n ≤ 4 schemes may be constructed directly. For n > 4,
using Lemma(2.2) and the properties of⊕ we may express any func-
tion f (Xn) as:

g(Xn) ⊕
p−1

i=1
⊕ fi (Xn − Ri)

where g(Xn) is {R1 , . . . , Rp−1}-simple, and theRi are as above.
Using Thm(2.9) yields a formula of depthn for g(Xn), to this we
must ⊕ functions f1 , . . . , f p−1 to obtain f (Xn), each fi having
n − i − 1 arguments. Whenn − i − 1 ≤ 4 a formula for fi may be con-
structed immediately, otherwise we can apply the construction recur-
sively to yield a formula for fi of depth n − i . We may rearrange,
using the associativity of⊕, the expression forf (Xn) at the start of

Bounds on almost all functions - Depth 59

this proof, to obtain:

f = g ⊕ (f1 ⊕ (f2 ⊕ (. . .⊕ f p−1)). . .)

and this represents a formula of depthn + 1 since each fi has depth
n − i , for 1 ≤ i ≤ p − 1.

Preparata and Muller (1971) examinesD(f (Xn)) for n ≤ 8 and
proves an upper bound ofn on depth for these cases. By computer
analysis, based on ideas of Knuth, (Elspas et alia, 1968) shows that
this is the best possible forn = 3, 4.

Theorem 2.11:(Gaskov, 1978) For all f ∈ Bn,

D(f) ≤  n − log logn + o(1)  + 2

Proof:a) Let f ∈ Bn be any Boolean function and partition its inputs
Xn into 4 sets,W, Y, Z and U of sizesw, y, z and u respectively so
that w + y + z+ u = n and u is an exact power of 2. The precise values
of these quantities is given below. We describe an expansion of
f (W, Y, Z, U) whose depth will be of the required order.

Given α = < a1 , . . . ,au > ∈{0, 1}u, the sphere with centre α is
the set ofu-tuples,sph(α), defined as

u

i=1
∪ < a1 , . . . ,ai−1, ai , ai+1 , . . . ,au >

Now since u is chosen as a power of two it follows that one
may choose 2u/u centres,α (1) , . . . ,α (2u/u) whose spheres afford a parti-
tion of {0, 1}u. For some such choice of centres letφ i (U) be the char-
acteristic function of thei ’th sphere, where 1≤ i ≤ 2u/u. Clearly

φ i (U) ∧ u
¬a(i)

l
l = δα (i)

l
(U)

a) The expansion off which is central to this proof is originally from Lupanov (1973)

60 CombinationalNetworks

whereα (i)
l is the tuple insph(α (i)) which differs in itsl ’th entry from

α (i).

Now let

fi ,σ , ρ (Z, U) = φ i (U) f (σ , ρ, Z, U)

It is easy to see thatf (W, Y, U, Z) is equal to,

σ
∨

ρ
∨

2u/u

i=1
∨ δσ (W) δ ρ (Y) fi ,σ , ρ (Z, U)

Consider the functionfi ,σ , ρ (Z, U) for fixed i , σ and ρ. This may be
written as a table with 2z rows andu columns; the rows representing
all possible assignments toZ and the columns allu-tuples in
sph(α (i)). The table entry corresponding to row ζ ∈{0, 1} z and col-

umn l contains the value offi ,σ , ρ (ζ , α (i)
l). Using this table we can

express fi ,σ , ρ (Z, U) using a variant of the (k, s)-Lupanov representa-
tion as follows.

For some s ≤ 2z, to be fixed subsequently, partition the rows

into  2z/s rods, each containing exactly s consecutive rows, and at
most one rod of fewer thans rows. Let A1 , . . . ,Ap denote these,
where p ≤ 2z/s + 1. For each 1≤ k ≤ p define the function
fi ,σ , ρ, k(Z, U) to be,

fi ,σ , ρ, k(Z, U) =
ζ ∈ Ak

∨ δζ (Z) fi ,σ , ρ (ζ , U)

so that,

fi ,σ , ρ (Z, U) =
p

k=1
∨ fi ,σ , ρ, k(Z, U)

We need also a partition of the columns. For τ ∈{0, 1}s let
Bi ,σ , ρ, k,τ be the set of columns whose intersection with the rodAk is

Optimal depth networks 61

the s-tuple τ .

Although Bi ,σ , ρ, k,τ induces a partition of the columns{1 , . . . ,u}
using differing τ , this is not good enough to yield the required bound
on depth, since the size ofBi ,σ , ρ, k,τ may be too large. To overcome
this we further partition each setBi ,σ , ρ, k,τ . For some q ≤ u, to be

fixed subsequently, partition each setBi ,σ , ρ, k,τ into  Bi ,σ , ρ, k,τ /q  sub-
sets of size at mostq. We denote a typical resulting subset by
Bi ,σ , ρ, k,τ , m where,

1 ≤ m ≤  Bi ,σ , ρ, k,τ /q 

For fixed i , σ , ρ and k let N denote the number of distinct sub-
setsBi ,σ , ρ, k,τ , m, i.e

N = |
τ
∪

m
∪ { Bi ,σ , ρ, k,τ , m } |

Then N ≤
u

q
+ 2s. To see this letr (d) denote

| { τ : | Bi ,σ , ρ, k,τ | = d } |

Clearly
u

d=1
Σ r (d) = u and r (d) ≠ 0 for at most 2s values of d. From

the definition ofBi ,σ , ρ, k,τ , m it follows that,

N ≤
u

d=1
Σ  r (d)/q  ≤

u

d=1
Σ r (d)/q + 2s =

u

q
+ 2s$.

We can thus renumber the subsetsBi ,σ , ρ, k,τ , m as Bi ,σ , ρ, k, j

where 1≤ j ≤ N. Each of these sets contains at mostq elements of
{1 , . . . ,u}.

Now fi ,σ , ρ,k(Z, U) can be expressed in terms of the conjunction
of two functions over disjoint variable sets. Specifically,

62 CombinationalNetworks

fi ,σ , ρ, k(Z, U) =
N

j=1
∨ f (1)

i ,σ , ρ, k, j (U) ∧ f (2)
i ,σ , ρ, k, j (Z)

where;

f (1)
i ,σ , ρ, k, j (U) = φ i (U) ∧ f (3)

i ,σ , ρ, k, j (U)

= φ i (U) ∧ (
l ∈ Bi ,σ , ρ, k, j

∨ u
¬a(i)

l
l)

f (2)
i ,σ , ρ, k, j (Z) =

ζ ∈ Ak : v(ζ) = 1 in τ
∨ δζ (Z)

i.e the columns inBi ,σ , ρ, k, j yield the samez-tuple, τ when intersected
with rod Ak. f (2) selects those rows ofAk which indicate entries ofτ
equal to 1.

In summary, f (W, Y, Z, U) is equal to,

σ
∨

ρ
∨

i
∨

k
∨

j
∨ δσ (W) δ ρ (Y) φ i (U) f (2)

i ,σ , ρ, k, j (Z) f (3)
i ,σ , ρ, k, j (U)

However we need to further rearrange this to yield a suitable expan-
sion. Considerthe functions,

gi ,σ , k, j (Y, Z) =
ρ
∨ δ ρ (Y) f (2)

i ,σ , ρ, k, j (Z)

hi ,σ , ρ, k, j (Y, U) =
ρ
∨ δ ρ (Y) f (3)

i ,σ , ρ, k, j (U)

It is easy to show that,

hi ,σ , ρ, k, j (Y, U) =
ρ
∧ (¬δ ρ (Y) ∨ f (3)

i ,σ , ρ, k, j (U))

Optimal depth networks 63

and so,

ρ
∨ δ ρ f (2)

i ,σ , ρ, k, j f (3)
i ,σ , ρ, k, j = gi ,σ , k, j ∧ hi ,σ , k, j

With this, the expansion which we analyse the depth of is,

σ
∨

i
∨

k
∨

j
∨ δσ (W) φ i (U) gi ,σ , k, j (Y, Z)

ρ
∧ (¬δ ρ (Y) ∨ f (3)

i ,σ , ρ, k, j (U)) (2.1)

In which: σ ranges over {0, 1}w, ρ over {0, 1} y, 1≤ i ≤ 2u/u, 1≤ k ≤ p ,

1≤ j ≤ N and p =  2z/s, N ≤
u

q
+ 2s.

We hav e to fix the values ofw, y, z, u, s and q. Set,

y =  2 logn  ; z =  2 log logn  ; u = 2 log n  − 1

s =  log n − 5 log logn 

and chooseq to be in the interval (log n)4 ≤ q ≤ 3(logn)4 in such a
way that y + q is an exact power of 2.

We claim that these choices yield the desired depth bound using
our final expansion off (W, Y, Z, U) above.

Recall that the disjunction or conjunction ofr literals can be

realised by a network of depth log r . To simplify the derivation let
F1

i ,σ , k, j denote the function

δσ (W) φ i (U) gi ,σ , k, j (Y, Z)

F2
i ,σ , ρ, k, j the function,

¬δ ρ (Y) ∨ f (3)
i ,σ , ρ, k, j (U)

and F3
i ,σ , k, j the function

ρ
∨ F2

i ,σ , ρ, k, j (Y, U). With these our expansion

64 CombinationalNetworks

is,

f =
σ
∨

i
∨

k
∨

j
∨ F1

i ,σ , k, j ∧ F3
i ,σ , k, j (2.2)

It follows that,

D(f) ≤  log

2u

u
2w p N


 + 1 +

i ,σ , k, j
max {D(F1), D(F3)} (2.3)

ConsiderD(F1
i ,σ , k, j). Clearly,

D(δσ (W)) ≤ 2+ log n ; D(φ i (U)) ≤ 2 logn − 1 (2.4)

Also by expressinggi ,σ , k, j (Y, Z) in disjunctive normal form we
can construct a network for this of depth at most

y + z +  log (y + z)  ≤ 2 logn + 3 log logn + 3 + o(1) (2.5)

From (2.1), (2.4) and (2.5) it follows that,

D(F1
i ,σ , j , k) ≤ 2 logn + 3 log logn + 5 + o(1) (2.6)

Now consider F2
i ,σ , ρ, k, j (Y, U). Since |Bi ,σ , ρ, k, j | ≤ q and

y + q = 2r for some integral r , we hav e,

D(F2
i ,σ , ρ, k, j) ≤ 1 + log (y + q) = r + 1 (2.7)

and so from the definition ofF3
i ,σ , j , k,

D(F3
i ,σ , j , k) ≤ y + r + 1 (2.8)

With (2.6), (2.8) and the choice ofy and q it follows that,

max{D(F1
i ,σ , j , k), D(F3

i ,σ , j , k)} ≤ y + r + 1 (2.9)

Optimal depth networks 65

(2.3), (2.8) and (2.9) yield,

D(f) ≤  

2w+u

u



p N  + y + r + 2 (2.10)

As n → ∞, 2s = o(u/q) and 2z/s → ∞ hence,

2w+u

u
p N =

2n−y

sq
(1 + o(1))

So from (2.10)

D(f) ≤  n − y − log s − logq + o(1) + y + r + 2

=  n − log s− logq + m+ o(1) + 2

=  n − log s+ o(1) + 2

=  n − log logn + o(1) + 2

This proves the upper bound claimed.

A natural question to consider at this stage is how large may
the "gaps" be for the complexity measuresΩ-network size and depth.
A gap in this sense is any non-empty interval of natural numbers
(c, d) such that no function inBn hasΩ-network size (depth) which is
greater thanc but less thand.

In order to discuss this question more precisely we introduce the
following notation:

For any complexity measureM , let

M (r) = { f ∈ Bn | M(f) ≤ r}

and

66 CombinationalNetworks

M(Bn) = max { f ∈ Bn | M(f) }

(where M = CΩ or DΩ and Ω is not complete, M(Bn) will be
regarded as the maximal complexity of any function in Bn covered by
Ω)

The problem of determining the size of complexity gaps can
now be formulated as that of calculating:

mΩ(r) = min { c ∈ N : M (r) ⊂ M (r + c) }

Thus we examine questions concerned with complexity hierar-
chies, particular complexity measures of interest beingCΩ, DΩ and
LΩ. For these we usecΩ, dΩ and lΩ to denote the corresponding
instantiations ofmΩ. The approach taken in the proof of such results
is to construct a sequence;f0, f1, . . . , fr of functions inBn which sat-
isfies:

M(fr) = M(Bn)

M(fi) ≤ M(fi−1) + b 0 < i ≤ r

whereb depends on the hierarchy sought.

The study of these problems was initiated in (McColl, 1977)
and (McColl, 1978b). The results therein have subsequently been
improved, however the latter paper proves the existence of a uniform
hierarchy for Ω-depth.

Lemma 2.3:(McColl, 1978b)\/- Ω ⊆ B2;

dΩ(r) = 1 \/- r < DΩ(Bn)

Proof: Let f be any function in Bn for which DΩ(f) = DΩ(Bn). We
construct a sequence of functions inBn:

Complexity hierarchies 67

xi = f0, f1 , . . . , fr = f

such thatDΩ(fi) = DΩ(fi−1) + 1 for eachi ≥ 1. The existence of such a
sequence will clearly prove the lemma. So suppose for some
0 ≤ i < r we have found a sequence of functions inBn;

fi+1, fi+2 , . . . , fr

such thatDΩ(fr) = DΩ(Bn) and DΩ(f j) = DΩ(f j−1) + 1. Considerany
minimal depthΩ-network, T, which computesfi+1 at some nodet.
Let v, w be the nodes ofT which supply the inputs oft. Certainly

DΩ(fi+1) = max {DΩ(res(v)), DΩ(res(w)) } + 1

and so one ofres(v), res(w) is a suitable choice forfi .

One weakness of McColl’s hierarchy is that it may contain
degenerate members. Wegener (1981) proved that the lemma above
still holds with the constraint that only non-degenerate functions are
permitted. The proof is rather lengthy and we refer the reader to
We gener’s paper for the details of this result.

For Ω-network size the methods of Paterson and Wegener
(1986) provide an almost complete hierarchy covering each integer
between 0 andCΩ(Bn). Again this will be presented in a style which
permits the use of degenerate functions in deriving the hierarchy,
although this and the theorem following it, may both be extended to
permit only non-degenerate functions, with only a slightly more com-
plex argument. The main result for network size assumes the basisB2,
so that the dependence onΩ will be dropped from our notation. It
will be clear from the proof that the same results hold for the basis
B2 − {⊕, ⇐⇒}.

Theorem 2.12:(Paterson and Wegener, 1986) Let n ≥ 1

c(r) = 1 for 0 ≤ r < C(Bn−1)

68 CombinationalNetworks

c(r) ≤ n for C(Bn−1) ≤ r < C(Bn)

Proof: Let f ∈ Bn with combinational complexity C(Bn). Suppose
{α1 , . . . ,α r } is the set of assignments toXn which satisfy f and that
{p1 , . . . , pr } are the corresponding products ofn literals. Consider the
sequence of functions{ f0 , . . . , fr } given by:

f0 = 0 ; fi = fi−1 ∨ pi (0 < i ≤ r)

(so fr = f). Clearly we have in all cases:

C(fr) = C(Bn) (By choiceof f)

C(fi) ≤ C(fi−1) + n

which is sufficient to prove the second inequality of the theorem. To
obtain the, optimal, first equality we decrease the gap in going from
each fi−1 to fi by interposing additional sequences of functions
between them. So for this case letf (Xn − {xn}) be a function having
combinational complexity C(Bn−1) and f0, f1, . . . , fr be the sequence
of functions constructed, as before, fromf . Modify this sequence by
∨-ing each component function withxn. From the choice of sequence:

fi ∨ xn = fi−1 ∨ (y1y2
. . . yn−1) ∨ xn

where eachyk is either xk or its complement, depending on the prod-
uct pi . To compress the complexity gap betweenxn ∨ fi and fi+1 ∨ xn

substitute for eachfi ∨ xn the sequence ofn − 1 functions given by:

fi ∨ xn, fi ∨ (y1 xn) , . . . , fi ∨ (y1 y2
. . . y j xn)

(for 1 ≤ j ≤ n − 2), the precise literals used depending on the product
pi+1.

Complexity hierarchies 69

With this expanded sequence the first equality in the theorem
statement follows. For each function can be computed from its prede-
cessor by either replacing the inputxn by the appropriate literalyn−1

and then∨-ing xn with the output gate; or replacing the inputxn with
y j ∧ xn. Both these transformations can be carried out using at most
one additional gate.

For arbitrary complete bases fromB2 and for formula size
slightly weaker results hold:

Theorem 2.13: (Paterson and Wegener, 1986) For any complete
Ω ⊆ B2 there exists a constantk such that:

cΩ(r) ≤ k for 0 ≤ r < CΩ(Bn−1)

cΩ(r) ≤ kn for CΩ(Bn−1) ≤ r < CΩ(Bn)

lΩ(r) ≤ kn for 0 ≤ r < LΩ(Bn)

l (r) ≤ n for Ω = B2 and 0 ≤ r < L (Bn)

Proof: Exactly as Thm(2.12) noting the definition of formulae and the
result of Lemma(1.4).

Paterson and Wegener also present a nearly complete hierarchy
for monotone network complexity with essentially the same argument.
A very small improvement can be made for the upper range of this:

c{∧,∨}(r) ≤ n for Cm(Mn−1) ≤ r < Cm(Mn)

as given in the paper. This improvement relies on a deep result from
Korshunov (1981) and will be described in Chapter(3).

70 CombinationalNetworks

2.3) Relating Network Size and Network Depth

Theorem(2.4) presented 2 inequalities relating the combinational,
formula and depth complexities of Boolean functions, namely:

\/- f (Xn) C(f) ≤ L (f) < 2D(f)

We noted that these inequalities could not be improved. In this sec-
tion inequalities in the reverse direction, which hold for all Boolean
functions, are considered. The main result proved is the theorem
from (Paterson & Valiant, 1976) which gives a lower bound on com-
binational complexity in terms of network depth having the form:

\/- f ∈ Bn C(f) ≥
1

4
D(f) logD(f)

As a prelude to this we outline some results relating formula com-
plexity and depth.

In these cases the method used is to construct a formula of
"small" depth over some basisΩ1 which is equivalent to a given for-
mula over a basis Ω2 by applying a result from (Brent, Kuck and
Maruyama, 1973).

Lemma 2.4:(Brent et alia, 1973) LetF be anΩ-formula over Xn and
|F | denote the total fanout from the inputs ofF , which is equivalent
to the total number of literals occurring inF using the sense of
Defn(1.3).

\/- m 1 < m ≤ |F | there exists a subformula,Lθ R, of F (θ ∈ Ω)
which satisfies:

i) |Lθ R| ≥ m

ii) |R| ≤ |L|

Observing thatF is written as,

Size and Depth 71

F(Xn) = P(Xn) θ1 (Lθ R)(Xn) θ2 Q(Xn)

where P and Q are Ω-formulae andθ1, θ2 ∈ Ω, one may splitF into
two Ω-formulae; (Lθ R)(Xn) and A(Xn, y), the latter beingF(Xn) with
the subformulaLθ R replaced by a new literal, y. Now suppose we are
attempting to find a minimal depth equivalent formula over the basis
B2, then usingA(Xn, y) and (Lθ R)(Xn), a new equivalent formula is
given by:

F’ (Xn) = A(Xn, 1) ∧ (Lθ R)(Xn) ∨ (A(Xn, 0) ⇒ (Lθ R))

With d(k) to denote:

max {D(f) : f is realised bya formula of size k− 1 }

we have the relation:

d(|F |) ≤ max {d(|Lθ R|), d(|A|)} + 2

(Some refinements are necessary for transforming into formulae over
complete bases other thanB2, howev er here we are only concerned
with giving a brief description of the basic technique.)

The construction is applied recursively to the formulaeA(Xn, 0),
A(Xn, 1) and Lθ R as necessary. Additionally a sequence <r i > must
be defined to specify the minimal value of |Lθ R| at each stage, noting
that |A| = |F | − |Lθ R| ≤ |F | − r i . The next theorem summarises some
of the known relations between depth and formula size for specific
complete bases. All of these are basically derived from the skeleton
construction just reviewed.

Theorem 2.14:\/- f ∈ Bn

1) D{¬∧}(f) ≤ 2. 88logL (f) + O(1)

2) D(f) ≤ 2. 465logL (f) + O(1)

72 CombinationalNetworks

3) DU2
(f) ≤ 1. 81logLU2

(f) + O(1)

U2 being the basisB2 − {⊕, ⇐⇒}

Proof: (1) is from McColl (1977), (2) from Spira (1971a) and (3) is
due to Preparata and Muller (1976).

(3) improves the earlier result of (Barak and Shamir, 1976).

The relation between size and depth is obtained in a similar
style by constructing a small depth network equivalent to one of mini-
mal complexity. In what follows the basisB2 is assumed. For a given
combinational network, T, e(T) will denote the total number of wires
leaving gate nodes inT. For v, w ∈ N, B(v) and A(w) are defined
respectively by:

max { D(f) : f is realised bya network Thaving e(T) ≤ v}

max { v : B(v) ≤ w}

For any v > 0, B(v) ≤ 1 + B(v − 1). To see this, consider any network
T with e(T) = v. If any gate ofT, which has only variables as inputs,
is replaced by a new variable, then the resulting network T1 computes
a new function, hase(T1) ≤ v − 1 and so depth no more thanB(v − 1).
Thus B(v) ≤ 1 + B(v − 1) because the original function has depth at
most one greater.

Theorem 2.15:(Paterson & Valiant, 1976)\/- f ∈ Bn

C(f) ≥
1

4
D(f) logD(f) − o(D(f))

Proof: Let T be an optimal network realising some functionf at a
gate t and having e(T) = v > 0. Suppose the gates ofT are partitioned
into 2 sets,Y and Z say, with no gate ofZ preceding a gate ofY. t
must be inZ if Z is non-empty. Let M be the set of those gates inY

Size and Depth 73

which supply an input to some gate inZ and letm = |M |. We wish to
consider the gates ofY as forming a network computing some multi-
ple output function ofXn, and the gates ofZ as a network computing
a Boolean function ofXn and { res(g) : g ∈ M}. We use Y to denote
the network comprising the gates inY, the inputsXn and with wires
as in T. Similarly Z denotes the network having inputsXn together
with the outputs ofM , gates fromZ and wires as inT. Further let
e(Y) = y, e(Z) = z. Since each gate inM supplies at least one wire
betweenY and Z, it is immediate that:

y + z + m ≤ v (2.11)

Suppose a single gate is moved from Y into Z. This decreasesy by at
most 2 andm by at most 1, so the partition ofT into Y and Z can
be chosen to satisfy:

| 2y + m − v | ≤ 2 (2.12)

Let u = max {y, z}. From (2.11) we have 2u + m ≤ v + |y − z| and
z ≤ v − y − m. From (2.12) |y − z| ≤ |2y + m − v| ≤ 2. Thus:

2u + m ≤ v + 2 (2.13)

Now Y is a network realising each of the functions in
{res(g) : g ∈ M}, so all of these can be computed in depthB(y). By
using this set of functions as input to a minimal depth network equiv-
alent toZ we obtain a network realisingf showing that:

D(f) ≤ B(y) + B(z) ≤ 2B(u) (2.14)

Consider the functionf ′(Xn, s1, . . . ,sm) in Bn+m computed byZ at t.
From the choice ofZ it is clear that:

f = f ′(Xn, res(g1) , . . . , res(gm)) (2.15)

74 CombinationalNetworks

where <g1, . . . ,gm > is M under some ordering.

Obviously \/- α ∈ {0, 1}m

D(f ′(Xn,α)) ≤ D(f ′(Xn, s1, . . . ,sm)) ≤ B(z)

Recall that the disjunctive expansion of f ′ about <s1, . . . ,sm > is
given by:

α ∈ {0,1}m
∨ δα (s1, . . . ,sm) ∧ f ′(Xn,α)

With this a new network realising f (Xn) can be constructed as fol-
lows. For eachα ∈ {0, 1}m, Zα is the network formed fromZ by
replacing each inputgi ∈ M by the corresponding constantai of α
and absorbing these into their successor gates (cf. Lemma(1.3)).Zα

computes f ′(Xn,α) at t. Any assignment,β , to Xn the inputs ofY
induces somem-tuple at the gates in M . For any α ∈ {0, 1}m let
χα (Xn) be the Boolean function which is 1 if and only if thism-tuple
corresponds toα . Noting our identity (2.15) forf and the earlier dis-
junctive expansion of f ′ we have:

f (Xn) =
α ∈ {0,1}m

∨ χα (Xn) ∧ f ′(Xn,α) (2.16)

Since every χα (Xn) is just a product of the, possibly negated, outputs
of the gates inM , so χα (Xn) can always be realised in depth at most

 log m  + B(y). Therefore the network forf built according to (2.16)
has depth not exceeding:

max {B(z), B(y) +  log m } + m + 1

Hence:

D(f) ≤ max {B(z), B(y) +  log m} + m + 1

≤ B(u) +  log m  + m + 1

Size and Depth 75

≤ B(u) − 2u + v + 3 +  log m  via (2. 13) (2.17)

So for a single fixed partition ofT we have two inequalities, (2.14)
and (2.17), giving an upper bound onD(f). Let us fix f and T for
some chosenr in such a way thate(T) = v = A(r) + 1 and D(f) > r .
From (2.14)

B(u) >  r /2  or equivalently u > A( r /2 ) (2.18)

The right-hand side of (2.17) is easily maximised by choosing

u = A( r /2 ) + 1, m = v + 2 − 2u since this expression is a decreas-
ing function of u (recall B(u) ≤ B(u − 1) + 1) and an increasing func-
tion of m. From this:

r < D(f) ≤  r /2  + 1 − 2(A( r /2 ) + 1) + v + 3 +  log v 

which simplifies to

v +  log v  > 2A( r /2 ) +  r /2  − 2 (2.19)

T was fixed so that e(T) = v = A(r) + 1 so (2.19) yields a recurrence
inequality for A(r) for any r . To solve this let:

H(r) =
1

2
r log r + 2 logr − kr

then

2H( r /2 ) + r /2 − 2 > H(r) + 1 +  log r 

for all k ≥ 0 and sufficiently large r . An easy induction onr can be
used to prove that for somek

A(r) ≥ H(r) ≥
1

2
r log r − O(r)

Finally since for any network T, e(T) ≤ 2C(T) we hav eshown:

76 CombinationalNetworks

C(f) ≥
1

4
D(f) logD(f) − O(D(f))

2.4) Lower Bounds on Specific Boolean Functions

The preceding pages have largely been concerned with proper-
ties that either all or almost all Boolean functions possess. Focusing
now on specific families, it would be appropriate to present as coda to
Shannon’s theorem, a proof that some explicitly definedb) family of
functions had combinational complexity Ω(2n/n). At present no such
proof exists. However, deriving bounds of this magnitude is perhaps
rather too ambitious and one might be content, for subsequent devel-
opment, with simply exponential or polynomial or even just superlin-
ear complexity, knowing from the various hierarchy theorems, that
families of this difficulty abound. Again, despite some considerable
effort encompassing almost 40 years, no such results are known.
Establishing results of this nature remains one of the most fundamen-
tal objectives for complexity theory, the lack of progress to date serv-
ing to highlight one frustrating and challenging aspect of the problem;
the apparent paradox that much is known about the complexity of
functions in general, but little about the difficulty of particular cases.

So the most powerful techniques currently available yield only
linear lower bounds on combinational complexity. Here are presented
three progressively stronger results; a theorem of Schnorr (1974)
which gives lower bounds of 2n − 3 on an important subset ofBn; the
method of Stockmeyer (1977) which allows bounds of 2.5n − 5 to be
obtained for certain symmetric functions; and finally the 3n lower
bound of Blum (1984a) which is the best achieved to date. It should

b) Formally, we shall regard a family [fn] as "explicitly defined" if there is aTM
which given n in unary as input, outputs the truth-table forf (Xn), in time polynomial in
2n.

Lower Bounds on Specific Functions 77

be noted that the concepts employed by both Stockmeyer and Blum
rely heavily on an approach developed in the earlier 2.5n lower
bound of Paul (1977), which will not be presented explicitly.

That the extant theory is devoid of all, save existential, exposi-
tions that specific functions are difficult to realise, may be attributed
to the impotence of what is essentially still the only generally applica-
ble paradigm for reasoning about combinational complexity: inductive
gate elimination. The form this takes is simply described. Consider
any family, [fn] of Boolean functions. Supposes(n) is a function
from N → N and it is desired to prove a lower bound ofs(n) on the
combinational complexity of [fn]. This may be accomplished by
showing that C(fc) ≥ s(c), as the inductive base,c denoting the num-
ber of arguments to the smallest instance in the family. The inductive
step assumes thatC(fi) ≥ s(i), \/- c ≤ i < n and consists of some analy-
sis which proves:

\/- optimal combinational networks, T, realising fn, there exists a
partial assignmentπ such that f |π

n = fn−|π | (i.e a lower indexed
member of the family). Furthermoreapplying π to T and sim-
plifying, using Lemma(1.3), eliminates at leastk(n) gates. Now
since

C(fn) ≥ C(fn−|π |) + k(n) ≥ s(n − |π |) + k(n)

it follows from the inductive hypothesis that ifk(n) is large
enough thenC(fn) ≥ s(n).

The inductive base should be relatively easy. The limitations of
the method become apparent in proving the inductive step, where two
difficulties arise; the requirement to project onto a smaller instance in
the family; and the need to eliminate sufficient gates in order to make
the inductive process succeed. The first of these may often be cir-
cumvented by using a broader concept of family. In this way instead

78 CombinationalNetworks

of attempting to prove bounds for a single function one aims to derive
results for the complexity of all families which possess some property,
e.g symmetric, threshold etc. This need not complicate the inductive
base and can permit considerable latitude in the choice of partial
assignment, since now it is sufficient to project onto any smaller func-
tion which has the required property.

It is the second constraint which presents the major obstacle to
more substantial results. To encapsulate all optimal combinational net-
works for fn in the inductive step, the normal mechanism is to pro-
ceed by an exhaustive case analysis examining the fanout of the input
nodes. The purely inductive argument outlined above is sufficient to
derive Schnorr’s 2n results. However, for proving larger bounds, often
it happens that there is some case where not enough gates can be
eliminated at once. To deal with this it is necessary to rely on the
knowledge gleaned from the other cases about the structure of optimal
networks for which induction fails and thereby prove that such net-
works contain the requisite number of gates directly, e.g Blum’s anal-
ysis effectively reduces to examining a network in which all inputs
have fanout 1 and enter∧-type gates, all other cases being handled
inductively. Such proofs are notable for the great complexity and con-
siderable technical sophistication of the arguments used to handle the
final cases. Paul (1977) was the first to develop these with a method
asserting the existence of gates in the final network, which were
potentially quite distant from the inputs. The techniques of that paper
have since been modified by Stockmeyer and enhanced by Blum.The
reader should be aware that the earlier 3n lower bound "proof" of
Schnorr (1980) is now known to be incomplete, cf Blum (1984a).

Below we shall frequently make use of Lemma(1.3) without
directly referring to it.

Lower Bounds on Specific Functions 79

The results of Schnorr (1974) and Stockmeyer (1977) pertain to
certain members ofSn, the class of Boolean symmetric functions,
Stockmeyer’s bounds being a development of Schnorr’s.

For f ∈ Sn, w(f) = w0w1
. . .wn ∈ {0, 1}n+1 denotes the spectrum

of f . SW is the set of strings in{0, 1}4 which contain 3 distinct sub-
strings of length 2, i.e

SW= { 0100, 0010, 0110, 0011, 1011, 1101, 1001, 1100}

For k ≥ 0, n ≥ 2k + 3 we consider the subsetFn,k of Sn which consists
of:

{ f ∈ Sn : w(f) ∈ {0, 1}≥ k. SW. {0, 1}≥ k}

(Unless otherwise stated, it will be assumed throughout thatk ≥ 0.)

A lower bound on the complexity of functions in Fn,k follows
directly from any lower bound on

C = min { C(f) : f ∈ Fn,k }

The results presented show that:

C ≥ 2n − 3 \/- n ≥ 3 (Schnorr, 1974)

C ≥ 2n + k − 3 \/- n ≥ 2k + 3 (Stockmeyer, 1977)

All but 8 functions inSn are in Fn,0, these being the constant func-
tions, and six functions having complexity n − 1.

To further simplify the description we employ the following
notation of Stockmeyer.

For n ≥ 3, let f ∈ Sn with w(f) = w0w1uwn−1wn, where
u ∈ {0, 1}n−3. Functions f00, f01, f10, f11 in Sn−2 are given by spectra:

80 CombinationalNetworks

w(f00) = w0w1u
w(f01) = w(f10) = w1uwn−1

w(f11) = uwn−1wn

(i.e the spectra resulting by setting two inputs to 0, 0 and 1 or 1
respectively.)

Functions f0, f1 in Sn−1 are defined similarly fromf so that:

w(f0) = w0w1uwn−1 ; w(f1) = w1uwn−1wn

For arbitrary c, d in {0, 1} and f in Sn the functions fcd in Sn−2 and
fc in Sn−1 are given in the obvious way using the preceding defini-
tions.

From these we have:

Lemma 2.5:

(I) If f ∈ Fn,k then f00, f01, f11 are all distinct functions.

(II) If f ∈ Fn,k, where k ≥ 1 then none off00, f01, f11, f0 or f1 are
constant functions.

Proof: The lemma may be verified directly from the definition of
Fn,k.

The next result is an important lemma, due to Schnorr, which
shows that in any optimal network realising somef ∈ Fn,k we can
identify an input having fan-out at least 2.

Lemma 2.6:(Schnorr, 1974) Let f ∈ Fn,k and T be an optimal net-
work computing f at some nodet. There exists somexi in Xn such
that φ (xi) ≥ 2 in T.

Proof: Let g be a gate inT whose distance from the output gate is
maximal. Both inputs of g must be (distinct) inputs ofT otherwise it
would be possible to select a gate at a greater distance fromt.

Lower Bounds on Specific Functions 81

Without loss of generality, let xi , x j be the inputs ofg and suppose
that φ (xi) = φ (x j) = 1. Since at least 2 ofres(g)(0, 0), res(g)(0, 1),
res(g)(1, 1) must be identical and sinceT depends onxi , x j only via
g it follows that two of:

f00(Xn − {x i , x j }), f01(Xn − {x i , x j }), f11(Xn − {x i , x j })

are identical. But then from Lemma(2.4)f cannot be inFn,k and this
contradiction proves the lemma.

Now we can prove our first lower bound using the inductive
gate elimination method.

Theorem 2.16:(Schnorr, 1974) \/- n ≥ 3, C ≥ 2n − 3

Proof: It is convenient to choosen = 2 as the base of the induction,
defining: C as

min { C(f) : f ∈ S2 and f is not a constant function}

(The alternative would be to show directly that all functions inF3,0

require at least 3 gates; since |F3,0| = |SW| = 10 this latter would be
somewhat tedious.)

Base: n= 2 Obvious

Inductive Step:Assume the result holds for all values 2≤ r < n. To
show the theorem holds forFn,0 consider any f ∈ Fn,0 and an optimal
network, T, realising f . Let xi , with φ (xi) ≥ 2, be the input identified
in the proof of Lemma(2.6). Sincef ∈ Fn,0, there is somec in {0, 1},
such that fc ∈ Fn−1,0. Set xi = c, simplify T and rename the remaining
inputs x1, . . . ,xn−1. The new network computes fc and contains 2
fewer gates becauseφ (xi) ≥ 2. Thus:

C(f) ≥ C(fc) + 2 ≥ C + 2 ≥ 2(n − 1) − 3 + 2 = 2n − 3

from the Inductive hypothesis.

82 CombinationalNetworks

To obtain larger bounds it is necessary to examine the structure
of optimal networks in more detail. The lower bound onC is a conse-
quence of the following lemma.

Lemma 2.7:(Stockmeyer, 1977) \/- k ≥ 1, \/- n ≥ 2k + 3

C ≥ min { C + 3, C + 5 }

Proof: Let f ∈ Fn,k and T be an optimal combinational network real-
ising f at t. It is assumed that of all such networks T is chosen so
that the quantityX − out, being the total fanout from input nodes, is
minimal. This assumption is required only once at the conclusion of
the proof. It will be shown that at least one of the following holds:

R1) Thereexists an inputxi of T such that settingxi = c ∈ {0, 1}
eliminates at least 3 gates.

R2) Thereexist distinct inputsxi , x j of T such that settingxi = 0
and x j = 1 eliminates at least 5 gates. Since

f |xi =c = fc ∈ Fn−1,k−1 and f |xi =0, x j =1 = f01 ∈ Fn−2,k−1

(after renaming the inputs as appropriate) this proves the lemma.
To establish that (R1) or (R2) holds consider any optimal net-
work realising f . We proceed by a case analysis.

Case 1:There exists an inputxi of T such thatφ (xi) ≥ 3

The successors ofxi must be distinct and so settingxi = 0 elim-
inates 3 gates.

Case 2: There exists an inputxi of T such thatφ (xi) = 2 and xi

enters an∧-type gate.

Let g1, g2 be the successors ofxi and without loss of generality
assume thatg1 is the ∧-type gate, the other input of which is some
gate h. In this case:

Lower Bounds on Specific Functions 83

res(g1) = ((xi)
a ∧ res(h)b)c

Setting xi = a eliminates g1 and g2. In addition, sinceres(g1) is a
constant function under this assignment, all the successors ofg1 can
also be eliminated. For from Lemma(2.5)g1 ≠ t; from optimality
some successor ofg1 must differ from g2, otherwise g1, g2 could be
replaced by a single gate. So 3 gates in total may be removed.

We are left with just one case. For thisxi , x j and d will denote
the nodes ofT identified in the proof of Lemma(2.6)

Case 3:Cases(1) and (2) do not hold andφ (x j) = 2

The caseφ (x j) = 1 is almost identical and so will not merit sep-
arate consideration. The mechanics of the proof are not affected by
this detail. xi must enter 2⊕-type gates,d and g1 say. x j entersd
and some gate h1, which is also⊕-type. In this case we must resort
to examining gates which are deeper in the network; an argument
based on the methods of Paul (1977) is employed.

Let < g1, g2 , . . . , gp > be a path in T with the properties:

i) \/- 1 ≤ i ≤ p gi is an⊕-type gate.

ii) \/- 1 ≤ i < p φ (gi) = 1

iii) φ (gp) > 1 or gp enters an∧-type gate orgp = t the output of
T.

A path <h1, h2 , . . . , hq > is defined analogously. It should be
obvious that both paths exist. For the path fromh1, si will denote the
node which supplies the other (thanx j or hi−1) input of hi . The sub-
network identified is depicted in Figure(2.2).

This network has several important properties.

Property 1: \/- 1 ≤ k ≤ p, \/- 1 ≤ l ≤ q gk ≠ hl

84 CombinationalNetworks

Figure 2.2

Proof: If gk = hl then

res(gk) = xi ⊕ x j ⊕ r (Xn)

for some functionr ∈ Bn. t depends onxi , x j only via d and gk but:

res(d) |xi = x j = 0 = res(d) |xi = x j = 1

res(gk)
|xi = x j = 0 = res(gk)

|xi = x j = 1

Lower Bounds on Specific Functions 85

hence f |xi =x j =0 = f |xi =x j =1 and this contradictsf ∈ Fn,k.

Without loss of generality it may be assumed thatT does not
contain any path from gp to hq; for sinceT is acyclic there cannot be
both a path fromgp to hq and a path fromhq to gp.

Property 2: \/- 1 ≤ k ≤ p, \/- 1 ≤ l ≤ q gk ≠ sl and there is no path from
gk to sl .

Proof: Suppose thatgk = sl . If k < p then gk+1 = hl and this contra-
dicts Property(1). Ifk = p then there is a path fromgp to hq contra-
dicting our previous assumption. Sincegk ≠ sl any path from gk to sl

must be viagp and this again would yield a path fromgp to hq.

We now make a simple modification to the network of Fig(2.2).

If q > 1 then
Delete the wires <x j , h1 >, < sq, hq >
Add wires <x j , hq >, < sq, h1 >

See Figure(2.3) in whichhq has been renamedh and s is the gate
supplying the other input ofh.

Property 3:

i) g1 ≠ s and there is no path fromg1 to s

ii) φ (h) ≥ 2 or h enters an∧-type gate orh = t

iii) d ≠ s

Proof: (i) follows directly from Property(2) and (ii) is immediate from
the choice of hq. For (iii) if d = s then res(h) = (xi)

a for some
a ∈ {0, 1} which would contradict the optimality ofT.

Property(3) guarantees that the six nodes in Figure(2.3) are dif-
ferent.

86 CombinationalNetworks

Figure 2.3

The remainder of the proof concentrates on this sub-network
and its environment. Theobjective is to establish two further proper-
ties:

i) | Elim | ≥ 2, whereElim is the set of gates which have an input
from d or h.

ii) T may be rewired to a network T′ realising f01 and in which
the nodesxi , x j , d and h all compute constant functions.

For e ∈ {0, 1}, Te is the network obtained fromT by changing
the sub-network of Fig(2.3) as follows:

E1) Deletethe nodesxi , x j and all wires leaving them fromT.

E2) Replacethe wire <s, h > by a wire < s, g1 >.

E3) Replaced by the constant function,b, associated withres(d),
i.e res(d) = b ⊕ xi ⊕ x j .

Lower Bounds on Specific Functions 87

E4) Replace h by the constant function e ⊕ c where
res(h) = c ⊕ x j ⊕ res(s) in T.

The net effect of (E1)-(E4) is that of replacingxi by the func-
tion [res(s)]e and x j by the function [res(s)]e. Clearly Te realises
f01 for both e = 0 and e = 1. Te contains two fewer gates (d, h) than
T and two nodes computing constant functions (from (E3) and (E4)).
We now show that at least 3 gates in addition tod and h may be
eliminated fromT in forming Te.

Property 4:Let e ∈ {0, 1}.

i) For any gate r ≠ s in Te

{u : r enters uin Te} = {u : r enters uin T}

ii) For any node y ≠ s in Te if y computes a constant function then
φ (y) ≥ 1.

iii) φ (d) ≥ 1, φ (h) ≥ 1 in T.

Proof: (i) is immediate from the definition ofTe; (ii) follows from (i)
and the fact thatf01 is not a constant function; (iii) is consequence of
(ii) and Property(3)(ii).

(If φ (x j) = 1 then Te is formed as before but the wire <s, g1 >
is not added. Property(4) still holds as stated)

We can now resume the case analysis, this time centred on the
size of Elim.

Case 3.1:|Elim| ≥ 3

Choosee = 0, then the gates d, h and at least 3 gates inElim
can be deleted fromT in creatingTe. Since T is optimal d, h ∈/ Elim.

Case 3.2:|Elim| = 2

88 CombinationalNetworks

Let Elim = {u,v}; u being a successor ofd and v of h, where
{u, v, d, h} are distinct by virtue of Prop(3)(ii) and (4)(iii)

Case 3.2.1:φ (h) = 2 (See Figure(2.4))

Figure 2.4

Consider the network T0. In this res(u) is a constant function, sinceh
and d become constants, thus from Prop(4)(ii)φ (u) ≥ 1. If v is a suc-
cessor ofu then res(v) in T0 is also constant andφ (v) ≥ 1. So hered,
h, u, v and all successors ofv can be eliminated fromT in forming

Lower Bounds on Specific Functions 89

T0. Alternatively if u does not enterv, then all successorsw of u
together withd, h, u and v can be eliminated.

Case 3.2.2:φ (h) = 1

From Prop(3)(iii) v must be an∧-type gate, so we can choose
some e, depending onop(v), so that res(v) is constant inTe. If v
enters any gate w ≠ u then the 5 gates d, h, u, v and w may be
deleted. Ifv enters onlyu then, fore chosen as before,res(u) is con-
stant in Te and so has some successorw ∈/ {d, h, v, u}, and again 5
gates may be eliminated.

It remains to dispose of the case whereElim contains but a sin-
gle gate. The final property establishes the impossibility of this
occurring and uses the assumption on the minimality ofX − out made
at the start of this proof.

Property 5: |Elim| ≠ 1

Proof:

Suppose the contrary, so that we have the sub-network of Fig-
ure(2.5). The gate u must be∧-type. If s is not an input ofT then re-
wire T as depicted in Figure(2.6), to a new network T′, amending the
gate operations ofd, h and u to ensure thatres(u) in T is the same
as res(u′) in T′. That this is always possible follows from the iden-
tity:

(x ⇐⇒ y) ∧ (y ⇐⇒ z) = (x ⇐⇒ z) ∧ (y ⇐⇒ z)

Now T′ computes f using no more gates but the total input
fanout of T′ is less than that ofT, contradicting the initial choice of
T.

On the other hand, supposes is an input ofT, xl say. From
optimality l ≠ i and l ≠ j In this case, sinceu is ∧-type, we can fixxi

90 CombinationalNetworks

Figure 2.5

and xl to constants so thatres(u) is constant. Theresulting network
is independent ofx j but should compute a non-constant symmetric
function of n − 2 arguments. This contradiction establishes Property(5)
and completes the proof of Lemma(2.7).

It is now easy to prove:

Theorem 2.17:\/- k ≥ 0, \/- n ≥ 2k + 3

C ≥ 2n + k − 3

Lower Bounds on Specific Functions 91

Figure 2.6

Proof: By induction on k. The inductive base, k = 0, is just Theo-
rem(2.16). Assuming the result holds for all values less thank and
applying Lemma(2.7) we obtain from the Inductive hypothesis:

C ≥ min {2(n − 1)+ (k − 1)− 3+ 3, 2(n − 2)+ (k − 1)− 3+ 5}

and this quantity is 2n + k − 3.

Special cases of interest are the threshold and congruence func-
tions.

Corollary 2.4: \/- k 2 ≤ k ≤ n − 1

C(Tn
k) ≥ 2n + min {k − 2, n − k − 1} − 3

92 CombinationalNetworks

\/- k 3 ≤ k ≤ n − 1

C(Cn
k) ≥ 2. 5n − k/2 − 4

Proof: The first inequality follows from Thm(2.17) since:

w(Tn
k) = 0k−2. 0011. 1n−k−1

The second inequality is obtained by fixingp = (n − k − 1)/2 and
observing that:

w(Cn
k) ∈ {0, 1}≥ p. {0100, 0010}. {0, 1}≥ p

In particular we have:

C(Tn
n/2) ≥ 2. 5n − 5

C(Cn
4) ≥ 2. 5n − 6

As Stockmeyer demonstrates this last is, to within an additive con-
stant, the best possible, his paper proving that:

C(Cn
4) ≤ 2. 5n

By fixing k =  (n − 3)/2 , m =  (n − 3)/2  it is easy to see that the
number of spectra of the form{0, 1}k. SW. {0, 1}m is 23. 2k. 2m = 2n

and hence at least half of the functions inSn have combinational com-
plexity ≥ 2. 5n − 5.

Stockmeyer’s argument is atypical in that the results are effected
entirely by an inductive process. This is not so in Paul’s original 2.5n
lower bound where the structure of the function examined necessitates
the investigation of further cases. For completeness we state Paul’s

Lower Bounds on Specific Functions 93

result below.

Theorem 2.18: (Paul, 1977) Let α1 = < a1, a2 , . . . , am >,

α2 = < am+1 , . . . , a2m > where m =  log n . For a given assignment
from {0, 1}m, α i encodes, in binary, some integer between 0 and
2m − 1 in the obvious way. (α i) denotes this value.

f (α1, α2, q, Xn) : {0, 1}n+2m+1 → {0, 1}

is given by:

(q ∧ x(α1) ∧x(α2)) ∨ (q ∧ (x(α1) ⊕ x(α2)))

(Note: f is arbitrary if (α i) > n or (α i) = 0)

C(f) ≥ 2. 5n − 2

Tw o strands run through the proof of this bound; the use of the
"indirect address" fields; and the application of the "control" bit,q.
Both are important in gaining information about the form of optimal
networks realising f .

The 3n lower bound of Blum (1984a), which is presented next,
also exploits these concepts. The function considered is a little more
complex than Paul’s, involving an additional address field
α3 = < a2m+1 , . . . , a3m >.

f (α1, α2, α3, q, Xn) is defined to be:

xq
(α1) ∧ (x(α2) ⊕ x(α3))

Since Paul’s function is a special case of this it follows from
Thm(2.18) thatC(f) ≥ 2. 5n − 2.

Theorem 2.19:(Blum, 1984a) For f (α1, α2, α3, q, Xn) as giv en above:

C(f) ≥ 3n − 3

94 CombinationalNetworks

Proof: For any s, 1 ≤ s ≤ n, let P(s) be the assertion:

C(f) ≥ 3s − 3 for all f : {0, 1}n+3m+1 → {0, 1} such that there
exists S ⊆ {1, 2, . . . ,n} of cardinality s, satisfying:

\/- < (α1), (α2), (α3) > ∈ S3

f (α1, α2, α3, q, Xn) = xq
(α1) ∧ (x(α2) ⊕ x(α3))

We prove the veracity ofP(s) by induction ons, thus again the
lower bounds are established for a class of functions having a particu-
lar property, albeit a rather specialised one.

Inductive Base:s = 1, s = 2

The cases = 1 is obvious. The cases = 2 follows by observing
that any function with the property of interest having s = 2, depends
essentially on at least 4 inputs (2 data inputs, at least 1 address bit
and 1 control bit) and thus requires at least 3 gates to be computed.c)

Inductive Step:Let P(s′) hold for all values s′ < s. Consider any f
satisfying the property stated above for some setS of cardinality s.
Let T be an optimal combinational network realising f at t. We pro-
ceed by a case analysis which examines the environment ofxi such
that i ∈ S. The cases:

Case 1:−− −− i ∈ S such thatφ (xi) ≥ 3

Case 2: −− −− i ∈ S such thatφ (xi) = 2 and xi enters an∧-type
gate.

are similar to the corresponding cases in Lemma(2.7) and are
left to the reader to confirm.

c) Extending the inductive base to cover s = 2 is a technical convenience; at certain
points in the proof of the inductive hypothesis it will be necessary to select 3 different
elements ofS.

Lower Bounds on Specific Functions 95

Case 3:−− −− i ∈ S such thatφ (xi) ≤ 2 and xi enters only⊕-type gates.

Case(3) of Lemma(2.7) established the existence of a path
< g1 , . . . , gp > of ⊕-type gates satisfying:

i) xi entersg1

ii) gk entersgk+1 1 ≤ k < p

iii) φ (gk) = 1 1 ≤ k < p

iv) φ (gp) ≥ 2 or gp enters an∧-type gate

v) If r k denotes the node supplying the other input ofgk then
res(r k) does not depend onxi , \/- 1 ≤ k ≤ p.

(v) is just a reformulation of the properties present by assuming
the absence of certain paths inT.

Clearly:

res(gp) = [xi ⊕
p

j=1
⊕ res(r j)] ⊕ e (e ∈ {0, 1})

= xi ⊕ h(Xn − {x i }), say

So replacingxi by the function h or h renders res(gp) a constant
function. With this we can proceed to eliminate 3 gates fromT. Con-
sider the two possibilities forgp.

A) φ (gp) ≥ 2

Computeh from res(r1) , . . . , res(r p) using at mostp − 1 ⊕-type
gates and replacexi by h. res(gp) is now constant and so all gates
{g1 , . . . , gp} and the successors ofgp may be eliminated. The new
network contains 3 fewer gates and satisfiesP(s − 1), for the set
S − {i} by the inductive hypothesis.

96 CombinationalNetworks

B) φ (gp) = 1

Therefore gp enters an∧-type gate, u say. An easy argument,
given in Paul (1977) establishesφ (u) ≥ 1 (i.e u ≠ t). As in (A) replace
xi by h or h to ensure thatres(u) is constant. This allows
{g1 , . . . , gp}, u and all successors ofu to be eliminated. Again this
leaves a network containing 3 fewer gates thanT and satisfying
P(s − 1) for the setS − {i} .

So it may be assumed that none of Cases(1-3) are true forT.
Thus we have \/- i ∈ S:

φ (xi) = 1 and xi enters an∧-type gate Ci , say.

Some further properties ofT, in this case, are now proved.

Property 1: \/- i , j ∈ S, (i ≠ j) Ci ≠ C j

Proof: Suppose the contrary. Then there exists somee ∈ {0, 1} for
which res(Ci)

|xi = e is constant, hence replacingxi by e renders T
independent of x j . But f |xi = e still depends on x j , e.g fix
(α1) = (α2) = i , (α3) = j , q = e and the remaining variables arbitrarily.
In this casef = e ⊕ x j .

Case 4:−− −− i ∈ S such thatφ (Ci) ≥ 2

Choosee ∈ {0, 1} for which res(Ci)
|xi =e is a constant function.

Then fixing xi = e allows Ci and its≥ 2 successors to be eliminated.

We now hav eonly:

Case 5:\/- i ∈ S φ (Ci) = 1

The remainder of the proof is dedicated to proving that any
such network contains 3s − 3 gates directly, i.e without recourse to the
inductive hypothesis.

We introduce some further terminology and notation.

Lower Bounds on Specific Functions 97

Di denotes the unique successor ofCi , for i ∈ S. Let

C = { Ci : i ∈ S } ; D = { D i : i ∈ S }

A split is a nodev such thatφ (v) ≥ 2. A path (v → w) is free in T is
no node in the path (with the possible exception ofv, w) is in C. A
node,w in T, is a free split if:

FS1) w is a split.

FS2) Thereare distinct nodesu and v in T for which there are free
paths (u → t) and (v → t) and w entersu and v.

A node w is a collector of free paths (Ci → t), (C j → t) (i ≠ j)
if it is the first node common to both paths.

The next 4 properties ofT were first given in Paul (1977).

Property 2: \/- i ∈ S there exists a free path (Ci → t).

Proof: Suppose for somei in S there is no free path (Ci → t). Every
path from Ci must go through someC j (j ≠ i). Since eachC j is
∧-type one may construct an assignment,β , such that all variables,
except xi are fixed underβ and:

\/- j ∈ S − {i} res(C j)
|β ∈ {0, 1}

(α1) = (α2) = i , (α3) = j ≠ i and q is chosen so that:

f |β = (xi)
e

for somee ∈ {0, 1}. T under β is independent ofxi but f |β is not.
This contradiction proves the existence of a free path (Ci → t).

From Property(2) we have immediately that the setsC, D are
disjoint.

Property 3: Let i , j be distinct elements ofS and G be the collector
of a free path (Ci → t) and a free path (C j → t). Suppose there is no

98 CombinationalNetworks

free split on the paths (Ci → G), (C j → G), except possiblyG itself.
Then

i) G is an⊕-type gate.

ii) There is a free path (Ci → C j) or a free path (C j → Ci).

Proof: Suppose (i) is false and thatG is an ∧-type gate. Letβ be the
assignment which fixes eachxk, for k ∈ S− {i,j} , so that res(Ck)

|β is
constant, (α1) = k ≠ i , j , (α2) = i , (α3) = j and q so that xq

(α1) = 1.
Then f |β = xi ⊕ x j

(Note: The control variable is used here to guarantee thatβ
exists. Theproof of this property is one of the reasons for commenc-
ing the inductive step from valuess ≥ 3 since we are now assured of
the existence of a suitablexk. In this context see also Property(6)
below).

With β a contradiction can be derived. For supposeres(C j)
|β

depends onxi ; then we can setx j to some c so that T under
< β , x j : = c > is independent ofxi but f |β ,x j :=c is xi ⊕ c. An identical
argument can be used ifCi depends onx j . Now by the stated
assumptions all paths (Ci → t) and (C j → t) pass through someCk,
all of which are constant, or go through the collectorG (since there
are no free splits on the considered paths).But res(G) |β computes an
∧-type function ofxi and x j or depends on only at most one variable.
In either caset cannot realise the⊕-type function required.

G is thus an⊕-type gate. So suppose (ii) does not hold and
there is neither a free path (Ci → C j) nor a free path (C j → Ci). Con-
struct an assignmentβ for which res(Ck)

|β is constant for allk in
S− {i,j} , (α1) = i , (α2) = j , (α3) = k ∈ S− {i,j} and q = 1. Then, f |β

realises an∧-type function ofxi and x j and now employing a similar
argument to that of (i) we derive the contradiction thatres(t) |β must

Lower Bounds on Specific Functions 99

be an∧-type function, but such cannot be computed from the⊕-type
function of xi , x j given by G.

Property 4: \/- i , j ∈ S (i ≠ j) Di ≠ D j

Proof: Immediate from Property(3).

Properties (1) and (4) identify 2s distinct gates,C ∪ D.

Property 5:T contains at leasts − 1 distinct splits.

Proof: Let S′ = S. Find i , j in S′ for which there exist free paths
(Ci → t) and (C j → t) such that for all k ∈ S′ − {i,j} no free path
(Ck → t) goes through the collector, G, of (Ci → t), (C j → t). Such a
pair can always be found as follows:

Consider any pair of free paths (Ci → t) and (C j → t) with col-
lector G. Suppose some other free path (Ck → t) also goes throughG.
This path must intersect either the path (Ci → t) or (C j → t) before
G, by the definition of collector. Let H be the first gate at which this
occurs and without loss of generality supposeH lies on the free path
(Ci → t). Clearly H is the collector of the free path (Ck → t) and the
free path (Ci → t) and is an ancestor ofG. If i , k do not meet the
condition required then the argument above can be repeated to select a
new pair. The process must terminate since a gate preceding the cur-
rent collector is always chosen at each stage and none of the gates in
D ∪ C can be collectors.

From Property(4) one of the paths (Ci → G), (C j → G) splits
into a free path tot or to C j (resp.Ci), the split occurring at a gate
precedingG. Without loss of generality suppose the path (Ci → G) is
the one which splits. Now set S′ = S′ − {i } . Repeating the argument
s − 1 times proves the result. The construction guarantees that no free
path (Ck → t) intersects with the free path (Ci → G[, and so no split
is counted twice.

100 CombinationalNetworks

The remainder of proof is due to Blum.

The main idea is show that at least (s − 2) of the distinct (s − 1)
splits identified above must be free splits. With Property(2) this will
leave 2(s − 2) + 2 wires which must be connected ontot, each wire
lying on a free path tot. It will be shown that this entails the use of
s − 3 gates in addition to those inC ∪ D, proving the lower bound
3s − 3.

First consider the (s − 1) splits located by Property(5) and sup-
pose at most (s − 2) of these nodes are free splits. Letj be such that
the split identified on the path fromC j is not free andi be such that
no split on the path fromCi is found, i.ei , j are pessimal cases. By
Property(3)i , j satisfy, with G the collector of the free paths (Ci → t)
and (C j → t).

IJ1) Thereis no free split on the paths (Ci → G), (C j → G), except
possiblyG.

IJ2) G is ⊕-type.

IJ3) Thereis a free path fromCi to C j .

For this situation we have:

Property 6: \/- k ∈ S − {j} there is a free path (Ck → Ci) or a free path
(Ck → C j).

Proof: A free path (Ci → C j) has been identified by the choice ofi .
Suppose for somek ∈ S − {i , j} there is neither a free path (Ck → Ci)
nor a free path (Ck → C j). Let β be the assignment which fixes all
variables, excepting xi , x j , xk so thatres(Cl)

|β is constant, for alll in
S′ − {i , j , k}, (α1) = j , (α2) = i , (α3) = k and q = 1. Then:

f β (xi , x j , xk) = x j ∧ (xi ⊕ xk)

Now if res(C j)
|β is independent ofxi we can fix xk to e in {0, 1} so

Lower Bounds on Specific Functions 101

that res(Ck)
|β , xk = e is constant andf |β , xk = e = x j ∧ x(e)

i . Since G is
⊕-type the argument used to prove Property(3) yields a contradiction.
On the other hand, ifres(C j)

|β does depend onxi , then xi may be
fixed to somee so that res(C j) is constant. Note that since there is
assumed to be no free path (Ck → C j) or (Ck → Ci), res(C j) cannot
depend onxk. Again a contradiction results since after thisT is inde-
pendent ofx j but

f |β , xi = e = x j ∧ xk

The final property will allow us to conclude that at most one of the
splits identified is not a free split. In the statement below, j is again
the path on which the non-free split is assumed to lie.

Property 7: \/- k, l ∈ S − { j }. If H is the collector of a free path
(Ck → t) and a free path (Cl → t) then there is a free split, other than
H , on the path (Ck → H) or the path (Cl → H).

Proof: (See Figure 7) Suppose there is neither a free split on the path
(Ck → H) nor the path (Cl → H). From Property(6), usingk and l
instead ofi and j , there is a path (C j → Cl) or a path (C j → Ck). But
from the choice of j and i there are also paths (Cl → C j) and
(Ck → C j) and this impliesT contains a cycle. .

It is clear from Property(7) thatT contains at leasts − 2 distinct
free splits. From this and Property(2) we have at least 2(s − 2) + 2
wires on free paths which must be connected up tot. The gates inC
cannot be used (by the definition of free path) and the gates inD can
account for at mosts wires. Thusat leasts − 2 wires have to be con-
nected using gates not inC ∪ D. A single new gate can remove two
wires but, if it is not the output, adds one.Hences − 3 gates must be
in T beside those inC and D. This gives:

C(f) ≥ |C| + |D| + s − 3 = 3s − 3

102 CombinationalNetworks

−− −− path (C j → Ck) or (C j → Cl) (Property 6, withk, l instead ofi , j)

−− −− path (Ck → C j) or (Cl → C j) (Property 6, by the choice ofi , j)

Figure 2.7

2.5) Some Upper Bounds on Combinational Complexity

We conclude this chapter by describing two network construc-
tions which provide depth and size efficient realisations of some inter-
esting classes of Boolean function. The first is a solution of the "par-
allel prefix problem", due to Ladner and Fischer (1980), which per-
mits small depth and size simulations of finite state transducers by
combinational networks. A consequence of this is a linear size,
O(log n) depth network for computing then + 1 bit sum of two n bit
binary integers. The second construction presented is a linear size,
log n-depth network capable of realising any n-input symmetric
Boolean function, and is from Muller and Preparata (1975).

Upper Bounds 103

The existing literature concerned with combinational networks
realising the basic arithmetic functions is extensive. Howev er with the
advent of more sophisticated technologies, entailing the assessment of
new complexity metrics, it is perhaps debatable whether the solutions
proposed are now of immediate, direct, practical significance. Given
this and the technical complexity of the more important constructions,
we will merely summarise the best of such results obtained to date at
the the end of this section.The bibliographic notes following indicate
further references.

Definition 2.5: Let * be any associative, binary operation over some
domain D. Let < d1, d2 , . . . , dn > be an n-tuple of variables taking
values fromD. The n-input prefix problem for *, is to compute then
products:

{d1 * d2 * d3 * . . . * di | 1 ≤ i ≤ n}

A *-product network,or simply product network, is a directed acyclic
graph containing n input nodes associated with variables,
< d1 , . . . , dn > and *-nodes, these having in-degree 2. We use C, D to
denote the number of *-nodes in (resp. depth of) a product network,
S. •

In the obvious way any product network computes some set of
products at its output nodes. WhenD = {0, 1}, the product network is
just a Boolean network over the basis{ * }, where * may be one of
{∧, ∨, ⊕, ⇐⇒}.

We wish to construct product networks to solve the prefix prob-
lem in minimal depth and size. The following construction of Ladner
and Fischer (1980) presents a family [Pk(n)] of product networks

such that:\/- 0 ≤ k ≤  log n , \/- n ≥ 1:

104 CombinationalNetworks

Pk(n) solves then-input prefix problem.

C ≤ 2(1 + 2−k)n − 4

D ≤ k +  log n 

Below we use m to denote n/2 . If n = 1 then Pk(n) (i.e
P0(1)) is just a single input node. For n > 1, Pk(n) is formed recur-
sively as follows:

k = 0: P0(n) consists of a copy of P1(m) and a copy of P0(n − m).

< d1, d2 , . . . , dm > and < dm+1 , . . . , dn >

denote the inputs ofP1(m) and P0(n − m) respectively. Similarly let:

< y1 , . . . , ym > and < ym+1 , . . . , yn >

denote the output nodes of these networks. P0(n) is formed by adding
n − m new * nodes, <gm+1 , . . . , gn >; the inputs ofgi being the out-
put ym of P1(m) and the output yi of P0(n − m). The outputs
< p1 , . . . , pn > of P0(n) are then

< y1 , . . . , ym, gm+1 , . . . , gn >

k > 0: Pk(n) consists of a single copy of Pk−1(m). If n is odd the
inputs to this are the products:

< d1 * d2, d3 * d4, . . . , dn−2 * dn−1, dn >

If n is even the inputs are:

< d1 * d2, d3 * d4, . . . , dn−1 * dn >

These being computed using n/2  new *-nodes. Let
< y1, y2 , . . . , ym > denote the outputs ofPk−1(m). If n is odd the out-
puts of Pk(n) are given by:

Upper Bounds 105

< d1, y1, y1 * d3, y2, y2 * d5, . . . , ym−2, ym−2 * dn−2, ym−1, ym >

whereas ifn is even the outputs ofPk(n) are computed by:

< d1, y1, y1 * d3, y2, y2 * d5, . . . , ym−1, ym−1 * dn−1, ym >

The construction is depicted below:

Figure 2.8 (a)

Lemma 2.8:\/- n ≥ 1, \/- 0 ≤ k ≤  log n 

i) Pk(n) solves then-input prefix problem.

ii) D ≤ k +  log n 

iii) C ≤ 2(1 + 2−k)n − 4

Proof:

i) By induction on the value 2n + k (k ≥ 0, n ≥ 1). The base,n = 1
and k = 0, is obvious. AssumePk(n) solves the prefix problem

106 CombinationalNetworks

Figure 2.8 (b)
whenever 2n + k ≤ s − 1. To prove Pk(n) solves it when
2n + k = s we distinguish two separate cases.

A) k = 0: Since n > 1, we hav e 2m + 1 < 2n so from the
inductive hypothesis bothP1(m) and P0(n − m) are cor-
rect. Thecasek = 0 is now easily verified from the defi-
nition of P0(n), cf Fig(2.8)(a).

B) k > 0: Again Pk−1(m) is correct from the inductive
hypothesis and using the definition ofPk(n) cf Fig(2.8)(b)

Upper Bounds 107

this network solves then-input prefix problem.

ii) The depth bound is a straightforward induction using the easily
obtained result that then’th output of Pk(n) is always at depth

 log n . The details are left to the reader.

iii) (Outline) The description ofPk(n) yields a system of recurrence
relations. Solving these yields the claimed upper bound onC.

One of the significant points of interest regarding this solution
to the prefix problem is how it can be applied to give an efficient
simulation of finite state transducers by combinational networks. We
assume some familiarity with the basic concepts of automata theory.
A finite state transducer(also known as a Mealy machine) is a quin-
tuple M = < Q, Σ, ∆, δ , γ >; Q a finite set of states;Σ a finite input
alphabet; ∆ a finite output alphabet (taken to be{0, 1});
δ : Q × Σ → Q the state transition function;γ : Q × Σ → ∆ the output
function. A stateq0 in Q is distinguished as the initial state. Given
some input sequencea1

. . . an in Σn, the output stringb1
. . . bn gener-

ated byM is given by:

b1 = γ (q0, a1)

b2 = γ (δ (q0, a1), a2)

b3 = γ (δ (δ (q0, a1), a2), a3) etc

The computation proceeds sequentially. Let us now consider a parallel
entity, combinational networks, which mimic the behaviour of such
machines.

For each e ∈ Σ define a functionMe: Q → Q by:

qMe = δ (q, e)

108 CombinationalNetworks

(That the argument ofMe is to the left is a notational convenience
introduced for reasons which will become apparent below).

For any giv en input sequencea1a2
. . . an, the state ofM after

readingi symbols is clearly:

q0Ma1
o Ma2

o . . . o Mai

(o denoting functional composition).

A combinational network which produces the output sequence
b1

. . . bn and the final state from a given input a1
. . . an and the ini-

tial stateq0 can be built in four stages.

S1) ComputeMa1
, Ma2

, , Man
.

S2) Computefor each 1≤ i ≤ n the functionsNi , where:

Ni = Ma1
o Ma2

o . . . o Mai

S3) Computefor each 1≤ i ≤ n, the next stateqi = q0Ni .

S4) Finallycompute the outputsbi , using bi = γ (qi−1, ai).

We now giv e a detailed description of how these steps may be
realised.

Each input ai is represented by a binary word containing

r =  log |Σ|  bits. Each stateqi is represented by a binary |Q|-tuple
< s0 , . . . , s|Q|−1 > in which si = 1 and all other elements are 0.

Each functionMe, for e ∈ Σ is encoded by a |Q| × |Q| Boolean
matrix, Te; the (i , j) entry of this matrix being 1 if and only if
δ (qi , e) = q j . With this convention, evaluation of qMe can be per-
formed as a vector matrix product, vizs Te, where s is the encoding
of stateq. Also the "functional composition"Me o M f reduces to the
multiplication of 2 |Q| × |Q| Boolean matrices (using∨ instead of+, ∧
instead of×). Thus:

Upper Bounds 109

qMe o M f = s TeT f

Since matrix multiplication is associative, so stage (S2) can be imple-
mented using the solution to the prefix problem.

We can now construct a combinational network to compute
(S1-S4); the total number of inputvariables is nr, xi denotes ther -
tuple of variables corresponding to the transducer inputai .

T1) For eachxi the appropriate matrixTai
must be selected, thus

some function:

T: {0, 1} r → {0, 1} |Q|2

is being computed. The (p, q) entry of Tai
is given by:

e ∈ Σ
∨ δ (de(xi) ∧ Te[p, q])

where de is the "equivalence function" of Sect(2.2) and
Te[p, q] denotes the (p, q) entry of Te. Thus the matrixTe is
selected if and only if the input corresponds toe in Σ.

No more thanr . 2r − 1 gates are needed to compute a single
matrix entry. Thus:

n |Q|2 (r 2r − 1)

gates suffice to compute all the outputs of (T1).

T2) The second stage is realised by the prefix network Pk(n), con-
structed earlier, in which the product nodes realise |Q| × |Q|
Boolean matrix multiplication. From Lemma(2.5) at most
4n − 4 of these are needed, ifk = 0, (fewer for larger fixed k).
Assuming the obvious matrix product network, this stage entails
the use of an additional:

(4n − 4) (2|Q|3 − |Q|2) gates.

110 CombinationalNetworks

T3) This is just a vector-matrix product, however since q0 is
encoded as <1, 0, 0. . . , 0, 0> this stage involves no extra gates.
Only the appropriate entries from each matrix computed in (T2)
need be passed to

T4) in which q1 , . . . , qn denote the encoded states selected. Each
output bi can now be computed from the expression:

q ∈ Q
∨

e ∈ Σ
∨ (dq(qi) ∧ de(xi) ∧ γ (q, e))

Thus a total:

n  2r |Q| (|Q| + r) − 1  gates

suffice to compute all thebi .

Summing the contributions of (T1), (T2) and (T4) gives at most
c1n − c2 gates, for some constantsc1, c2. Similarly the depth of the

construction can be shown to be no more thanc3 log n  for some
constantc3 depending onM .

The multiplicative constants in the size and depth bounds may
often be substantially smaller for specific simulations, since one may
be able to utilise a clever encoding of the state and composition func-
tions. A good example of this, given by Ladner and Fischer, is the
derivation of a combinational network realising binary addition, the
function ADD(Xn, Yn) of Sect(1.2).

Consider the 2 state transducer depicted in Fig(2.10)

The output gives the result of summing the 2 input bits and any
carry from the previous addition. This carry being stored as the label
of the current state. Since the behaviour on input 10 is identical to
that on input 01 there are only 3 functions, over the states 0 and 1, to
consider:M00, M01 and M11. From inspection of Fig(2.10) it may be

Upper Bounds 111

Figure 2.9

verified that:

\/- i , j , k, l ∈ {0, 1} M ij o Mkl ∈ {M00, M01, M11}

i.e the set of functions is closed under composition.

Following Ladner and Fischer (1980), instead of representing
Mij for ij ∈ {00, 01, 10, 11} by a 2× 2 Boolean matrix, it may be
encoded by 2 bits:r (result) andc (carry), thus:

112 CombinationalNetworks

Figure 2.10

Input: 00 01 10 11

rc 00 01 01 10

Table 2.1

So for input xy, r = x ∧ y and c = x ⊕ y. The result,rc, of compos-
ing two function r1c1 and r2c2 is then given by Table(2.2). Sothat:
r = r2 ∨ (r1 ∧ c2) and c = c1 ∧ c2.

Finally the state which results by applyingMij to a given state,
s ∈ {0, 1} is shown in Table(2.3); the output resulting in statet on
input corresponding to functionrc is given in Table(2.4).

Upper Bounds 113

r2c2

o 00 10 10

00 00 00 10
01 00 01 10 r1c1

10 00 10 10

Table 2.2

Function= rc
sM 00 01 10

State 0 0 1
s 0 1 1

Table 2.3

Input = rc
00 01 10

State 0 0 1 0
t 1 1 0 1

Table 2.4

In Table(2.3) the result is given by the expressionr ∨ (s ∧ c); In
Table(2.4) the output is given by t ⊕ c.

We can now prove:

Theorem 2.20:

C(ADD(Xn, Yn)) ≤ 3C(Pk(n)) + 2n (2.20)

114 CombinationalNetworks

D(ADD(Xn, Yn)) ≤ 2D(Pk(n)) + 2 (2.21)

and both bounds are achievable simultaneously.

Proof: The basic template (S1-S4) above, is implemented by the
stages (A1-A4) below.

A1) The function, r i ci associated with each input pairxi yi is
encoded by computing <xi ∧ yi , xi ⊕ yi >, following Table(2.1).
This uses 2n gates and requires depth 1.

A2) The computation of N1 , . . . , Nn from the input pairs
r1c1 , . . . , r ncn proceeds using the prefix network Pk(n), in
which product nodes realise the functionsr , c according to
Table(2.2). This can be done with 3C(Pk(n)) gates and in depth
2D(Pk(n)).

A3) By choosing the initial state to be state 0, the next state compu-
tation merely selects ther component of each output pair in
(A2) (cf. Table(2.3)). Thusthis stage adds no extra gates or
depth.

A4) The n outputs are computed using Table(2.4); the final state, i.e
last carry gives the n + 1 output. This requires in total at mostn
gates and extra depth 1.

Summing each contribution proves the theorem.

The multiplicative constants are bettered in the construction of
Khrapchenko (1967); these bounds are given at the end of this sec-
tion.

The method for efficiently realising symmetric functions given
in Muller and Preparata (1975) also involves a form of addition net-
work; one which calculates the total number of 1’s present in an
assignment toXn.

Upper Bounds 115

Theorem 2.21:(Muller and Preparata, 1975)\/- f ∈ Sn

C(f) ≤ 5n + O


n

log n



D(f) ≤ 7 log n 

Proof: We shall assume thatn = 2m − 1 for somem ≥ 1. The construc-
tion is in two stages: the first computes them-output functionWT
which is defined by:

WT = d = < dm−1, dm−2 , . . . , d0 >

where d is the binary representation of the total number of 1’s
assigned toXn, dm−1 being the most significant digit,d0 the least.

Since any symmetric function is completely specified by its
spectrum, it may be regarded as a functiong(d): {0, 1}m → {0, 1}, the
assignments tod corresponding to the number of 1’s in assignments
to Xn. In this way, giv en a realisation ofWT, any symmetric function
can be computed from them-tuple of outputsd using some combina-
tional network. The second stage consists of an appropriate network to
perform this task. From Thm(2.7) and Thm(2.10) such a network can

be constructed to have size
2m

m
=

n

log n
or depthm + 1. It is therefore

sufficient to prove that the first stage may be built using at most 5n
gates and with depth 6m.

The construction is recursive. Let k = 2m−1 − 1 = (n − 1)/2. Sup-
pose S1 is a network computing WT(x1, . . . ,xk) at outputs
< am−2 , . . . , a0 >, and thatS2 realisesWT(xk+1 , . . . , xn−1) at outputs
< bm−2 , . . . , b0 >. The required output forWT is then just the result of
adding these 2(m − 1)-tuples together withxn.

116 CombinationalNetworks

For this addition a chain ofm − 1 full adders (FAs) is used. An
FA has 3 inputsy, z, c and 2 outputs;r giving the result of adding
the single bitsy, z and c (the carry forward); andnc which is the
next carry forward. So:

r = y ⊕ z ⊕ c ; nc = c ∧ (y ⊕ z) ∨ y ∧ z

An FA can be realised using 5 gates and depth 3. The chain is illus-
trated in Figure(2.11). The inputs to thei ’th block are ai , bi and ci−1

(the previous carry, with c−1 taken to bexn). The outputs aredi as
result, andci .

So the combinational complexity ofWT, S(n), satisfies the rela-
tion:

S(n) ≤ 5(m − 1) + 2S((n − 1)/2) ≤ 5(n − m − 1)

By an easy induction onm.

The depth bound is only slightly more difficult. LetD denote
the depth at which thei ’th output di is computed when realisingWT,
for n = 2m − 1. We shall prove:

D ≤ 4m + 2i + 1 \/- m, \/- 0 ≤ i ≤ m

The base casesm = 0 and m = 1 are trivial. Assume that
D ≤ 4m′ + 2i + 1 for all m′ < m. Using the recursive construction
above and this hypothesis it follows that each outputai , bi is at depth
at most 4(m − 1) + 2i + 1. We additionally assume inductively that the
carry in to the i ’th FA, ci−1, is computed at depth no more than
4(m − 1) + 2i + 3. With c1 = xn the base here is again trivial. We now
have that di requires additional depth only 2, hence:

D ≤ 4(m − 1) + 2i + 5 = 4m + 2i + 1

The inductive step for the depthci follows in a similar manner. Now

Upper Bounds 117

Figure 2.11

choosingi = m yields the claimed bound on depth.

The theorem below summarises the best upper bounds on size and
depth for the arithmetic operations addition, multiplication and integer
division. In all cases the bounds are simultaneously achievable.

118 CombinationalNetworks

Theorem 2.22:

C(ADD(Xn, Yn)) ≤ 9n (2.22)

D(ADD(Xn, Yn)) ≤ log n + o(log n)

C(MULT(Xn, Yn)) = O(n log n log logn) (2.23)

D(MULT(Xn, Yn)) = O(log n)

C(DIVN(Xn, Yn)) = O(nk) for some fixedk(2.24)

D(DIVN(Xn, Yn)) = O(log n)

Proof: (2.22) is from Khrapchenko (1967); (2.23) from Schonhage and
Strassen (1971); (2.24) is proved in Beame, Cook and Hoover
(1984).

Bibliographic Notes

The complexity of computing Boolean functions on various
automaton models has been considered by Breitbart (1968) and Sholo-
mov (1970). Alt (1984) and Jung (1985) examine depth efficient simu-
lations of arithmetic networks by Boolean networks. The properties of
C(Bn), usually referred to as theShannon functionby Soviet authors,
have been studied in Karpova (1975) and Orlov (1971). Several
researchers have inv estigated different forms of "universal" network.
Preparata and Muller (1970) show that every function in Bn can be
obtained as a subfunction of one inBn+m and obtain an asymptotically
minimal bound on the size ofm. Valiant (1976) constructs a network
of size O(c logc) and depthO(c) which can simulate any network of
size c given a suitable setting of its control inputs. In similar vein

119

Cook and Hoover (1985) present a network of sizeO


c3d

logc



and

depth O(d) which can simulate any network of size c and depthd.
Lupanov (1958) also gives upper bounds for the complexity of all sets
of functions in Bn,m for m satisfying certain conditions. These are
mentioned in the following chapter.

Besides those given in Sect(2.4) a number of other linear lower
bounds on combinational complexity are known. Red’kin (1973)
appears to be the first detailed presentation of an inductive gate elimi-
nation argument, although this is only for the basis{∧, ∨, ¬}. Schnorr
(1976b) gives exactly matching upper and lower bounds on the combi-
national complexity of the function:

n−1

i=1
∧ (xi ⇐⇒ xi+1)

Linear lower bounds are also given by Bremer (1974), Harper (1975)
and Harper, Hsieh and Savage (1975).

As we mentioned previously the literature covering the combina-
tional complexity of arithmetic functions is substantial. Addition net-
works being studied in Avizienis (1961), Sklansky (1960a,1960b) and
Spira (1973); Earlier results on multiplication were found by Karat-
suba and Ofman (1962), Ofman (1962), Toom (1963) and Wallace
(1964).

Paul (1975) and Ulig (1974) consider the complexity of realis-
ing functions on disjoint sets of variables; both papers showing that
combinational complexity is not additive (i.e there exist functions
f (Xn), and g(Yn) for which C(f ∨ g) < C(f) + C(g) + 1). Pip-
penger (1977) and Sholomov (1971) examine the application of infor-
mation theory as a means of obtaining complexity bounds. Blum and
Seysen (1984) consider simultaneous computation of∧ and ¬∨.

120 CombinationalNetworks

Finally, Yablonskii (1959a,b) and Nigmatullin (1984,1985) attempt to
account for the fact that proving superlinear lower bounds on network
complexity is difficult.

117

Chapter 3

Monotone Network Complexity

. . . it wasclear that the endwas still far, far off , and that

the hardestand mostcomplicated part wasonly justbeginning.

Anton ChekhovThe Lady with the Dog

In this and the remaining chapters our primary concern is with a num-
ber of restricted models of Boolean network: monotone; formulae;
bounded-depth; and planar. There are several important general differ-
ences between monotone networks and these other models. The final
three all employ graph-theoretic restrictions: formulae compel gates to
have out-degree at most 1; bounded-depth networks permit arbitrary
fan-in gates of certain types, but limit the depth to being constant; the
planar model requires the underlying graph to be planar. Additionally
all of these turn out to be functionally complete in the sense that each
may realise any f in Bn. Neither is true of the monotone model; this
involving a restriction of content, the basis, rather than of form, the
graph structure.

That one considers simplified models is largely due to the lack
of progress in developing powerful lower bound arguments pertinent
to combinational networks; the hope being that these restricted forms
will prove more amenable to analysis. With respect to arbitrary net-
works the aims of such models are twofold: to gain insight into proof
techniques for combinational networks via lower bound methods for
the restricted model; and to determine if such networks may effi-
ciently simulate unrestricted networks.a) Thus formulae are of interest

a) The assertion here requires some qualification in the case of bounded-depth networks,

118 MonotoneNetworks

since it is possible to deduce bounds on network depth from bounds
on formula size, cf Theorem(2.4); the bounded-depth model includes a
class of networks whose complexity exactly corresponds with the
number of products in the minimal DNF for the computed function.
Finally the planar network complexity off can be shown to be at
most C(f)2, so large enough bounds in this model yield superlinear
bounds on combinational complexity.

For the class of monotone Boolean networks thereappears to
be no such strong theoretical motivation. However a number of signif-
icant results, derived from 1983 onwards, have shown that it may now
be reasonably contended that this model offers the greatest potential
for obtaining realistic complexity bounds. For this reason and the fact
that the other models mentioned above may themselves be restricted
to monotone instances, monotone Boolean networks will be the first
restricted model which will be examined in detail.b)

Prior to 1983 the study of monotone network complexity was
motivated in a number of ways. The set ofn-input monotone Boolean
functions, Mn, has long been of historical interest in certain areas of
algebra and combinatorial mathematics, dating back to the work of
Dedekind in the late 19th century. Despite the fact that the monotone
basis {∧, ∨} is incomplete, a great many computationally interesting
functions are monotone, e.g the threshold functions and a large num-
ber of NP-complete problems. Even in cases where a function is not
monotone it is often possible to consider instantiations which are, e.g
the set of Boolean functions defining integer multiplication is not in

which have mainly been investigated because of their relevance to a question concerning
the separation of particular complexity classes. This is discussed in greater detail in
Chapter(5).

b) We could of course define other compositions of restriction, e.g bounded-depth for-
mulae. In practice such models have little theoretical and even less pragmatic signifi-
cance.

Introduction 119

M2n,2n−1, but a special case is Boolean convolution, a set of monotone
functions. Theprogress made in obtaining good techniques for other
monotone models provides another justification. The complexity of
monotone arithmetic networks i.e with only the operations+, × per-
mitted was considered in both Schnorr (1976c) and (Jerrum and Snir,
1982). Theformer derives exponential lower bounds on the number
of additions required to compute certain rational functions, bounds
which are sometimes exact; the latter similar results for the number of
multiplications necessary. Lingas (1979) proves similar bounds in
other monotone models of computation.

This chapter presents a detailed and extensive account of the
theory of monotone network complexity. In Section(3.1) we describe
the history of a classical problem first formulated in Dedekind (1897),
namely to determine |Mn| (denoted ψ (n) henceforward). A lower
bound allows complexity bounds for almost all monotone functions to
be obtained using Shannon’s argument. The upper bound onψ (n)
proved in Hansel (1966) is also given. Although Hansel’s result is
not quite optimal, the bounds of Kleitman (1969), Kleitman and
Markowsky (1974) and Korshunov (1981) all improving it, the con-
cepts introduced in its derivation will be useful subsequently. This
section continues with two upper bounds on the network complexity
of all monotone Boolean functions. The first, also from Hansel (1966),
is an asymptotically optimal construction forcombinationalnetworks
realising functions inMn. This utilises a powerful design method
detailed in Lupanov (1961b, 1965b), known as the "Principle of Local
Coding". Thesecond construction, described in Red’kin (1979), con-
cerns the computation of monotone functions using only the monotone
basis {∧, ∨, 0, 1}. We conclude this section with a minor
improvement to the complexity hierarchy results of Thm(2.11) for
monotone networks.

120 MonotoneNetworks

Section(3.2) is a prelude to a number of the lower bound results
presented later in the chapter. It introduces an important tool for rea-
soning about the optimality of monotone networks, which was origi-
nally developed in Paterson (1975) and (Mehlhorn and Galil, 1976).
This is the concept of replacement rules. The application of this tech-
nique is discussed and some characterisation theorems from Dunne
(1984c) are proved.

The earliest indications that monotone networks are a tractable
model in which to obtain good complexity results came in the mid
1970’s with the appearance of the first superlinear lower bounds on
the complexity ofsetsof monotone Boolean functions, i.e members of
the class Mn,m. Section(3.3) deals with a number of these results,
among them the precise description of networks computing Boolean
matrix product from Paterson (1975); the result of Weiss (1983) on
Boolean Convolution; and a bound on the complexity of sets of
Boolean sums from Mehlhorn (1979).Refinements of the inductive
gate elimination approach, all these results utilise replacement rule
arguments in some way.

The following two sections consider the complexity of single
output functions, Section(3.4) giving some linear lower bounds on the
complexity of threshold functions from Dunne (1984b, 1985a) and a
particularly elegant 4n lower bound of Tiekenheinrich (1984). An
upper bound on the monotone network complexity of all fixed thresh-
old functions is also given.

Thus far there is but little to merit the status we have earlier
accorded this model. It is in the results of the concluding sections of
this chapter that its significance is confirmed. In 1985 the Soviet
mathematician Razborov obtained the first superpolynomial lower
bounds on monotone network complexity. Razborov (1985a, 1985b)
proves such results for a range of "natural" problems in graph theory.

Introduction 121

The method employs a startlingly innovative combinatorial approach
and may be phrased to yield a general inequality on monotone func-
tion complexity. These results represent a tremendous advance and
yet were improved, by different methods, in the paper of Andreev
(1985). Andreev derived exponential lower bounds, for an alternative
class of monotone functions. Independently of Andreev, Alon and
Boppana (1986) showed that certain combinatorial arguments of
Razborov (1985a) could be sharpenedc). In doing this they improved
Razborov’s results to exponential and exceeded the best lower bound
obtained by Andreev. In Section(3.5) a complete account of these
techniques is presented.

In Section(3.6) the relation between monotone and combina-
tional complexity is investigated by introducing the concepts of "stan-
dard circuit" and "pseudo-complement". An important result of
Berkowitz (1983) is proved, this showing that superlinear lower
bounds on the combinational complexity ofall functions in Mn,m fol-
low directly from sufficiently large lower bounds on themonotone
complexity of a related class of functions, called "slice functions".
The properties of slice functions have been investigated further in
We gener (1985, 1986) and Dunne (1984a, 1985c, 1986). We conclude
this chapter by describing some of the results of these papers.

In total the results of Section(3.5) show that large lower bounds
on monotone complexity can be derived and, as will be apparent, by
two quite general methods. The results of Section(3.6) demonstrate
that if these, or other methods, can be adapted to apply to certain
types of monotone function then a general technique for achieving
good lower bounds on combinational complexity has become

c) We note here that Razborov (1985a) gives no proofs, only an outline of the method,
thus Alon and Boppana had effectively to derive these results directly. Razborov
(1985b) does give a detailed description of his approach including all proofs.

122 MonotoneNetworks

available. It is these facts that establish the importance of monotone
network theory.

Subsequently we shall useCm(f) to denote the monotone net-
work complexity of a functionf ∈ Mn, and Cm(S) to denote the size
of a monotone network S.

3.1) Bounds for almost all monotone Boolean functions

A consequence of Corollary(2.2) is that a lower bound on the
combinational (and so also monotone) complexity of "almost all"
functions in Mn can be obtained from a lower bound onψ (n) = |Mn|.
The problem of exactly determining this quantity for arbitraryn was
first raised by Dedekind (1897).It is not difficult to derive a crude
lower bound onψ (n) by reasoning as follows:

Let En denote the binomial coefficient 


n

 n/2 


. From

Lemma(1.1) any prime implicant of f ∈Mn is just the product of
some subset of its formal arguments. Clearly there are exactly En dif-

ferent products of n/2  variables. With this we can identify at least
2En distinct functions inMn, since any subset of theseEn products
can be interpreted as the set of prime implicants of some function in
Mn and no two different subsets define the same function.

As a result of this we have:

Theorem 3.1:For almost all f ∈ Mn, for all ε > 0 and n sufficiently
large:

Cm(f) ≥ C(f) > √ 2

π
(1 − ε)2n

n3/2

Bounds for almost all monotone functions 123

Proof: Using Stirling’s approximation En ˜ √  2

π n
2n and Corol-

lary(2.2).

At present, no concise closed form forψ (n) has been found,
and the exact value of this function is not known forn above 6. A
considerable body of work exists concerning the asymptotic behaviour
of ψ (n). The list following summarises the history of Dedekind’s
problem.

1) Dedekind(1897) proves ψ (3) = 20, ψ (4) = 168.

2) Church(1940) demonstrates thatψ (5) = 7581.

3) Ward (1946) obtains the resultψ (6) = 7, 828, 354.

4) Gilbert (1954) considers the behaviour of logψ (n) and proves:

En ≤ logψ (n) ≤ En log n

5) Korobkov (1963) strengthens the upper bound of Gilbert (1954)
to

logψ (n) ≤
3 log 3

(32/3 − 1)3/2
En

6) Hansel(1966) improves Korobkov (1963),

ψ (n) ≤ 3En

7) Kleitman(1969) further reduces the upper bound onψ (n),

logψ (n) ≤ (1 + O

loge n

√ n


) En

8) Kleitman and Markowsky (1974) strengthen the lower bound of
Gilbert (1954) and this upper bound,

124 MonotoneNetworks

(1 + O


1

2√ n



)En ≤ logψ (n) ≤ (1 + O


loge n

n


)En

9) Korshunov (1981) derives asymptotically matching upper and
lower tolerances forψ (n). For n ev en (resp. odd),

ψ (n) ˜ 2En exp








n
n

2
− 1





(2
−n

2 + n22−n−5 − n2−n−4)




ψ (n) ˜ 21+En exp(G(n))

whereG(n) is









n
n − 3

2





(2
−n−3

2 − n22−n−6 − n2−n−3)




+ En (2
−n−1

2 + n22−n−4)

Korshunov’s result estimatesψ (6) as 7,996,118; an error of just
2% using the result of Ward (1946).

The last 3 results mentioned above are too lengthy to present
here. Instead we shall be content to derive Hansel’s upper bound.
Both Kleitman (1969) and (Kleitman and Markowsky, 1974) are in
effect improvements to the basic method presented in Hansel (1966).
Korshunov (1981) introduces radically different ideas, some of which
will be mentioned below in the context of complexity hierarchies for
monotone Boolean functions.

Hansel’s proof is based on the properties of a widely studied
partition of 2Xn into En connected symmetricchains. A connected,
symmetric chain in 2Xn being a totally ordered collection of subsets,

Rn

2
− j

⊂ Rn

2
− j+1

⊂ . . . ⊂ Rn

2
+ j

Bounds for almost all monotone functions 125

the setRi containing exactly i elements ofXn. In describing this we
shall employ the characterisation presented in Greene and Kleitman
(1976). It will be convenient to regard subsets ofXn as defining
monoms, for which we use the partial order≤ as before. Thus ifP
and Q are two subsets ofXn with P ⊆ Q then the corresponding
monoms, p and q, satisfy q ≤ p. We shall retain this convention of
using upper case Roman letters to denote subsets and lower case for
the implied monom. The notation |p| is employed as a shorthand for
|var(p)| = |P|.

Definition 3.1: Let w be any finite binary string.w is well-formed if
and only if

W1) w is the empty string.
or

W2) w = w1w2 and w1, w2 are well-formed,
or

W3) w = 1 w1 0 and w1 is well-formed.

Let w = w1w2
. . . wn be a binary string of lengthn. j is a free 0

if there is noi (1 ≤ i < j) for which the substringwi wi+1
. . . w j of w

is well-formed. Similarly j is a free 1 if there is noi (j < i ≤ n) for
which the substringw j w j+1

. . . wi is well-formed.

(i , j) is a bound pair in w if i < j and the substringwi
. . . w j of

w is well-formed. •

Informally well-formed strings correspond to balanced sequences
of left "(" and right ")" parentheses, regarding 1’s as left and 0’s as
right. Free 0’s and 1’s are then un-matched parentheses and bound
pairs form matching brackets.

Fact 3.1: Let w = w1w2
. . . wn be a binary word of lengthn.

126 MonotoneNetworks

i) If i is a free 1 inw then ∀ j > i , j is not a free 0 inw.

ii) If i is a free 0 inw then ∀ j < i , j is not a free 1 inw.

Proof: Since (ii) is immediate from (i), it is sufficient to prove (i)
only. Suppose thati is a free 1 inw but that (i) is false. Letj > i be
the free 0 inw such that j − i is minimal. The subword wi+1

. . . w j−1

cannot be well-formed for then (i , j) would be a bound pair inw. So
from the choice of j , this subword contains a free 1.Let k be the
free 1, i + 1 ≤ k ≤ j − 1 such that j − k is minimal. Now a contradic-
tion results sincewk+1

. . . w j−1 is well-formed and thus (k, j) is a
bound pair inw.

Any subset,P, of Xn can be encoded as a binary string which
is just the assignment toXn fixing exactly the variables inP to 1, e.g
if n = 5 and P = {x1, x3, x4} then the encoding is 10110; here (1,2)
and (4,5) are bound pairs and 3 is a free 1.β (P) (or β (p)) will
denote this encoding of an arbitrary subset (monom). The partition of
2Xn is formed by considering a relationTIED, defined between subsets
of Xn. For P and Q ⊆ Xn, < P,Q > ∈ TIED if β (P) and β (Q) contain
exactly the same bound pairs, e.g forn = 5 < 10010, 10110> ∈ TIED.
Kleitman and Markowsky (1974) note that the properties of this rela-
tion have been studied and used by a large number of authors.The
result below summarises several which will be of interest.

Fact 3.2: (Parts (v) and (vi) are due to Hansel)

i) TIED is an equivalence relation.

ii) Let C = {P1 , . . . , Pr } be any equivalence class ofTIED. Then:
Pi ⊂ Pi+1, and |Pi | = |Pi+1| − 1, ∀ 1 ≤ i < r ; i.e Each equivalence
class is a chain, totally ordered by⊂.

iii) TIED contains exactly En equivalence classes.

Bounds for almost all monotone functions 127

iv) For any P ⊆ Xn, the length of the chainC containingP (i.e |C|)
is 1 plus the total number of free 0’s and free 1’s in β (P).

v) ∀ 0 ≤ r ≤  n/2 , if P1 ⊂ P2 ⊂ P3 is a consecutive sequence of
3 subsets ofXn occurring in a chain of lengthn − 2r + 1 then
the subsetP1 ∪ (P3 − P2) of Xn occurs in a chain of length
n − 2r − 1.

vi) ∀ 0 ≤ r ≤  n/2 , there are exactly:



n

r



− 


n

r − 1



chains

of length n − 2r + 1. (For k < 0 we take 

n

k



as 0.)

Proof:

i) This is trivial and is left to the reader.

ii) Suppose the contrary and that <P,Q > ∈ TIED but P ⊆ Q and
Q ⊆ P. The set of ordered pairsP − Q × Q − P must then be non-
empty. Let < xi , x j > be a pair in this set such that |j − i | is minimal.
Without loss of generality we assume thatj > i , xi ∈ P − Q and
x j ∈ Q − P. Thus β (P), β (Q) may be depicted as:

1 2 . . . i − 1 i i + 1 . . . j − 1 j j + 1

β (P) 1 < z > 0

β (Q) 0 < z > 1

From the choice ofxi and x j the substring,z, between positionsi + 1
and j − 1 must be the same inβ (P) and β (Q). i must be a free 1 in
β (P) and a free 0 inβ (Q), for otherwise <P,Q > ∈/ TIED. From
Fact(3.1)(i) it follows that j is not a free 0 inβ (P) and thus (k, j) is
a bound pair in β (P) for some k < j (in fact i < k < j). But (k, j)
cannot be a bound pair inβ (Q). This contradicts <P,Q > ∈ TIED

128 MonotoneNetworks

and soP ⊆ Q or Q ⊆ P, proving the first part of (ii).

For the second part consider any equivalence class,C, of TIED:

C = {P1, P2 , , Pr }

From our argument above C may be regarded as a chain, i.e
Pi ⊂ Pi+1, ∀ 1 ≤ i < r . It follows that β (P1) contains no free 1’s for
otherwise we could remove some element fromP1 and not affect the
set of bound pairs.

Let

k = max {i | i i s a free0 in β (P1)}

and Q = P1 ∪ {xk}. Then <P1, Q > ∈ TIED since k could only form
a bound pair with some free 0 at a position >k in β (Q) and none
such exists. From the ordering ofC, it must be the case thatQ = P2

and |P1| = |P2| − 1. An identical argument establishes that
|Pi | = |Pi+1| − 1 for each 1≤ i < r as claimed.

iii) From (ii) no 2 subsets ofXn containing exactly  n/2  elements
are in the same equivalence class, hence the number of classes is
≥ En. On the other hand, suppose some class,C, contains no subset
with exactly this many elements. Either the minimal subset,P of C,

must contain at least n/2  + 1 members andβ (P) has no free 1’s, or

the maximal subset has at most n/2  − 1 members and no free 0’s.

But then in both cases there are at least n/2  + 1 bound pairs and
hence >n positions. Thiscontradiction proves (iii).

iv) The argument used to prove the second part of (ii) suffices; namely
for any chain C start with the minimal subset,P. This contains no
free 1’s. The next subset in the chain is formed by adding the element
xi to P where i is the rightmost (i.e maximal) free 0 inβ (P). i is
now a free 1 in β (P ∪ {x i }) so the total number of free positions is

Bounds for almost all monotone functions 129

unchanged.

v) Using (iv) it need only be shown thatβ (P1 ∪ (P3 − P2)) contains
2 fewer free positions thanβ (P1). From (ii)

P2 = P1 ∪ {x i } ; P3 = P1 ∪ {x i , x j }

for somexi , x j ∈/ P1. Thus

P1 ∪ (P3 − P2) = P1 ∪ {x j }

Both i and j must be free inβ (Pr), for all 1≤ r ≤ 3. Since i is a
free 1 in β (P2) so from Fact(3.1)(i) there are no free 0’s at j > i .
Thus i > j . Additionally since j is a free 1 inβ (P3) there are no
free 0’s k such that j < k < i . It follows that the substringz between
positions j + 1 and i − 1 in β (P1) must be well-formed, for from
Fact(3.1)(ii) there are no free 1’s, k, such that j + 1 ≤ k ≤ i − 1. Now
(v) follows easily since (j , i) is a bound pair in β (P1 ∪ {x j }), thus
this contains precisely 2 fewer free positions as required.

vi) With (iv) it is sufficient to show that the number of binary words
of length n containingn − 2r free 1’s and no free 0’s is exactly:



n

r



− 


n

r − 1



Any such word hasn − r 1’s and r 0’s. The total number of words

with this many 0’s and 1’s is obviously 

n

r


. Howev er this includes

words with fewer thanr bound pairs. LetB denote the set of words
with n − r 1’s, r 0’s and at mostr − 1 bound pairs. We shall show

that the size ofB is exactly 


n

r − 1


, by exhibiting a bijective mapping

from B to the set of words containing exactly n − r + 1 0’s and r − 1

1’s. Subtracting this total from

n

r



proves the desired bound.

130 MonotoneNetworks

We claim that any w = w1w2
. . .wn with n − r 1’s and r 0’s is

in B if and only if there exists somei such that the subword w1
. . .wi

contains more 0’s than 1’s.

The "if" part is easily verified since the firsti at which this con-
dition holds must be a free 0 and hencew has fewer thanr bound
pairs. To establish "only if" consider some word w in B. w must con-
tain a free 0 since it hasr 0’s but no more thanr − 1 bound pairs.
Let i be the lowest indexed free 0. w1

. . .wi−1 is well-formed, from
Fact(3.1)(ii) and the choice ofi , and so contains equal numbers of 1’s
and 0’s, thusw1

. . .wi contains precisely one more 0 than 1’s.

From the previous paragraph it is easy to check the correctness
of the following procedure which maps words inB to words with
n − r + 1 0’s and r − 1 1’s, and vice-versa.

Input: w in B (resp.z containingn − r + 1 0’s and r − 1 1’s)
Output: z containingn − r + 1 0’s and r − 1 1’s (resp.w in B)

1) Find lowest indexed j such thatw1
. . .w j

(resp.z1
. . .z j) has more 0’s than 1’s.

2) Complementthe subword w j+1
. . . wn

(resp.z j+1
. . . zn).

i.e Change 1’s to 0’s, 0’s to 1’s

This completes the proof of (vi) and Fact(3.2).

Theorem 3.2:(Hansel, 1966)ψ (n) ≤ 3n

Proof: Consider the partition of 2Xn into En chains:

{C1, C2 , . . . , CEn
}

given in Fact(3.2). Let these be ordered by length so that |Ci | ≤ |Ci+1|,
∀ 1 ≤ i < En. The ordering of chains of the same length is not impor-
tant. Let the subsets ofXn in the i ’th chain be denoted by:

Bounds for almost all monotone functions 131

{P1
i , P2

i , . . . , Pi r
i }

where these are ordered by containment.

The upper bound is proved in two stages. In the first we show
that any f ∈Mn may be encoded by aEn ternary digitcode,

t1t2
. . . ti

. . . tEn
∈ {0, 1, 2}En

In the second part it is proved that distinct functions map todifferent
codes.

Observe that any function, f ∈Mn takes at most one monom
from each chain as a prime implicant, since the chains are ordered by
containment. We can thus encode any monotone Boolean function
over Xn by indicating which (if any) monom in each chain is a prime
implicant of f . We shall prove by induction on the length of chains
set so far, that there are at most 3 choices for thei ’th chain: namely

no monom inCi is a prime implicant off (Xn) or P j
i is or P j+1

i is.
(These possibilities will correspond toti = 0, 2, 1 respectively in the
generated code). The key factor is that the exact position j within the
i ’th chain does not need to be encoded; it can be deduced from the
encoding of the previous i − 1 chains. Note that from Fact(3.2)(vi)
there are no even length chains ifn is even; no odd length chains ifn
is odd. It is clear that for each chain of length≤ 2 there are at most 3
choices as indicated above. So the inductive base is established. Now
assume that for all chains of length≤ n − 2r − 1 (for some

0 ≤ r <  n/2  there have been at most 3 choices for each chain. We
show that the same holds for each chain of lengthn − 2r + 1, namely
that all but two monoms are predetermined as non-implicants or as
(non-prime) implicants. Consider any chain, Ci , of length n − 2r + 1
and assume that a valid t ∈ {0, 1, 2} has been assigned for each chain
of length at mostn − 2r − 1. Obviously as soon as one monom,Pk

i , is

132 MonotoneNetworks

selected as a prime implicant this precludes any monom ⊃ Pk
i in the

same chain being chosen. Now consider any consecutive sequence of

subsets P j
i , P j+1

i , P j+2
i in Ci . From Fact(3.2)(v) the set

P j
i ∪ (P j+2

i − P j+1
i) is in a chain of lengthn − 2r − 1 and so the corre-

sponding monom,q say, is either not an implicant, in which event the

monom defined byP j
i is not an implicant (asP j

i ⊂ Q), or q is an
implicant, in which case the monoms defined byPk

i ∀ k ≥ j + 2 are

also implicants sinceQ ⊂ P j+2
i . The latter case leaves only 2 unchar-

acterised subsets, namelyP j
i , P j+1

i . By considering eachj from 1 up
to n − 2r + 1 in this way, eventually at most 2 non-determined
monoms remain. This completes the proof of the Inductive hypothesis.

It remains to show that distinct functions give rise to different
codes. Let f and g be distinct functions inMn. Since f = g we have
PI(f) = PI(g). For eachi 1 ≤ i ≤ En let:

pi = PI(f) ∩ Ci ; qi = PI(q) ∩ Ci

Let Ci be the lowest indexed chain for which pi = qi .

Ci = {r 1, r2 , . . . , r j−2, r j−1, r j = pi , r j+1, r j+2 , . . .}

Since pi is a prime implicant off , but not of g and since the previ-
ous i − 1 chains have been encoded identically forf and g (by the
choice of i) it follows that r k is not an implicant of f or g,
∀1 ≤ k ≤ j − 3. We distinguish 3 cases.

Case 1: r j is determined as an implicant of bothf and g, using
Fact(3.2)(v) as in the first part of the proof. Then sincer j = pi is a
prime implicant of f , neither r j−1 or r j−2 is an implicant of f , thus ti

must be 0 for f . Howev er one of these must be a prime implicant of
g, henceti is 1 or 2 forg.

Bounds for almost all monotone functions 133

Case 2:r j+1 is determined as an implicant of bothf and g, as before.
Using the same reasoning as Case(1),ti must equal 1 forf , but 0 or
2 for g.

Case 3:r j+2 is determined as an implicant of bothf and g. Note that
this always holds since

Rj ⊂ Rj ∪ (Rj+2 − Rj+1)

Again ti must equal 2 forf , but 0 or 1 forg.

Thus in all 3 possibilities the code digit,ti , assigned forCi is
different for f and g and this completes the proof of the second
stage.

Now Theorem(3.2) follows easily. Since every function in Mn is
specified by somen-digit ternary sequencet, and there are exactly 3n

such sequences, we have ψ (n) ≤ 3n as claimed.

Corollary 3.1: There exists a surjective mapping
CODE: {0, 1, 2}En → Mn

So given any En digit ternary code we can find a uniquen-
input monotone Boolean function associated with it and furthermore
every such function is associated with some such code.Below we
give a procedure which realises a surjective mapping from {0, 1, 2}En

onto Mn. This determines the value off over each chain, using the
values of f which have already been determined and the ternary digit

ti . In order to test if the value off (β (P j
i)) is predetermined we

employ two predicates: 0-covered takes a subsetP of Xn and the
index, i , of some chain as parameters and is true if and only ifP ⊂ Q
and f (β (Q)) has already been fixed to 0. Thus:

0 − Covered(P, i) ⇐⇒ (P ⊂ Q ∈
i

k=1
∪ Ck and f(β (Q)) = 0)

134 MonotoneNetworks

Similarly a subsetP is 1-covering if and only if P is a superset of
some subsetQ such that f (β (Q)) has already been fixed to 1.

1 − Covering(P, i) ⇐⇒ (P ⊃ Q ∈
i

k=1
∪ Ck and f(β (Q)) = 1)

A procedureSet Point(i , j) is used.

proc Set Point(Chain: i , Chain element: j)

if 0 − Covered(P j
i , i − 1) then

f (β (P j
i)) : = 0

elif 1 − Covering(P j
i , i − 1) then

f (β (P j
i)) : = 1

else f (β (P j
i)) : =  ti /2  fi

if 0 − Covered(P j+1
i , i − 1) then

f (β (P j+1
i)) : = 1

elif 1 − Covering(P j+1
i , i − 1) then

f (β (P j+1
i)) : = 1

else f (β (P j+1
i)) : =  ti /2  fi

corp

Bounds for almost all monotone functions 135

Input: t1t2
. . . tEn

∈ {0, 1, 2}En

Output: f (0, 0, . . . , 0), . . . , f (1, 1, . . . , 1)
the truth-table of somef ∈ Mn

for each chainCi i = 1, 2 ,. . . , n do
if |Ci | = 1 then

f (β (P1
i)) : =  ti /2 

fi
if |Ci | = 2 then
Set Point(i , 1)

fi
if |Ci | ≥ 3 then

j : = 1

(A) if 0 − covered(P j
i , i − 1) then

f (β (P j
i)) : = 0; j : = j + 1

elif 1 − covering(P j
i , i − 1) then

f (β (Pk
i)) : = 1 for k = j , j + 1 ,. . . , i r

j : = i r

else { assert: f (β (P j
i ∪ (P j+2

i − P j+1
i)) = 1}

f (β (Pk
i)) : = 1 for k = j + 2, j + 3 ,. . . , i r

Set Point(i , j)
j : = i r

fi
if j = i r − 1 then

Set Point(i , i r − 1)
j : = i r

fi
goto (A) if j = i r

fi
od

136 MonotoneNetworks

We leave it to the reader to verify the correctness of this proce-
dure.

The fact that such an encoding of all functions inMn exists and
can be easily applied turns out to be of great value in constructing
efficient combinationalnetworks for any monotone Boolean function.
We shall only briefly outline how this may be done using Hansel’s
procedure above. For a fuller description the reader should consult
Pippenger (1978). The technique applied derives from the ideas of
Lupanov (1961b, 1965b) and is known as "The Principle of Local
Coding".

Consider any class Hn ⊆ Bn of Boolean functions, with the
property that for all functionsh ∈ Hn ev ery subfunction of h is in
n−1

i=0
∪ Hi . The classMn is a particular example. We hav e seen earlier

how a lower bound on |Hn| may be used to obtain lower bounds on
the combinational complexity of almost all functions inHn. The local
coding principle is a method of deriving, under suitable conditions,
upper bounds on the combinational complexity of any function
h ∈ Hn. Suppose that for eachn, there exists a surjective mapping
from {0, 1} p → Hn so that every function in Hn can be associated
with a distinct p-digit binary codeword C1

. . . Cp. Of course the pre-
cise value ofp will depend onn, to keep the notation as simple as
possible we shall not make this explicit unless required. If these con-
ditions are all met then we can employ a network of the form in Fig-
ure(3.1) to compute any h ∈ Hn. This network consists of 3 parts
which fulfill the following functions. The inputs,Xn, are partitioned
into two sets {x1 , . . . , xm} and {xm+1 , . . . , xn}. Any subfunction of h
induced by an assignment to{xm+1 , . . . , xn} belongs toHm and thus
can be associated with some uniquep digit binary codeword. The net-
work N′′ of Fig(3.1) outputs the binary codeword C1

. . . Cp

Bounds for almost all monotone functions 137

Figure 3.1

corresponding to the subfunction ofh arising from a given assignment
to < xm+1

. . . xn >. Note that this network just computes some set of
functions in Bn−m,p. The codeword produced is fed as input to the
second stage,U. This is a decoding network, having p inputs and 2m

outputs, these outputs being the truth-table of the function inHm

encoded byC1
. . . Cp. The final stage,N′, is a selector network: the

output of U which corresponds to the assignment in{0, 1}m given to
x1

. . . xm is chosen byN′ and returned as the result ofh. Upper
bounds on the combinational complexity ofN′ and N′′ may be

138 MonotoneNetworks

obtained (relatively) easily. The problem in applying the construction
in general is that of finding an efficient encoding scheme and decod-
ing network.d)

The following lemmas give upper bounds on the combinational
complexity of N′ and N′′.

Lemma 3.1:∀ n there exists an n + 2n input, single output network
which computes the value of h from the truth-table ofh and Xn

which network containsO(2n) gates.

Proof: See Lupanov (1965b), Lemma(2.2), (p.42).

Lemma 3.2:Let C(Bn,m) denote the maximal combinational complex-
ity of any n-input, m-output function inBn,m. If 3 log logm ≤ n + O(1)
then,

C(Bn,m) ≤
m2n

n + log m
exp


O 


log log [m2n]

n + log m






Proof: See Lupanov (1965b), Theorem(D.13), (p.109).

Hansel’s result shows that any f ∈ Mn can be encoded by a

binary codeword of length p(n) =  (log 3) En . Using Hansel’s proce-
dure above, an efficient decoding network can be built.

Lemma 3.3:Let Un be a minimal combinational network which pro-
duces the truth-table of a function inMn from its p(n)-digit codeword.

C(Un) = O(En(log En)r)

wherer is some constant.

d) The universal construction for symmetric functions given in Chapter(2) is a particu-
larly simple application of this principle in which the Decoder and Selector are col-
lapsed into a single network. The codeword consists of log (n + 1)  digits being the
binary representation of the number of 1’s in the assignment toXn. The Decode/Select
stage then just returns the result using the function spectrum.

Bounds for almost all monotone functions 139

Proof: A detailed construction is given in Pippenger (1978).

Theorem 3.3:(Hansel, 1966)∀ f ∈ Mn, ∀ ε > 0 and sufficiently large
n:

C(f) < (log 3)√ 2

π
(1 + ε)2n

n3/2

Proof: We apply the principle of local coding and the results of the
three preceding lemmas. Let the inputsXn be divided into
{x1 , . . . , xm} and {xm+1 , . . . , xn} and computef using the scheme of
Figure(3.1) and the decoding network U whose existence is estab-
lished by Lemma(3.3).We then have:

N′′ is a network withn − m inputs and (log 3)Em  outputs.
For suitable choice ofm, its complexity will be:

 (log 3)Em  2n−m

n − m + log ( (log 3)Em )

U is a network with (log 3)Em  inputs and 2m outputs. From
Lemma(3.3) its complexity is:

O(Em(log Em)r)

N′ is a network withm + 2m inputs and a single output. It has
complexity O(2m).

m must be chosen so that:

3 log log ( (log 3)Em ) ≤ n − m + O(1)

Choosingm = n − c log n for some constantc depending onr ensures
this. It may now be easily verified that the complexity of N′′ is the
dominating term, and that with the choice ofm this yields:

140 MonotoneNetworks

C(f) ≤ (log 3)√ 2

π
(1 + ε)2n

n3/2

for all ε > 0 and n large enough.

Pippenger (1976, 1978) and independently Ugolnikov (1976),

prove that the lower bound√ 2

π
(1 − ε)2n

n3/2
is the best possible for

combinational complexity, by obtaining bounds of:

C(Mn) ˜√ 2

π
2n

n3/2
(Ugolnikov, 1976)

C(Mn) = √ 2

π
2n

n3/2



1 + O


log n

n






(Pippenger, 1976, 1978)

The latter result also utilises the principle of local coding in conjunc-
tion with the construction of Kleitman and Markowsky (1974).

A more natural question for monotone computation concerns the
monotone network complexity of monotone Boolean functions.
Namely, to determine upper and lower bounds on
Cm(Mn) = max { f ∈ Mn : Cm(f)}. A lower bound is again easily
obtained from Shannon’s methods. Red’kin (1979) gives a construc-

tion which asymptotically matches this, improving the earlier
2n log n

n3/2

bound of Pippenger (1976). This again relies heavily on the partition
of 2Xn into En connected, symmetric chains described in Fact(3.2).

Theorem 3.4:(Red’kin 1979)∀ f ∈ Mn

Cm(f) = O


2n

n3/2




Upper bounds on monotone network size 141

Before proving this theorem we need some preliminary results. LetXn

be partitioned into two sets Y and Z of sizesn1 and n2. Further, for
any set of Boolean variables,W, let ΠW denote the set of chains con-
stituting the partition of 2W discussed in Fact(3.2).

Given f ∈ Mn and chainsQk ∈ ΠY, Rl ∈ ΠZ having length k
and l respectively, we define the functionfQk × Rl

(Y, Z) by,

fQk × Rl
(π ,σ) =





f (π ,σ) if π ∈ Qk and σ ∈ Rl

0 otherwise

In this π ∈ {0, 1}n1 and π ∈ Qk is a shorthand forβ −1(π) ∈ Qk, and
similarly for σ ∈{0, 1}n2. β is the mapping from monoms over Y to
binary words described after Fact(3.1). To avoid confusion when dis-
tinguishing different sets of variables subsequently we will useγ ρ (W)
to denote the monom over W corresponding to the binary word ρ. i.e

γ ρ (W) =
w ∈ β −1(ρ)

∨ w

In general this function will not be monotone, however we can
define a monotone "approximation" to it which will be sufficient for
Thm(3.4).

Thus, f +
Qk × Rl

(Y, Z) is giv en by:

{(π ,σ) ∈ Qk × Rl : fQk × Rl
(π ,σ) = 1 }

∨ γ π (Y) γσ (Z)

Now for 0≤ p ≤  n/2 let h(n, p) = 

n

p



− 


n

p − 1



and recall that

there are exactly h(n, p) chains of lengthn − 2p + 1 in ΠXn
. Clearly

for any f ∈ Mn we have,

142 MonotoneNetworks

f (Y, Z) =
 n1/2

p=0
∨

h(n1,p)

i=1
∨

 n2/2

q=0
∨

h(n2,q)

j=1
∨ f +

p,i ,q, j (Y, Z) (3.1)

where f +
p,i ,q, j (Y, Z) is

f +
Qi , n1/2−2p+1 × Rj , n2/2−2q+1

(Y, Z) (3.2)

Qi ,r being thei ’th chain of lengthr under some ordering.

The expansion defined by (3.1) and (3.2) is central to Red’kin’s
upper bound construction. Before presenting this we require one pre-
liminary result.

Fact 3.3: Let Qk ∈ ΠY, Rl ∈ ΠZ be chains of lengthk and l as
before. Then

| { f +
Qk × Rl

: f ∈ Mn } | ≤ | { fQk × Rl
: f ∈ Mn } |

= 

k + l

k



Proof: The first inequality is immediate from the definitions off +
... and

f.... For the second observe that we can representfQk × Rl
as a k × l

Boolean matrix,M , in which Mi , j is the value of f (π i ,σ j); π i being
the i ’th element of the ordered chainQk, σ j the j ’th element of the
ordered chainRl . It follows that it is sufficient to count the number of
pairwise distinct matrices,M , which are consistent withf being
monotone.

Since,

Qk = < π1, π2 , . . . ,π k >

Rl = <σ1,σ2 , . . . ,σ l >

Upper bounds on monotone network size 143

with γ π i+1
(Y) < γ π i

(Y), γσ j+1
(Z) < γσ j

(Z) for each 1≤ i < k, 1 ≤ j < l ,

it follows

f (π i ,σ j) = 1 ☞ f (π i+s,σ j+t) = 1

for each valid s≥ 0, t ≥ 0. So in counting the number of distinct
appropriate matrices we know that for each row i , if Mi , j = 1 then the
values of Mi , j+t are predetermined to be 1 also. We can now proceed
with an inductive argument. The result is obvious fork = 1 so assume
it holds for all values ≤ k − 1 and all l and consider the number of
valid k × l matrices. By the inductive hypothesis, there are exactly



k − 1 + l

k − 1



valid matrices in which the first row is entirely 0. Similarly

for each 1≤ j ≤ l there are exactly 

k − 1 + j − 1

k − 1



matrices in which

the first j − 1 entries of the first row are 0’s and the remainder 1’s.
Since there are no other consistent assignments to the first row we
have that the total number of valid k × l matrices is exactly

l+1

j=1
Σ 


k − 1 + j − 1

k − 1



and an easy induction onl ≥ 1 shows this to be

k + l

l



as claimed.

Proof of Theorem 3.4:Let f ∈ Mn and partitionXn into 3 disjoint
sets of variables:W = < x1 , . . . ,xn−2m >; Y = < xn−2m+1 , . . . ,xn−m >; and
Z = < xn−m+1 , . . . ,xn > where m will be fixed subsequently. Since f is
monotone it is clear that

f (W, Y, Z) =
α ∈{0,1}n−2m

∨ γα (W) f |W := α (Y, Z) (3.3)

144 MonotoneNetworks

Using r to denote m/2 (3.1) and (3.3) show that f (W, Y, Z)
is

r

p=0
∨

h(m,p)

i=1
∨

r

q=0
∨

α
∨

h(m,q)

j=1
∨ γα (W) f γ +

p,i ,q, j (Y, Z) (3.4)

Hence,

Cm(f) ≤
r

p=0
Σ

h(m,p)

i=1
Σ

r

q=0
Σ Cm(f p,i ,q(W, Y, Z)) (3.5)

f p,i ,q being the inner two ∨ levels of (3.4). We group the chains of
length m − 2q + 1 into blocks of size at mosts(p, q). s(p, q) is chosen
so that



2(m − p − q + 1)

m − 2q + 1



s(p,q)

≤ 2n−3m < 

2(m − p − q + 1)

m − 2q + 1



s(p,q)+1

(3.6)

Now for n ≥ 8 and m =  (n − 2)/6 it holds,

2 ≤ 

2(m − p − q + 1)

m − 2q + 1



≤ 2n−3m

From the first inequality and (3.6) we deduce thats(p, q) ≤ n − 3m.

From (3.6) and the fact that 

n

k



≤ 2n it follows that

s(p, q) >
n − 3m

2(m − p − q + 1)
− 1. In total

n − 3m

2(m − p − q + 1)
− 1 < s(p, q) ≤ n − 3m (3.7)

So, realising (3.5) by grouping chains of lengthm − 2q + 1 into
sets of sizes(p, q) giv es f p,i ,q(W, Y, Z) as

Upper bounds on monotone network size 145

α
∨ γα (W)

 h(m,q)/s(p,q) 

t=1
∨ f α

p,i ,q,t(Y, Z) (3.8)

where

f α
p,i ,q,t =

min {s(p,q)t, h(m,q)}

j=s(p,q)(t−1)+1
∨ f α +

p,i ,q, j (Y, Z)

Hence,

Cm(f p,i ,q) ≤
 h(m,q)/s(p,q) 

t=1
Σ Cm(f +

p,i ,q,t) (3.9)

where

f +
p,i ,q,t =

α
∨ γα (W) f α

p,i ,q,t(Y, Z)

We can now describe a 4 part monotone network, S, realising
f +

p,i ,q,t for fixed p, i , q and t. S consists of sub-networks S1, S2, S3

and S4. S1 has inputsW and realises all the monoms over W, i.e the
functionsγα (W) for eachα . Using then − 2m-ordered network Un−−2m

in which instances ofxi are replaced by the constant function 1, this
can be accomplished in at most 2n−2m ∧-gates.

The network S2 has inputsY ∪ Z and realises all of the func-
tions f γ

p,i ,q,t . Each of these is the disjunction of at mosts(p, q) func-
tions of the form,

f α +
Qi ,m−2p+1 × Rj ,m−2q+1

(3.10)

For fixed i , p, j , q and the number of distinct functions over
Y ∪ Z of the form of (3.10) is, from Fact(3.3), at most

g(m, p, q) = |
α
∪ { f α +

Qi ,m−2p+1 × Rj ,m−2q+1
} |

146 MonotoneNetworks

≤ 

2(m − p − q + 1)

m − p − q + 1



So the number of distinct functionsf α
p,i ,q,t , for fixed p, i , q, and t is

at mostg(m, p, q)s(p,q) which from (3.6) does not exceed 2n−3m.

Each of the functions from (3.10) has by definition at most
(m + 1)2 prime implicants, each prime implicant containing at most
2m variables. Hence a singlef α

p,i ,q,t can be realised ins(m + 1)2 2m
gates, and all of them in at most 2n−3m s(m + 1)2 2m gates.

S3 conjoins each output ofS1 to its appropriate output fromS2

and thus has at most 2n−2m gates. Finally S4 ∨’s together all the out-
puts of S4, adding a further 2n−2m gates.

In total we have,

Cm(f +
p,i ,q,t) ≤ c1 2n−2m + 2n−3m s(m + 1)2 2m

which is ≤ c2 2n−2m for some constantc2, giv en that m =  (n − 2)/6.

Combining this with our previous expansions it follows that,

Cm(f) ≤
r

p=0
Σ

h(m,p)

i=1
Σ

r

q=0
Σ

 h(m,q)/s(p,q) 

t=1
Σ c2 2n−2m

≤ c2 2n−2m
r

p=0
Σ

h(m,p)

i=1
Σ

r

q=0
Σ 


h(m, p)

(n − 3m)/2(m − p − q + 1)
+ 1



≤ c3
2n−2m

n

r

p=0
Σ

h(m,p)

i=1
Σ

r

q=0
Σ (2(m − p − q + 1) h(m, q) + m)

It is relatively straightforward to show that,

Upper bounds on monotone network size 147

r

i=0
Σ (m − 2i + 2)h(m, i) = 2m + Em

and consequently,

Cm(f) ≤ c3
2n−2m

n

r

p=0
Σ

h(m,p)

i=1
Σ ((m − 2p + 2) Em + 2m + m2)

< c4
2n−2m

n

r

p=0
Σ ((m − 2p + 2) h(m, p) Em + 2m Em)

= c4
2n−2m

n
((2m + Em) Em + 2m Em)

< c5
2n

n3/2

from the choice ofm. This proves Theorem(3.4).

We conclude this section by presenting a very slight
improvement to the complexity hierarchy for monotone network size.
This divides the upper range[Cm(Mn−1), Cm(Mn)) into two parts:
[Cm(Mn−1), Cm(Ps

n)) and [Cm(Ps
n), Cm(Mn)). The class of monotone

Boolean functionsPs
n was considered by Korshunov (1981). Its pre-

cise definition is not important, the only property of it that we require
is:

For s ∈ { n/2 ,  n/2 }:

If n is even and f ∈ Ps
n then all prime implicants off contain

between
n

2
− 1 and

n

2
+ 2 variables

If n is odd and f ∈ Ps
n then all prime implicants off contain

betweens − 1 and s + 2 variables.

148 MonotoneNetworks

Fact 3.4: (Korshunov, 1981) Let M *
n = Pn/2

n if n is even and

M *
n = P n/2 

n ∪ P n/2 
n if n is odd. Almost all f ∈ Mn are in M *

n.

Fact 3.5: If f ∈ Mn, such thatCm(f) ≥ Cm(Mn−1) then f has a prime

implicant, which contains at mostn − 
n

log2 n
 variables.

Proof: This is an easy counting argument.

With these two facts the hierarchy result below, improving
Thm(2.12), for monotone bases, is immediate.

Theorem 3.5:

c{∧,∨}(r) ≤ 
n

2
 + 2 for Cm(Mn−1) ≤ r < Cm(Ps

n)

c{∧,∨}(r) ≤ n − 
n

log2 n
 for Cm(Ps

n) ≤ r < Cm(Mn)

3.2) Replacement Rules

One reason for the failure of inductive methods to derive super-
linear lower bounds on combinational network size lies in the fact that
such methods have made little use of the structure of optimal net-
works. For the unrestricted case information about the form of mini-
mal networks appears to be very difficult to obtain. In contrast many
inductive proofs concerned with the complexity of monotone computa-
tion rely on arguments which assert that optimal monotone networks,
realising f ∈ Mn, do not contain gates computing certain functions.
Such arguments utilise a powerful technique calledreplacement rules,
which was independently proposed by Paterson (1975) and (Mehlhorn
and Galil, 1976).

Replacement rules 149

Definition 3.2:A replacement rulefor f ∈Mn is a rule of the form:

In any monotone network S computing f , any node u, for
which res(u) = g may be replaced by a node w for which
res(w) = h and the resulting monotone network will still com-
pute f . •

Here "replaced" means that the nodeu is deleted from S,
together with any wires <v, u > or < u, r >; then the nodew is added
to S − u and wires <w, r > for all r such that <u, r > was a wire in
S. We shall say that "g is h-replaceable with respect tof ", denoting

this by g
f

====== h. It is important to note that replacements are univer-

sally valid in the sense thatg may be replaced byh in all monotone
networks realising f .

How can this idea be useful in determining the structure of opti-
mal monotone networks? Suppose that for somef ∈Mn we know that

g
f

====== 0, or g
f

====== 1 or g
f

====== xi . Then no optimal monotone net-

work realising f can contain a gate whose result isg, for any such
gate can be eliminated and replaced by a constant function or an input
xi . For suitable f and g determination of such rules may allow signif-
icant properties of optimal networks to be inferred. For example Pater-
son (1975) considers the monotone complexity of Boolean matrix

product, BMP(Xn,n, Yn,n): {0, 1}2n2
→ {0, 1}n2

where each outputcij is
defined by

cij =
n

k=1
∨ (xik ∧ ykj)

By showing that certain functions can be replaced by 1, it is deduced
that there is one∧-gate for every prime implicant of eachcij . It fol-
lows thatCm(BMP) ≥ n3 since this number of∧-gates is required.

150 MonotoneNetworks

In this section we examine general replacement rules. First two
results giving necessary and sufficient conditions for a functions to be
replaceable by a constant functions are proved. These originated in
(Mehlhorn and Galil, 1976). In the remainder of this section we
briefly survey some characterisation results of (Dunne, 1984a,c) which
yield closed form expressions describing all valid replacement rules.

Definition 3.3:Let p be a monom andc a clause defined over subsets
of Xn. The monotone Boolean functionsχ (p) and φ (c) are defined
by:

χ (p) =
{x i ∈ Xn − var(p)}

∨ xi

φ (c) =
{x i ∈ Xn − var(c)}

∧ xi •

Lemma 3.4:

i) (Mehlhorn and Galil, 1976)

g
f

====== 0 ⇐⇒ ∀ p ∈PI(g) ¬ ∃ m s.t p m∈PI(f)

ii) g
f

====== 0 ⇐⇒ f ≤ g ∨ h ☞ f ≤ h

iii) (Dunne, 1984a,c) g
f

====== 0 ⇐⇒ 0 ≤ g ≤
p ∈ PI(f)

∧ χ (p)

Proof:

i) Since

g1

f

====== 0 and g2

f

====== 0 ☞ g1 ∨ g2

f

====== 0

it is sufficient to prove (i) for g being a single monom,p say. So

Replacement rules 151

suppose p
f

====== 0 but that there exists a monomm for which

pm∈PI(f). Thus

f = pm ∨
q ∈ PI(f) − pm

∨ q

but
q ∈ PI(f) − pm

∨ q = f . This contradictsp
f

====== 0 and so no suchm can

exist. On the other hand, suppose that there does not exist any monom
m such thatpm∈PI(f). Let S be any monotone network realisingf
at some nodet and let u be a node inS for which res(u) = p. Con-
sider any path from u to t; this may be regarded as computing some
function R of p and Xn;

R(p, Xn) = p R1 ∨ R2 ≤ f

since S realises f . It follows that p R1 ≤ f but PI(p R1) ∩ PI(f) = {}
and so replacing the nodeu by 0 cannot affect the computation off
at t.

ii) ☞ Supposeg
f

====== 0 and that f ≤ g ∨ h for some h. We wish to

show that f ≤ h. Since f ≤ g ∨ h, so f = (g ∨ h) f . But g
f

====== 0

hence f = h f thus f ≤ h.

☞As in (i) let S be a monotone network realisingf at t and con-
taining a nodeu with result g. Consider the function ofg and Xn

computed on some path fromu to t, i.e g h1 ∨ h2. Since S computes
f , we hav e,

f ≤ g h1 ∨ h2 = (g ∨ h2) (h1 ∨ h2)

≤ g ∨ h2 ☞ f ≤ h2

152 MonotoneNetworks

So replacingu by 0 does not affect the computation off by S, i.e

g
f

====== 0.

iii) ☞ Suppose thatg
f

====== 0. From (i) for all prime implicants,q, of

g there does not exist any m for which q m ∈ PI(f). Thus for every
prime implicant,p, of f

p ≤ q ☞ ∃ xi ∈ var(q) − var(p)

☞ q ≤ χ (p)

So q ≤
p ∈ PI(f)

∧ χ (p) for every q ∈PI(g)

☞Suppose that 0≤ g ≤
p ∈ PI(f)

∧ χ (p). Consider any q ∈PI(g) and

any p ∈PI(f). By the choice ofg, q ≤ χ (p) thus p ≤ q and so there
does not exist any monom m for which q m = p. Since p and q were

chosen arbitrarily, it follows from (i) thatg
f

====== 0.

Lemma 3.5:

i) g
f

====== 1 ⇐⇒

∀ c ∈PC(g) ¬ ∃ s such thatc ∨ s ∈ PC(f)

ii) g
f

====== 1 ⇐⇒ g ∧ h ≤ f ☞ h ≤ f

iii) g
f

====== 1 ⇐⇒
c ∈ PC(f)

∨ φ (c) ≤ g ≤ 1

Proof: Duality.

Replacement rules 153

The next theorem completely characterises all valid replacement
rules in monotone Boolean networks.

Definition 3.4: Let M = {m1 , . . . , mk} be a set of monoms, and letf
be a monotone Boolean function. ThePrime-Implicant Extensionof
M with respect tof (IEf(M)) is defined as,

IEf(M) = { p ∈ PI(f) | ∃ mi ∈ M with p ≤ mi }

The Prime-Clause Extensionof a set of clausesC = { c1 , . . . , ck }
with respect tof (CEf(C)) is given by,

CEf(C) = { p ∈ PC(f) | ∃ ci ∈ C with ci ≤ p }

In addition let,

A(f , g) =
m ∈ IEf(PI(g))

∨ m

B(f , g) =
c ∈ CEf(PC(g))

∧ c

Note: Conventionally the empty monom (clause) is 1 (0).

PIrem(f , g) = PI(f)-IEf(PI(g))

PCrem(f , g) = PC(f)-CEf(PC(g))

E(f , g) =
m∈PIrem(f ,g)

∧ χ (m)

D(f , g) =
c∈PCrem(f ,g)

∨ φ (c) •

Theorem 3.6:g
f

====== h ⇐⇒

154 MonotoneNetworks

R1) A(f , g) ≤ h ≤ B(f , g)

R2) D(f , h) ≤ g ≤ E(f , h)

Proof:

R1) ☞is obvious.

☞ Since Ã(f , g) = B(f̃ , g̃) we hav e

A(f , g) ≤ h ≤ B(f , g) ⇐⇒ A(f̃ , g̃) ≤ h̃ ≤ B(f̃ , g̃)

Thus to prove ☞ it is sufficient to show that A(f , g) ≤ h and then
h ≤ B(f , g) follows by duality. Suppose the contrary and that
A(f , g) ≤ h. There exists some p ∈ PI(A(f , g)) such that p ≤ h. It

will be shown that this contradictsg
f

====== h. By the definition of

A(f , g) we hav e p ≤ g and p is a prime implicant of f , so as in
Lemma(3.4)(i),

f = pg ∨
q ∈ PI(f)−p

∨ q

but f = ph ∨
q ∈ PI(f)−p

∨ q.

R2) ☞ Again since Ẽ(f , h) = D(f̃ , h̃) it suffices to prove that

g
f

====== h ☞ g ≤ E(f , h), for then D(f , h) ≤ g follows by duality. Sup-

pose that g ≤ E(f , h), so that there is somep ∈ PI(g) for which
p ≤ E(f , h). Thus E(f , h) ≤ χ (p) and from the definition ofE there is
somer ∈ PIrem(f , h) such that

E(f , h) ≤ χ (r) ≤ χ (p)

so r ≤ p. Now r is a prime implicant off so

f = gr ∨
q ∈ PI(f)−r

∨ q

Replacement rules 155

but

f = hr ∨
q ∈ PI(f)−r

∨ q

since r ∈PIrem(f , h) and this contradictsg
f

====== h.

☞Clearly

IEf(g) ⊆ IEf(h) ∧ CEf(g) ⊆ CEf(h) ☞ g
f

====== h

So it is sufficient to prove that

g ≤ E(f , h) ☞ IEf(g) ⊆ IEf(h)

D(f , h) ≤ g ☞ CEf(g) ⊆ CEf(h)

The latter following, by duality, from the former. Suppose, then, that
g ≤ E(f , h) but IEf(g) ⊆ IEf(h). In this case there exists some
p ∈IEf(g) such that p ∈/ IEf(h), thus p ∈PIrem(f , h). Now p ≤ χ (p)
hence

p ≤
q ∈ PIrem(f ,h)

∧ q = E(f , h)

This contradiction proves IEf(g) ⊆ IEf(h).

3.3) The Monotone Complexity of Sets of Functions

Replacement rules in combination with inductive gate elimina-
tion provides a technique sufficiently powerful to obtain superlineare)

lower bounds on the monotone complexity of several multiple output
functions. The form such arguments take consists of identifying
classes of functions which may be replaced by constants, and

e) i.eω (n + m) for functions inMn,m.

156 MonotoneNetworks

therefore cannot occur as intermediate results in minimal networks.
For suitable classes the means by which optimal networks realise the
output functions will be severely constrained. In this way the knowl-
edge of the structure of minimal networks may permit many gates to
be eliminated in the inductive step.

In this section the approach described above is illustrated with
three examples: The results of Paterson (1975) concerning the mono-
tone complexity of{∧, ∨}-Boolean matrix product; the lower bound of
Weiss (1983) on the number of∨-gates required to compute Boolean
Convolution; and the result of Mehlhorn (1979), which proves lower
bounds for realising certain sets of Boolean sums.

The following notion is used in some proofs below.

Definition 3.5: Let Π be some predicate defined on the gates of any
monotone network. For an arbitrary monotone Boolean network, S,
Init (S, Π) is the set of gates, u of S, such thatΠ(u) = 1 but for all
ancestors,v of u, Π(v) = 0. Informally, we shall say thatu is a first
gate in S satisfyingΠ.

Similarly Final(S, Π) is the set of gates u in S, such that
Π(u) = 1 but for all descendants,v of u, Π(v) = 0. In this case,u is a
last gate in S satisfyingΠ. •

Let XI,K and XK,J be disjoint sets ofIK and KJ Boolean vari-
ables encoding the entries of two Boolean matrices [xik] and [ykj]
respectively. BMP(XI,K, XK,J) is the IKJ-output monotone Boolean
function, having outputs{zij | 1 ≤ i ≤ I , 1 ≤ j ≤ J} given by:

zij =
K

k=1
∨ xik ykj

Lemma 3.6:(Paterson, 1975)∀ i = p, j = q,

Sets of monotone functions 157

U1) xi1 ∨ xp1

BMP

========== 1

U2) y1 j ∨ y1q

BMP

========== 1

U3) xi1 ∨ y1 j

BMP

========== 1

Proof: We apply Lemma(3.5)(ii) for each case. It should be obvious
that for all monotone functions,g,

g
BMP

========== 1 ⇐⇒ ∀ 1 ≤ i ≤ I , 1 ≤ j ≤ J g
zij

========== 1

U1) Supposethat for some monotone function,h and somer , s we
have g = (xi1 ∨ xp1) ∧ h ≤ zrs. Since i = p it must be the case that
i = r or p = r . Without loss of generality assume the former. The
function zrs does not depend onxi1, thus (zrs) |xi1 := 1 ≡ zrs. How-
ev er g |xi1 := 1 = h and soh ≤ zrs as claimed.

U2) Similar to (U1)

U3) Supposethat g = (xi1 ∨ y1 j) ∧ h ≤ zrs. If i = r or j = s then the
argument used in (U1) suffices. So it may be assumed thati = r and
j = s, i.e

g = (xr1 ∨ y1s) ∧ h ≤ zrs =
K

k=1
∨ xrk yks

Thus there is somek (1 ≤ k ≤ K) for which g ≤ xrk yks. If k = 1 then
xrk yks is independent of xr1 and so as in (U1) we have
h ≤ xrk yks ≤ zrs. If k = 1 then,

g = (xr1 ∨ y1s) h ≤ xr1 y1s

Hence,

158 MonotoneNetworks

g |xr1 := 1 = h ≤ y1s ; g |y1s := 1 = h ≤ xr1

and soh = h ∧ h ≤ xr1 ∧ y1s ≤ zrs.

Corollary 3.2:

U4) xi1 y1 j ∨ xp1 y1 j

BMP

========== y1 j

U5) xi1 y1 j ∨ xi1 y1q

BMP

========== xi1

Theorem 3.7:(Paterson, 1975; Mehlhorn and Galil, 1976)

Any monotone Boolean network realisingBMP(XI,K, XK,J) con-
tains at leastIJK ∧-gates andIJ (K − 1) ∨-gates.

Proof: The theorem is trivial forK = 1. Inductively assume it holds
for all values <K and let S be an optimal monotone network com-
puting BMP(XI,K, XK,J). SinceS is minimal none of the rules U1-U5
may be applied directly toS to eliminate any gates.

With each pair ij , (1 ≤ i ≤ I , 1 ≤ j ≤ J) define the predicate
Πij : S → {0, 1}, over the nodes ofS by:

Πij (u) ⇐⇒ xi1 y1 j ≤ res(u) and xi1 ≤ res(u) and y1 j ≤ res(u)

Init (Πij , S) is the set of gates given by Defn(3.5).

Now if the sets Init (Πij , S) are disjoint and contain only
∧-gates, then the assignmentxi1 : = 1 ∀ 1 ≤ i ≤ I eliminates at least
IJ ∧-gates fromS. This is because for any u ∈ Init (Πij , S) one of its
inputs, v say, must have xi1 ≤ res(v).

Supposeu ∈ Init (Πij , S) and has inputs from nodesv and w of
S. If op(u) = ∨ then it must be the case thatxi1 ≤ res(v) and
y1 j ≤ res(w), since u satisfiesΠij . It follows that xi1y1 j ≤ res(v), and
xi1y1 j ≤ res(w) as u is a first gate which satisfiesΠij . But with this

Sets of monotone functions 159

xi1y1 j ≤ res(v) ∨ res(w) = res(u), which contradictsΠij (u) = 1. Thus
op(u) = ∧.

Now suppose thatu ∈ Init (Πij , S) ∩ Init (Πpq, S), for somep = i
or q = j . If v and w are the inputs ofu then either

xi1 ∨ xp1 ≤ res(v) and y1 j ∨ y1q ≤ res(w)

or

xi1 ∨ y1q ≤ res(v) and xp1 ∨ y1 j ≤ res(w)

In both cases at least one of U1-U3 can be applied and this
contradicts the assumption thatS is optimal. Thus the setsInit (Πij , S)
are disjoint.

We now consider the number of∨-gates inS. For eachi , j let
Σij be the predicate defined over the nodes ofS by,

Σij (u) ⇐⇒ xi1 y1 j ≤ res(u) ≤ y1 j ∨
k=1
∨ xik and res(u) ≤ y1 j

It will be shown that the setsInit (Σij , S) are disjoint and contain only
∨-gates. This will permitIJ ∨-gates to be eliminated using the assign-
ment y1 j = 0 for all 1≤ j ≤ J. This is because for any u ∈ Init (Σij , S),
some input,v say, of u must satisfyres(v) ≤ y1 j .

Let u ∈ Init (Σij , S) and supposeop(u) = ∧. If v and w are the
inputs ofu then

res(v) ≤ y1 j ∨
k=1
∨ xik

res(w) ≤ y1 j ∨
k=1
∨ xik

sinceu ∈ Init (Σij , S). But then

res(u) ≤ y1 j ∨
k=1
∨ xik

which contradictsΣij (u). It follows thatu must be an∨-gate and

160 MonotoneNetworks

res(v) ≤ y1 j ∨
k=1
∨ xik

res(w) ≤ y1 j ∨
k=1
∨ xik

Suppose

u ∈ Init (Σij , S) ∩ Init (Σpq, S)

for some (i , j) = (p, q). Using v and w as before, it must be the case
that

res(v) ≤ y1 j ∧ (y1q ∨
k=1
∨ xpk)

thus j = q because xi1 y1 j ≤ res(v). As u ∈ Init (Σij , S) we hav e
res(w) ≤ y1 j and soxp1 y1q ≤ res(w). Hencexp1 y1q ≤ res(v) and thus

xi1 y1 j ∨ x1p y1 j ≤ res(v) ≤ y1 j

Now since j = q it follows that i = p and therefore from U5

res(v)
BMP

========== y1 j . So in summary this yields,

y1 j ≤ res(v) ∨ res(w) ≤ (y1 j ∨
k=1
∨ xik) ∧ (y1 j ∨

k=1
∨ xpk)

≤ y1 j ∨ (
k=1
∨ xik) ∧ (

k=1
∨ xpk)

and now using Lemma(3.4)(i)u
BMP

========== y1 j contradicting the optimal-

ity of S. This establishes that the setsInit (Σij , S) are disjoint.

The theorem now follows easily. No input can satisfyΠij or Σij

for any 1 ≤ i ≤ I , 1 ≤ j ≤ J, while each outputzij satisfiesΠij and (if
K > 1) Σij also. So the setsInit (Πij , S) and Init (Σij , S) are non-empty
and disjoint. The assignment <xi1 = 1, y1 j = 0 > eliminates the ≥ IJ
∧-gates in Init (Πij , S) and the ≥ IJ ∨-gates in Init (Σij , S). The

Sets of monotone functions 161

resulting network computesI (K − 1)J − BMP and so the stated lower
bound on the number of∧-gates and∨-gates follows from the induc-
tive hypothesis.

Corollary 3.3: Any monotone network realisingIKJ − BMP with the
minimal number of∧-gates and∨-gates, computes each productxik ykj

directly from the input nodes, andzij directly from the K products
{ x ik ykj : 1 ≤ k ≤ K }.

Proof: Exercise. (See (Paterson, 1975) for solution).

Corollary 3.4: Let n = N2. Any monotone network which computes
the {∧, ∨}-matrix product of 2N × N Boolean matrices contains at
leastn3/2 ∧-gates and at leastn3/2 − n ∨-gates.

A special case ofBMP is the n-point Boolean Convolution. For
this it is convenient to regard Xn as then-tuple < x0, x1 , . . . , xn−1 >
and Yn as the n-tuple <y0, y1 , . . . , yn−1 >.
CONV(Xn, Yn): {0, 1}2n → {0, 1}n is the function with outputs
< C0, C1 , . . . , Cn−1 > defined by,

Ck(Xn, Yn) =
i+ j ≡ k (mod n)

∨ xi y j

This is the cyclic convolution; a variant is theshifting convolution,
SH(Xn, Yn), which has 2n − 1 outputs, <SH0 , . . . , SH2n−2 > defined
by,

SHk =
i+ j=k
∨ xi y j

The shifting convolution is a special case of integer multiplication. All
known lower bounds forCONV can be shown to hold for SH using
essentially identical arguments.

CONV has been examined by a number of authors. (Pippenger
and Valiant, 1976) and independently Lamagna (1979) obtained lower

162 MonotoneNetworks

bounds ofΩ(n log n) on its monotone complexity. Blum (1984b) gives
a lower bound ofΩ(n4/3) on the number of∧-gates required.Blum’s
methods are extremely complicated and cannot be presented here. The
best bound attained, to date, is that of Weiss (1984):Ω(n3/2) on the
number of∨-gates. This is described below. The structure of optimal
monotone networks realisingBMP motivates the following

Conjecture 3.1: Any monotone network realisingCONV contains at
leastn2 ∧-gates and at leastn2 − n ∨-gates. •

This, and its weaker formCm(CONV) = ? Ω(n2), remains unre-
solved.

Weiss’ result is based on an elegant "information-flow" argu-
ment which identifies a set of√ n distinct ∨-gates all of which may be
eliminated by fixing xn−1 : = 0. The inductive argument is applied to
those functions,QUAD(Xn, < y0

. . . yk >) ∈ Mn+k,m which satisfy:

A1) For every output functionQi of QUAD and each input variable,
z, at most one prime implicant ofQi depends onz.

A2) ∀ 1 ≤ i , j ≤ m |Qi ∩ Q j | ≥ 1 ⇐⇒ i = j

A3) ∀ 1≤ i ≤ m p∈PI(Qi) ☞ p = xr ys for some 1≤ r ≤ n, 1≤ s≤ k.

Clearly the sequence ofn functions

[CONVn−i (Xn − {xn−1 , . . . ,xn−i }, Yn)] i=n−1
i=0

defined by:

CONVi =







CONV(Xn, Yn) if i = n

CONVi+1(Xn −
n−1

j=i+1
∪ x j , Yn) |xi := 0

(3.11)

satisfies (A1-A3). The lower bound of Weiss (1984) is established by

Sets of monotone functions 163

showing that √ n ∨-gates can be eliminated by the assignment which
renders a monotone network realisingCONVi into one computing
CONVi−1.

Below Cm
∨∨ (f) denotes the minimal number of∨-gates needed

in any monotone network realisingf ∈Mn.

Theorem 3.8:(Weiss, 1984)∀ n ≥ 1

Cm
∨∨ (CONV(Xn, Yn)) = Ω(n3/2)

Proof: We use induction over i to prove,

∀ 1 ≤ i ≤ n Cm
∨∨ (CONVi (Xn −

n−1

j=i
∪ x j , Yn)) ≥ i √ n

and then from (3.11) this establishes the theorem.

The inductive base i = 1 is immediate. Inductively assume that
the lower bound onCm

∨∨ (CONVj) holds for all values 1≤ j ≤ i . Let S
be an optimal monotone network realisingCONVi+1 at nodes
< t0, t1 , . . . , tn−1 >, so that:

res(tk) = C
|{x j := 0 : i+1 ≤ j ≤ n−1 }
k

Note that sincei + 1 ≥ 2 each output function has at least 2 prime
implicants. Consider the inputxi of S. From the definition of
CONVi+1, it follows that every output function res(tk) for
0 ≤ k ≤ n − 1 has exactly one prime implicantxi y(k−i) mod n which
depends onxi . Let σ i G(S) → {0, 1} be a predicate defined over the
gates G of S by;

σ (u) ⇐⇒
op(u) = ∨, u lies ona path [xi , tk]

and

∃ j = i , h s. t. x j yh ≤ res(u)

164 MonotoneNetworks

As before Init (σ , S) are the first ∨-gates satisfyingσ in S. Thus
u ∈ Init (σ , S) if and only if u is the first∨-gate on a path fromxi to
an output for whichx j yh ≤ res(u), with j = i . We first show that
ev ery path from xi to an output contains a gate u ∈ Init (σ , S). Sup-
pose the contrary, so that there is some path fromxi to an outputtk

which is devoid of gates satisfyingσ . Let v1, v2 , . . . , vr ≡ tk be the
gates on this path. Since no∨-gate on this path satisfiesσ one of the
following conditions must hold:

C1) op(vq) = ∧ ∀ 1≤ q ≤ r .

C2) If op(vq) = ∨ then ∀ m ∈ PI(res(vq)) either m ≡ xi y j or ¬ ∃ p
such thatm p ∈ PI(CONVi+1).

Now (C1) cannot hold since then settingxi = 0 rendersres(tk)
equal to 0, which contradicts the definition ofCONVi . Thus it may be
assumed that the path under consideration contains some∨-gates and
that these must satisfy (C2). Letvq be any ∨-gate on this path. Ifxi

is fixed to 0, then from (C2) and Lemma(3.4)(i) we have

res(vq)|xi := 0
CONVi+1

============================ 0. It follows that under the partial

assignmentxi : = 0 every gate on the pathxi to vr ≡ tk becomes 0,
since it is either an∨-gate replaceable by 0, or an∧-gate one of
whose inputs is 0. Again this contradicts the definition ofCONVi and
thus every path from xi to an output contains a gate, u, satisfying σ ,
and so a gate inInit (σ , S).

From the previous paragraph we can conclude that the assign-
ment xi : = 0 allows every gate in Init (σ , S) to be eliminated. To
prove the theorem it remains to show that |Init (σ , S)| ≥ √ n. Then,

since all these gates are∨-gates andCONV |xi := 0
i+1 ≡ CONVi the lower

bound asserted follows from the inductive hypothesis.

Sets of monotone functions 165

Suppose thatE = |Init (σ , S)| < √ n. Let u1 , . . . , uE be the gates
in Init (σ , S). By the definition ofσ for each uq there exists some
j q = i and hq for which x jq

yhq
≤ res(uq). Consider the partial assign-

ment {x jq
: = 1, yhq

: = 1 : ∀ 1 ≤ q ≤ E}. Under this all the gates uq

take the value 1. The resulting network is therefore independent ofxi ,
since someuq lies on each path fromxi to any output tk. Consider
the function computed by each outputtk under this assignment. All of
these must be independent ofxi . Before the assignmentxi yki

is a
prime implicant of res(tk). res(tk) becomes independent ofxi if and
only if it becomes the constant 1 or this prime implicant becomesyki

.
However this would imply thatres(tk) had 2 prime implicants depend-
ing on yki

(becausexi is not fixed to 1, so the only way in which this
latter case could arise is forxr yki

to be a prime implicant ofres(tk)
with xr being a variable fixed to 1). It follows that all then outputs
whose result depends onxi must become 1 under this partial assign-
ment. But now a contradiction results since no more thanE2 < n out-
puts can have some prime implicant satisfied by the given assignment.
This proves that E ≥ √ n and so the theorem is established.

The structure ofBMP allows replacement rules to be used
directly to deduce properties of optimal monotone networks: gates
realising certain simple functions cannot occur because they are
replaceable by constants or some input variable. However applications
in this pure form are not available for many sets of functions. For
example one could obtain a lower bound ofΩ(n2) on the number of
∧-gates required to computeCONV if the replacements

xi ∨ x j

CONV

================== 1 and yi ∨ y j

CONV

================== 1 were valid for

i = j f). As with CONV for many functions in Mn,m we can identify
specific functions which, if replaceable by constants or input variables,

f) These are not valid, cf Lemma(3.5)(iii)

166 MonotoneNetworks

allow good lower bounds to be proved since sufficient information
about the form of optimal networks is made available by their
absence.

In the next result presented this difficulty arises but is circum-
vented by employing a technical device: it is assumed that certain
functions are available as additional inputs, the cost of computing
these is assumed to be 0 as far as deriving the required lower bounds
is concerned. Thus certain useful functions are provided for "free".
Let Cm*(f) denote the number of 2-input∧ and ∨-gates required to
compute f ∈ Mn by a network in which the inputs are
Xn ∪ < g1 , . . . , gp > for some set of monotone Boolean functionsg1,
g2 etc. Obviously Cm*(f) ≤ Cm(f), so any lower bound bound onCm*

is trivially a lower bound onCm. By providing additional inputs it
becomes possible to employ a wider variety of replacement rules, for
now no optimal network can contain agate which computes one of
the functionsgi or a function which is replaceable bygi . The tech-
nique of providing functions for free as additional inputs is one which
had previously been applied in the sphere of algebraic complexity.
We gener (1980) is one of the earliest instances of its application to
Boolean networks. This paper proves lower bounds on the size of
monotone networks realising certain sets of Boolean sums.

Definition 3.6: F(Xn) ≡ < s1, s2 , . . . , sm > ∈ Mn,m is a set of Boolean
sums if each functionsi ∈ F satisfies

∀ p ∈ PI(si) p ∈ Xn

For any such <s1 , . . . , sm > we shall use Pi to denote the subset of
Xn on which si essentially depends.

For 1 ≤ h ≤ m − 1, 0≤ k ≤ n a set of m Boolean sumsF is
(h,k)-disjoint if and only if,

Sets of monotone functions 167

∀ {i 0, i2 , . . . , i h} ⊂ {1, 2 ,. . . , m}

|
h

j=0
∩ Pi j

| ≤ k •

Neciporuk (1970) proved that any set of m (1,1)-disjoint sums,
F , has monotone network complexity,

Cm(F) =
m

i=1
Σ (|Pi | − 1)

i.e the obvious network using only∨-gates is optimal. Neciporuk
defined specific instances inMn,n having complexity Ω(n3/2).
We gener (1979) generalised this result to arbitrary (1,k)-disjoint sums.
The result we now giv e is from Mehlhorn (1979) and applies to any
set of (h, k)-disjoint sums. Mehlhorn’s approach employs the method
of providing additional functions, at no cost, as extra inputs. The key
ideas behind the proof lie in the fact that it would be easy to deter-
mine a lower bound on the complexity of (h, k)-disjoint sums if it
could be assumed that optimal networks contained only∨-gates. In
general this assumption is invalid, since there are sets of Boolean
sums for which minimal size monotone networks contain∧-gates.
We gener (1979) proved that optimal monotone networks computing
(1,k)-disjoint sums having all Boolean sums of≤ k variables pro-
vided free, do not contain any ∧-gates. Mehlhorn(1979) develops
this result by proving that∧-gates cannot help reduce network size
significantly for similar networks computing (h, k)-disjoint sums. We
employ the following notation.

A k − Σ network is a monotone network in which all sums con-
taining ≤ k variables are provided as additional inputs.Let
Ω ⊆ {∧, ∨} and F be a set ofm (h, k)-disjoint sums,

168 MonotoneNetworks

Cm*
Ω (F) = Size ofa minimal k − Σ network realisingF over thebasisΩ

Cm
Ω (F) = Size ofminimal networkrealising F over thebasisΩ

Lemma 3.7:(Mehlhorn, 1979) LetF(Xn) {0, 1}n → {0, 1}m be a set of
m (h, k)-disjoint sums.

i) Cm*
∨∨ (F) ≤ max {1, h − 1} Cm*

∧∧, ∨∨(f)

ii) Cm
∨∨ (F) ≤ max {1, h − 1, k − 1} Cm(f)

Proof: i) Let S be an optimalk − Σ network over the basis{∧, ∨}
realising F . S contains d ∨-gates and c ∧-gates so that
Cm*(F) = c + d. It is proved that for each 0≤ i ≤ c there is ak − Σ
network, Si , which contains at mostc − i ∧-gates and at most
d + (h − 1) i ∨-gates. The inductive basei = 0 easily follows by choos-
ing S0 ≡ S. Now assume the assertion hold for all values ≤ i and let
Si be a k − Σ network realisingF and containing≤ c − i ∧-gates and
≤ d + (h − 1) i ∨-gates. It may be assumed thatSi contains at least one
∧-gate otherwise the inductive step is immediate. Letu be a last
∧-gate in Si , and v, w the nodes which supply the inputs ofu. In this
case;

res(u)(Xn) = res(v)(Xn) ∧ res(w)(Xn)

= y1 ∨ y2 ∨ . . . ∨ yp ∨ m1 ∨ . . . ∨mq

where y j ∈ Xn for each 1≤ j ≤ p and eachmj is a product of at
least 2 variables fromXn.

There are two cases,

Case 1: p ≤ k. The sum
p

j=1
∨ yp is available as an input function ofSi .

The function
q

j=1
∨ mj is replaceable by 0.It follows that u may be

Sets of monotone functions 169

eliminated and replaced by an input ofSi . The resulting network is
Si+1, and it contains no additional∨-gates and one fewer ∧-gate.

Case 2: p > k. Without loss of generality let{t1 , . . . , tr } be the out-
put gates such that there is a path fromu to t j , for each 1≤ j ≤ r .
Then

sj = res(t j) = res(u) ∨ b j

= y1 ∨ . . . ∨ yp ∨ res(v)res(w) ∨ b j

for some functionb j ∈ Mn, b j = 1. From this it follows thatr ≤ h for
p > k and F is (h, k)-disjoint. We claim that∀ 1 ≤ j ≤ r

sj = res(v) ∨ b j or sj = res(w) ∨ b j

Obviously

sj = res(u) ∨ b j = (res(v) ∨ b j)(res(w) ∨ b j)

So to prove the claim it is sufficient to show that res(v) ≤ sj or
res(w) ≤ sj . Suppose for somej neither of these is true. In this case
there are prime implicants,q of res(v) and r of res(w) such that,

| var(q) ∩ P j | = | var(r) ∩ P j | = 0

But then q r ≤ sj , although q r ≤ res(u), so res(u) ≤ sj , and this con-
tradiction proves the claim.

We can now constructSi+1. Replaceu by the constant 0 so that
res(t j) : = b j for each 1≤ j ≤ r ≤ h; this must eliminate at least one
∨-gate from Si unlessr = 1 and res(u) = s1, in which cases1 = res(v)
or s1 = res(w) and the proof is complete. Otherwise, addr ∨-gates
g1 , . . . , gr to Si ; the gate g j having inputs t j and v if
sj = b j ∨ res(v); t j and w if sj = b j ∨ res(w). Si+1 still realises F ,
contains one fewer ∧-gate at at mosth − 1 additional ∨-gates. This

170 MonotoneNetworks

completes the inductive step. The network Sc contains only∨-gates
and has size≤ max {1, h − 1} Cm*(F).

ii) The method of (i) is used to convert a monotone network, S, con-
taining c ∧-gates andd ∨-gates to a sequenceS = S0, S1 , . . . , Sc, Si

containing at most c − i ∧-gates and no more than
d + max {h − 1, k − 1}. i ∨-gates. Theonly difference occurs in the
p ≤ k case where the sumy1 ∨ . . . ∨ yp, not being free, must be com-
puted directly usingp − 1 ∨-gates.

Theorem 3.9:For any set of (h, k)-disjoint sums,F ,

Cm
∨∨ (F) ≥ Cm*

∨∨ (F) ≥

m

i=1
Σ (

|Pi |

k
 − 1)

h

Proof: The first inequality is obvious. For the second consider an opti-
mal k − Σ network over the basis{∨} realising F , with output gates
< t1 , . . . , tm >. Since at mostk variables occur in any sum provided

as a free input, there is a path from at least
|Pi |

k
 inputs to the out-

put gate ti , for each 1≤ i ≤ m. If u is any ∨-gate in S, then from the
the optimality assumption, it follows thatres(u) is a sum of at least
k + 1 variables and hence there is a path fromu to no more thanh
output gates. For each gate u of S, let δ (u) denote the number of out-
puts ti such that there is a path fromu to ti . From the preceding
argument clearly,

u ∈ G(S)
Σ δ (u) ≤ h. Cm*

∨∨ (F)

On the other hand the number of gates, v, such that there is a path

from v to ti must be at least
|Pi |

k
 − 1 since there is a path from at

least
|Pi |

k
 inputs toti . This gives,

Sets of monotone functions 171

u ∈ G(S)
Σ δ (u) ≥

m

i=1
Σ (

|Pi |

k
 − 1)

proving the theorem.

Corollary 3.5 For any set F of m (h, k)-disjoint Boolean sums,

Cm(F) ≥
max {1,h − 1}

m

i=1
Σ (

|Pi |

k
− 1)

h

Mehlhorn (1979) defines an explicit set of Boolean sums having
monotone complexity Ω(n5/3). The set defined uses a result of Brown
(1966) and the fact the Boolean sums may be represented as bipartite
graphs over disjoint sets{s1 , . . . , sm} and {x1 , . . . , xn} of vertices. In
such graphs there is an edge betweenxi and sj if and only if
xi ∈ P j . A set of sums is (h, k)-disjoint if and only if the bipartite
graph defined thus does not containsKh−1,k−1 as a subgraph, i.e the
complete bipartite graph on two sets of h and k vertices. Brown
(1966) constructs an 2n-vertex bipartite graph having Ω(n5/3) edges
and withoutK3,3 as a subgraph. This graph defines a set of (2,2)-dis-
joint Boolean sums having complexity Ω(n5/3).

To conclude this section we outline a method first applied suc-

cessfully in Wegener (1982) to obtain lower bounds of sizeΩ


n2

log n


.

The paper introduces the concept ofvalue functions.

Let F = < f1, f2 , . . . , fm > (Xn) ∈ Mn,m. Giv en an optimal
monotone network, S, realising F suppose that for each∧-gate, u of
S, a function Vu: PI(F) → [0, 1] is defined which satisfies;

p ∈ PI(F)
Σ Vu(p) ≤ 1. Then;

172 MonotoneNetworks

{u : op(u) = ∧ in S}
Σ

p ∈ PI(F)
Σ Vu(p) ≤ Cm(F)

Thus,

Cm(F) ≥
p ∈ PI(F)

Σ
{u : op(u) = ∧ in S}

Σ Vu(p)

So if for every prime implicant,p, of F it holds that

{u : op(u) = ∧ in S}
Σ Vu(p) ≥ h(n + m)

for some functionh: N → R++ then,

Cm(F) ≥
|PI(F)|

h(n + m)

We gener (1982) defines the set of functionsf m
MN , which have

m MN inputs andMm outputs. The inputs correspond to the entries of
m M × N Boolean matrices. The outputs,
{yh1 ... hm

: 1 ≤ h1 , . . . , hm ≤ M} are given by,

yh1 ... hm
=

N

l=1
∨ x1

h1 l x2
h2 l

. . . xm
hm l

xk
ij denoting theij -th entry of thek-th matrix. This set of functions is

known as theDirect Matrix Product (mMN − DMP). An output is 1
if and only if all the matrix rows referenced have a common 1.
We gener (1982) combines the techniques of providing certain func-
tions for free (specifically all products of fewer thanm variables) and
the use of value functions to prove;

Cm(mMN − DMP) ≥
NMm

2

The paper defines specific values ofm, M and N for which

Sets of monotone functions 173

Cm(mMN − DMP) = Ω


n2

log n



wheren ≥ max{mMN, Mm}.

3.4) Linear Lower Bounds on the Monotone Complexity of Single-
Output Functions

The methods used to obtain lower bounds for functions inMn,m

have not proved adaptable to networks realising single output mono-
tone Boolean functions. One reason for this is the fact that the tech-
niques used rely to some extent on "information-flow" arguments; the
idea that certain properties may be deduced from the knowledge that
several outputs depend on a single gate cf the lower bound for
Boolean Convolution and that for sets of (h, k)-disjoint sums. In the
next section some techniques for deriving superpolynomial bounds on
functions inMn are presented. In this section we describe some earlier
results exhibiting linear lower bounds. First a lower bound of
2. 5n − 5. 5 on the monotone complexity ofTn

k (Xn), for 3 ≤ k ≤ n − 2
is proved. We then outline a lower bound of 3.5n on the monotone
complexity of the majority function and present the 4n lower bound
of Tiekenheinrich (1984). To conclude an upper bound ofkn for Tn

k is
established, whenk is fixed.

In Dunne (1985a) the following result is proved.

Cm(Tn
k) ≥ 2. 5n − 5. 5 for n ≥ k and 3 ≤ k ≤ n − 2

It is sufficient to consider only the casek = 3, since for

4 ≤ k ≤  n/2  it will be clear that the same proof is applicable, and

for  n/2  ≤ k ≤ n − 2, the relationT̃n
k = Tn

n−k+1 establishes the result
by duality.

174 MonotoneNetworks

In common with the lower bounds on combinational complexity
presented earlier, the method used combines an inductive analysis of
optimal monotone networks with a counting argument. For the induc-
tive stage only partial assignments which set inputs to 0 are usable.
To prove similar or larger bounds by setting an input to 1 would

require at least n/2  gates to be eliminated. Some preliminary
results are required for the lower bound proof.

Lemma 3.8:Let S be an optimal monotone network computingTn
k at

some nodet. S does not contain any gate g for which:

Tn
k1

≤ res(g) ∀ 1 ≤ k1 < k and k ≥ 2

Proof: SupposeS contains a gate g such thatTn
k1

≤ res(g) for somek1

as above. We shall show that S is not optimal. Let S̃ denote the
monotone dual network of S. This network computesTn

n−k+1. Let g̃
be the dual function ofres(g) computed inS̃. Clearly g̃ ≤ Tn

n−k1+1 By
Lemma(3.4)(i) g in S̃ is replaceable by the constant 0. Thus, by
duality, g in S is replaceable by the constant 1. It follows thatS was
not optimal.

Lemma 3.9:There is an optimal monotone network S computingTn
k ,

such that every input xi of S which has fan-out equal to 1, enters an
∧-gate.

Proof: We show how to restructureS to a network S* satisfying the
lemma. Letxi be an input ofS having fan-out equal to 1 and enter-
ing an ∨-gate g whose other input is some functionf . Observe that
f ≤ Tn

k . For suppose{x p1
, . . . ,xpk−1

} is a subset ofXn such that the
monom formed by∧-ing the variables in this set is an implicant off .
The partial assignmentxp j

: = 1, ∀ 1≤ j ≤ k − 1 leaves S independent

of xi , but under this assignmentS should compute

Linear Bounds on 1-output Functions 175

Tn−k+1
1 (Xn −

k−1

j=1
∪ {x p j

})

which depends onxi . This contradiction establishes that every prime
implicant of f is an implicant ofTn

k . Now, since g = t, the output
gate, S can be restructured as follows:

1) Replacegate g in S by the inputxi .

2) Add one ∨-gate toS with inputs f and the output oft

Clearly the new network contains no more gates thanS, and
computesTn

k . If g has only a single∨-gate as successor then the
steps above may be repeated.Eventually the fan-out ofxi must
increase orxi must enter an∧-gate. Asthe fan-out of other inputs is
not affected, this process may be applied repeatedly until the lemma is
true for all inputs.

Lemma 3.10:Let S be any monotone network which computesTn
k

(where n > k). Let xi be any input of S which enters exactly 2
∨-gates, whose other inputs aref1, f2. For eachr with 2≤ r ≤ k − 1 if
there exists any monom m1 over Xn − {x i } such that

m1 ≤ f1 ∧ Tn−1
k−r (Xn − {x i })

then there does not exist any monom m2 over Xn − {x i } such that

m2 ≤ f2 ∧ Tn−1
r−1 (Xn − {x i })

Proof: Supposem1 and m2 are two such monoms. The partial assign-
ment x j : = 1 ∀ x j ∈var(m1) ∪ var(m2) leaves S independent ofxi .
But under the assignmentS should compute

Tn−q
k−q (Xn − var(m1) − var(m2))

(q = |var(m1) ∪ var(m2)|) and this depends onxi since q ≤ k − 1. This
contradiction proves the lemma.

176 MonotoneNetworks

Theorem 3.10:(Dunne, 1985a)

Cm (Tn
3 (Xn)) ≥ 2. 5n − 5. 5

Proof: By induction on n ≥ 3. The inductive base is obvious, so
assume the theorem holds for all values <n and let S be an optimal
monotone network realisingTn

3 at a unique nodet. We proceed by a
case analysis. It is assumed thatS has been subjected to the process
of Lemma(3.9) and thus any input having fan-out equal to 1 enters an
∧ − gate in S. The cases

Case 1:∃ xi ∈ Xn such thatφ (xi) ≥ 3.

Case 2:∃ xi ∈ Xn such thatφ (xi) = 2 and xi enters an ∧-gate. (Fig-
ure(3.2)).

Figure 3.2

are straightforward and it is left to the reader to confirm that 3 gates
may be eliminated fromS by fixing xi to 0.

Linear Bounds on 1-output Functions 177

Case 3:∃ xi ∈ Xn such thatφ (xi) = 1.

xi enters some∧-gate, g say. Let h be the gate which supplies
the other input of g. It is easy to see that g = t and
Tn−1

2 (Xn − {x i }) ≤ res(h). Setting xi=0 eliminatesg and its successor.
The resulting network computesTn−1

3 (Xn − {x i }), but still contains gate
h, with Tn−1

2 (Xn − {x i }) ≤ res(h). From Lemma(3.8) the gate h may be
replaced by 1 in this network. Thussetting xi = 0 eliminates 3 gates.

This leaves only,

Case 4:∀ xi ∈ Xn xi enters exactly 2∨-gates. (Figure(3.3))

Figure 3.3

Case 4.1:∃ xi x j such thatxi , x j enter an∨-gateg andφ (g) > 1 or g
enters an∧-gate. At least 5 gates may be eliminated by setting
xi = x j = 0. This would be sufficient to prove the result.

To summarise it may now be assumed that:

178 MonotoneNetworks

A1) Every network input enters exactly 2∨-gates,g1, g2

A2) From Lemma(3.10): for at most one of the functionsf1, f2

which enter these gates is it true that there exists xk such that
xk ≤ fi (i = 1 or 2)

A3) If g1 has inputsxi and x j then g1 has only one immediate suc-
cessor and this is an∨-gate.

For any Tn
3 network which is not of this form sufficient gates

can be eliminated to apply the inductive argument.

The lower bound for the remaining case is derived by a wire
counting argument, without recourse to the inductive hypothesis. Let:

out(Q) = | { The setof wiresout of a set of nodes Q} |

T = {∨ − gates g: xi is an input of g and ∃ j=i s. t x j ≤ res(g) }

R = {∨ − gates g: xi is an input of g, g ∈/ T }

T1 = {∨ − gates g∈ T : xi , x j are inputsof g }

T2 = T − T1

M = {∨ − gates g: g is the uniquesuccessor ofsome h∈ T1, g ∈/ T2 }

U = {∨ − gates g∈ T2 : g is the uniquesuccessor ofsome h∈ T1 }

E = {g : g ∈/ T ∪ R ∪ M }

We can observe the following:

B1) out(Xn) = 2n (By analysis above).

Linear Bounds on 1-output Functions 179

B2) out(R) ≥ |R| (By optimality of S).

B3) out(T) ≥ |T| (By optimality of S).

B4) out(T1) = |T1| = |U | + |M |. This holds as each gate inU has only
one input from a gate inT1. Although a gate inM may have two
inputs from gates inT1, since T1 gates have fanout=1, by (A3),S may
be restructured in this case so that each gate in M has only one input
from a T1 gate. (Fig(3.4))

Figure 3.4

B5) out(E) ≥ |R| (By (A2), as each gate in R must have one input
from a gate not inR ∪ T ∪ M).

B6) 2|T1| + |T2| + |R| = out(Xn)

B7) |T1| + |T2| = |T| (By definition).

180 MonotoneNetworks

B8) out(M) ≥ |M | (By optimality).

Now, it is clear that for any network S

Cm(S) = 1/2 out (Xn ∪ S)

To prove 2. 5n the lower bound given by (B2) must be
improved by showing that:

out(R) ≥ |R| + |U |

Definition 3.7: Let S computeTn
3 . A U − configuration is a subnet-

work α of S consisting of 5 gates {gi , g j , gk, g4, g5} arranged as in
Figure(3.5). •

Lemma 3.11:Let P = {i , j , k} and let S be an optimal monotone net-
work computingTn

3 . S may be restructured to a monotone network
S* which is no larger thanS, computesTn

3 and satisfies:

(*) For eachU-configuration inS* , there exists somep ∈ P such
that every path from gp to an ∧-gate splits, i.e there exists a
gate u on a path fromgp to an∧-gateh such thatφ (u) > 1.

Proof: SupposeS does not satisfy the lemma. Letα be any U − con-
figuration for which (*) is false. Let hi , h j , hk be the first∧-gate
encountered on paths fromgi , g j , gk. (Note that there can only be
one "first" ∧-gate on each path as no path splits). All the gates on the
paths [gp, hp) are ∨-gates. LetFi , F j , Fk be the function∨-ed with
xi , x j , xk on these paths. LetBi , B j , Bk be the function fed to the
other input of hi , h j , hk, so that res(hp) = Bp (F p ∨ xp). We per-
form one modification.

C) If xp ≤ Bp then compute (xp ∨ F p) Bp by using one∧-gate to
computeF p Bp and ∨ the result withxp. hp and gp can then be
eliminated. (Fig(3.6))

Linear Bounds on 1-output Functions 181

Figure 3.5

Thus we may assume that∀ p ∈ {i , j , k} xp ≤ Bp

We now prove three properties of this subnetwork.

Property 1: hi , h j and hk are distinct.

Proof: Suppose, without loss of generality, that hi=h j , so that
Bi = x j ∨ F j and B j = xi ∨ Fi , as in Figure(3.7). Consider the assign-
ment xk=1. By arguments similar to the proof of Lemma(3.10) it is
easy to see that

xk xl ≤ Fi ∨ F j ∀ xl ∈ Xn − {x i , x j }

Thus S|xk=1 depends onxi , x j only via hi . This implies that all gates

182 MonotoneNetworks

Figure 3.6
whose result depends onxp, other than those on the path [gp, hp) are
descendants ofhi (p = i or j). But res(hi) = (x j ∨ F j)(xi ∨ Fi) and
the only prime implicants of this function involving xi or x j have the
form xi x j or xi xpxq or x j xpxq where p=q. Therefore S|xk=1 cannot
compute Tn−1

2 (Xn − {xk}) and this contradiction establishes the prop-
erty.

Linear Bounds on 1-output Functions 183

Figure 3.7
Property 2:Let g be a gate ofS such that:

b1) xi x j xk ≤ res(g)

b2) ∀ p ∈ {i , j , k} g is not a descendant of any gate on a path
[gp, hp].

Then: xi ∨ x j ∨ xk ≤ res(g)

Proof: All such gates are descendants ofg5. Partition these descen-
dants into sets according to their distance fromg5, e.g. By breadth-
first search rooted atg5. The proof proceeds by induction ond, the
distance of sets fromg5. The based=0 is obvious, as the only gate
involved is g5 itself. For the inductive step assume that Property(2) is
true for all gates at distance less thand from g5 and let g be a gate
at distanced from g5 such thatxi x j xk ≤ res(g). Let g′ and g′′ be the
inputs of g, both of which satisfy (b2). If g is an ∨-gate then

184 MonotoneNetworks

xi x j xk ≤ res(g′) or xi x j xk ≤ res(g′′), without loss of generality sup-
pose the former. Since the distance ofg′ from g5 is less thand, by
the inductive hypothesis, xi ∨ x j ∨ xk ≤ res(g′), and so by mono-
tonicity xi ∨ x j ∨ xk ≤ res(g). If g is an ∧-gate thenxi x j xk ≤ res(g′)
and xi x j xk ≤ res(g′′) and this case follows by a similar argument.

Property 3:For all p∈{i , j , k} xi x j xk ≤ Bp

Proof: Suppose, without loss of generality, that xi x j xk ≤ Bi . The gate
which computesBi must be a descendant ofh j or hk. To see this
recall thathi = h j and hi = hk (Property(1)), and so if this observation
were false, Property(2) would apply andxi ∨ x j ∨ xk ≤ Bi contradict-
ing the modification (C). It follows thathi is a descendant ofh j (or
hk) and thus xi x j xk ≤ B j (or Bk). By repeating the argument twice a
cycle in S would result. This contradiction proves the claim.

Lemma(3.11) now follows easily for consider the partial assignment
Xn-{x i , x j , xk}=0. Then from Property(3)Bp = 0, ∀ p∈{i , j , k}. S
under this partial assignment cannot computeT3

3(xi , x j , xk) as it only
depends onxi , x j and xk via g5 which computesT3

1(xi , x j , xk). Con-
tradiction.

From this Lemma it follows that out(R) ≥ |R| + |U |. For let α
be any U-configuration in S. Without loss of generality suppose a
path fromgi in α splits before meeting an∧-gate. LetFi be the func-
tion ∨-ed with xi on this path before it splits. It is clear thatS may
be restructured in such a way that xi enters an∨-gate g whose other
input is Fi with φ (g) ≥ 2. This may be done without increasing the
size of S, and for all U-configurations inS. (Figure(3.8))

This now giv es:

out(S∪ Xn) = out(R∪ E ∪ T ∪ M ∪ Xn)

Linear Bounds on 1-output Functions 185

Figure 3.8
≥ (|R|+ |U |)+ |R|+ |T|+ |M |+ 2n

≥ 4n + (|R|+ |U |)+ |M |− |T1| (B6, B7)

≥ 4n + |R| (B4)

≥ 5n (as |R|≥ n from (A2))

Thus;

Cm(Tn
3) = Cm(S) ≥ 2. 5n − 5. 5

and theorem follows.

186 MonotoneNetworks

Theorem(3.10) yields a lower bound onTn
k when k is fixed. We

now present a general lower bound onTn
k , which gives larger bounds

for k = Θ(n), k ≤  n/2 . Thus:

∀ 3 ≤ k ≤  n/2 

Cm (Tn
k) ≥ max {2n + 3k, 2. 5n + 1. 5k} − c

Wherec is a constant.

For the majority function, we deduce a lower bound of 3.5n,
slightly improving the 3n lower bound of Bloniarz (1979).

The approach is a generalisation of the standard inductive gate
elimination argument. Threeideas are central to the proof method:
extending the definition of "family of functions" as used in the induc-
tive step; the notion of the "distance" ofTn

k from MAJn; and the con-
cept of a reduction. The concepts employed are similar to those
employed in the 2.5n lower bound on combinational complexity from
Stockmeyer (1977). So instead of considering a family of monotone
functions { f1, ..., fn, ..., }, in which for eachn there isat most onen-
input function, we consider families ofsetsof functions:

{{F1}, {F2}, ..., {F n}, ..., }

In this way eachf ∈ Fn is an n-input function. For the inductive step
it is then sufficient to project onto a member of a smaller indexed set.
The family we shall use is:

∞
n=2
∪ {

n

k=2
∪ {T n

k } }

Thus then’th member is the set:

{T n
2 ,Tn

3 , ...,Tn
n−1}

Linear Bounds on 1-output Functions 187

The "distance" ofTn
k from majority is related to the minimum

value of |π |, whereπ is the partial assignment such that:

(Tn
k)|π = MAJn−|π | and n− |π | is even

Using these concepts the lower bound proof divides into three parts:
we first show how an arbitrary reduction may be used to reason about
the size of monotone networks computingTn

k ; then, assuming the cor-
rectness of a specific reduction, it is proved that a particular piece-
wise-linear function χ (n, k), gives lower bounds forTn

k . The final
stage is to verify the correctness of this reduction.This is done by a
case analysis on the structure of optimal networks.

Definition 3.8:Define ∆(Tn
k) to be n/2 − k. ∆ represents the "distance"

of Tn
k from MAJn and may be negative and non-integral. •

Definition 3.9:Let S be a monotone network computingTn
k . Let π be

a partial assignment such thatS
π

→S′, i.e S|π = S′, where S′ computes

Tn−r
k′ . The descriptorof π , δ (π), is a triple (r , s, t) where:

r = | { Inputs of S set byπ } |

s = ∆(Tn−r
k′)

t ≤ | { Gates deletedfrom S by applyingπ } | •

Definition 3.10: An α β -reduction for Tn
k , is a set of q descriptor

pairs, { < ai , bi > } such that:

For any S computingTn
k , ∃ < ai , bi > and partial assignmentsπ ,

π ′ applicable toS for which:

δ (π) ∈ { ai , bi } (3.12)

188 MonotoneNetworks

δ (π) = ai ⇐⇒ δ (π ′) = bi (3.13)

∀ < ai , bi > 2∆(Tn
k) - (si + s′

i) = 0 (3.14)

•

Lemma 3.12:(Dunne, 1984b) LetS computeTn
k and let { < ai , bi > }

be an α β -reduction for S. Let ∆(Tn
k) = s. If there is a function

χ (n, s) → Q+ such that:

χ (n, s) ≤ max







χ (n − r i , si) + ti

χ (n − r ′
i , s′

i) + t ′
i

(3.15)

∀ < ai , bi > ≡ < (r i , si , ti), (r
′
i , s′

i , t ′
i) > and

χ (n, ∆(Tn
1)) = χ (n, ∆(Tn

n−1)) = n − Constant

then Cm(Tn
k) ≥ χ (n, s).

Proof: By induction on n. For the inductive base the recurrence of
(3.15) will terminate at χ (n, ∆(Tn

1)) or χ (n, ∆(Tn
n)). The conditions

on χ yield the lower bound. For the inductive step assume∀ n′ < n,

∀ k′ that Cm(Tn′

k′) ≥ χ (n′, s′) where ∆(Tn′

k′) = s′. and let S be a
monotone network computingTn

k . As { < ai , bi > } is anα β -reduction,
there exist partial assignmentsπ , π ′, applicable to S, such that:
< δ (π),δ (π ′) > = < ai , bi > for some 1≤ i ≤ q. Thus:

Linear Bounds on 1-output Functions 189

Cm(Tn
k) ≥ max









Cm(Tn−r i

(
n−r i

2
) ± si

) + ti

Cm(Tn−r ′
i

(
n−r ′

i

2
) ± s′

i

) + t ′
i

By the inductive hypothesis:

Cm(Tn
k) ≥ max







χ (n − r i , si) + ti

χ (n − r ′
i , s′

i) + t ′
i

But:

χ (n, s) ≤ max







χ (n − r i , si) + ti

χ (n − r ′
i , s′

i) + t ′
i

Hence:Cm(Tn
k) ≥ χ (n, s)

Lemma(3.12) yields a recurrence expression for the monotone
network complexity ofTn

k . We do not attempt to find a general solu-
tion to this, but illustrate that a particularχ (n, s) is giv en by a speci-
fied α β -reduction.

Lemma 3.13:(Dunne, 1984b) If:

AB = { < (1, s + 1/2, 4), (1,s − 1/2, 3) > , (3.16)

< (1, s + 1/2, 5), (1,s − 1/2, 2) > (3.17)

< (2, s + 1, 8), (2,s − 1, 6) > (3.18)

190 MonotoneNetworks

< (1, s + 1/2, 3), (1,s − 1/2, 4) > (3.19)

< (1, s + 1/2, 2), (1,s − 1/2, 5) > (3.20)

< (2, s + 1, 6), (2,s − 1, 8) >} (3.21)

is anα β -reduction for every S computingTn
n/2−s, then

χ (n, s) =







3. 5n − |s| − c 0 ≤ |s| ≤ 3/2

3. 5n − 3|s| + 3 − c |s| ≥ 3/2

satisfies:

χ (n, s) ≤ max







χ (n − r i , si) + ti

χ (n − r ′
i , s′

i) + t ′
i

∀ < ai , bi > ≡ < (r i , si , ti), (r
′
i , s′

i , t ′
i) > ∈ AB

Proof: By inspection.

In terms of the usual form of inductive argument, χ (n, s) can be
viewed as follows:

For any monotone network S0 which realisesTn
k , one can find

partial assignmentsπ1, π2, ..., π r such that:

(Si)|π i+1 = Si+1 ∀ 0 ≤ i < r

and the network Sr computes a threshold function which is
"close to" majority. Then, for any Tn

k , close to majority, it is
possible to choose partial assignments,π , which eliminate, on

Linear Bounds on 1-output Functions 191

av erage, 3.5 gates and such that (Tn
k)|π is also close to major-

ity.

We observe that the α β -reduction AB, can be similarly inter-
preted, for a number of different χ (n, s). One such interpretation is
outlined below.

It may be noted that in some <ai , bi >:

χ (n, s) ≥ min







χ (n − r i , si) + ti

χ (n − r ′
i , s′

i) + t ′
i

e.g χ (n, 1/2) > χ (n − 2,−1/2) + 6

This imposes a strategy in inductively eliminating gates fromS com-
puting Tn

n/2−s, in that for those <ai , bi > having this property the step
which reduces to:

χ (n, s) ≤ max







χ (n − r i , si) + ti

χ (n − r ′
i , s′

i) + t ′
i

must be applied.

Theorem 3.11: Let S be any optimal network computingTn
k for

1 < k < n. Then AB is anα β -reduction forS.

Proof: The proof is by a case analysis on the fanout of inputs. For
reasons of space the details are omitted. A complete description is
given in Dunne (1984b).

Corollary 3.6: ∀ k 3 ≤ k ≤ n/2

192 MonotoneNetworks

Cm(Tn
k) ≥ 2n + 3k - c c ∈ Q+

Proof: Let k = n/2 − s, s ∈ Q+. By Lemma(3.13) and Theorem(3.11)

Cm(Tn
k) = Cm(Tn

n/2−s) ≥ 3. 5n − 3s + 3 - c′

However: s = n/2 − k, thus

Cm(Tn
k) ≥ 3. 5n − 3(n/2 − k) − c′

≥ 2n + 3k - c

Corollary 3.7:

Cm(Tn
k) ≥ 4(k − 3) + Cm(Tn−k+3

3) − c

Proof: (Outline)The α β -reduction AB may be interpreted by saying:

"For any monotone network S computingTn
k , ∃ some inputxi

and some constantc ∈ {0, 1} such that settingxi = c eliminates
at least 4 gates."

Choosing a suitableχ (n, ∆(Tn
k)) leads to the theorem.

Corollary 3.8: If Cm(Tn
3) = (2 + λ)n − c then ∀ 3 ≤ k ≤  n/2 

Cm(Tn
k) ≥ max







2n + 3k − c0

(2 + λ)n + (2 − λ)k - c1

≥







2n + 3k - c0 k ≥
λ n

λ + 1

(2 + λ)n + (2-λ)k - c1 k ≤
λ n

λ + 1

Linear Bounds on 1-output Functions 193

Theorem 3.12:(Dunne, 1984b)

Cm(Tn
k) ≥







2n + 3k - c0 k ≥ n/3

2. 5n + 1. 5k - c1 k ≤ n/3

Proof: From Theorem(3.10)Cm(Tn
3) ≥ 2. 5n - 5. 5 and the theorem

follows from Corollary(3.8) withλ=1/2.

Corollary(3.8) implies that improved lower bounds onTn
3 or any

Tn
k with k fixed, would lead to consequent improvements in Theo-

rem(3.12). In particular a 3n lower bound onTn
3 would immediately

give the 3.5n lower bound onMAJn.

The final linear lower bound presented is from Tiekenheinrich (1984)
and is notable for the absence of the cumbersome technical complica-
tions of the preceding methods.

Lemma 3.14:Any monotone network realisingTn
2 (Xn) contains at

least 2n − 4 ∨-gates.

Proof: By induction on n ≥ 2. Since the base is trivial assume the
lemma is true for all values <n and let S be a monotone network
realisingTn

2 (Xn) at some nodet. Let g be a gate ofS whose distance
from t is maximal. The inputs ofg must be distinct inputsxi and x j

of S. From Thm(1.15),φ (xi) ≥ 2. If xi enters at least 2∨-gates then
setting xi = 0 proves the result via the inductive hypothesis. If xi

enters only one∨-gate, h1 say and an∧-gate h2 then proceed as fol-
lows. Let u be the first∨-gate encountered on some path fromh2 to
t. u must exist otherwise settingxi to 0 makes t equal 0. If u = h1

then settingxi = 0 eliminates 2∨-gates fromS. If u = h1, then there
must be some∨-gate on any path from h1 to t. The first of these can
be eliminated by settingxi to 0. The case whenxi enters no∨-gates,

194 MonotoneNetworks

and thus at least 2∧-gates, is dealt with by a similar argument.

Theorem 3.13:(Tiekenhienrich, 1984) Letf (Xn, z) ∈ Mn+1 be defined
by

f (Xn, z) = z ∧ Tn
2 (Xn) ∨ Tn

n−1(Xn)

then

Cm(f) ≥ 4n − 8

Proof: Let S be an optimal monotone network realising f (Xn, z).
Since f |z:=1 = Tn

2 (Xn), from Lemma(3.14),S must contain at least
2n − 4 ∨-gates. Sincef |z:=0 = Tn

n−1(Xn) = T̃
n
2 (Xn), by duality S must

contain also at least 2n − 4 ∧-gates. This is a total of 4n − 8 distinct
gates and so the theorem follows.

The lower bound onTn
k proved above, is possibly sub-optimal.

This section concludes with a monotone network construction forTn
k .

This gives the upper boundCm(Tn
k) ≤ kn + o(n) for k fixed. To

prove the upper bound the following combinatorial result is required.

Fact 3.6: Let yi = < yi1, yi2, ..., yi k
> ∈ Nk (where k≥ 2) and

Πq: Nk → Nk be the projection which sets theyiq
position of yi to 1.

Finally let COVERk be a predicate defined on sets ofk-tuples
Y = (y1, ..., ys) by:

COVERk(y1, ..., ys) =







1 if ∀ 1 ≤ q ≤ k, ∃ yq
i , yq

j ∈ Y
such thatΠq(yq

i) = Πq(yq
j) and i= j

0 otherwise

Then
Y⊂Nk
min {|Y| : COVERk(Y) = 1 } = k + 1

Linear Bounds on 1-output Functions 195

Proof: The upper bound is elementary. The lower bound is proved by
induction onk ≥ 2. The basek = 2 is immediate, so we assume the
lower bound holds for all values less thank. Let Y = {y1, ..., ys} be
any set of k-tuples such thatCOVERk(Y) = 1. Without loss of gener-
ality it may be assumed thatΠ1(y1) = Π1(y2). Thus, as
COVERk(Y) = 1, the set of (s − 1) (k − 1)-tuples

{ < y12
, ..., y1k

> } ∪
s

i=3
∪ { < yi2, ..., yi k

> }

must satisfy COVERk−1. By the inductive hypothesis
s − 1 ≥ k ☞ s ≥ k + 1. Thelower bound follows.

Theorem 3.14:For any fixed k Cm(Tn
k (Xn)) ≤ kn + o(n).

Proof: For ease of exposition, supposen = pk for some positive inte-
ger p. It is easy to see how to amend the construction below if n is
not of this form. Let:

Xn =
1 ≤ r1 ≤ p

1 ≤ r2 ≤ p

...

...

...

1 ≤ r k ≤ p

∪ { xr1r2... rk
}

To avoid a plethora of subscripts <r1, ..., r k > will denote xr1... rk
. It

will be convenient to consider the elements of{1, 2,..., p}k−1 arranged
in lexicographic order. Thus ri = < r 1

i , r 2
i , ..., r k−1

i > is the i ′th element.
e.g r1 = < 1, 1, 1..., 1 >

The q − partition of Xn is constructed as follows.

T1) Xn is partitioned intopk−1 blocks, Bq
i , where 1≤ i ≤ pk−1. Each

block containsp elements ofXn.

196 MonotoneNetworks

T2) Theparticular elements ofXn in a block Bq
i are given by:

Bq
i =

p

j=1
∪ { < r 1

i , . . . , r q−1
i , j , r q+1

i , . . . , r k
i > }

where <r 1
i , . . . , r k

i > is the i ′th element of{1, 2 , . . . , p}k−1 in
the ordering described above.

The q − partition of Xn thus consists ofpk−1 blocks each block being
defined by a distinct (k − 1)-tuple.

Clearly there arek possibleq − partitions of Xn. We claim that:

T pk

k (Xn) =
k

q=1
\/ T pk−1

k (T p
1 (Bq

1), ...,T p
1 (Bq

pk−1)) (3.22)

If this assertion holds, it gives rise to a recursive construction for a
monotone network computingTn

k . Solving the underlying recurrence
relation yields the upper bound stated. We justify this assertion as fol-
lows. First observe that if fewer thank element ofXn are assigned
the value 1 then the right-hand side of (3.22) is 0. Since the RHS is
clearly monotone it is sufficient to prove that it attains the value 1
whenever exactly k members ofXn are 1. Consider any assignment
to Xn for which exactly k variables are set to 1. Let:

Y = {y1, y2, ..., yk}

= { < y11
, y12

, ..., y1k
> , ..., < yk1

, yk2
, ..., ykk

> }

be thek variables of Xn which are fixed to 1. From Fact(3.6), since
|Y| < k + 1, COVERk(Y) = 0. It follows that there exists somes (with
1 ≤ s ≤ k) such that:

{ < y11
, ..., y1s−1

, y1s+1
, ..., y1k

> , ..., < yk1
, ..., yks−1

, yks+1
, ..., ykk

> }

are distinct (k − 1)-tuples in{1, 2,..., p}k−1. Therefore by the definition

Linear Bounds on 1-output Functions 197

of q − partition:

yi ∈ Bs
l ∧ y j ∈ Bs

l ⇐⇒ i = j

Thus no two yi ’s (i.e variables ofXn which are set to 1) are in
the same block of thes − partition of Xn. So:

T pk−1

k (T p
1 (Bs

1), T p
1 (Bs

2) , . . . , T p
1 (Bs

pk−1)) = 1

and therefore the RHS of (3.22) is 1.

195

3.5) Superpolynomial Lower Bounds on Single Output Functions

In this section we give a detailed technical description of two
techniques for deriving large lower bounds on the monotone complex-
ity of single output functions; that of Razborov as enhanced by Alon
and Boppana (1986), and that of Andreev. In the remainder of this
section we give some basic definitions and notation. In Section(3.5.1)
the Razborov, Alon and Boppana results are presented. Section(3.5.2)
describes the conceptually simpler approach employed in Andreev
(1985). We conclude with a discussion and comparison of the two
methods.
It will sometimes be convenient to regard a monom as the set of vari-
ables defining it, as well as a function. In this way we may write
m1 ∩ m2 and m1 ∪ m2 instead of var(m1) ∩ var(m2) and
var(m1) ∪ var(m2).

In the next section we will be interested in the following mono-
tone Boolean functions.

Recall that XU
n = {xij : 1 ≤ i < j ≤ n} denotes a set ofn/2

Boolean variables.G(XU
n) is a function from assignments,α , to XU

n

onto n-vertex undirected graphs in whichG(α) contains an edge{i , j}
if and only if xij = 1 in the assignmentα to XU

n . For 1 ≤ k ≤ n the
function k − clique(XU

n) takes the value 1 if and only ifG(XU
n) con-

tains a k-clique, i.e a set{v1 , . . . , vk} ⊆ {1 ,. . . , n} of vertices such
that for all 1≤ i ≠ j ≤ k, {vi , v j } is an edge ofG(XU

n).

Xn,n = {xi , j : 1 ≤ i , j ≤ n} denotes a set ofn2 Boolean variables.
B(Xn,n) is a mapping from assignments toXn,n onto 2n-vertex bipar-
tite graphs.B(α) is a bipartite graph over two disjoint setsV and W
of vertices (|V| = |W| = n) in which there is an edge betweenvi ∈ V
and W j ∈ W if and only if xi , j = 1 under α . PM(Xn,n) is the mono-
tone Boolean function which takes the value 1 if and only if the

196 MonotoneNetworks

bipartite graphB(Xn,n) contains aperfect matching, i.e there is a 2n-
vertex subgraph (factor) ofB(Xn,n) in which every vertex is the end-
point of exactly one edge.PM(Xn,n) may be expressed as

PM(Xn,n) =
σ ∈ Sn

\/
n

i=1
/\ xi ,σ (i)

Notation: For any finite setF , 2F denotes the set of all subsets ofF
and Ps(F) the set of all subsets ofF having cardinality≤ s. We use
2Xn to denote the setI (1) and∅ to denoteI (0).

3.5.1) The Lattice Method of Razborov, Alon and Boppana

This technique is presented in Razborov (1985a,b) and was
improved by Alon and Boppana (1986). Our description below com-
bines results from all of these papers. The method divides naturally
into three stages, of which only the last is heavily dependent on the
monotone function considered. At the core of the approach is a novel
interpretation of monotone Boolean networks as a particular type of
combinatorial structure called a regular lattice.

Definition 3.11:A regular lattice, M , is a lattice whose elements are
subsets of 2Xn and which satisfies,

R1) {I (x1) , . . . , I (xn), I (0), I (1)} ⊆ M

R2) Elementsof M are ordered by set containment⊆.

  and   denote the usual lattice operationsmeet and join.
Given A, B elements of a regular latticeM these operations satisfy,

A ∪ B ⊆ A   B ; A   B ⊆ A ∩ B •

In general both these containments will be strict. This motivates the
ideas ofsurplus and deficiency. For A, B as before these are given

Superpolynomial Lower Bounds 197

respectively by

δ +(A, B) = (A ∩ B) − (A   B)

δ −(A, B) = (A   B) − (A ∪ B)
(3.23)

Finally in order to model monotone networks by regular lattices some
concept of the complexity of a function with respect to any such lat-
tice is needed.

Definition 3.12: Let f (Xn) ∈ Mn and M be any regular lattice. The
distanceof f in M , denotedρ(f , M), is the leastt such that,

−− −− t pairs of lattice elements <Ai , Bi > and an elementD of M for
which

D ⊆ I (f) ∪
t

i=1
∪ δ −(Ai , Bi) (3.24)

I (f) ⊆ D ∪
t

i=1
∪ δ +(Ai , Bi) (3.25)

•

Using these ideas the three sections of the technique consist of

S1) Showing that for all f ∈ Mn and all regular latticesM ,
Cm(f) ≥ ρ(f , M).

S2) Constructinga particular class of regular latticesCLOSED(f).

S3) Proving a lower bound on the monotone complexity of some
specific functions, f , by obtaining a lower bound on the dis-
tance of f in CLOSED(f). Here the method relies on the
structure of the given f in order to derive large bounds.

198 MonotoneNetworks

3.5.1.1. Distance in Regular Lattices and Monotone Complexity

Lemma 3.15:\/- f (Xn) ∈ Mn, \/- regular latticesM ;

Cm(f) ≥ ρ(f , M)

Proof: Let S be any monotone network realisingf with Cm(S) = t.
Number the gates ofS in topological order. Let l i , r i denote the
functions computed by the left (resp. right) input nodes for the gate
numberedi .

With each nodei of S we associate an elementλ(v) of M as
follows,

λ(v) =









I (x j) if v is the inputej

I (0) if v is an input labelledwith 0

I (1) if v is an input labelledwith 1

λ(vL)   λ(vR) if op(v) = /\
λ(vL)   λ(vR) if op(v) = \/

We claim that choosing thet pairs <Ai , Bi > by Ai = λ(i L),
Bi = λ(iR), where i is the gate numberedi by the topological ordering
of S, (thus 1≤ i ≤ t); and choosingD = λ(t) satisfies relations (3.24)
and (3.25) above. This is easily shown by induction ont ≥ 0. If t = 0
then f is either a constant function or the variable xi . In any case D
is defined asI (f) and so the inductive base is trivial.

Now suppose the assertion holds for all values≤ t − 1. We shall
prove it holds for t also. Sincet ≥ 1, S contains at least one gate.
Consider the output gate ofS, which must be labelledt in the topo-
logical ordering. By definition we have that f = l t op(t) r t. By the
inductive hypothesis, since bothl t and r t are computed using at most
t − 1 gates inS, we hav e:

Superpolynomial Lower Bounds 199

At ⊆ I (l t) ∪
t−1

i=1
∪ δ −(Ai , Bi) (3.26)

Bt ⊆ I (r t) ∪
t−1

i=1
∪ δ −(Ai , Bi) (3.27)

I (l t) ⊆ At ∪
t−1

i=1
∪ δ +(Ai , Bi) (3.28)

I (r t) ⊆ Bt ∪
t−1

i=1
∪ δ +(Ai , Bi) (3.29)

First suppose thatop(t) = \/ . In this case,

D = λ(t) = At   Bt

and so using (3.26) and (3.27);

D = At ∪ Bt ∪ δ −(At, Bt)

⊆ I (l t) ∪ I (r t) ∪
t

i=1
∪ δ −(Ai , Bi)

= I (f) ∪
t

i=1
∪ δ −(Ai , Bi)

So (3.24) holds in this case. Similarly using (3.28) and (3.29);

I (f) = I (l t) ∪ I (r t)

⊆ At ∪ Bt ∪
t−1

i=1
∪ δ +(Ai , Bi)

200 MonotoneNetworks

⊆ (At   Bt) ∪
t−1

i=1
∪ δ +(Ai , Bi)

⊆ D ∪
t

i=1
∪ δ +(Ai , Bi)

So that (3.25) holds. The caseop(t) = /\ can be shown by a similar
argument. This completes the inductive argument and hence,
Cm(f) ≥ ρ(f , M).

3.5.1.2. The Class of Regular LatticesCLOSED(f)

Lemma(3.15) demonstrates that in order to prove lower bounds
on monotone complexity it is sufficient to prove lower bounds on dis-
tance in regular lattices. There are infinitely many possible choices of
regular lattice. A lattice with too few elements e.g containing only
I (xi), ∅ and 2Xn, would have insufficient structure to allow large
bounds to be easily derived. On the other hand, using a lattice with
too many elements e.g containing every subset of 2Xn, it would only
be possible to derive trivial lower bounds on distance, in the cited
example every function has distance 0 only.

Razborov defined a class of regular lattices based on the prime
implicant structure of any giv en monotone function and a novel clo-
sure relation. Unfortunately no motivation for the chosen representa-
tion is given and the reader should note that much of the development
below is non-intuitive.

Let f (Xn) ∈ Mn and recall thatPI(f) is the set of prime impli-
cants of f . Below r ≥ 2 and s ≥ 1 are natural numbers.

Definition 3.13:For f ∈ Mn, U(f) ⊆ Ps(Xn) is the set,

U(f) = {m : |m| ≤ s and −− −− p ∈ PI(f) such thatp ≤ m}

Superpolynomial Lower Bounds 201

Here we are regarding m both as a function and as a set of vari-
ables. •

Informally U is the set of monoms containing at mosts vari-
ables and which are shortenings of prime implicants off (Xn).

The relation — (read "yields") is a subset ofU(f)r × U(f)

defined by saying <E1 , . . . , Er > — E0 (where Ei ∈ U(f),
0 ≤ i ≤ r) if and only if

1 ≤ i < j ≤ r
∪ Ei ∩ E j ⊆ E0 (3.30)

If U1 ⊆ U and E ∈ U we writeU1 — E if there are setsE1 , . . . , Er

(not necessarily distinct) inU1 such that <E1 , . . . , Er > — E. A
subset U1 of U is said to be closed if

\/- E ∈ U(f) (U1 — E ☞ E ∈ U1). We denote byU1 the smallest
cardinality closed subset ofU(f) which containsU1, thus if U1 is
closed thenU1 = U1. This is called theclosureof U1.

Finally, for any E ∈ U(f) the cover of E, denoted E  is the
set,

 E  = { F : F ⊇ E}

For a subsetU1 of U(f), this is naturally extended by defining, the

set  U1  as
E ∈ U1

∪  E . •

Definition 3.14:Let f (Xn) ∈ Mn the latticeCLOSED(f) is the lattice
which contains exactly the elements,

{  U1  : U1 ⊆ U(f) and U1 is closed} •

CLOSED(f) is the lattice used to derive the lower bounds

202 MonotoneNetworks

established below.g)

Lemma 3.16:For all f ∈ Mn, CLOSED(f) is a regular lattice, whose

  and   operations satisfy for all A ,  B  ∈ CLOSED(f),

 A    B  =  A ∩ B 

 A    B  =  A ∪ B 

Proof: It is clear that CLOSED(f) contains I (xi) =  {xi }  for all

1 ≤ i ≤ n and alsoI (0) =  ∅  and I (1) =  U(f) . For the second part
of the lemma consider

SUB(f) = { C : C is a closed subsetof U(f) }

Obviously SUB(f) under the ordering⊆ forms a lattice with opera-
tions inf (A, B) ≡ A ∩ B and sup(A, B) ≡ (A ∪ B). The cover opera-

tion  . .  defines a mapping fromSUB(f) → CLOSED(f) which is
an order preserving lattice homomorphism, i.e

A ⊆ B ☞  A  ⊆  B 

The lemma will follow if  . .  is actually anisomorphic mapping.
Thus if for any closed subsetsA, B of U(f) we hav e

 A  ⊆  B  ☞ A ⊆ B

So supposeA, B are two closed subsets ofU(f) with  A  ⊆  B .
Let E ∈ A. Since

E ∈ A ⊆  A  ⊆  B 

g) For the lower bound onk-clique this is not strictly true.Instead of usingU as the
basis for defining "closure",— and "covers" a particular subset ofU is used. The com-
binatorial results proved subsequently all hold for the lattice structure that arises. This
will be clear when the actual form used is defined later.

Superpolynomial Lower Bounds 203

it follows from the definition of . .  that there is someF ∈ B such
that F ⊆ E, we therefore have from (3.30) that

F , F , . . . , F — E

and E ∈ B since this is a closed subset ofU. So we hav e established
that A ⊆ B proving the lemma.

A set C ⊆ 2Xn (i.e set of monoms or of variable sets) is said to
be independentif for each distinctA, B ∈ C: A ⊆ B and B ⊆ A.

The lower bound proofs require upper bounds on two measures
to be established:

UPB1) For any closed setW ⊆ U(f) the value of |basek(W)|, where
basek(W) is

{ E ∈W : |E|≤ k and \/- F ∈W F ⊆ E ☞ F = E }

basek(W) consists of the minimal (w.r.t ⊆) sets inW of car-
dinality at mostk.

UPB2) For any set W ⊆ U(f) the value of |W − W |, i.e the num-
ber of sets added toW to render it closed.

The main contribution made by Alon and Boppana was in
improving the upper bounds on these quantities originally obtained in
Razborov (1985a,b). In practice only the improvement of (UPB1) led
to larger lower bounds, although in principle that made to (UPB2)
could also yield better results. At present no examples were this is so
are known.

We tackle the problem posed by (UPB1) in two stages: first it is
shown that for any independent subset,W, of Pk(Xn) for which there
does not exist any r + 1-tuple

< E0, E1 , . . . , Er > ∈ Wr+1

204 MonotoneNetworks

with
1 ≤ i < j ≤ r

∪ Ei ∩ E j ⊂ E0, such a set contains at most (r − 1)k

members. Note that the containment isstrict. Using this it is easy to
derive an upper bound on

Ik = max { |basek(W)| : W ⊆ U(f) and Wis closed}

Following Alon and Boppana, we say that an independent subset
W of Pk(Xn) is r-stable if there does not exist any r + 1-tuple inWr+1

with the property described in the preceding paragraph.h)

Lemma 3.17:(Alon and Boppana, 1986) improving Razborov (1985a)
Let W ⊆ Pk(Xn) be independent. IfW is r-stable then |W| ≤ (r − 1)k.

Proof: By induction on r ≥ 2. For the inductive base, r = 2 let
W ⊆ Pk(Xn) be independent and 2-stable. If |W| ≥ 2 then W contains
sets W1 and W2. But W1 ∩ W2 ⊂ W1 ∈ W which contradicts the
assumption of 2-stability. Thus |W| = 1 proving the inductive base.

For the inductive hypothesis assume the lemma holds for all
values ≤ r − 1 and let W ⊆ Pk(Xn) be independent andr-stable. We
shall show that |W| ≤ (r − 1)k. Choose any V ∈ W and for eachC ⊆ V
define a setWC ⊆ Pk−|C|(Xn) by

WC = { F − C : F ∈ W and F ∩ V = C}

Clearly WC is independent.WC is also (r − 1)-stable. To see this sup-
pose the contrary. Then there is some r-tuple
< E0, E1 , . . . , Er−1 > ∈ Wr

C such that

1 ≤ i < j ≤ r−1
∪ Ei ∩ E j ⊂ E0

But this implies that,

h) Alon and Boppana (1986) actually uses the term "has PropertyP(r , k)".

Superpolynomial Lower Bounds 205

1 ≤ i < j ≤ r−1
∪ (Ei ∪ C) ∩ (E j ∪ C) ⊂ E0 ∪ C

and sinceEi ∈ WC, by definition we have that

1 ≤ i ≤ r−1
∪ (Ei ∪ C) ∩ V = C

So if we chooseFi = Ei ∪ C, for each 0≤ i ≤ r − 1 and set Fr = V
then <F0, F1 , . . . , Fr > ∈ Wr+1 and from the previous argument,

1 ≤ i < j ≤ r
∪ Fi ∩ F j ⊂ F0

contradicting ther-stability of W. It follows thatWC is (r − 1)-stable.

By the inductive hypothesis, sinceWC ⊆ Pk−|C|(Xn), this gives
|WC| ≤ (r − 2)k−|C|. Now,

|W| =
C ⊆ V
Σ |WC| ≤

C ⊆ V
Σ (r − 2)k−|C|

=
|V|

i=0
Σ 


|V|

i



(r − 2)|V|−i

≤
k

i=0
Σ 


k

i



(r − 2)k−i = (r − 1)k

By the Binomial theorem. The completes the induction, proving the
lemma.

Corollary 3.9: Ik ≤ (r − 1)k

Proof: (Razborov, 1985b) LetW be any closed subset ofU(f). It is
sufficient to show that |basek(W)| ≤ (r − 1)k. Clearly
basek(W) ⊆ Pk(Xn) and is independent. Supposebasek(W) is not r-
stable. As before we can find

206 MonotoneNetworks

< E0, E1 , . . . , Er > ∈ basek(W)r+1 ⊆ Wr+1 such that,

1 ≤ i < j ≤ r
∪ Ei ∩ E j = E ⊂ E0

Hence basek(W) — E ☞ W — E ☞ E ∈ W by closure. But
E ∈ W contradicts E0 ∈ basek(W) since E ⊂ E0. This contradiction
shows that basek(W) is r-stable, thus from Lemma(3.17)
|basek(W)| ≤ (r − 1)k as claimed.

We now turn to the problem posed in (UPB2), that of bounding
the number of sets needed to produceW from W. In fact all that is
needed for subsequent development in the lower bound proofs is an
upper bound on the number of iterations of the following algorithm to
produceW.

Input: A, B where A, B ⊆ U(f) and closed
Output: W = (A ∪ B)
Method: (Alon andBoppana, 1986)

W0 : = A ∪ B
while Wi ≠ W do

Vi+1 : = E ∈ bases ({F ∈/ Wi : Wi — F}

Wi+1 : = Wi ∪ ( Vi+1  ∩ Ps(Xn))
i : = i + 1

od

The Closure Algorithm

Let p be the maximal number of iterations of this algorithm, and
< V1, V2 , . . . ,Vp > the sequence of (minimal) sets whose cover up to
sets of cardinalitys is added at each stage. We wish to derive an
upper bound onp. Now since U(f) is finite and closed it is obvious
that p ≤ |U(f)| and this is the measure used in (Razborov, 1985a,b).

Superpolynomial Lower Bounds 207

As we remarked previously even this crude estimate is adequate to
derive the exponential bounds obtained in Alon and Boppana (1986).
However the improved bound derived by Alon and Boppana may yet
be of value for deriving further results.

Lemma 3.18:p the number of iterations of the Closure Algorithm is
≤ 2r s.

Proof: Let S = < V1 , . . . ,Vp > be the sequence of minimal sets added
by the closure algorithm. This sequence has the following property:

Each Vi has cardinality ≤ s and there do not exist
i1 ≤ i2 ≤ . . . ≤ i r < i r+1 for which

< Vi1 , . . . ,Vi r > — U ⊂ Vi r+1

We say that any sequence of distinct sets <C1 , . . . ,Cq > which sat-
isfy this have Property T(r,s).

Now supposeS is as above but that S does not have property T.
We claim that thenVi r+1

would not be the set added at thei r+1 itera-
tion. This is becauseVi r+1

is supposed to be a minimal set which is
not in Wi r+1 − 1 but such thatWi r+1 − 1 yields Vi r+1

. Now if

< Vi1, Vi2 , . . . ,Vi r > — U ⊂ Vi r+1

i.e T does not hold, thenVi r+1
could only be an appropriate set to con-

sider if U ∈ Wi r+1 − 1. This can be true only ifU ∈ A ∪ B or

U ∈  V j  ∩ Ps(Xn) for some j < i r+1. In the former case we have,

without loss of generality, U ∈ A so  U  ∩ Ps(Xn) ⊆ A (since A
is closed) hence, becauseU ⊂ Vi r+1

∈ Ps(Xn), Vi r+1
∈ A. This contra-

dicts Vi r+1
occurring in the sequence of setsS. The latter case is even

easier to dismiss for then U  ∩ Ps(Xn) ⊆  V j  ∩ Ps(Xn) thus by

the previous argument Vi r+1
∈  V j  ∩ Ps(Xn) and is again

208 MonotoneNetworks

unsuitable.i)

So <V1 , . . . ,Vp > has propertyT. We claim that for all r ≥ 1,
s ≥ 0 any sequence of distinct sets <C1 , . . . ,Cq > with property T
must have q ≤ 2r s. Clearly this proves the lemma.

This claim is established by induction onr ≥ 1. For the induc-
tive base letQ = < C1 , . . . ,Cq > hav e property T. For r = 1, the rela-

tion — satisfiesQ — ∅. Now suppose thatq ≥ 3. Since theCi are
distinct, at least one ofC2, C3 must be non-empty. Without loss of
generality, assume it is C2. Now we hav e a contradiction since

C1 — ∅ ⊂ C2 and Q does not have property T. It follows thatq ≤ 2
proving the inductive base.

Assume the claim holds for all values ≤ r − 1 and let Q have
property T. We must show that q ≤ 2r s. Put D = C1 and for each
V ⊆ D define the sequenceQV as the sequence of setsCi − V such
that Ci ∩ D = V, these appearing in the same order as inQ. It is easy
to show that QV has PropertyT by using methods similar to
Lemma(3.3). By the inductive hypothesis, |QV | ≤ 2(r − 1)s−|V| and so,

q = |Q| = 2
|D|

i=0
Σ 


|D|

i



(r − 1)|D|−i

i) The reader familiar with Alon and Boppana (1986) may wonder why we hav e: 1)
Defined the Closure algorithm for sets of the formA ∪ B for closedA, B instead of
arbitrary subsets ofU(f) as is done in their paper; and 2) Given a detailed exposition
that S actually has propertyT, when this is just stated in the paper. The Closure algo-
rithm, of course, does work for arbitrary subsets, however propertyT does not always
hold. Consider forming the closure ofC = {x1x2} whenr = 2, s ≥ 5 and U(f) = Ps(Xn).
Using the Closure algorithm,C — x1x2x j \/- 3 ≤ j ≤ n. Each setx1x2x j is not con-
tained inC and is a minimal such set. It is easy to see that choosingVi = x1x2x2+i is a
valid choice of sequence for the closure algorithm to make. But this sequence does not
have propertyT. V1, V2 — x1x2 ⊂ V3. In fact in this case the number of iterations,
p, is exactly n − 2 ≥ 2r s = 2s+1 whenever s <  log2 n  − 1. Ourpresentation, which is
sufficient for the purpose intended, avoids this problem, showing that for any such U
which arises,U ∈/ A ∪ B by using the closure ofA andB.

Superpolynomial Lower Bounds 209

≤ 2
s

i=0
Σ 


s

i



(r − 1)s−i = 2r s

This completes the proof by induction.

3.5.1.3) Lower Bounds on Distance inCLOSED(f)

In this section we show how the combinatorial results proved in
Sect(3.5.1.2) can be used to produce a general inequality for lower
bounds on monotone complexity. Sect(3.5.1.4) below will then give
some specific applications.

The technique used is a probabilistic counting argument, in the
style of Erd̈os and Spencer (1974). Subsequently the following nota-
tion will be used.

M+(f) is a randomly chosen prime implicant off (Xn). Each such
prime implicant is selected independently with probability |PI(f)|−1.

M−(f) is a randomly chosen monom, (i.e subset ofXn).

The exact details of how M− is defined depend on the function con-
sidered.

Ext(f , k) =
{m ∈ 2Xn : |m| = k}

max |{ p ∈ PI(f) : p ≤ m }|

Let A ∪ B = C0, C1 , . . . ,Cp = A ∪ B, where A and B are
closed subsets ofU(f), be the sequence of successive sets generated
by the closure algorithm. Let <E1 , . . . , Ep > be the minimal sets

added at each iteration. ThusCi — Ei+1 and Ei+1 ∈/ Ci , for each
0 ≤ i ≤ p − 1.

Gap(f) =
0 ≤ i ≤ p−1

max Prob[M−(f) ∈ ( Ei+1  −  Ci )]

210 MonotoneNetworks

The reason for these random variables is to produce upper
bounds on:

EXCESS(f) =
A, B ∈CLOSED(f)

max Prob[M+ ∈δ +(A, B)] (3.31)

DEFICIT(f) =
A, B ∈CLOSED(f)

max Prob[M− ∈δ −(A, B)] (3.32)

Theorem 3.15:Let t = ρ(f , CLOSED(f)), then

t ≥
1 − Prob[M+(f) ∈ D]

EXCESS(f)

t ≥
Prob[M−(f) ∈ D] − Prob[M−(f) ≤ f]

DEFICIT(f)

Proof: The first inequality follows from relation (3.25) in Defn(3.12),
using the fact that M+(f), as a prime implicant off , occurs in I (f)
with probability 1. The second inequality follows from relation (3.24)
in Defn(3.12).

Lemma 3.19:EXCESS(f) ≤
(r − 1)2s Ext(f , s + 1)

|PI(f)|

Proof: Let A =  V  and B =  W  be elements ofCLOSED(f)
whereV ⊆ U(f), W ⊆ U(f) are closed. We hav e, from Lemma(3.16)

δ +(A, B) = (A∩ B) − (A   B)

= ( V  ∩  W ) − ( V ∩ W )

= ( bases(V)  ∩  bases(W) ) − ( V ∩ W )

Superpolynomial Lower Bounds 211

= (
E ∈bases(V)

∪  E  ∩
F ∈bases(W)

∪  F ) − ( V ∩ W )

= (
E
∪

F
∪  E  ∩  F ) − ( V ∩ W )

=
E
∪

F
∪ ( E ∪ F  −  V ∩ W )

Consider any E ∈ bases(V) and any F ∈ bases(W). We can distin-
guish three possible cases.

Case 1:E ∪ F ⊆ var(p) \/- p ∈ PI(f)

In this caseProb[M+(f) ∈  E ∪ F ] = 0.

Case 2:E ∪ F ∈ U(f)

Obviously E ∈ V, thus sinceV is closedE ∪ F ∈ V also. In
the same way E ∪ F ∈ W. So E ∪ F ∈ V ∩ W and therefore the

set  E ∪ F  −  V ∩ W  is empty.

Case 3:E ∪ F ⊆ var(p) for somep ∈ PI(f), but E ∪ F ∈/ U(f)

This can only be so if |E ∪ F | ≥ s + 1, by the definition of
U(f). We now hav e,

Prob[M+(f) ∈  E ∪ F ] = Prob[E ∪ F ⊆ M+(f)]

≤
Ext(f , s + 1)

|PI(f)|

So in every case, Prob[M+(f) ∈  E ∪ F ] is at most
Ext(f , s + 1)

|PI(f)|
. From the preceding analysis and Corollary(3.9),

Prob[M+(f) ∈δ +(A, B)] ≤
|bases(V)||bases(W)|Ext(f , s + 1)

|PI(f)|

212 MonotoneNetworks

≤
(r − 1)2s Ext(f , s + 1)

|PI(f)|

Since A, B were chosen arbitrarily the upper bound onEXCESS(f)
follows.

To produce an upper bound onDEFICIT(f) we use the result
of Lemma(3.18).

Lemma 3.20:DEFICIT(f) ≤ 2r s Gap(f).

Proof: As in the proof of Lemma(3.19), letA =  V , B =  W  be
elements ofCLOSED(f) whereV, W are closed subsets ofU(f). Let
C0 = V ∪ W and <C1 , . . . ,Cp > be the sequence of sets created by
the closure algorithm i.e theW j sets in the description of this algo-
rithm above. Finally let < E1 , . . . , Ep > be the sequence of minimal

sets used in the closure algorithm. Recall thatCi — Ei+1, Ei+1 ∈/ Ci

and that the sequence <E1 , . . . , Ep > has property T and hence
p ≤ 2r s. Applying Lemma(3.16) we have,

δ −(A, B) =  (V ∪ W)  −  V ∪ W 

⊆
p−1

i=0
∪ ( Ci+1  −  Ci )

=
p−1

i=0
∪ ( Ei+1  −  Ci )

Note that the second inequality uses the fact that,

k−1

i=0
∪ ( Ci+1  −  C0 ) ⊆

k−1

i=0
∪ ( Ci+1  −  Ci )

This being easily established by induction on 1≤ k ≤ p.

Superpolynomial Lower Bounds 213

Now since p ≤ 2r s, Ci — Ei+1, Ei+1 ∈/ Ci it is immediate from
the last inequality that, the probability ofM−(f) occurring inδ −(A, B)
is at most

2r s

0 ≤ i ≤ p−1
max Prob[M−(f) ∈ ( Ei+1  −  Ci )]

Since A, B were arbitrary this establishes the upper bound on
DEFICIT(f) stated.

Theorem 3.16:Let t = ρ(f , CLOSED(f)).

t ≥ min







|PI(f)|

(r − 1)2s Ext(f , s + 1)
Prob[M−(f) ∈ D] − Prob[M−(f) ≤ f]

2r s Gap(f)







(3.33)

t ≥ min







|PI(f)| (1− Prob[M+(f) ∈ D])

(r − 1)2s Ext(f , s + 1)
1 − Prob[M−(f) ≤ f]

2r s Gap(f)







(3.34)

Proof: (3.33) follows from Thm(3.15), Lemma(3.19) and Lemma(3.20)
by considering the two casesD = ∅ and D ≠ ∅. (3.34) follows in the
same way by considering the two casesD ≠ U(f) and D = U(f).

3.5.1.4) Lower Bounds for Specific Monotone Functions

We conclude this section by deriving non-trivial lower bounds
on the monotone complexity of k − clique(XU

n) and PM(Xn,n). The
first will be exponential for suitable choices ofk.

We noted earlier that the actual lattice structure employed for
the bound onk-clique is slightly different from the family CLOSED
defined above. The underlying setU(f) is not the set of monoms

214 MonotoneNetworks

containing at mosts variables, which are shortenings of prime impli-
cants, i.e graphs with at mosts edges which are subgraphs ofk-
cliques. Instead we take U(f) to be the set of all monoms correspond-

ing to cliques with at mosts vertices. In this way  E , where E is
a clique of size ≤ s, is the set of graphs which containE as a sub-
graph. In the same style we amend the definition ofExt, for k-
cliques, to be the number ofk-cliques a clique of sizes + 1 could be
extended to. Since XU

n is a set of edges, each clique inU(f) has at
least two vertices. It is not difficult to verify that the combinatorial
analyses of the preceding sections all hold for the new lattice defined.
For PM(Xn,n) no such amendments are needed, andCLOSED(PM) is
exactly as defined above. We use CLOSED(k) to denote the amended
lattice for thek-clique function. The following is obvious and needs
no proof,

Fact 3.7: i) |PI(PM(Xn,n))| = n!.

ii) |PI(k − clique(XU
n))| = 


n

k


.

To start we need upper bounds onExt(PM, s + 1) and
Ext(k − clique, s + 1)

Lemma 3.21:

Ext(k − clique, s + 1) = 

n − s − 1

k − s − 1



(3.35)

Ext(PM, s + 1) = (n − s − 1)! (3.36)

Proof: (3.35) is immediate from the modified definition of
Ext(k − clique, s + 1). For (3.36) a bipartite graph containings + 1
edges can only be extended to a perfect matching if each vertex has
degree at most one, i.e if the graph is a perfect matching on two sets

Superpolynomial Lower Bounds 215

of s + 1 vertices. It follows that the number of perfect matchings con-
sistent with this is just the number of perfect matchings over two sets
of n − s − 1 vertices. The upper bound now follows from Fact(3.7).

The problem of boundingGap(PM) and Gap(k − clique) is
more difficult. We first considerk − clique(XU

n). Define M−(k) to be
the following randomn-vertex graph. Select a random colouring of
{1, 2 , . . . , n} with g colours {1′, 2′ , . . . , g′}, each colouring appearing
independently with probability g−n. For a given colouring,
χ ∈ ([1. . n] → [1. . g]), G(χ) is the graph in which there is an
edge betweeni and j if and only if χ (i) ≠ χ (j).

Lemma 3.22:

Gap(k − clique) ≤







1 −

s−1

i=0
Π (g − i)

gs







r

Proof: Given the definition of Gap, we hav e to show that

Prob[M−(k) ∈ ( Ei+1  −  Ci )] is bounded above by the expres-
sion in the Lemma statement. Now M−(k) is a complete g-partite

graph and Ei+1  a set of graphs containing the cliqueEi+1 as a sub-
graph. M−(k) contains the same clique if and only if the vertices of
Ei+1 are all coloured differently byχ , the randomg-colouring which
generatesM−(k). Now suppose that there is some setF ∈ Ci such
that χ colours the vertices ofF using different colours. In the same

way M−(k) ∈  F  ⊆  Ci . A subsetW of {1 ,. . . , n} is said to be
properly coloured (PC) byχ if each vertex in W is coloured differ-

ently by χ . It follows that M−(k) ∈ ( Ei+1  −  Ci ) if and only
if Ei+1 is PC by χ but no set in Ci is PC by χ . So to prove the
lemma it is sufficient to obtain an upper bound for,

216 MonotoneNetworks

Prob[Ei+1 is PC by χ and noset in Ci is PC by χ]

From the definition of— we can findV1 , . . . ,Vr in Ci such that

1 ≤ j < l ≤ r
∪ V j ∩ Vl ⊆ Ei+1.

It follows that, Prob[Ei+1 is PC and noset in Ci is PC] is no
more than,

Prob[Ei+1 is PC and Vj is not PC \/- 1 ≤ j ≤ r]

which does not exceed

Prob[V j is not PC | Ei+1 is PC]

and this is at most

r

j=1
Π Prob[V j is not PC | Ei+1 is PC]

The last inequality holds by virtue of the fact that the setsV j − Ei+1

are disjoint (by definition of —) and hence the events
< V j is not PC | Ei+1 is PC > are mutually independent. Now let
p j = |V j ∩ Ei+1| and q j = |V j − Ei+1| so that p j + q j = |Ei+1| ≤ s.

Superpolynomial Lower Bounds 217

Prob[V j is not PC | Ei+1 is PC] = 1 − Prob[V j is PC | Ei+1 is PC]

= 1 −

|Ei+1| − 1

l=p j

Π (g − l)

gq j

≤ 1 −

s−1

l=p j

Π (g − l)

gs − p j

≤ 1 −

s

l=0
Π (g − l)

gs

This proves the lemma.

Lemma 3.23:Let g = k − 1. If D ∈ CLOSED(k) and D ≠ ∅ then

Prob[M−(k) ≤ k − clique] = 0

Prob[M−(k) ∈ D] ≥

s−1

i=0
Π (k − 1 − i)

(k − 1)s

Proof: The first inequality is obvious. For the second sinceD ≠ ∅, D
contains at least one setE, say. Thus

Prob[M−(k) ∈ D] ≥ Prob[M−(k) ∈  E ]

= Prob[E ⊆ M−(k)]

= Prob[E is PC by χ s. t G(χ) = M−(k)]

and this proves the second inequality.

218 MonotoneNetworks

Theorem 3.17:For 3 ≤ k ≤
1

4



n

logn



2/3

,

Cm(k − clique) = Ω







n

16k3/2 logn



√k 



Proof: Fix s =  √k , r =  4 √ s logn  + 1, g = k − 1. This gives from
Thm(3.16) (2.11), usingt = ρ(CLOSED(k), k − clique),

t ≥



n

k



(r − 1)2s 

n − s − 1

k − s − 1



=
n! (k − s − 1)!

(n − s − 1)! k! (r − 1)2s

≥
nn kk−s

nn−s kk (r − 1)2s

≥ 


n

k (r − 1)2



s

≥ 


n

16k3/2 logn



√k

We leave as an exercise the problem of showing that t exceeds this
quantity in the caseD ≠ ∅ in (2.11) of Thm(3.16).

For the function PM(Xn,n), the random monom (≡ bipartite
graph) M− is constructed by the method below.

Superpolynomial Lower Bounds 219

Let V, W be the disjoint sets ofn vertices in the bipartite graph
B(Xn,n). Select a random labelling,h, of the verticesV ∪ W with 0
and 1. Each labelling is chosen with probability 2−2n. M−(PM) is the
random bipartite graph formed by choosing such a labelling of
V ∪ W and adding edges{ < vi , w j > : h(vi) = h(w j) }, where
1 ≤ i , j ≤ n.

In order to boundGap(PM) with this choice ofM−, Razborov
(1985b) proves some combinatorial results on properties ofU(PM). It
should be noted that in graph-theoretic terms, an element ofU(PM)
corresponds to a matching containing at mosts edges. Amatching is
a (bipartite) graph in which every vertex is the endpoint of at most
one edge. This interpretation is convenient for developing an upper
bound onGap(PM).

Lemma 3.24:(Razborov, 1985b) Let

B = {B1, B2 , . . . , Br} ⊆ U(PM)

be a set ofr non-empty matchings such thatBi ∩ B j = ∅ whenever
i ≠ j . There is a subset

{T1, T2 , . . . , Tp}

of B such thatp ≥ √ r

s
and for which the bipartite graph with edges

p

i=1
∪ Ti contains no cycles, i.e is aforest.

Proof: Let {T1, T2 , . . . , Tp} be a maximal size subset ofB for which
p

i=1
∪ Ti is a forest. It suffices to prove that p ≥ √ r

s
. Suppose the con-

trary and putE0 =
p

i=1
∪ Ti . Since |Ti | ≤ s, by the assumption we have

|E0| < √ r . Now consider the subsetsV0 of V, W0 of W, being those
vertices inV, respectively W, which occur in at least one edge ofE0.

220 MonotoneNetworks

Clearly |V0| < √ r and |W0| < √ r hence |V0 × W0| < r = |B|. It follows
from the edge disjointness of matching inB that we can find some
matching B j ∈ B such that B j ∩ (V0 × W0) = ∅. By definition
E0 ⊆ V0 × W0 henceB j ∩ E0 = ∅. But E0 is a forest andB j a match-
ing and so from the preceding argument the graph with edges
E0 ∪ B j is also a forest. This contradicts the choice of{T1 , . . . , Tp}

as being maximal and therefore we must have p ≥ √ r

s
.

Lemma 3.25:Let T be a forest over V ∪ W which contains exactly p
edges { < ik, jk > : 1 ≤ k ≤ p}. The events
{ < ik, jk > is anedge ofM−(PM) } (for each k) occur independently
with probability 1/2.

Proof: It is sufficient to show that for any subset K of {1, 2 ,. . . , p}
the probability of the event

\/- k ∈ K < ik, jk > ∈ M−(PM) ; \/- k ∈/ K < ik, jk > ∈/ M−(PM)

is exactly 2−p.

Let χ K : {1 ,. . . , n} → {0, 1} be the predicate for which
χ K (k) = 1 ☞☞ k ∈ K . Now recalling thatM−(PM) arises from a ran-
dom labellingh : V ∪ W → {0, 1} it is clear that the probability of
this event is just the number of labellings,h, which are solutions to
the following system ofp linear equations over GF(2), divided by
2−2n, i.e the total number of distinct labellings.





h(vik) O+O+ h(w jk) ≡ χ K (k) O+O+ 1


 1 ≤ k ≤ p

So it suffices to show that this system has 22n−p distinct solutions.

Superpolynomial Lower Bounds 221

Consider the forestT with p edges{ < ik, jk > : 1 ≤ k ≤ p}. Let
β ≥ 1 be the number of connected components (i.e trees) in thisT,
each component containing at least one edge. ThenT contains exactly
p + β vertices. For each tree there are exactly 2 ways of labelling the
vertices to satisfy the system of equations above, one being the logical
complement of the other. That there are exactly two such consistent
labelling can be proved by an easy induction on the number of edges
in a single component. Now since each component may be labelled
independently of the others it follows that there are 2β labelling of the
vertices in the forestT which satisfy the system. This leaves
2n − p − β vertices unlabelled (those not the endpoint of any edge in
T) and any labelling of these will be valid. Thusthe system of linear
equations over GF(2) has exactly 2β . 22n − p − β = 22n − p distinct
solutions as required.

Corollary 3.10: Let D ∈CLOSED(PM) with D ≠ ∅.

Prob[M− ∈  D ] ≥ 2−s.

Proof: Since D is non-empty it contains at least one matching,E say.
Note thatE is obviously a forest. We therefore have

Prob[M− ∈  D ] ≥ Prob[M−  E ]

= Prob[E ⊆ M−] = 2|E| ≥ 2−s

Lemma 3.26:Gap(PM) ≤ (1 − 2−s)
√ r

s

Proof: From the definition ofGap(f) it is sufficient to show that if

C ⊆ U(PM) and C — E then

222 MonotoneNetworks

Prob[M−(PM) ∈( E  −  C )] ≤ (1− 2−s)
√ r

s

So suppose thatC ⊆ U(PM) and we have

< E1 , . . . , Er > ∈ {C }r

for which

< E1 , . . . , Er > — E

Consider the set (of matchings){ F i : Fi = Ei − E }. From (3.30), the

definition of —, we hav e Fi ∩ F j = ∅ whenever i ≠ j . In addition if

any Fi is empty thenE0 ⊆ Ei and hence E0  ⊆  C  for which
the upper bound onGap(PM) claimed follows trivially. So it may be
assumed that eachFi (1 ≤ i ≤ r) is non-empty. Now the conditions of
Lemma(3.24) holds for the set{F1 , . . . , Fr} thus we can find a subset

T = {T1 , . . . , Tp} of this such thatp ≥ √ r

s
and for which

p

j=1
∪ T j is a

forest.

We now hav e,

Prob[M− ∈ ( E  −  C )]

is no more than

Prob[M− ∈  E  & \/- i M− ∈/  Ei ]

and this is equal to

Prob[E ⊆ M− & \/- i F i ⊆ M−] ≤ Prob[\/- i F i ⊆ M−]

≤ Prob[\/- T j ∈ T Tj ⊆ M−]

From Lemma(3.25) the events T j ⊆ M− (for each 1≤ j ≤ p) are
independent and occur with probability 2T j ≥ 2−s. Therefore

Superpolynomial Lower Bounds 223

Prob[\/- T j ∈ T Tj ⊆ M−] is equal to
p

j=1
Π Prob[T j ⊆ M−] and hence

is no more than (1− 2−s)
√ r

s . This establishes the upper bound on
Gap(PM).

Lemma 3.27:Prob[M− ≤ PM(Xn,n)] ≤
1

√n
.

Proof: M− contains a perfect matching if and only if the number of
vertices ofV labelled with 1 by a random labellingh equals the num-
ber of vertices ofW labelled 1 by the same random labelling. Thus,

Prob[M− ≤ PM(Xn,n)] ≤ Prob[
n

i=1
Σ h(vi) =

n

i=1
Σ h(wi)]

≤
0 ≤ j ≤ n
max Prob[

n

i=1
Σ h(wi) = j]

= 


n

n/2



2−2n

≤
1

√n

Theorem 3.18:For any ε > 0 and n sufficiently large,

Cm(PM(Xn,n)) ≥ n
(

1

16
− ε) logn

Proof: Fix s =  logn/8  and r =  n1/4(logn)8  and let
t = ρ(CLOSED(PM), PM). Using relation (3.33) of Thm(3.16) and
relation (3.36) of Lemma(3.21) gives,

224 MonotoneNetworks

t ≥
n!

(r − 1)2s (n − s − 1)!

≥




n

(r − 1)2




s

≥ n
(

1

16
− ε) logn

Now consider the second part of relation (3.33) in Thm(3.16),
i.e D is non-empty. Using Corollary(3.10), Lemma(3.25),
Lemma(3.26) and Lemma(3.27) and the chosen values ofr and s
shows that in this caset would be at least exp(log3 n − o(log3 n)) and
hence t is asymptotically greater than the first case,D = ∅. This
proves the theorem.

An important consequence of Thm(3.18) concerns the power of
negation in computing Boolean functions.

Corollary 3.11: The basis{ /\ , \/ , ¬} is superpolynomially more pow-
erful than the basis{ /\ , \/ }.

Proof: PM(Xn,n) can be computed using polynomial size networks
over any logically complete basis e.g by combining the algorithm of
Hopcroft and Karp (1973) with the result of Corollary(2.1) above.
Thm(3.18) shows that polynomial size monotone networks do not
exist for this function.

Tardos (1988) has recently shown that the gap between mono-
tone and non-monotone network complexity is in fact exponential.

Superpolynomial Lower Bounds 225

3.5.2. The Andreev Lower Bound Method

The techniques applied in Andreev (1985) are developed from
the classical inductive gate elimination method and utilise Wegener’s
idea of providing certain functions "for free" as additional inputs.

This approach is shown to yield an exponential bound of 2n1/8 − o(1) on
the monotone complexity of a specific function inMn.

Below En denotes the set{0, 1}n, ||α || the number of 1’s in
α ∈ En and D f the (minimal) DNF of f ∈ Mn. The size of f
(denoted by |f |) is the number of prime implicants off ; The rank of
f (Rf) is the length of the longest prime implicant off . If f is a
constant function then |f | = Rf = 0. Given f1 and f2 in Mn, we say
that f1 ⊆ f2 if and only if PI(f1) ⊆ PI(f2). A function, f , is called
(u,r)-regular if it can be expressed in the form:

f = xi1 /\ xi2 /\ . . . xiu /\ f1

Here i1 , . . . , iu are distinct, f1 does not depend on{xi1 , . . . , xiu},
| f1| = r and each dependent variable of f1 occurs inD f1 exactly once.
f is calledr-regular if it is (u, r)-regular for someu ≥ 0.

M t
n denotes those functionsf ∈ Mn such that every prime

implicant of f has lengtht. Define:

π t(f) =







g ∈ M t
n : f ≤ g

min |g| if such ag exists

1 + 

n

t



otherwise

l (r , s) = rss!

Rn
r ,s = { f : f ∈ Mn, Rf ≤ s, | f | ≤ l (r , s) }

An (n, r , s) − schemeis a monotone network with functions fromRn
r ,s

226 MonotoneNetworks

given free as extra inputs.Ln
r ,s is the least number of/\ , \/ gates

needed to realisef ∈ Mn by a (n, r , s)-scheme. Itmay be assumed
that r ≥ 2 and s ≥ 1. Clearly, Ln

r ,s(f) = 0 ☞☞ f ∈ Rn
r ,s.

Let 0< p < 1. For f1 and f2 in Mn we define a measure
ρ p(f1, f2) as follows:

ρ p(f1, f2) =
α ∈ En : f1(α) ≠ f2(α)

Σ pn − ||α ||(1 − p)||α ||

ρ p(f , g) may be interpreted in the following way. Consider construct-
ing a random member, β , of En by settingxi to 0 with probability p
and to 1 with probability 1− p, the events {xi = e : e ∈ {0, 1} } for
1 ≤ i ≤ n being independent.In this way ρ p(f , g) is just the probabil-
ity that f (β) ≠ g(β). It is easy to see that,

ρ p(F(Xn, f1), F(Xn, f2)) ≤ ρ p(f1, f2) (3.37)

Lemma 3.28:Let {i 1 , . . . , iu} ⊆ {1 ,. . . , n} and suppose that

g(Xn) =
u

j=1
/\ xi j

/\ g1(Xn − {xi j
: 1 ≤ j ≤ u})

whereg1 is (0,r)-regular.

If Rg ≤ s then ρ p(g, xi1
. . . xiu) ≤ (sp)r .

Proof: Without loss of generality suppose thatg = x1x2
. . . xu /\ g1,

where g1 is (0,r)-regular. By definition every variable on whichg1

essentially depends occurs inDg1
exactly once and |g1| = r. Addition-

ally sinceRg ≤ s it is obvious thatRg1 ≤ s also. Hence

Superpolynomial Lower Bounds 227

ρ p(1, g1) =
m ∈ PI(g1)

Π ρ p(1, m)

=
m ∈ PI(g1)

Π
x ∈ var(m)

Σ p

≤ (sp)r

Thus from (3.37) ρ p(g, x1x2
. . . xu) ≤ (sp)r , by using

F = fi /\ x1 /\ . . . /\ xu.

Lemma 3.29:If f ∈ Mn and Rf ≤ s, then there exists some function̂f
in Rn

r ,s such that f ≤ f̂ and ρ p(f̂ , f) ≤ | f | (sp)r .

Proof: First of all suppose that iff ∈ Mn, Rf ≤ s and |f | ≥ l (r , s) then
there exists anr-regular g such that g ⊆ f . Using the result of
Lemma(3.28), we can construct a sequence of functions
f ≡ f0, f1 , . . . , ft ≡ f̂ which for 0≤ i < t satisfy:

i) | fi | ≥ l (r , s)

ii) ρ p(fi , fi+1) ≤ (sp)r

This sequence can be constructed by the following procedure.

i : = 0 ; f0 : = f
while | fi | ≥ l (r , s) do begin

Find anr-regularg such thatg ⊆ fi ,
{thus g ≡ m /\ g1, say}
i : = i + 1
fi : = fi−1 \/ m

od

Note that this procedure terminates because |fi+1| < |fi |. Obviously (i)
is satisfied. Also eachfi is of the form fi = hi \/ mi /\ gi where
mi /\ gi is r-regular. In this way fi+1 = hi \/ mi . Thus,

228 MonotoneNetworks

ρ p(fi , fi+1) = ρ p(hi \/ mi /\ gi , hi \/ mi)

≤ ρ p(mi /\ gi , mi) (by 3. 1)

≤ (sp)r by Lemma(3. 28)

Since,

ρ p(f , fi) ≤ ρ p(f , fi−1) + ρ p(fi−1, fi)

The final function obtained is thêf of the Lemma statement.

So it suffices to prove that the supposition stated at the start of
the proof does in fact hold.We prove this by induction ons.

If s = 1 then f itself is |f |-regular i.e trivially g exists. Now
suppose the result holds fors ≤ t − 1. Let s = t and f1 be a
(0, |f1|)-regular function and the maximal possible such thatf1 ⊆ f .
If | f1| ≥ r then trivially g exists. Therefore suppose that |f1| ≤ r − 1.
Without loss of generality letx1 , . . . , xk be the variables whichf1

depends upon. It is clear thatk ≤ s. By the maximality of f1 ev ery
prime implicant of f contains at least one ofx1 , . . . , xk. Without loss
of generality suppose thatx1 occurs in the largest number of prime
implicants, and letf2 be the disjunction over all these prime impli-
cants. Then f2 = x1 /\ f3 where f3 does not depend onx1. Clearly
R f3 = Rf2 − 1 ≤ t − 1. Also

| f3| = | f2| ≥ | f |/k ≥ r t−1 (t − 1)! = l (r , t − 1)

So by the inductive hypothesis, there exists anr-regular g3 such
that g3 ⊆ f3. So if g = x1 /\ g3 then g is r-regular and
g ⊆ f2 ⊆ f .

Superpolynomial Lower Bounds 229

Lemma 3.30:If f ∈ Mn such thatLn
r ,s(f) > 0 then there exists some

g ∈ Mn such that:

i) ρ p(1,g) ≥ ρ p(1, f) − (sp)r l (r , s)2

ii) π s+1(g) ≥ π s+1(f) − l (r , s)2

iii) Ln
r ,s(g) ≤ Ln

r ,s(f) − 1

Proof: Let S be an optimal (n, r , s)-scheme realisingf . Consider any
gate both of whose inputs are inputsh1, h2 in Rn

r ,s of S. Both are
non-constant by the assumption of optimality. The output of this gate
is some functionh1 * h2, where *= /\ or \/ . It is clear that in either
case

|h1 * h2| ≤ max { |h1|. |h2|, |h1| + |h2|} ≤ l (r , s)2 (3.38)

Let h3 and h4 be functions whose minimal DNF contains each prime
implicant of Dh1 * h2

of length more thans, respectively not more than
s. Let h be an arbitrary function inMn. Consider a network S(h)
which is obtained fromS by removing the output of this gate and
replacing it with the functionh. Let G(h) denote the function com-
puted byS(h). It is easy to see that:

G(h4) ≤ f ≤ G(h4) \/ h3 (3.39)

Therefore:ρ p(1, G(h4)) ≥ ρ p(1, f). From Lemma(3.29) we can find
a function h5 ∈ Rn

r ,s such that

h4 ≤ h5 ; ρ p(h4, h5) ≤ (sp)r |h4| (3.40)

Set g = G(h5), from (3.37) and (3.38) it follows that:

ρ p(g, G(h4)) ≤ (sp)r l (r , s)2

Using the triangle inequality we have:

ρ p(1, g) ≥ ρ p(1, G(h4)) − ρ p(g, G(h4)) (3.41)

230 MonotoneNetworks

≥ ρ p(1, f) − (sp)r l (r , s)2

Now from (3.39) and (3.40),

f ≤ g \/ h3 ; π s+1(f) ≤ π s+1(g) + π s+1(h3)

Applying (3.38) and the fact that each prime implicant inDh3
con-

tains at leasts + 1 variables it follows thatπ s+1(h3) ≤ |h3| ≤ l (r , s)2 and
so

π s+1(g) ≥ π s+1(f) − π s+1(h3) ≥ π s+1(f) − l (r , s)2 (3.42)

Clearly,

Ln
r ,s(g) ≤ Ln

r ,s(f) − 1 (3.43)

(3.41), (3.42) and (3.43) prove the result.

Theorem 3.19:If f ∈ Mn then

Ln
r ,s(f) ≥

1

l (r , s)2
min





π s+1 (f),
ρ p(1, f) − sp

(sp)r





Proof: If f ∈ Rn
r ,s then the assertion holds since both sides of this

inequality are≤ 0. If Ln
r ,s(f) > 0 then from Lemma(3.30) there exists

a sequence of functionsg1, g2 , . . . , gt in Mn such that:

ρ p(1,gi) ≥ ρ p(1, f) − il (r , s)2(sp)r

π s+1(gi) ≥ π s+1(f) − il (r , s)2 1 = 1, 2 ,. . . , t

Ln
r ,s(f) > Ln

r ,s(g1) > . . . > Ln
r ,s(gt) = 0

Clearly gt is a member ofRn
r ,s. If gt ≡ 0 then π s+1(gs) = 0 and conse-

quently,

Superpolynomial Lower Bounds 231

t =
π s+1(f)

l (r , s)2
(3.44)

If gt ≠ 0 then it follows that Rgt ≤ s and then ρ p(1, gt) ≤ sp. Thus
ρ p(1, f) − tl (r , s)2 (sp)r ≤ sp. So,

t ≥
ρ p(1, f) − sp

l (r , s)2 (sp)r
(3.45)

(3.44) and (3.45) give the result.

Let T = [mij], where 1≤ i ≤ m, 1 ≤ j ≤ n, be an m × n Boolean
matrix without any zero rows. Definethe function fT by,

fT(x1 , . . . , xn) =
m

i=1
\/

j : mij = 1
/\ x j

Corollary 3.12: If every row of the Boolean (m, n)-matrix T contains
at leastt ≥ s + 1 1’s and T does not have a (k, s + 1)-submatrix of 1’s
then,

Ln
r ,s(fT) ≥

1

l (r , s)2
min





m

k − 1
,

1 − me−pt − sp

(sp)r





This follows since:

π s+1(fT) ≥
m

k − 1

and

ρ p(1, fT) ≥ 1 − m(1 − p)s ≥ 1 − me−pt

Let GF(q) be the Galois field of orderq and letn = q2. Also let the
pairs (α j , β j) range over the set GF(q) × GF(q). Fi , where
i = 1, 2 ,. . . , m = qs+1, is an enumeration of all polynomials over
GF(q) whose degree does not exceed s. Tn,s denotes the

232 MonotoneNetworks

(m, n)-Boolean matrix such that

mij = 1 ☞☞ α j = Fi (β j)

It is easy to see that fori1 ≠ i2 the system of equations:

y = Fi1(x) ; y = Fi2(x)

have no more thans common solutions; Consequently the matrixTn,s

does not have a (2,s + 1)-submatrix of 1’s. In addition each row of
Tn,s contains exactly q 1’s. Set fn,s = FTn,s

and from Corollary(3.1)
we have

Corollary 3.13:

Ln
r ,s(fn,s) ≥

1

l (r , s)2
min




n(s+1)/2,

1− n(s+1)/2 e−p √n − sp

(sp)r





If we fix

s ≤
0. 5n1/8

loge n − 2

p =
(s + 1) loge n + 2

2√n

r =  (s + 1) loge n 

This gives

Corollary 3.14:

Ln
r ,s(f) ≥ 


√n

4s4 log2
e n




s+1

This evaluates to

Superpolynomial Lower Bounds 233

exp

n1/8 loge loge n

loge n



3.5.3. Conclusion

Andreev (1985) and the work of Razborov (1985a,b) and (Alon
and Boppana, 1986) offer two approaches to proving non-trivial lower
bounds on monotone network size. In this final section we consider in
what ways the two basic methods are similar.

Both techniques are, in a broad sense, inductive arguments
based on Wegener’s concept of providing functions for free as addi-
tional inputs. However this is only explicit in Andreev’s proof. In the
Lattice method the inductive argument occurs in the general lemma
relating monotone network size to the distance metric in regular lat-
tices, i.e Lemma(3.1), but is not otherwise applied in the subsequent
combinatorial analyses. The elements of the latticeCLOSED(f) (and
by extensionCLOSED(k) for k-clique) correspond to particularmono-
tone Boolean functions. Thus we can define a mapping
REPR: CLOSED(f) → Mn as follows; For A ∈ CLOSED(f),
I (REPR(A)) = A so that

PI(REPR(A)) = bases(A)

Note that the cover operation . .  ensures thatREPR(A) is in fact a
monotone function. The set of functions
{ REPR(A) : A ∈ CLOSED(f) } form a subset of the setRn

r ,s used by
Andreev. This is a proper subset since |PI(REPR(A))| ≤ (r − 1)s while
for f ∈ Rn

r ,s we have only |PI(f)| ≤ l (r , s) = rs s!.

At first sight it appears that the novel closure relation used by
Razborov does not seem to have any analogue in Andreev’s proof. In
fact Razborov (pers. comm.) has pointed out that this is not the case.

234 MonotoneNetworks

Recall Lemma(3.29) in the derivation of Andreev’s proof:

If f ∈Mn and Rf ≤ s then there is a function,̂f ∈Rn
r ,s such that

f̂ ≤ f and ρ p(f̂ , f) ≤ | f | (sp)r .

Consider the sets of monomsU0 = PI(f) and Û0 = PI(f̂) so that

U0  = I (f) ;  Û0  = I (f̂)

If we examine the proof of this lemma and the process by whichf̂ is
constructed fromf it turns out thatÛ0 consists of the minimal sets in
U0, i.e the closure ofU0. So clearly

I (f̂) =  Û0  = U0 

and thus from the earlier bound on the number of minimal sets in a
closed set, proved in Razborov (1985b),

|PI(f̂) | ≤ rs s! ☞ f̂ ∈Rn
r ,s

In addition,U0 ⊆U0, hence

I (f) = U0  ⊆ U0 

=  Û0  = I (f̂)

showing that f ≤ f̂ . Finally we have the relation

ρ p(f̂ , f) ≤ | f | (sp)r

which, from the previous development, reduces to

ρ p(f̂ , f) = Prob[M− ∈U0  − U0 ]

where M− is a random monom defined by the distribution

Prob[M− ≤ x] = 1 − p independently for all x ∈Xn

Superpolynomial Lower Bounds 235

It has already been shown that the RHS of this equality is bounded
above by the number of iterations of the closure algorithm multiplied
by Gap(f). Andreev applies the simple upper bound that the number
of iterations does not exceed |f | and Gap(f), with the choice ofM−

is easily shown to be≤ (sp)r .

In summary the closure operation employed by Razborov and its
properties are paralleled in the proof and statement of Lemma(3.29)
used by Andreev.

In fact it turns out that we may improve Andreev’s lower bound
inequality by recasting his proof in terms of the functions arising from
REPR instead of the setRn

r ,s and by appealing to the improved combi-
natorial analyses of Alon and Boppana (1986). Below we describe
how this is accomplished.

We shall call a monotone Boolean network, S, an
(n,r,s,d)-scheme,where d ∈ Mn, if S has as inputs exactly the set of
monotone functions

Rn,d
r ,s = { REPR( A ) :  A  ∈ CLOSED(d) }

Since CLOSED(d) is a regular lattice this provides the normal net-
work inputs Xn. Ln,d

r ,s (f) denotes the number of gates in a minimal
(n, r , s, d)-scheme realising f . It should be noted thatd is not
required to equalf . The quantitiesπ t(f) and ρ p retain their meanings
of Section(3.5.2). The main result to be reproved is Lemma(3.30),
which can be sharpened by using Lemma(3.16), Corollary(3.9),
Lemma(3.18) and Lemma(3.20). We can dispense entirely with
Lemma(3.28) and Lemma(3.29) of Andreev (1985) in the course of
this proof.

Lemma 3.31:If f ∈ Mn such thatLn,d
r ,s (f) > 0 then there exists some

g ∈ Mn for which,

236 MonotoneNetworks

i) ρ p(1, g) ≥ ρ p(1, f) − 2r s (sp)r

ii) π s+1(g) ≥ π s+1(f) − (r − 1)2s

iii) Ln,d
r ,s (g) ≤ Ln,d

r ,s (f) − 1

Proof: The proof parallels that of Lemma(3.30). LetS be an optimal
(n, r , s, d)-scheme realisingf . Consider any gate of S whose inputs
are functionsh1, h2 ∈ Rn,d

r ,s . By definition

h1 = REPR( A ) ; h2 = REPR( B )

for some closed subsets,A and B, of U(d). The output of the selected
gate is some functionh1 * h2 where *= /\ or \/ . Thus, from Corol-
lary(3.9).

|h1 * h2| ≤ max {|h1|. |h2|, |h1| + |h2|} ≤ (r − 1)2s (3.46)

Let h3, resp. h4, be functions whose minimal DNF consists of all
prime implicants ofh1 * h2 having length more than, resp. at most,s
variables. For any h ∈ Mn, S(h) denotes the (n, r , s, d)-scheme
obtained by replacing the gate computingh1 * h2 in S, by a node
computingh. G(h) denotes the function computed byS(h). It is obvi-
ous that

G(h4) ≤ f ≤ G(h4) \/ h3 (3.47)

and soρ p(1, G(h4)) ≥ ρ p(1, f).

At this point the proof diverges from Lemma(3.30).

We claim the there is some functionh5 = REPR( C ) ∈ Rn,d
r ,s

for which,

h4 ≤ h5 ; ρ p(h4, h5) ≤




0 if * = /\
2r s (sp)r if * = \/

(3.48)

Superpolynomial Lower Bounds 237

First consider *= /\ . In this case choosing h5 to be

REPR( A    B ) satisfies (3.48). To show this it is sufficient to
prove that h4 = h5. Now, using Lemma(3.16),

PI(h4) = PI(REPR( A ) /\ REPR( B )) ∩ Ps(Xn)

PI(h5) = bases( A    B ) = bases( A ∩ B )

Supposem ∈ PI(h4). Then |var(m)| ≤ s and there are monoms

m1 ∈ bases( A ) ; m2 ∈ bases( B )

for which m = m1 /\ m2. Since, |var(m)| ≤ s, var(mi)⊆var(m) and A,
B are closed subsets ofU(d) it follows that m ∈ A, m ∈ B thus

m ∈ A∩ B  and so m≤ h5. On the other hand suppose that

m ∈PI(h5). Then m ∈ A∩ B  and |var(m)|≤ s. This implies the exis-
tence of somem3 ∈ A∩ B for which var(m3) ⊆ var(m) and hence
m ∈A, m ∈ B by closure. It follows that

m≤ REPR( A ) /\ REPR( B ) and since |var(m)| ≤ s we have there-
fore m ≤ h4. It has been proved that h4 ≤ h5 and h5 ≤ h4 hence
h4 = h5. This completes the argument for the case *= /\ .

If * = \/ then h5 is chosen to be

REPR( A    B ) = REPR( A ∪ B )

Since *= \/ ,

PI(h4) = PI(REPR( A ) \/ REPR( B )) ∩ Ps(Xn)

Obviously PI(h4) ⊆ PI(REPR( A ∪ B )) so h4 ≤ h5. It remains to
show that ρ p(h4, h5) ≤ 2r s(sp)r .

Let M−(f) be a random monom in whichxi occurs with proba-
bility 1 − p and does not occur with probabilityp. By observing that

238 MonotoneNetworks

I (h4) =  A  ∪  B  it is clear that

ρ p(h4, h5) = Prob[M−(f) ∈ δ −( A ,  B )]

≤ 2r s Gap(f)

from Lemma(3.18) and Lemma(3.20).

We can produce an upper bound onGap(f) with the chosen
M−(f), by adapting the techniques of Lemma(3.26). So it is sufficient

to show that if C ⊆ U(d) and C — E then

Prob[M−(f) ∈ ( E  −  C )] ≤ (sp)r

Let < E1 , . . . , Er > ∈ {C }r which yields E and consider the set of
monoms {F i : Fi = Ei − E} which are pairwise disjoint and can be
assumed to be non-empty, cf. the proof of Lemma(3.26). We now
have that

Prob[M− ∈ ( E  −  C )]

is at most

Prob[M− ∈  E  & \/- i M− ∈/  Ei ]

which is equal to

Prob[E ⊆ M− & \/- i F i ⊆ M−]

This quantity is at most

Prob[\/- i F i ⊆ M−] ≤ (
1 ≤ i ≤ r
max {Prob[Fi ⊆ M−] })r

≤ (
x ∈ F
Σ Prob[x ∈/ M−])r

(whereF is the maximisingFi)

Superpolynomial Lower Bounds 239

≤ (sp)r

The last line follows from the fact that the events {xi ∈ M−} are inde-
pendent.

The completes the proof of the claim made earlier.

The remainder of the proof is identical to that of Lemma(3.30)
but making use of the fact that |h1 * h2| ≤ (r − 1)2s. The details are left
to the reader.

It is immediate from this result that,

Theorem 3.20:If f ∈ Mn then

Ln, f
r ,s (f) ≥





π s+1(f)

(r − 1)2s
,

ρ p(1, f) − sp

2r s (sp)r





With this expression, the explicit lower bound obtained by Andreev

(1985) is improved to 2n1/4 − O(1). This is the same as that achieved in
Alon and Boppana (1986) for the same function, using the Lattice
method directly.

3.6) Relating Monotone and Combinational Complexity

At the start of this chapter we observed that the aim of studying
restricted forms of Boolean network is to enable meaningful results on
combinational complexity to be derived. One way in which this can
be accomplished is by demonstrating that the chosen simplified net-
work form can efficiently simulate combinational networks. Corol-
lary(3.11) showed that networks over any complete basis can be much
more efficient than monotone networks. This might seem to invalidate
our reasons for examining monotone network complexity since we
cannot hope to find any practical simulation using monotone networks
which would work for all functions inMn. Howev er this fact does

240 MonotoneNetworks

not remove the possibility of there being efficient simulations for cer-
tain subsets ofMn, and it might still be possible to derive non-trivial
lower bounds on unrestricted network size via similar bounds on
monotone complexity.

In this section the important results of Berkowitz (1982) are
described. In essence these show for any Boolean functionf (Xn) (not
necessarily inMn), there exists amonotone Boolean function g,
"related to" f , with the property thatC(f) = Ω(Cm(g)) and
C(f) = O(n Cm(g)). Thus f has "large" combinational complexity
if and only if g has "large" monotone complexity. The precise mean-
ing of "related to" will be made clear below.

The remainder of this section falls into two parts: in the first the
concepts of standard circuit and a special type of replacement rule
called pseudo-complementation are introduced. A result of Dunne
(1984a) is proved which exactly characterises valid pseudo-comple-
ments. A consequence of this is a method of transforming combina-
tional networks to monotone networks, but one which is not in gen-
eral efficient. In the second part we examine a class of monotone
functions, called slice functions, which were introduced in Berkowitz
(1982). For these functions the transformation in the first part is effi-
cient. Subsequent work on the properties of slice functions from
Valiant (1986), Wegener (1985, 1986) and Dunne (1984a, 1985b,
1986) is presented here.We conclude with a result generalising Ugol-
nikov (1987), from Dunne (1987), which offers a different approach to
relating monotone and combinational complexity.

3.6.1) Standard Circuits and Pseudo-Complementation

Monotone Boolean networks employ the incomplete basis
{ /\ , \/ }, whereas combinational networks permit any function in B2 as

Relating monotone to combinational 241

a gate operation. Lemma(1.4) allows us to view combinational com-
plexity and Ω-network complexity as equivalent, to within a constant
factor, for any completeΩ ⊆ B2. So in considering relations between
monotone and combinational complexity it is sufficiently general to
focus on the complete basis{ /\ , \/ , ¬}.

Definition 3.15:A standard circuit is a Boolean network in which the
permitted gate operations are{ /\ , \/ } ⊂ B2 and whose input nodes are
< x1, x2 , . . . , xn, x1, x2 , . . . , xn >. Thus standard circuits correspond to
monotone Boolean networks with negated inputs permitted. For any
f ∈ Bn, SC(f) denote the number of/\ and \/ gates in the smallest
standard circuit realisingf (Xn). •

Lemma 3.32:\/- f ∈ Bn, SC(f) ≤ c. C(f), wherec is some constant.

Proof: From Lemma(1.4) we have that C{ /\ , \/ , ¬}(f) ≤ c1. C(f), for
some constantc1. So giv en an optimal combinational network T0 real-
ising f it may be converted to a{ /\ , \/ , ¬}-network T1, also realising
f , T1 being only a constant factor larger thanT0. The only way in
which T1 differs from a standard circuit is that the outputs of some
gates of T1 may be negated. Let g be a last gate inT1 for which at
least one of the wires leaving g enters a negation gate. Without loss
of generality suppose that the firstr wires leaving g, under some
ordering, are negated. Here 1≤ r ≤ φ (g). By applying De Morgan’s
Laws we can rearrangeT1 in the environment ofg using the scheme
of Figure(3.9)(i) if op(g) = /\ , Figure(3.9)(ii) if op(g) = \/ . This
pushes the instances of ¬ back one level, so repeating this process
ev entually ensures that negation is applied to the inputs ofT1 only.
The final network is thus a standard circuit realisingf and since at
most one gate is added for each transformation we have that
SC(f) ≤ 2C{ /\ , \/ , ¬}(f) proving the lemma. .

242 MonotoneNetworks

Figure 3.9

The only way in which standard circuits differ from monotone
networks is that the former permit as inputs <x1 , . . . , xn >. Suppose

Relating monotone to combinational 243

that given any standard circuit,T, realising f ∈ Mn, we could find a
collection H = < h1 , . . . , hn > of monotone functions with the prop-
erty that replacing the input xi with hi did not alter the fact that f
was computed. In this way Cm(f) ≤ SC(f) + Cm(H) so that if
Cm(H) were small enough, i.e≤ ε . Cm(f), for some 0< ε < 1 then
any non-trivial lower bound proved on Cm(f) would perforce hold for
SC(f) and thenceC(f). This motivates the following,

Definition 3.16:Let f ∈ Mn. We say thath ∈ Mn is a pseudo-comple-
ment for xi when computingf if h can replace the inputxi in any
standard circuit realisingf . A collection H = < h1 , . . . , hn > is a
pseudo-complement vector forf ∈ Mn if hi is a pseudo-complement
for xi when computingf , for each 1≤ i ≤ n. •

Theorem 3.21:(Dunne, 1984a) For any f ∈ Mn, h is a pseudo-com-
plement forxi when computingf if and only if

f |xi := 0(Xn − {xi }) ≤ h(Xn) ≤ f |xi := 1(Xn − {xi })

Proof: Let f ∈ Mn and T be any standard circuit computingf . Con-
sider replacing the inputxi of T by a new input z to give a new stan-
dard circuit T′ realising some functionf ′(Xn, z). This function may
be written as,

f ′(Xn, z) = g00 \/ xi g01 \/ z g10 \/ xi z g11 (3.49)

The functionsgα β satisfying,

\/- m ∈ PI(gα β) (xi)
α (xi)

β m is a monom computed byT and
m does not depend onxi .

where (x)γ ≡ x if γ = 1 and 1 if γ = 0.

Thus, sincef ∈ Mn,

f (Xn) = g00 \/ xi g01 \/ xi g10 = g00 \/ xi g01 \/ g10 (3.50)

244 MonotoneNetworks

We can now proceed with the proof of the theorem.

Suppose thath ∈ Mn is a pseudo-complement forxi when com-
puting f . We must then have that f ′(Xn, h(Xn)) ≡ f (Xn). If
f |xi := 0 ≤ h(Xn) then there is somep ∈ PI(f |xi := 0) such that
p ≤ h(Xn). Consider computingf by a standard circuit for which

PI(g00) = PI(f |xi := 0) − {p}

g01 = f |xi := 1

g10 = p

g11 = 0

Clearly g00 \/ xi g01 \/ xi g10 ≡ f , but f ′(Xn, h(Xn)) ≠ f (Xn) because
p ∈ PI(f) and p ∈/ PI(f ′). It follows that f |xi := 0 ≤ h. On the other
hand, suppose thath ≤ f |xi := 1. Then there is some prime implicantp
of h which is not an implicant off |xi := 1. In this case using a standard
circuit for which g00 = f |xi := 0, g01 = f |xi := 1, g10 = 0 and g11 = p leads
to a contradiction. So if h is a pseudo-complement then
f |xi := 0 ≤ h ≤ f |xi := 1.

Now suppose thath is such that f |xi := 0 ≤ h ≤ f |xi := 1. We claim
that h is a pseudo-complement forxi when computingf . It must be
shown that f ′(Xn, h(Xn)) = f (Xn) in this case.

f ′(Xn, h(Xn)) ≤ f (Xn): From (3.49) and (3.50) it need only be
proved that xi h g11 ≤ f . By definition we have,

xi h g11 ≤ xi h ≤ xi /\ f |xi := 1 ≤ f

f (Xn) ≤ f ′(Xn, h(Xn)): Again from (3.49) and (3.50) it is sufficient
to prove that g10 ≤ h g10, i.e g10 ≤ h. Now g10 does not depend onxi

and g10 ≤ f , so

g10 ≤ f |xi := 0 ≤ h

Relating monotone to combinational 245

This completes the proof of the theorem.

3.6.2) Slice Functions

Theorem(3.21) offers a method of transforming combinational
networks realising any f ∈ Mn into equivalent monotone networks. By
definition, f |xi := 0 ≤ f |xi := 1 for any f ∈ Mn, so the interval of the
theorem is always well-defined. However in general this interval does
not appear to yield efficient simulations. Berkowitz (1982) gives the
first examples of functions with efficiently computable pseudo-comple-
ment vectors. Thesefunctions, calledk-slice functions, are more than
just a class of functions with closely related monotone and combina-
tional complexity; as we shall see below they are of importance in
assessing the combinational complexity of any Boolean function by
concentrating on monotone networks.

Definition 3.17: Let f (Xn) ∈ Bn and k be any natural number such
that 1≤ k ≤ n. The k-slice functionof f , denoted fk, is the monotone
Boolean function

fk(Xn) = (f (Xn) /\ Tn
k(Xn)) \/ Tn

k+1(Xn)

Note that fk is 0 for assignments toXn in which fewer thank vari-
ables are fixed to 1; is 1 for assignments in which more thank vari-
ables are set to 1; and is equal tof for assignments which set exactly
k variables to 1.•

Theorem 3.22: (Berkowitz, 1982) For all f ∈ Bn and 1≤ k ≤ n,
Tn−1

k (Xn − {xi }) is a pseudo-complement forxi when computing
fk(Xn).

Proof: From Thm(3.21) we need only show that,

(fk)
|xi := 0 ≤ Tn−1

k ≤ (fk)
|xi := 1

246 MonotoneNetworks

(fk)
|xi := 0 = (f |xi := 0 /\ Tn−1

k \/ Tn−1
k+1)(Xn − {xi })

≤ Tn−1
k (Xn − {xi })

≤ (f |xi := 1 /\ Tn−1
k−1 \/ Tn−1

k)(Xn − {xi })

= (fk)
|xi := 1

proving the theorem. .

From this theorem we have that the collection of functions,

Hn,k = < Tn
k−1(Xn − {x1}) , . . . , Tn

k−1(Xn − {xn}) >

is a pseudo-complement vector for any k-slice function fk. The next
result, independently obtained by Wegener (1985), Valiant (1986) and
Paterson (pers. communication) shows that Hn,k can be computed by
efficient monotone networks. The bound fork constant was also
derived by McColl (pers. communication).

Lemma 3.32:Cm(Hn,k) = O(n min {k, n − k, (log n)2})

Proof: The casesk and n − k being constant are similar and are left as
an exercise. For arbitraryk, not necessarily constant, our description
follows that of Valiant (1986).

It is convenient to assume thatn = 2m for some natural number
m and thatk ≤ 2m−1. For k > 2m−1, we can build a monotone network
for Hn,k by constructing one forH2n,k and setting then extra inputs to
0. It is sufficient to construct a network which is correct whenexactly
k inputs are 1. For then, denoting thei ’th output by yi we can use the
fact that

Tn−1
k (Xn − {xi }) ≡ yi /\ Tn

k(Xn) \/ Tn
k+1(Xn)

The monotone network realisingHk consists of two parts, essential

Relating monotone to combinational 247

building blocks in each part aremerging networks. A merging net-
work takes as input 2 disjoint lists of Boolean values,d1 , . . . , dr and
e1 , . . . , er , where these satisfydi ≤ di+1, ei ≤ ei+1 for all 1 ≤ i < r.
The network outputs a list of 2r Boolean values, being the two input
lists combined and sorted into ascending order. Batcher (1968) con-
structed monotone merging networks of sizeO(r log r) and depth
O(log r).

The following terminology is used in the proof. TheHn,k net-
work has n inputs Xn and n outputs y1 , . . . , yn. It contains 2logn
merging levels. The output nodes at each merging level form a single
layer. Layers are labelled

{ i : 0 ≤ i < logn } ∪ {2 logn − i : 0 ≤ i < logn }

Layers i and 2logn − i consist of
n

2i
lists, each list containing 2i

nodes. A list, A, spans a subset, span(A) of Xn, consisting of the

variables {x j : r 2i + 1 ≤ j ≤ (r + 1) 2i }, for some 0≤ r <
n

2i
. The

lists at layers 0 and 2logn contain respectively a single inputx j or
output y j . The span of the list containingy j is x j . Finally we say that
the complementof a list A, denotedA, is formed by concatenating all
lists, except forA, which are on the same layer asA.

Assignments to the inputsXn induce Boolean values in each
list. One, self-evident, feature of the construction will be that the val-
ues in any list will always be sorted into ascending order.

Lists will be denoted by upper case Roman letters, and their
associated layers byLayer(. .).

The network is specified by describing how the lists on each
layer are formed from lists on preceding layers.

248 MonotoneNetworks

L1) Layer(A) = 0: thenspan(A) = {xi } and A is just the inputxi .

L2) Layer(A) = i , where 1≤ i < logn: A is the result of merging B
and C, these satisfying Layer(B) = Layer(C) = i − 1 and
span(A) = span(B) ∪ span(C).

L3) Layer(D) = logn + 1: | span(D) | =
n

2
. Let G be the list on layer

logn − 1, which is also of size
n

2
, such that

span(G) ∩ span(D) = ∅. D is formed by concatenating the last

k bits of G with
n

2
− k 1′s.

L4) Layer(D) = 2 logn − i and 0≤ i < logn − 1: let E and F be the
lists such that, layer(E) = layer(D) − 1, layer(F) = i and
span(E) = span(D) ∪ span(F). The result of merging E and F
is a sorted list of 3.2i bits. D consists of the middle 2i bits of
this list.

L5) Layer(D) = 2 logn: D is the outputy j which will correspond to
Tn−1

k (Xn − {x j }) when exactly k inputs are 1.

It remains to establish the correctness of this construction.
Observe that the first logn layers form a sorting network. If
Layer(A) = i , for 0 ≤ i < logn, then A is a sorted list of the values
assigned tospan(A). Let #α (A) denote the number ofα ’s in A, where
α = 0 or 1, under an assignment toXn containing exactly k 1’s. To
prove correctness is is sufficient to establish that,

Layer(D) = 2 logn − i /\ 0 ≤ i < logn

implies

#0(D) = k − #1(D)

We prove this by induction oni from logn − 1 down to 0. The

Relating monotone to combinational 249

inductive base i = logn − 1 corresponds to layer logn + 1 so (L3) of
the construction applies. LetD and G be as in (L3). Since we con-
sider assignments with exactly k 1’s it follows that #1(G) ≤ k and so
from (L3) sinceG is sorted into ascending order,

#1(D) = #1(G) + (
n

2
− k)

By definition span(G) = D, hence #1(G) = #1(D). Obviously

#0(D) =
n

2
− #1(D) and so

#0(D) = k − #1(D)

proving the inductive base.

Now assume the assertion above holds for all values≥ i , where
0 < i ≤ logn − 1. We prove it holds for i − 1 also. Here (L4) of the
construction applies andD, E and F retain the same interpretation as
there. By the inductive hypothesis #0(E) = k − #1(E). F is a sorted
list of the assignment tospan(F) hence #0(F) = 2i − #1(F). It follows
that,

#0(D) = 2i + k − #1(E) − #1(F) = 2i + k − #1(D)

Now span(D) = span(E) ∪ span(F) so the result of merging E and
F consists of 2i + k − #1(D) 0’s followed by 1’s. There arek 1’s in
total and |D| = 2i so #1(D) must be at leastk − 2i . Hence
k − #1(D) ≤ 2i . It follows that the middle 2i bits from merging E and
F contain exactly k − #1(D) 0’s as required.

The correctness of the construction now follows from the fact
that when D = {y j }, then span(D) = Xn − {x j }. Thus if exactly k
inputs are 1 theny j will become 0 if and only ifx j is one of the true
inputs.

250 MonotoneNetworks

Theorem 3.23:(Berkowitz, 1982) For any f ∈ Bn:

SF1) C(f) ≤
n

k=1
Σ C(fk) + O(n).

SF2) C(fk) ≤ C(f) + O(n).

SF3) Cm(fk) ≤ Cm(f) + O(n. min {k, n − k, logn})

SF4) Cm(fk) = O(C(fk)) + Cm(Hn,k)

Proof: Recall that En
k(Xn) is the function which is 1 if and only if

exactly k inputs are 1. It is obvious that

En
k = Tn

k Tn
k+1

and so,

fk /\ Tn
k+1 = f /\ En

k \/ 0 = f /\ En
k

Since f ≡
n

k=1
\/ f En

k and C(Tn
k) = O(n) from Thm(2.20) this establishes

(SF1).

(SF2) is immediate from the definition of slice function and
Thm(2.20). Similarly(SF3) follows from Thm(3.14), fork or n − k
being constant, and theO(n log n) sorting network of (Ajtai et al.,
1983) for arbitraryk. (SF4) is just a restatement of Thm(3.22). In
combination with Lemma(3.32) this yields,

Cm(fk) = O(C(fk)) + O(n. min {k, n − k, (log n)2}) (SF5)

(SF1) establishes that ifC(f) = ω (n2(logn)2) then somek-slice
function of f has combinational complexity ω (n(log n)2). Conversely
from (SF2) if some slice off has combinational complexity ω (n)
then C(f) = ω (n). Combining this with (SF5) we have that any non-

Relating monotone to combinational 251

trivial lower bound onCm(fk), where min{k, n − k} = O(1), implies a
lower bound of the same order onC(f); and if
Cm(fk) = h(n) = ω (n(logn)2) for any slice thenC(f) = Ω(h(n)). There-
fore we can deduce non-trivial lower bounds on the combinational
complexity of any Boolean function simply by proving a large enough
bound on themonotonecomplexity of one of its slices. Furthermore if
the combinational complexity off is large enough, cf (SF1), then
there must be some slice function off which is suitable, i.e has large
monotone complexity.

Slice functions constitute an important "partial" simulation of
combinational networks by monotone networks. The remainder of this
section examines some specific properties of this class of monotone
functions. In particular we consider slice functions of some monotone
Boolean NP-complete predicates, giving results from Wegener (1985)
and Dunne (1984a, 1986). We then consider the question of the rela-
tive complexities of fk and fk+1. Finally we use slice functions to
prove that a natural class of monotone functions have equal combina-
tional and monotone network complexities.

The following encodings of three basicNP-complete predicates
are used.

XU
n = {xij : 1 ≤ i < j ≤ n } and G(XU

n) is an undirectedn-vertex
graph.

n

2
− clique(XU

n) =




1 if G(XU
n) contains aclique of size n/2

0 otherwise

UHC(XU
n) =





1 if G(XU
n) contains aHamiltonian circuit

0 otherwise

Note thatUHC(XU
n) may also written as,

252 MonotoneNetworks

UHC(XU
n) =

σ ∈ Sn

\/
n−1

i=1
/\ xσ (i) σ (i+1) /\ xσ (n) σ (1)

The final function we look at is a more general form of the encoding
of satisfiability described in Chapter(2).

Xn,m = {xij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

Yn,m = {yij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

are disjoint sets of Boolean variables. For assignmentsα to Xn,m and
β to Yn,m, R(α , β) is the m-clause CNF over Z = {z1 , . . . , zn} defined
by:

R(α , β) =
m

i=1
/\

n

j=1
\/ (α ij z j \/ β ij z j)

Thus the literalz j occurs in thei ’th clause if and only ifxij = 1 under
α ; the literal z j occurs in thei ’th clause if and only ifyij = 1 under
β . SAT(Xn,m, Yn,m) is the (monotone) Boolean function which equals
1 if and only if the CNFR(Xn,m, Yn,m) is satisfiable.

Supposeg is any one of these 3 functions. Then any two dis-
tinct prime implicants ofg contain exactly the same number of vari-

ables. Thus ifg ≡
n

2
-clique, then each prime implicant ofg depends

on
n

2


n

2
− 1


variables, being the number of edges in such a clique; if

g ≡ UHC then each prime implicant ofg contains exactly n variables;
finally if g ≡ SAT(Xn,m, Yn,m) then each prime implicant ofg contains
exactly m variables. Any f ∈ Mn such that for all p ∈ PI(f),
|var(p)| = k is said to bek-homogeneous. Qn,k denotes the set ofk-
homogeneous functions inMn.

We will be particularly concerned with the following specific
slice functions.

Relating monotone to combinational 253

Definition 3.18: If f ∈ Qn,k then thecanonical sliceof f , denoted
c − sl(f) is its k-slice function.

For any f ∈ Mn, the central slice of f , denotedCen(f), is its
n

2
-slice function. •

For any f ∈ Qn,k it should be clear thatf /\ Tn
k ≡ f and thus

c − sl(f) = f \/ Tn
k+1. The canonical slice appears to be very similar

to f and so for the three functions given above it would seem to be a
natural candidate to examine as a potential "hard" slice function.

Lemma 3.33:Let N =
n

2
= |XU

n |.

i) Cm(c − sl(
n

2
− clique)) = O(N log N) (We gener, 1985)

ii) Cm(c − sl(UHC)) = O(N2) (Dunne, 1986)

iii) Cm(c − sl(SAT)) = O(nm(log nm)2) (Dunne, 1986)

Proof: Let f be any of the three functions above and k its canonical
slice. By definition, fk = f /\ Tn

k \/ Tn
k+1. Since fk is 0 (resp. 1)

whenever less than (resp. more than)k inputs are 1, and equal tof
whenever exactly k inputs equal 1, so for any function g which is
equal to f , for assignments containing exactly k 1s we have gk = fk.
Thus instead of usingf we may substitute any function, g, which
agrees withf on inputs having exactly k 1s.

i) Let k =
n

2
. (

n

2
− 1) and chooseg to be the function,

Tn
k (Tn−1

k−1(X
(1)) , . . . , Tn−1

k−1(X
(n)))

where,X(i) = {x ji : 1 ≤ j ≠ i ≤ n}.

Clearly this function can be computed withO(N log N) mono-
tone gates. That the substitution is correct follows from the easily
established fact

254 MonotoneNetworks

An n-vertex graph with exactly k edges contains an
n

2
-clique if and

only if at least
n

2
vertices have degree at least

n

2
− 1.

ii) Let UCON(XU
n) be the monotone Boolean function which is true if

and only if G(XU
n) is connected. By using a transitive closure algo-

rithm, applied to the adjacency matrix of G(XU
n) it follows that

Cm(UCON(XU
n)) = O(N2). Using X(i) as in (i) we choose the substi-

tuting functiong to be,

g(XU
n) =

n

i=1
/\ Tn−1

2 (X(i)) /\ UCON(XU
n)

That this is correct follows from the fact that

An n-vertex graph with exactly n edges contains a Hamiltonian circuit
if and only if every vertex has degree at least 2 and the graph is con-
nected.

iii) Let,

CLi = {x1i , . . . , xni, y1i , . . . , yni}

ZPi = {xi1 , . . . , xim}

ZNi = {yi1 , . . . , yim}

The substituting functiong(Xn,m, Yn,m), agreeing withSAT(Xn,m, Yn,m)
when exactly m inputs are 1 is given by,

m

i=1
/\ T2n

1 (CLi) /\ 


n

i=1
/\ Tm

1 (ZPi) /\ Tm
1 (ZNi)




This expression encodes the condition that each of them clauses of
the CNFR(Xn,m, Yn,m) contains at least one literal and at most one of
the clauses (zi), (zi) occur in R for each 1≤ i ≤ n. It is easy to see
that any m-clause CNF containing exactly m literals is satisfiable if

Relating monotone to combinational 255

and only if it meets this condition. The upper bound on
Cm(c − sl(SAT) now follows since the instances of negation, used in
the definition of g(Xn,m, Yn,m) can be eliminated using (SF5) of
Thm(3.23).

It is reasonable to conjecture that all theNP-complete problems
above require exponential size combinational networks and so we
expect each of them to have some hard slice function. Lemma(3.33)
has shown that the canonical slice is not a suitable candidate. The fol-
lowing theorem does identify a specific slice function which is "proba-
bly" hard, in the sense that the corresponding decision problem isNP-
complete.

Theorem 3.24:(Dunne, 1986)

i) Cen(
n

2
− clique) is NP-complete.

ii) Cen(UHC) is NP-complete.

iii) Cen(SAT) is NP-complete.

Proof: All three results involve constructing a projection from the cen-
tral slice of a larger instance ofg onto g itself, thus in terms of
Defn(2.1), g is a p-projection of Cen(g); here g is one of the func-
tions in the theorem statement. The projection is constructed so that
exactly half of the arguments are 1 for any assignment. We use e(n)

to denote the value
n

2
. In the proof of (i) and (ii) we assume without

loss of generality thatn is an exact multiple of 4.

i) Any assignment toXU
n defines somen-vertex graph G. Giv en any

n-vertex graph G we construct a 5n-vertex graph H with the follow-
ing properties:

P1) H contains a
5n

2
-clique if and only ifG contains an

n

2
-clique.

256 MonotoneNetworks

P2) H has exactly
e(5n)

2
edges.

Clearly if H can be constructed then we can compute
n

2
− clique(XU

n)

since the method of constructingH using G(XU
n) defines ap-projec-

tion from Cen(
5n

2
− clique) onto

n

2
− clique.

Given G, the 5n-vertex graph H is constructed as follows:

H consists of 3 graphs:G with vertices {v1 , . . . , vn}; G with
vertices {u1 , . . . , un} and G* with vertex set {w1 , . . . , w3n}. G is the
complement ofG with respect toKn, i.e the graph such that

{ui , u j } ∈ E(G) ☞☞ {vi , v j } ∈/ E(G)

The vertices {w1 , . . . , w2n} form a 2n-clique in G* . Additionally G*

contains
7n2 + n

4
edges not in this clique, but does not have a

(2n + 1)-clique. Finally there are edges

{wi , v j } \/- 1 ≤ i ≤ 2n, 1 ≤ j ≤ n

That G* can be constructed is an easy consequence of Tur ́an’s Theo-
rem, see e.g (Berge, p. 280).

Obviously if G contains an
n

2
-clique then in conjunction with

{w1 , . . . , w2n} this gives a
5n

2
-clique in H . On the other hand ifH

contains a
5n

2
-clique then this cannot involve any vertices of G,

which is not connected toG or G* , and can contain at most 2n-ver-
tices of G* , since this does not contain a (2n + 1)-clique. It follows

that any
5n

2
-clique in H uses at least

n

2
vertices of G and henceG

contains an
n

2
-clique. Thus property (P1) holds ofH .

Relating monotone to combinational 257

Counting the number of edges inH yields;

|E(H)| = |E(G)| + |E(G)| + |E(G*)| + 2n2

= e(n) + e(2n) +
7n2 + n

4
+ 2n2 =

e(5n)

2

So property (P2) holds also and part (i) of the theorem follows.

ii) In the same manner as (i) given G, an n-vertex graph, we con-
struct H , a 7n-vertex graph, for which,

P1) H contains a Hamiltonian circuit if and onlyG contains a
Hamiltonian circuit.

P2) H has exactly
e(7n)

2
edges.

As before this implies thatUHC is a p-projection ofCen(UHC). H
is constructed as follows from a given G.

H again consists of 3 graphs:G with vertices {v1 , . . . , vn}; G
with vertices{u1 , . . . , un}; and G* with vertices{w1 , . . . , w5n}. G is
the complement ofG with respect toKn. H contains also the follow-
ing edges,











{v1, u1}

{ui , wi } \/- 1 ≤ i ≤ n

{wi , ui+1} \/- 1 ≤ i < n

{wi , wi+1} \/- n ≤ i < 5n

{w5n, vi } \/- vi ∈ Γ(v1)

{w5n, ui } \/- ui ∈ Γ(w1)











Here Γ(x) is the set of vertices adjacent tox in G, if x = v1, or in G
if x = u1.

258 MonotoneNetworks

In addition to theseG* contain an extra β (n) =
47n2 − 33n − 4

4
edges. It should be clear thatH has a path fromv1 to w5n, which
path contains all the vertices inG and G* and so has 6n edges. From
the construction ofH we have,

|E(H)| = |E(G)|+ |E(G)|+ |Edges inpath v1 to w5n|+ n− 1+ β (n)

The n − 1 term is the total number of edges added betweenw5n and
vertices adjacent tov1 or w1.

= e(n) + 7n − 1 + β (n) =
e(7n)

2

So H contains the correct number of edges. It remains to establish
that H has a Hamiltonian circuit if and only ifG does.

SupposeG contains a Hamiltonian circuit,

v1 ←→ x ∈Γ(v1) ←→ . . .←→ y ∈Γ(v1) ←→ v1

By the construction there is a Hamiltonian path,HP, joining all the
vertices {v1, V(G), V(G*)}, which path commences atv1 and termi-
nates inw5n. Thus,

v1 ←→ HP ←→ w5n x←→ . . .←→ y ←→ v1

is a Hamiltonian circuit inH . On the other hand suppose thatH con-
tains a Hamiltonian circuit. We claim that there are exactly two edges
in this circuit which connect a vertex of G to any vertex of G or G* ,
and that one of these edges is{v1, u1}; the other being{w5n, v j } for
somev j ∈ Γ(v1). Obviously there must be at least two edges between
V(G) and the other vertices inH . Since there are exactly two vertices
in V(G) ∪ V(G*) adjacent to vertices ofG and each vertex can occur
only once in a Hamiltonian circuit this assertion is immediate.Thus
any Hamiltonian circuitC in H must be of the form,

Relating monotone to combinational 259

v1 ←→ u1 ←→ c1 ←→ . . .

. . .←→ c6n−1 ←→ w5n ←→ x←→ d3 ←→ . . .

. . .←→ dn ←→ y ←→ v1

whereci ∈ V(G) ∪ V(G*), d j ∈ V(G) and x, y ∈ Γ(v1).

It follows that

v1 ←→ x ←→ d3 ←→ . . . ←→ dn ←→ y ←→ v1

is a Hamiltonian circuit inG. This establishes part (ii) of the Theo-
rem.

(iii) For this case, we construct ap-projection fromCen(SAT) onto
SAT by forming a 3m clause CNFQ over the literal setZn ∪ Un

being,

{z1 , . . . , zn, z1 , . . . , zn, u1 , . . . , un, u1 , . . . , un}

Q is defined using them-clause CNFP ≡ R(Xn,m, Yn,m) in such a way
that Q contains exactly 6nm literals (i.e half the number of possible
literals) and is satisfiable if and only ifP is.

Given P, which is anm-clause CNF over the literal setZn, Q is
given by,

Q(Zn, Un) = P(Zn) /\ Pcomp(Zn, Un) /\ P* (Un)

Pcompconsists ofm clauses; thei ’th clause contains all the literals in
Un and additionally all the literals which do not occur in thei ’th
clause ofP; P* also consists ofm clauses each of which contains all
the literals ofUn. Now if P is satisfiable, then certainlyQ is; simply
set u1 = 1. If Q is satisfiable, then sinceP does not depend on the lit-
erals Un, any assignment which satisfiesQ must satisfyP also. SoP
is satisfiable if and only ifQ is. It is immediate from the construc-
tion that Q contains exactly 6nm literals and this establishes (iii) and

260 MonotoneNetworks

the theorem.

It is a trivial matter to generalise this to,

Corollary 3.15: \/- 0 < ε < 1, if g ∈ {
n

2
− clique, UHC, SAT } then the

ε N-slice of g is NP-complete,N being the number of inputs ofg.

We saw in Lemma(3.33) that the canonical slice, which is
superficially that slice function most similar tof , may be easy to
compute. In contrast, Thm(3.24) presents some evidence that the cen-
tral slice is likely to be of superpolynomial complexity for some spe-
cific functions. The next result considers the relation betweenCm(fk)
and Cm(fk+1).

Theorem 3.25:Part (i): (Dunne, 1986); Part (ii) (Wegener, 1986).

i) Let f ∈ Mn such thatc − sl(f) exists and is thek-slice fk. \/- c ≥ 1,
Cm(fk+c) is at most

n2 + 1+ Cm(Tn
k+c) + Cm(Tn

k+c+1) + nCm(fk+c−1)

ii) Let

l (k, n) =



n − 1

k − 1



log

n − 1

k − 1



There exist monotone Boolean functions,f ∈ Mn, for which the
canonical slice is thek-slice fk and such that,

Cm(fk) ≥ C(fk) = Ω(l (k, n))

but

Cm(fk+c) = O(n logn) \/- c ≥ 1

Relating monotone to combinational 261

Proof: For (i) it is sufficient to construct a suitable substituting func-
tion for f , in the same way as Lemma(3.33). Lethi : Xn → {0, 1}n

be given by,





{x1 , . . . , xi−1, 0, xi+1 , . . . , xn} if xi = 1

{0, 0, 0 ,. . . , 0, 0} otherwise

We then have that fk+c(Xn) is








n

i=1
\/ fk+c−1(hi (Xn)) 


/\ Tn

k+c(Xn)




\/ Tn
k+c+1(Xn)

i.e f (Xn) is 1 when exactly k + c inputs are true if and only if for
some k + c − 1 size subset of the true inputs,f is 1 when exactly
thesek + c − 1 inputs are true. This holds because every prime impli-
cant of f contains exactly k variables. Part (i) now follows since,

hi (Xn) = {x1 xi , . . . ,xi−1 xi , 0, xi+1 xi , . . . ,xn xi }

which has monotone complexity n − 1.

For (ii) let Sk,n be the set ofk-slice functions, fk such that all
monoms of lengthk which do not depend onx1 are prime implicants

of f . Clearly there are

n − 1

k − 1



monoms of lengthk which do contain

x1 and there is a bijective mapping between subsets of these and func-
tions in Sk,n. Corollary(2.2) establishes that almost all functions in
Sk,n have combinational complexity Ω(l (k, n)) proving the lower
bound. Now consider fk+c for any c > 1. From the definition of slice
function it is sufficient to establish thatfk+c ≡ Tn

k+c. Now certainly if
fewer thenk + c inputs are true then both of these function are 0. If
at leastk + c are true then there is a subset{xi1 , . . . , xik} of these true
inputs which does not containx1. From the definition of f ,

262 MonotoneNetworks

xi1
. . . xik ≤ f and so both expressions are equal in this case also.

The previously established upper bounds onTn
k now complete the

proof.

At present it is not known if the techniques of Section(3.5) can
be made to work for slice functions. One way in which we might
simplify the process of deriving non-trivial lower bounds on combina-
tional complexity is by finding other classes of monotone functions
with asymptotically equal monotone and combinational complexity.
Dunne (1985b) shows that "almost all" functions inQn,n−k, for k con-
stant, form such a class.

Let Cm*
(f) denote the minimal number of monotone gates in a

network realising f with inputs Xn ∪ { f1 , . . . , fn}, and C* the analo-
gous measure for combinational complexity. We know from
Thm(3.23) (SF1) thatC* (f) = O(n) for all f ∈ Bn. From the same
theorem it also follows that

Cm(f) ≤ C(f) + O((n logn)2) + Cm*
(f)

So for any f ∈ Mn for which we can prove Cm*
< ε Cm(f), for some

0 < ε ≤ 1 we hav e C(f) = Ω(Cm(f)), provided thatCm(f) is large
enough.

Lemma 3.33:Let k≥ 1 be constant andQm
n,k denote the set ofn-input

m output Boolean functions such that for each
F = < f 1 , . . . f m > ∈Qm

n,k, we hav e f j ∈Qn,k for all 1≤ j ≤ m. As
before letCm(Qm

n,k) denote the maximal monotone complexity of any
function in Qm

n,k. Then,

i) Cm(Qn
n,1) = O(n2/ logn)

ii) Cm(Qn
n,k) ≤ nCm(Qn,k)

Relating monotone to combinational 263

iii) Cm(Qn,k) ≤ Cm(Qn,k−1) + 2n − 1

iv) For k≥ 2, Cm(Qn,k) = O(nk/ logn).

Proof: (Details omitted)(i) is given by Savage (1974) and (ii) is obvi-
ous. (iii) is from Wegener (1987) and (iv) immediate from (i-iii).

Theorem 3.26: (Dunne, 1985b) Letk ∈ N and Qn,n−k ⊂ Mn the class
of (n − k)-homogeneous functions. Then \/- f ∈ Qn,n−k

Cm*
(f) = O(nk−1/ logn).

Proof: Let f ∈ Qn,n−k. Clearly

f = f /\ Tn
n−k = f /\ Tn

n−k \/ Tn
n

So it is sufficient to prove that for all 2≤ q ≤ k

Cm(f \/ Tn
n−k+q) ≤ Cm(f \/ Tn

n−k+q−1) + O(
nk−1

logn
) (3.51)

As a result of this it will follow that f can be computed from its
canonical slice function,fn−k using only O(nk−1/ logn) extra gates.

Since fn−k is counted at no cost in the measureCm*
this proves the

theorem.

We shall actually prove a slightly stronger result than (3.51),
namely \/- 2 ≤ q ≤ k,

Cm(f \/ Tn
n−k+q) ≤ Cm(f \/ Tn

n−k+q−1) + O(
nk−q+1

logn
) (3.52)

Let Sq−1 be an optimal monotone network realisingf \/ Tn−k+q−1.
This function may be written as,

f \/ p1 \/ p2 \/ . . . \/ pt

where for eachpi : pi ≤ f .

264 MonotoneNetworks

Recall that for any monom p, χ (p) is the disjunction over all
variables of Xn which do not occur invar(p). We claim that for all
prime implicantsm of f , and all pi it holds that m ≤ χ (pi). This
assertion follows easily from the fact thatm ≤ pi hence there is some
x ∈ Xn such thatm ≤ x ≤ χ (pi). Let Sq be the network which com-
putes,

(f \/ Tn
n−k+q−1) /\

t

i=1
/\ χ (pi)

From the preceding argumentSq realises f \/ Tn
n−k+q.

t

i=1
/\ χ (pi) is the dual of ak − q + 1-homogeneous function, and so

from Lemma(3.33)(iv) this can be computed by a monotone network
containingO(nk−q+1/ logn) gates. This proves (B) and the theorem.

Corollary 3.16: If f ∈ Qn,n−k, for which Cm(f) = ω (nk−1/ logn) then

C(f) = Ω(Cm(f))

Proof: From the theorem it follows that

Cm(f) ≤ C(f) + O(n) + O(nk−1/ logn)

Noting that |Qn,n−k| = 2Ω(nk), from Corollary(2.2) we have that almost
all f ∈ Qn,n−k have combinational complexity Ω(nk/ logn) thus almost
all functions inQn,n−k have monotone complexity ω (nk−1/ logn).

In contrast to this result we have,

Theorem 3.27:(Dunne, 1985b)

i) Let n be even and Xn be partitioned inton/2 setsX(i)
n defined by

X(i)
n = {xi , xn

2
+i

for 1 ≤ i ≤ n/2. Let Jn ⊂ Mn such that for all f ∈ Jn

each prime implicant off contains exactly one variable from each

Relating monotone to combinational 265

partition classX(i)
n . Then for almost allf ∈ Jn

Cm*
(f) = Ω


2n/2

n



; Cm(f) = Ω

2n/2

n



ii) There exist functions f ∈ Qn,n−k, for k constant, such that

Cm*
(f) = Ω


nk−1

logn


.

Proof: Omitted.

Ugolnikov (1987) uses a different approach to the problem of
relating monotone and non-monotone bases. Consider the 3 bases

{ µ} ; { µ, ☞} ; { µ, ☞, 0}

where µ is the 3-input majority function.

The last basis is logically complete and the first realises exactly
the class ofself-dualmonotone Boolean functions.

Ugolnikov proved that for any Boolean function,f , computable
in the basis{ µ, ☞} there existed a self-dual monotone Boolean func-
tion, g, such thatg ≤ f and for which

Cµ(g) ≤ C{ µ, ☞}(f) (3.52)

and furthermore, for any such f and any self-dual monotone function,
g such thatg ≤ f it holds,

C{ µ, ☞}(f) ≤ C{ µ, ☞, 0}(f) + Cµ(g) + 2 (3.53)

Given this result suppose thatf (Xn) is a monotone Boolean
function of n variables Xn = < x1 , . . . ,xn >. It is easy to see that the
function F(y, z, Xn) defined by

F(y, z, Xn) = y /\ (z \/ f (Xn)) \/ z /\ f̃ (Xn) (3.54)

266 MonotoneNetworks

is self-dual and thatCm(f) ≤ 4Cµ(F). Now since F is self-dual it
follows that the only self-dual functiong such thatg ≤ F is F itself.
Hence,

C{ µ, ☞}(F) = Cµ(F) ≥
C{ /\ , \/ , 0, 1}(f)

4
(3.55)

(3.55) is the form stated in Ugolnikov (1987) and as such does
not give a direct relationship between the monotone complexity off
and the combinational complexity ofF . Howev er such a relation may
be obtained by widening the scope ofg in (3.53); thus ifg ≤ f and g
is computable by the basis{ µ, ☞} then

C{ µ, ☞}(f) ≤ C{ µ, ☞, 0}(f) + C{ µ, ☞}(g) + 2 (3.56)

This, combined with (3.55), gives a lower bound on the combinational
complexity of F in terms of the monotone complexity of f and an
upper bound on the{ µ, ☞} complexity of g.

In this section we generalise inequalities (3.52) and (3.53) to
other non-monotone and complete bases. Ugolnikov’s results connect a
monotone basisΩ1 ({ µ}), an extension ofΩ1 by a basis of non-mono-
tone functionsΩ2 ({☞}), and an extension of the incomplete basis
Ω1 ∪ Ω2 by a constant functionα ({0}) to a complete basis. Using
Ugolnikov’s proof of (3.52) and (3.53) as a foundation we establish
sufficient conditions on <Ω1, Ω2,α > which allow analogues of the
inequalities (3.52) and (3.53) to be derived. Below we introduce nota-
tion used subsequently.

For any basis Ω ⊂
k

i=0
∪ Bk of constant arity Boolean functions, [Ω]

will denote the set of functions which can be computed by networks
over the basis Ω. For α ∈{0, 1} the relation ≤α is defined over
f , g ∈ Bn by,

Another approach to relating monotone and combinational 267

g ≤α f ☞☞




g ≤ f for α = 0

f ≤ g for α = 1

Finally θα ∈ M2 if the functionx \/ y if α = 0, x /\ y if α = 1.

Definition 3.19: Let Ω1 and Ω2 be disjoint bases andα ∈ {0, 1}.
< Ω1, Ω2,α > is sympatheticif and only if each of the following con-
ditions holds.

i) Ω1 is monotone and contains a non-constant function of at least
two arguments.

ii) Ω2 contains only non-monotone functions.

iii) The basisΩ1 ∪ Ω2 is not complete.

iv) The basisΩ1 ∪ Ω2 ∪ {α } is complete.

v) \/- φ ∈Ω2, −− −−ψ ∈ [Ω1] such that CΩ1
(ψ) ≤ 1 and for which

ψ ≤α φ .

vi) θα ∈ [Ω1 ∪ Ω2]. •

Theorem 3.28: (Dunne, 1987) extending (Ugolnikov, 1987) If
< Ω1, Ω2,α > is sympathetic then for allf ∈ [Ω1 ∪ Ω2],

a) Thereexists g ∈ [Ω1] such thatg ≤α f and for which

CΩ1
(g) ≤ CΩ1 ∪ Ω2

(f)

b) For all g ∈ [Ω1] such thatg ≤α f

CΩ1 ∪ Ω2
(f) ≤ CΩ1 ∪ Ω2 ∪ {α }(f) + CΩ1

(g) + CΩ1 ∪ Ω2
(θα)

c) For all g ∈ [Ω1 ∪ Ω2] such thatg ≤α f

CΩ1 ∪ Ω2
(f) ≤ CΩ1 ∪ Ω2 ∪ {α }(f) + CΩ1 ∪ Ω2

(g) + CΩ1 ∪ Ω2
(θα)

268 MonotoneNetworks

Proof: (b) and (c) employ identical arguments so only the stronger
result (c) is given in detail.

a) Let f ∈ [Ω1 ∪ Ω2] and S a network over the basisΩ1 ∪ Ω2 real-
ising f . Further let q denote the number of gates inS whose opera-
tion is a function in Ω2. We show that for all q ≥ 0, if S is a
Ω1 ∪ Ω2 network realising some functionf and usingq Ω2 gates,
then there is a network S1 realising a functionf1, such that f1 ≤α f ,
and which uses at most max{0,q − 1} Ω2 gates. Clearly this is suffi-
cient to prove (a).

If q = 0, then the result is trivial since f ∈ [Ω1], so choosing
g = f gives the bound in this case. So suppose the assertion of the
preceding paragraph is true of all appropriate networks containing at
most q − 1 Ω2 gates and letS be a network realising f and usingq
Ω2 gates. Let v be a "last" Ω2 gate in S, i.e a gate all of whose
descendants areΩ1 gates. Let v1, v2 , . . . ,vk denote the input gates of
v, these computing functionsh1, h2 , . . . ,hk in [Ω1 ∪ Ω2]. Further-
more letφ ∈ Ω2 denote the operation ofv, so that v computes a func-
tion h = φ (h1, h2 , . . . ,hk). Now from (v) of the definition of sympa-
thetic there is some functionψ ∈ [Ω1] such thatCΩ1

(ψ) ≤ 1 and for
which ψ ≤α φ . Let S1 be the network obtained fromS by replacing
the φ -gate v with ψ (h1 , . . . ,hk) and f1 be the function realised by
S1. Since all descendants ofv were gates fromΩ1 it follows that
f1 ≤α f . S1 contains at mostq − 1 Ω2 gates and this complete the
proof by induction of (a).

c) Let f , g ∈ [Ω1 ∪ Ω2], with g ≤α f , Sf be any Ω1 ∪ Ω2 ∪ {α }
network computing f and Sg any Ω1 ∪ Ω2 network realising the
function g. Replace any occurrence of the constant functionα in Sf

by the output of the network Sg, i.e the functiong. Let the resulting
network be denotedS1 and f1 the function which it computes. We
claim that f = θα (f1, g). It is sufficient to consider the caseα = 1

Another approach to relating monotone and combinational 269

only, α = 0 following by a similar argument. To see that f = f1 /\ g
consider the two possible values whichg can assume on any assign-
ment π . If g(π) = 1, then S1 behaves exactly as Sf hence
f (π) = f1(π). On the other hand suppose thatg(π) = 0. Then by the
choice of g and definition of≤α , we hav e f ≤ g, hence f (π) = 0.
The upper bound asserted by (c) is now immediate.

Corollary 3.17: Let Ω1 = { /\ , \/ } ⊂ M2 and define Ωα ⊂ B2, for
α ∈{0, 1} to be any subset of,

{ ☞☞, ☞, ☞} for α = 0

{ O+O+ , ¬☞, ¬ ☞} for α = 1

< Ω1, Ωα ,α > is sympathetic and for all f ∈ Mn such that
CΩ1

(f) = O(CΩ1 ∪ Ωα
(f)) it holds that,

\/- g ∈ [Ω1 ∪ Ωα] with g ≤ f

CΩ1 ∪ Ωα ∪ {α }(f) = Ω(CΩ1
(f) − CΩ1 ∪ Ωα

(g))

The basis{ µ, ☞} has some interesting properties with respect to the
question of realising the disjunction of 2 functions over disjoint sets
of variables. As we noted earlier, for complete bases, there exist pairs
of functions, f and g, for which C(f \/ g) << C(f) + C(g). No
explicit examples of such behaviour are known and whether such sav-
ings are possible for monotone networks remains an open question.
For the basis{ µ, ☞} we can exhibit a superpolynomial reduction in
complexity.

Theorem 3.29: Let f ∈Mn with arguments Xn and let y, z, u be
Boolean variables not contained inXn. Define the function
F(Xn, y, z) by

F(Xn, y, z) = y (z \/ f) \/ (z f̃)

270 MonotoneNetworks

and the functionG f (Xn, y, z, u) to be,

G f = u \/ F(Xn, y, z)

i) If

C{ µ, ☞}(F) ≤ r C{ µ, ☞}(G f)

for some functionr : N → N, then C(f) = Ω(Cm(f)/r (n)).

ii) There is a function f ∈Mn for which C{ µ, ☞}(F) is superpolyno-
mial, but C{ µ, ☞}(G f) = O(n2.5).

Proof: (i) is easily derived using (3.55) and (3.56) (withg = u)
together with the fact thatGF is easily computable given f . For (ii)
the construction is explicit. Letn= m2 and f ∈Mn be the Perfect
Matching function,PM, considered in Section(3.5). From (3.55) and
Theorem(3.18) we have

C{ µ, ☞}(F) ≥ nc logn

for somec > 0. But from (3.56) and the fact that f has combinational
complexity O(n2.5), cf Corollary(3.11), it follows that

C{ µ, ☞}(G f) = O(C(G f)) = O(n2.5)

So we have an explicitly defined function,F ∈ Bn+2 with arguments
< Xn, y, z> which has superpolynomial complexity over the basis
{ µ, ☞} but such that the functionu \/ F has polynomial complexity
over the same basis.

Bibliographic Notes

Alekseev (1973) considers the more general problem of counting
the number ofk-valued monotone functions. Beynon (1985) presents

271

an algebraic interpretation of replacement rules. McColl (1978a)
proves an upper bound ofn + 1 on the depth of monotone networks
realising functions inMn.

Apart from those presented above there are a number of results
on the complexity of sets of monotone functions. Efficient construc-
tions of sorting networks are given in (Ajtai et al., 1984) and
improvements to this by Paterson (1987). Lower bounds on various
functions may be found in Van Voorhis (1972); Lamagna (1979);
Lamagna and Savage (1974); Pippenger and Valiant (1976); and Tar-
jan (1978). The lower bound on monotone matrix product from Pater-
son (1975) and Mehlhorn and Galil (1976) improves an earlier result
of Pratt (1975).

For single output functions, Long (1986) gives a complicated
proof thatCm(MAJn) ≥ 4n. The results of Razborov concerning clique
functions can be used to obtain lower bounds on the monotone com-
plexity of SAT and Hamiltonian cycle; Skyum and Valiant (1985) dis-
cusses monotone projections between these families. Jukna (1986) and
Andreev (1987) outline alternative methods of deriving exponential
lower bounds. A conjecture of Schnorr (1976c) which would have
yielded similar bounds has since been refuted in Wegener (1979).
Razborov (1988a) examines the possibility of extending the approxi-
mation method to networks over complete bases.

A number of papers consider the power of negation in various
senses. Negation limited networks being examined in Fischer (1974)
and Markov (1957). Skyum (1983) considers an interpretation in
which negation is exponentially powerful for computing Boolean func-
tions. Valiant (1979b) has shown that negation is exponentially power-
ful for computing arithmetic functions. Dunne (1985c) gives a more
general characterisation theorem for pseudo-complements which based
on ideas first used by Wegener (1986).

272 MonotoneNetworks

Alon and Boppana (1986) also prove results on the relative
numbers of /\ and \/ gates required to compute monotone functions.
Specifically they show that if f ∈Mn can be computed by a monotone
network containing k≥ 1 /\ -gates, then f can be computed by a

monotone network, S, with k /\ -gates andCm(S) ≤ kn+ 

k − 1

2



− 1.

Galibiati and Fischer (1981) consider realising pairs of mono-
tone functions on disjoint sets of variables, proving that
Cm({ f , g}) = Cm(f) + Cm(g). Lenz and Wegener (1987) examine
the number of/\ -gates required to compute functions inQn,2, dev el-
oping the work of Mirwald and Schnorr (1987) on the conjunctive
complexity of quadratic forms, i.e ringsum expansions in which every
product is of length exactly 2. Finally Rivest (1977) has shown that
monotone sequential machines (i.e monotone circuits with feedback
loops) may be more efficient than monotone networks.

271

Chapter 4

Formulae

But let your communicationbe, Yea, Yea; Nay, Nay:

fo r whatsoever ismore than thesecometh ofevil.
Matt. v. 32

The complexity theory of realising Boolean functions byΩ-formulae,
as introduced in Defn(1.3), has its roots in the study of relay-contact
networks and their properties. The mathematical investigation of relay-
contact schemes was originated, independently, by Shannon (1938) in
the U.S, Shestakov (1938) in the Soviet Union, and Nakasima (1936)
in Japan. So this restricted model has a history as old as, and to some
degree independent of, the theory of combinational complexity.
Although the theory of relay-contact circuits is no longer technologi-
cally relevant, the facts that combinational network depth and formula
depth are equivalent; that lower bounds on formula depth may be
deduced from similar bounds on formula size, cf Theorem(2.4); and
that Ω-formulae are a model to which a considerable literature has
been devoted, justify a substantial treatment of it. The aim of the pre-
sent chapter is to offer such a presentation.

In Section(4.1) the lower bound of Riordan and Shannon (1942)
on the formula size of almost all Boolean functions is given. This is a
counting argument similar in spirit to Theorem(2.6). In the same sec-
tion the asymptotically matching upper bound from Lupanov (1962) is
derived. The (k, s)-Lupanov decomposition, the description of which
preceded Theorem(2.7), is employed to the same effect as in the anal-
ogous upper bound on combinational complexity.

Progress in obtaining non-trivial lower bounds on formula size
has been considerably more advanced than with combinational

272 Formulae

complexity. A number of general techniques, applicable to formulae
over the basisB2 have been established. Section(4.2) describes the
most important of these: the technique of Neciporuk (1966) and fur-
ther applications of this from Harper and Savage (1972), and
Sch ̈urfeld (1983); the methods of Hodes and Specker (1968) as
enhanced by Pudlak (1983); and the approach of (Fischer et al.,
1982).

Section(4.3) considers further the relation between formula size
and depth. The main results presented are size/depth trade-offs
obtained by Commentz-Walter (1979) and (Commentz-Walter and Sat-
tler, 1980).

In Section(4.4) we consider some efficient constructions of for-
mulae for specific Boolean functions, in particular for symmetric
Boolean functions.

Section(4.5) concludes this chapter and looks at formulae over
bases other thanB2. The techniques of Khrapchenko (1971a, b) and
Andreev (1986) are described. These yield lower bounds on formulae
over the basis{ /\ , \/ , ¬}.

4.1) Bounds on Formula Size for almost all Boolean functions

Formulae restrict gates to having fanout at most 1, thus in
graph-theoretic terms, the networks may be viewed as trees in which
internal nodes are labelled with gate operations and the leaves by lit-
erals and constants; usually several leaves are labelled with the same
literal. Let Xn denote the set of literals{x1 , . . . , xn}. Reg arding formu-
lae as trees allows us to associate a word of length 2L(F) + 1 over the
alphabetXn ∪ Xn ∪ B2 with any formula F as follows,

Definition 4.1: PREFIX : Formulae→ {Xn, Xn, B2}
* is the (injective)

mapping from formulae,F , onto words of length 2L(F) + 1, defined

Bounds for almost all functions 273

inductively by:

P1) If F = xi or F = xi then PREFIX(F) = F

P2) If F = F1 * F2, where * ∈ B2 then,

PREFIX(F) = * PREFIX(F1) PREFIX(F2) •

Now as a consequence of Lemma(1.3) every gate in an optimal
formula over the basisB2 depends on both its inputs. Thus minimal
formulae do not contain projections or constant functions as gate oper-
ations.

Theorem 4.1: (Riordan and Shannon, 1942) For allε > 0 and n suffi-
ciently large. For almost all f ∈ Bn,

L(f) >
(1 − ε)2n

logn

Proof: We estimate the number of distinct optimal formulae over basis
B2 which contain at mostM gates. As in the proof of Theorem(2.6),

we can show that if M ≤
(1 − ε)2n

logn
for any ε > 0 then the number of

these iso(|Bn|).

Let L(M) denote the number of distinct minimal formulae con-
taining at mostM gates andl (m) the number withexactly m gates.

Obviously L(M) =
M

m=0
Σ l (m) so we need only bound the quantityl (m).

With Defn(4.1) we can associate a unique word in{Xn, Xn, B2}
2m+1

with any formula of sizem by using the mappingPREFIX. Now for
any formula F of size m, PREFIX(F) contains exactly m operator
symbols, i.e fromB2, and exactly m + 1 literal symbols. There are at

most 

2m + 1

m



choices for the positions of operator symbols, 10

274 Formulae

choices for each operation and 2n choices for each literal. Therefore,

l (m) ≤ 

2m + 1

m


10m(2n)m+1

˜
< √ 2

π
23m+210mnm+1

√ 2m + 1

Hence,

L(M) =
M

m=0
Σ l (m)

˜
< √ 2

π

M

m=0
Σ 23m+210mnm+1

√ 2m + 1

which is

˜
< √ 2

π
23M+210MnM+1

√ 2M + 1 ˜
< 2δ M nM+1

where δ is some constant. It is now easy to verify that if

M ≤
(1 − ε)2n

logn
then

L(M) ≤ 2
(1−ε)2n +

δ (1−ε)2n

logn
+ logn

which is o(|Bn|) as required.

Lupanov (1962) gives a construction which asymptotically
matches this lower bound. It is based on the following result of
Finikov (1957) which proves an upper bound on the formula size of
Boolean functions over Xn with exactly r satisfying assignments.
Obviously any such function, f , has formula size at most
r + r − 1 = rn − 1. Finikov’s result improves this for "small" r.

Lemma 4.1:(Finikov, 1957) Let f ∈ Bn such that f has exactly r sat-
isfying assignments. Then

L(f) ≤ 2n − 1 + r 2r−1

Proof: Let {α (1) , . . . ,α (r)} ⊆ {0, 1}n be the set of assignments such

Bounds for almost all functions 275

that f (α (i)) = 1 for each 1≤ i ≤ r. We may construct a table withr
rows andn columns, as below

x1 x2
. . . xi

. . . xn

α (1)
1 α (1)

2
. . . α (1)

i
. . . α (1)

n

α (2)
1 α (2)

2
. . . α (2)

i
. . . α (2)

n

.

α (j)
1 α (j)

2
. . . α (j)

i
. . . α (j)

n

.

α (r)
1 α (r)

2
. . . α (r)

i
. . . α (r)

n

In this table α (j)
i is the value given to xi by α (j). Now for any

β = < b1 , . . . , br > ∈ {0, 1}r let MATCHβ be the subset{i 1 , . . . , i p} of
{1, 2 . . . n} such that\/- i j ∈ MATCHβ

α (k)
i j

= bk fo r each1 ≤ k ≤ r

i.e those columns which equal ther-tuple β when transposed into a
row vector. Clearly if β ≠ γ then the setMATCHβ ∩ MATCHγ is
empty. With t denoting

| { β ∈ {0, 1}r : MATCHβ ≠ ∅ } |

< β1, β2 , . . . , β t > will be some ordering of thoser-tuples, β , for
which MATCHβ is non-empty. To avoid an excess of subscripts
MATCHi will be used instead ofMATCHβ i

. We further simplify the
notation by assuming thatMATCHi consists of a contiguous sequence
of indices, thus MATCH1 = {1, 2 ,. . . , q1},
MATCHi = {qi−1 + 1 ,. . . , qi }. This could always be arranged by

renaming variables. Itshould be clear that,
t

i=1
Σ |MATCHi | = n.

276 Formulae

We can now define two Boolean functions over Xn, using the
table above and the partition of its columns induced by theβ i . Con-
ventionally q0 = 0 below.

row − traverse(Xn) =
t

i=1
/\ (

qi

j=qi−1+1
/\ x j \/

qi

j=qi−1+1
/\ x j)

last − col(Xn) =
r

i=1
\/

t

j=1
/\ x

α (i)
j

q j

We now hav e that

f (Xn) = row − traverse(Xn) last − col(Xn)

since

row − traverse last− col =
t

i=1
/\ (

qi

j=qi−1+1
/\ x j \/

qi

j=qi−1+1
/\ x j) (

r

i=1
\/

t

j=1
/\ x

α (i)
j

q j)

=
r

i=1
\/ (

t

j=1
/\ x

α (i)
j

q j

t

k=1
/\ (

qi

l=qi−1+1
/\ xl \/

qi

l=qi−1+1
/\ xl))

=
r

i=1
\/

t

k=1
/\

qk

l=qk−1+1
/\ x

α (i)
l

l

=
r

i=1
\/

n

k=1
/\ x

α (i)
k

k = f (Xn)

Hence L(f) ≤ L(row − traverse) + L(last − col) + 1. From their defini-
tion,

L(row − traverse) ≤ t − 1 + 2
t

i=1
Σ (|MATCHi | − 1) + t

= 2t − 1 + 2(n − t) = 2n − 1

Bounds for almost all functions 277

L(last − col) ≤ r − 1 +
r

i=1
Σ (t − 1)

= rt − 1

By negating variables if necessary, we can always guarantee that
< 1, 1 , . . . , 1 >satisfies f and sot ≤ 2r−1. This proves the lemma.

Finikov’s result can also be used to improve the boundrn − 1
for "large" r.

Corollary 4.1: Let f ∈ Bn be as in Lemma(4.1) withr ≥ (log n)2.
Then

L(f) ≤
2nr

logn
(1 + ξ (n))

whereξ is such that
n → ∞
lim ξ (n) = 0.

Proof: Let {α (1) , . . . ,α (r)} be the satisfying assignments off and par-
tition these intoq blocks, B1 , . . . , Bq where |Bi | = d for 1 ≤ i < q and

|Bq| ≤ d for some d to be fixed subsequently. So q ≤  r /d  + 1.

Clearly f (Xn) =
q

i=1
\/ gi (Xn), wheregi is satisfied by exactly the assign-

ments inBi . Applying Lemma(4.1),

L(f) ≤ (2n − 1 + d 2d−1) q + q = (2n + d 2d−1)q

Fix d = logn − 2 log logn. We then have,

L(f) ≤
2nr

logn − 2 log logn
+ 2n +

rn(logn − 2 log logn)

(logn)2

and this is no more than

2nr

logn


1 +

c logn

r
+

logn − 2 log logn

(log n)2




278 Formulae

as required.

With these two results we can now derive an upper bound on
L(f) for any f ∈ Bn.

Theorem 4.2: (Lupanov, 1962) \/- f ∈ Bn, \/- ε > 0 and n sufficiently
large,

L(f) <
(1 + ε)2n

logn

Proof: Consider the (k, s)-Lupanov decomposition of f , as described
above.

f (Xn) =
d

i=1
\/

v ≠ 0
\/ [row − matchi ,v(Y) /\ col − matchi ,v(Z)]

where

row − matchi ,v(Y) =
α ∈ {0,1}k ∩ Ri

\/ δα (Y) /\ v(α)

col − matchi ,v(Z) =
β ∈ {0,1}n−k ∩ Pi ,v

\/ δ β (Z)

So L(f) is at most

d

i=1
Σ

v ≠ 0
Σ (L(row − matchi ,v) + L(col − matchi ,v)) + 2d(2s − 1) − 1

From the definition ofrow − matchi ,v it is immediate that,

d

i=1
Σ

v ≠ 0
Σ L(row − matchi ,v) ≤ d (2s − 1) (ks− 1)

For an upper bound oncol − matchi ,v we proceed as follows. Let

Ci (t) = |{ v ∈ {0, 1}s : |Pi ,v| = t }|

Bounds for almost all functions 279

and Q(r , m) be the maximal formula size of any function in Bm with

exactly r satisfying assignments. Then
t
Σ Ci (t) ≤ 2s since the sets,

{{v ∈ {0, 1}s : |Pi ,v| = t}}1 ≤ i ≤ t

are pairwise disjoint. Also
t
Σ tCi (t) = 2n−k since

v ∈ {0,1}s
∪ Pi ,v = {0, 1}n−k

Now, for any i ,

v≠0
\/ col − matchi ,v =

v≠0
\/

β ∈ {0,1}n−k∩Pi ,v

\/ δ β (Z)

=
t
\/

{v≠0 : |Pi ,v|=t}
\/

β ∈ Pi ,v∩{0,1}n−k
\/ δ β (Z)

Hence,

d

i=1
Σ

v ≠ 0
Σ L(col − matchi ,v) ≤

d

i=1
Σ

t
Σ Q(t, n − k) Ci (t)

This is,

≤
d

i=1
Σ

t < (log(n−k))2
Σ Q(t, n − k)Ci (t) +

d

i=1
Σ

t ≥ (log(n−k))2
Σ Q(t, n − k)Ci (t)

≤
d

i=1
Σ

t < (log(n−k))2
Σ (tn − tk − 1)Ci (t) +

d

i−1
Σ

t ≥ (log(n−k))2
Σ 2t(n − k)

log(n − k)
(1 + ξ (n − k))Ci (t)

280 Formulae

≤ d2s(n − k)(log(n − k))2 +
2d(n − k)2n−k

log(n − k)
(1 + ξ (n − k))

and so,L(f) does not exceed

d2s(ks+ (n − k)(log(n − k))2 + 2)+
2d(n − k)2n−k

log(n − k)
(1+ ξ (n − k)) + d − 1

Setting k =  2 logn , s =  n − 3 logn  and recalling thatd ≤ 2k/s+ 1
proves the theorem.

4.2) General Lower Bound Techniques

Formulae over the basis B2 form the first widely studied
restricted model for which non-trivial lower bound on complexity
were obtained. In this section three important techniques for deriving
such bounds will be discussed. All can be applied to a broad variety
of functions.

The first method presented is that of Neciporuk (1966) which
relates the formula size off (Xn) to the number of distinct subfunc-
tions over Y⊆Xn arising from partial assignments toXn − Y. These
methods can yield bounds of at bestΩ(n2/ logn); this optimum being
attained in Neciporuk (1966) and remaining, to date, the best lower
bound on formula size. Neciporuk’s approach has also been applied to
yield lower bounds by a number of authors for a considerably diverse
range of problems. We describe its employment by Harper and Savage
(1972), to the "Marriage Problem" and by Schürfeld (1983) to various
graph-theoretic problems.

The other techniques; Hodes and Specker (1968), Pudlak (1983);
(Fischer, Meyer, Paterson, 1982); are similar in style. Both deduce
lower bounds on formula size via (different) theorems of the following
form:

Lower bound of Neciporuk 281

If L(f) is "small" then f (Xn) possesses Property-X

or equivalently, and more directly applicable to lower bound proofs,

If f (Xn) does not have Property-X thenL(f) = Ω(g(n)).

The exact definition of Property-X differs for each technique. Hodes
and Specker (1968) has been shown capable of yielding bounds of
Ω(n log* n), cf Vilf an (1976). Pudlak (1983) improved the basic meth-
ods of Hodes and Specker to achieve lower bounds ofΩ(n log logn).
Since a lengthy case analysis would be required we do not give a
complete exposition of this approach. (Fischer et al., 1982) deduce
bounds ofΩ(n logn) on formula size.

It should be noted that all of these approaches have differing
realms of application. Neciporuk (1966) and its successors yield mod-
erate bounds on functions to which the others are not of significant
value. However Neciporuk’s method is of little use for establishing
results on symmetric functions.Within this class (Fischer et al.,
1982) obtainΩ(n logn) bounds; Pudlak (1983) deriving Ω(n log logn)
bounds for certain symmetric functions outwith the power of both
techniques.

4.2.1) The Neciporuk Bound

Definition 4.2:Let f (Xn) ∈ Bn and Y = {y1 , . . . , ym} ⊂ Xn.

N f (Y) = |
σ ∈{0,1}n−m

∪ { f |Xn−Y:=σ (Y) } |

Thus N f (Y) is the number of distinct subfunctions obtainable fromf
by settingXn − Y to constants.•

Theorem 4.3:(Neciporuk, 1966)

\/- f ∈ Bn, \/- Y = {y1 , . . . , ym} ⊂ Xn:

282 Formulae

L(f) ≥ log5 N f (Y) +
σ ∈ {0,1}m

max f Y:=σ (Xn − Y)

Lower bound of Neciporuk 283

Proof: The proof below is due to Paterson (pers. comm) and yields
the best known multiplicative constant in the lower bound. Earlier
methods give log16 N f (Y) = log N f (Y)/4 instead of
log5 N f = log N f /2. 518.

Let F be an optimal formula, over the basisB2, realising f (Xn),
and Y = {y1 , . . . , ym} be any proper subset ofXn. For any x ∈ Xn

define occ(x, F) to be the total number of leaves (i.e inputs) of F
labelled with x or x. Similarly for W ⊆ Xn,

occ(W, F) =
x ∈ W
Σ occ(x, F). Now,

L(f) = L(F) = occ(Y, F) + occ(Xn − Y, F) − 1

and sinceF can be amended to realise any subfunction over Xn − Y
of f , simply by settingY to the appropriate assignment, it is suffi-
cient to show

occ(Y, F) ≥ log5 N f (Y)

in order to prove the theorem.

Let Z = {z1, z2 , . . . , zn−m} denote the variables Xn − Y and
Sf (Y) the set of functions,

Sf (Y) = {g(Y) : g(Y) = f Z:=σ (Y), σ ∈ {0, 1}n−m}

Obviously |Sf (Y)| = N f (Y). Consider the relatioñ defined over Sf (Y)
by saying that f ˜g if f = g or f = ¬g. Clearly ˜ is an equivalence
relation and we denote byM f (Y) the number of equivalence classes
of ˜, excluding any consisting of constant functions. With this defini-
tion,

M f (Y) ≤ N f (Y) ≤ 2 M f (Y) + 2

We claim that,

284 Formulae

occ(Y, F) ≥ log5(4M f + 1) > log5 N f

The second inequality being immediate from the previous relation we
proceed by induction onL(f) = L(F) ≥ 0 to prove the first.

For the inductive baseL(f) = 0, f is just a single variablex. If
x ∈ Y then Sf (Y) = {x} henceM f (Y) = 1. Thus,

occ(Y, F) = 1 = log5 5 = log5(4M f (Y) + 1)

On the other hand ifx ∈/ Y then Sf (Y) = ∅ and soM f (Y) = 0. Thus,

occ(Y, F) = 0 = log5 1 = log5(4M f (Y) + 1)

Assume the claim holds for all values 0≤ L(f) < t. We show it
holds for L(f) = t also. Let F be an optimal formula realisingf of
size t ≥ 1. ThenF = G θ H whereG, H are formulae of size at most
t − 1 realising functionsg(Y, Z) and h(Y, Z) respectively. The induc-
tive step follows from the fact that,

M f (Y) ≤ 4Mg(Y) Mh(Y) + Mg(Y) + Mh(Y)

For with this we have,

log5(4M f + 1) ≤ log5((4Mg + 1) (4Mh + 1))

= log5(4Mg + 1) + log5(4Mh + 1)

≤ occ(Y, G) + occ(Y, H) = occ(Y, F)

by the inductive hypothesis.

To see that,

M f ≤ 4Mg Mh + Mg + Mh

note that as a consequence of Lemma(1.3)(ii),θ is either an /\ -type

Lower bound of Neciporuk 285

or an ⊕-type gate. SinceM f is certainly no more than the number of
distinct functions obtainable by fixing occurrences ofZ in G and H
independently we can produce an upper bound onM f as follows.

Case 1:θ is ⊕-type

So f = g ⊕ h ⊕ c, where c ∈ {0, 1}. Any f ′ ∈ Sf (Y) arises
from one of the following cases,







0 ⊕ h′, 1 ⊕ h′ : h′ ∈ Sh

g′ ⊕ 0, g′ ⊕ 1 : g′ ∈ Sg

g′ ⊕ h′, 1 ⊕ g′ ⊕ h′ : g′ ∈ Sg, h′ ∈ Sh







The first case contributes at mostMh classes toM f ; the second at
most Mg; the last at mostMg Mh. Thus if θ is ⊕-type,

M f ≤ Mg Mh + Mg + Mh

Case 2:θ is /\ -type.

So f = (ga /\ hb)c wherea, b, c ∈ {0, 1}. Here any f ′ ∈ Sf (Y)
arises from one of the cases below,











1 /\ h′, 1 /\ ¬h′ : h′ ∈ Sh

g′ /\ 1, ¬g′ /\ 1 : g′ ∈ Sg

g′ /\ h′, ¬(g′ /\ h′) : g′ ∈ Sg, h′ ∈ Sh

g′ /\ ¬h′, ¬(g′ /\ ¬ h′) : g′ ∈ Sg, h′ ∈ Sh

¬g′ /\ h′, ¬(¬g′ /\ h′) : g′ ∈ Sg, h′ ∈ Sh

¬g′ /\ ¬h′, g′ \/ h′ : g′ ∈ Sg, h′ ∈ Sh











Again the first two cases contribute at mostMg + Mh classes toM f ;
each of the remaining four contribute at mostMg Mh each. Thus isθ
is /\ -type then,

286 Formulae

M f ≤ 4Mg Mh + Mg + Mh

and this proves the theorem.

The results below are immediate from Theorem(4.3)

Corollary 4.2: Let < X(1) , . . . , X(m) > be a partition of Xn. Then
\/- f ∈ Bn

L(f) ≥
m

i=1
Σ log5 N f (X

(i)) − 1

Proof: Let F be any optimal formula for f . Then

L(f) = L(F) =
m

i=1
Σ occ(X(i), F) − 1

From the proof of Theorem(4.3), we have that for eachX(i),

occ(X(i), F) ≥ log5 N f (X
(i))

hence

L(f) =
m

i=1
Σ occ(X(i), F) − 1 ≥

m

i=1
Σ log5 N f (X

(i)) − 1

as claimed.

Corollary 4.3: Let n be an exact multiple ofm and Xn be partitioned

into
n

m
sets ofm variables each. LetX(i) denote thei ’th set, then for

any f ∈ Bn,

L(f) ≥
n

m 1 ≤ i ≤ m
min { log5 N f (X

(i))}

Proof: Obvious from Corollary(4.2).

We now consider some specific applications of Neciporuk’s
method. The function originally used in Neciporuk (1966) is defined

Lower bound of Neciporuk 287

as follows.

Let n ∈ N and set m =  logn  + 2. Xn,m is a  n/m  × m

matrix of Boolean variables {xi , j : 1 ≤ i ≤  n/m , 1 ≤ j ≤ m}. Let

[σ ij] be a  n/m  × m matrix of pairwise distinct Booleanm-tuples,
each m-tuple containing at least two 1’s. Neciporuk’s function,
N(Xn,m), is given by,

N(Xn,m) =
1≤i≤ n/m 

1≤ j≤m

⊕
 n/m 

k=1

k≠i

⊕ xi , j /\
{l : σ i , j (l) = 1}

/\ xk,l

Hereσ i , j (l) denotes thel ’th bit of the m-tuple σ i , j .

Before deriving a lower bound onL(N(Xn,m)) we require one
property of the ringsum expansion.

Fact 4.1: Let P = {p1, p2 , . . . , pr} and Q = {q1, q2 , . . . , qs} be differ-
ent sets of monoms over Xn. Then,

r

i=1
⊕ pi (Xn) ≠

s

i=1
⊕ qi (Xn)

Proof: Suppose the contrary, then from the definition of⊕ we have,

r

i=1
⊕ pi ⊕

s

i=1
⊕ qi = 0

This is equivalent to,

p ∈ P∩Q
⊕ p ⊕

q ∈ P∩Q
⊕ q ⊕

p ∈ P−Q
⊕ p ⊕

q ∈ Q−P
⊕ q = 0

i.e

p ∈ P−Q
⊕ p ⊕

q ∈ Q−P
⊕ q = 0

288 Formulae

Obviously P − Q and Q − P are disjoint sets and sinceP ≠ Q we have
that the setP − Q ∪ Q − P is non-empty. Let m be a minimal prod-
uct in this set, i.e a monom such that no proper subset ofvar(m)
defines an element ofP − Q ∪ Q − P. Then under the assignmentα
which fixes exactly the variables ofm to 1, m is the only product in
P − Q ∪ Q − P which is 1 and hence the left-hand side of this
expression is 1≠ 0. This contradiction proves the result.

Lemma 4.2:\/- 1 ≤ i ≤  n/m  NN(X(i)) = 2( n/m  − 1)m

Proof: It suffices to show that any two distinct assignments to
Xn,m − X(i) yield different subfunctions ofN(Xn,m). Considertwo dif-
ferent assignmentsα =< a1 , . . . , ap > and β =< b1 , . . . , bp > to the

variables Xn,m − X(i), p denoting ( n/m  − 1)m. Since α and β are
different there is some variable xr ,s ∈ Xn,m − X(i) such thatx|α

r ,s ≠ x|β
r ,s.

Without loss of generality we assume thatxr ,s = 1 under α and 0
under β . The function N |α (X(i)) is the ⊕ over some set of monoms
depending onX(i). In particular, since N(Xn,m) contains the product

xr ,s /\
{l : σ r ,s(l)=1}

/\ xi ,l

this subfunction contains the product, of at least two variables,

{l : σ r ,s(l)=1}
/\ xi ,l

which is not contained inN |β (X(i)). Thus from Fact(4.1) the subfunc-
tions N |α and N |β are different and the lemma follows. .

Theorem 4.4:L(N(Xn,m)) = Ω


n2

logn


.

Proof: From Corollary(4.3) and Lemma(4.2) we have,

Lower bound of Neciporuk 289

L(N(Xn,m)) ≥
n log5(2

( n/m −1)m)

m

=
n ( n/m  − 1)m

m log 5
≥

n2 − nm

m log 5

Sincem =  logn  + 2 this proves the theorem.

Harper and Savage (1972) show how Neciporuk’s methods can
be applied to yield a lower bound on the formula size of a function
closely related to the Perfect Matching problem of Chapter(3).

Definition 4.3: Let Xn,n = {xij : 1 ≤ i , j ≤ n} be a set ofn2 Boolean
variables wheren is even. Recall thatB(Xn,n) is a mapping from
assignments,α , to Xn,n onto 2n-vertex bipartite graphs with vertex set
V ∪ W and that a matching inB(Xn,n) is a subset of the edges ofB
such that each vertex is the endpoint of at most one edge. Ak-match-
ing is a matching with exactly k edges. k − Match(Xn,n) is the
Boolean function which is true if and only ifB(Xn,n) contains ak-
matching. TheStable Marriage Problem, SMPis that of determining
the cardinality of a maximal matching in a given bipartite graph.
Finally PSMP(Xn,n) is the Boolean function whose value is
SMP(B(Xn,n))(mod2), i.e the parity of the number of edges in a max-
imal matching. •

Clearly,

PSMP(Xn,n) =
n/2

i=0
\/ (2i + 1) − Match(Xn,n) /\ (2i + 2) − Match(Xn,n)

where (n + j) − Match(Xn,n) ≡ 0 for j > 0.

Theorem 4.5:(Harper and Savage, 1972)

L(PSMP(Xn,n)) = Ω(N3/2)

290 Formulae

where N = n2.

Proof: Partition Xn,n into n blocks, Pk, where 0≤ k ≤ n − 1, defined by

Pk = { xij : i ≡ j + k (mod n) }

Now since SMP(B(Xn,n)) is invariant under relabelling of the graph
vertices we have that NPSMP(P0) = NPSMP(Pi) for each 0≤ i ≤ n − 1.
So it is sufficient to prove a large enough bound onNPSMP(P0) and

then appeal to Corollary(4.3). Consider the 2n2/4 assignments to
Xn,n − P0 in which xij = 1 ☞ i ≤ n/2 < j ; thus
n/2 > i or j ≤ n/2 ☞ xij = 0. Let α and β be distinct assignments
within this class. Then we can findr and s such thatr ≤ n/2 ≤ s and
xrs = 0 under α but xrs = 1 under β . We claim that the functions
PSMP|α (P0) and PSMP|β (P0) are distinct. To see this note that
P0 = {xii : 1 ≤ i ≤ n} and consider the bipartite graphs which result
from the assignmentγ to P0 given by,

xii = 1 ⇐⇒ i ≠ r and i ≠ s

The graphB(α , γ) contains a matching of cardinalityn − 2 consisting
of the edges{{ v i , wi } : 1 ≤ i ≠ r , s ≤ n} but none of cardinalityn − 1
since the vertices vr , vs are unmarried. On the other hand the graph
B(β , γ) contains a matching of cardinalityn − 1 consisting of the
same edges and{vr , ws}, but no matching of cardinalityn since the
vertex vs is unmarried. Since (n − 2)(mod2) ≠ (n − 1)(mod2) the
claim follows.

From the above argument NPSMP(P0) ≥ 2n2/4. Hence from Corol-
lary(4.3),

L(PSMP(Xn,n)) ≥
n n2

4 log 5
= Ω(N3/2)

as required.

Lower bound of Neciporuk 291

Kloss (1966) employs the same partition ofXn,n to produce a
lower bound on formula size forGF(2) determinant computation.
Thus regarding Xn,n as ann × n matrix of Boolean variables,

DET(Xn,n) =
σ ∈ Sn

⊕
n

i=1
/\ xi , σ (i)

Theorem 4.6: (Kloss, 1966)L(DET(Xn,n)) = Ω(N3/2), where N = n2.

Proof: Exercise.

Our final example using Neciporuk’s technique is taken from
Sch ̈urfeld (1983) which derives superlinear lower bounds for thek-
clique function, introduced in Chapter(3). Schürfeld (1983) improves
the lower bounds of Mamatov (1979) for this function, which were
also obtained using Neciporuk’s argument.

Theorem 4.7:(Sch ̈urfeld, 1983) LetXU
n be a set ofn/2 Boolean vari-

ables encoding the possible edges of ann-vertex undirected graph as
before. For all k, 3 ≤ k ≤ n,

L(k − clique(XU
n)) = Ω((n − k)3)

Proof: We describe a partition ofXU
n into n − k + 3 disjoint sets of

edges, T1 , . . . , Tp and show that for each i , 2 ≤ i ≤ p,

Nk−clique(Ti) ≥ 2(n−k−i+3)2/4. The partition classes are given as,

T1 = { xij : 1≤ i ≤ k − 3, i + 1≤ j ≤ n }

Ti = { xij : i + 1≤ j ≤ n } for 2≤ i ≤ n − k − 3≡ p

Consider any subset Ti , for some i ≥ 2. We wish to identify a

collection of 2(n−k−i+3)2/4 assignments toXU
n − Ti which give rise to dis-

tinct functions over Ti . Now any assignmentα to XU
n − Ti partially

describes ann-vertex undirected graph,G(α), in which only the edges

292 Formulae

associated withTi variables are unspecified. So two distinct assign-
ments,α and β , yield different functions onTi if and only if G(α)
can be extended to a graph containing ak-clique andG(β) to one not
containing any k-clique, by the same fixation of the unspecified edges
Ti .

We claim that the following class of assignments toXU
n − Ti has

the desired property.





















xij : = 1 if 1 ≤ i ≤ k − 3, 2≤ j ≤ k − 3

xij : = 1 if 1 ≤ i ≤ k − 3, k + i − 4≤ j ≤ n

xij : = 0 if 1 ≤ i ≤ k − 3, k − 2≤ j ≤ k + i − 5







T1 assignment





xij : = 0 if k − 2≤ i ≤ k + i − 5, i + 1≤ j ≤ n




Th assignment2≤ h ≤ i − 1





Any bipartitegraph onvertices k− i + 3, . . . ,n




Th assignment i+ 1≤ h ≤ p















Distinct assignments in this class differ only in the choice of
bipartite graph for the final part. LetG(α) be the partial graph defined
by any assignmentα in this set. First note that this graph contains
several k − 1-cliques, consisting of the vertices 1,2 ,. . . , k − 3 and any
two of the vertices k + i − 3, k + i − 2 ,. . . , n. Howev er G(α) does not
contain ak-clique; suppose the contrary and thatv1 , . . . , vk were the
vertices in ak-clique of G(α). If one of these vertices isk − i + 4 then
at least two, v and w say, must be in the set{k + i − 3 ,. . . , n}. But
the edges{k − i + 4, v} and {k − i + 4, w} are unspecified inG(α). The
only other possibility is that at least 3 vertices,u, v and w say, from
{k + i − 3 ,. . . , n} form part of the k-clique, and so{u, v, w} is a
3-clique. But by the constructionu, v and w are vertices in a bipartite
graph, and it is well-known that any bipartite graph does not contain a

Lower bound of Neciporuk 293

3-clique, or more generally any odd length cycle. These contradictions
establish thatG(α) does not contains ak-clique and hence the sub-
function over Ti resulting by fixingXU

n − Ti to α is not the constant
function 1 (or the constant function 0 from the first part of the argu-
ment above). Finally we note that the only unspecified edges ofG(α)
are those between the vertex k + i − 4 and the vertices,
{k + i − 3 ,. . . , n} of the bipartite graph. All edges{ j , k + i − 4} for
1 ≤ j ≤ k − 3 being present; all edges { j , k + i − 4} for
k − 2 ≤ j ≤ k + i − 5 being absent.

Now let α and β be distinct assignments toXU
n − Ti within this

category. There is some edgexrs for which x|α
rs ≠ x|β

rs. By the choice of
α , β it must be the case thatk + i − 3 ≤ r ≤ n − 1, r + 1 ≤ s ≤ n. With-
out loss of generality assume that{r , s} is an edge ofG(α) but is
absent fromG(β), i.e x|α

rs = 1. We extend the graphsG(α) and G(β)
with the following assignment toTi ,







xk+i−4,r : = 1

xk+i−4,s : = 1

xk+i−4, j : = 0 j ≠ r , j ≠ s, j ≥ k + i − 3







Let H(α), H(β) be the resulting completely specified graphs.H(α)
has ak-clique consisting of the vertices

{1, 2 ,. . . , k − 3, k + i − 4, r , s}

However H(β) contains nok-clique. For from the earlier argument on
the non-existence ofk-cliques inG(β), any k-clique in H(β) must use
exactly 2 vertices from the set{k + i − 3 ,. . . , n} and the vertex
k + i − 4. From the construction of the assignment toTi , k + i − 4 is
joined to only two vertices,r and s, in this set and these are not con-
nected by an edge inG(β) or H(β).

294 Formulae

We hav e thus established that different assignments in the class
considered yield distinct functions ofTi .

It remains to establish the number of suitable assignments avail-
able. First note that the number of different bipartite graphs withq

vertices is at least 2 q/2   q/2  > 2(q−1)2/4. This is easily seen by consid-
ering the complete bipartite graph,K q/2 ,  q/2  and observing that the
subgraphs defined by different subsets of its edges are distinct. This

shows that Nk−clique(Ti) ≥ 2(n−k−i+3)2/4. Applying Corollary(4.2) we have,

L(k − clique) ≥
p

i=2
Σ

log Nk−clique(Ti)

log 5

≥
1

log 5

n−k+3

i=2
Σ (n − k − i + 3)2

4

=
1

4 log 5

n−k+1

i=1
Σ i2

=
1

12 log 5
(n − k + 1) (n − k +

3

2
) (n − k + 2)

=
1

12 log 5
(n − k)3 − o((n − k)3)

which is the lower bound asserted in the theorem statement.

The bound of Thm(4.6) iso(n) if n − k = o(n2/3). For these
cases Scḧurfeld (1983) derived the following bound which we state
without proof.

Theorem 4.8: Let h : N → N be a function such thath(n) → ∞ and

h(n) ≤  n/2 . Then

Lower bound of Neciporuk 295

L((n − h(n)) − clique) = Ω(n2h(n))

4.2.2) The Hodes/Specker/Pudlak Lower Bound

Neciporuk’s method turns out to be incapable of yielding non-trivial
bounds on the formula size of symmetric Boolean functions. To see
this consider any f ∈Sn and Y ⊂ Xn. Let α , β be different assign-
ments toXn − Y containing the same number of 1’s. Sincef is sym-
metric it follows that f |α (Y) = f |β (Y) and hence
N f (Y) ≤ min {2|Y|+1, n − |Y| + 1}. In the context of Corollaries(4.2) and
(4.3) this establishes that at best linear lower bounds can be attained.

In this section we consider a bounding method discovered by
Hodes and Specker (1968) with which superlinear lower bounds for
symmetric functions can be proved. Our presentation follows that of
Pudlak (1983); this paper improving the general theorem derived by
Hodes and Specker. The basic idea underlying Hodes and Specker’s
original argument is quite simple, as is that behind Pudlak’s enhance-
ment; the complications in the proofs arise as a result of detailed case
analyses, which are omitted in the description below.

Let f ∈ Bn. For Y ⊆ Xn, the Y-restriction of f (Xn) is the sub-
function of f obtained by fixing all variables inXn − Y to 0. The
lower bound theorem of Hodes and Specker (1968) asserts that if
L(f) is "small" then there is aY-restriction of f with a very pre-
cisely defined form. Specifically they proved,

Theorem 4.9: (Hodes & Specker, 1968) There exists a function,

ξ (r , n), such that for eachr,
n → ∞
lim ξ (r , n) → ∞ and for which,

If L(f) ≤ nξ (r , n) then there exists Y ⊂ Xn, with |Y| = r and
such that theY-restriction of f is equivalent to

296 Formulae

(
y ∈ Y
⊕ y) θ (

y ∈ Y
\/ y)

for someθ ∈ B2.

For r fixed, Vilf an (1976) established thatξ (r , n) grew no faster
than log* n. Pudlak (1983) used a different approach to show that the
condition L(f) ≤ nξ (r , n) could be sharpened to,

L(f) ≤ ε n (log logn − log r) \/- ε > 0

It is this result with which we will be concerned in the remain-
der of this section. Some preliminary ideas are required.

Let F(Xn) and G(Yn) be formulae having inputs labelled with
variables fromXn resp. Yn = {y1 , . . . , yn}. We say that F and G are
isomorphic,denotedF ≡iso G, if and only if

PREFIX(F(Xn)) = PREFIX(G(y1/x1 , . . . , yn/xn))

where PREFIX is the mapping of Definition(4.1) and
G(y1/x1 , . . . , yn/xn) denotes the formulaG with each inputxi , (xi)
replaced by the inputyi , (yi). Obviously if F ≡iso G then F and G
represent the samen-input Boolean function (with different argument
sets). However the converse is not necessarily true; two different for-
mulae representingf ∈ Bn may not be isomorphic.

If F(Xn) is a formula andY ⊆ Xn, then the formulaY-induced
from F , denotedFY, is that formula constructed fromF as follows:

I1) Replaceall inputsx ∈ Xn − Y by the constant 0.

I2) Replaceall subformulaeG1 θ G2 where bothGi are constant,
by the appropriate constant value.

I3) Replaceall subformulaeG1 θ G2 where only oneGi is constant,
i = 1 say, by G2, ¬ G2, 0, or 1 as appropriate.

Hodes/Specker/Pudlak Lower Bound 297

I4) Replaceany subformula ¬(¬ G) by G.

It should be clear thatocc(Y, FY) ≤ occ(Y, F). In addition if
Z ⊆ Y then FZ ≡iso (FY)Z.

Finally we define the concept ofhomogeneity which will be
important in the subsequent argument. IfF(Xn) is a formula and
Y ⊆ Xn we say that F is homogeneous over Y if and only if
\/- {yi1, yi2} ⊆ Y, {y j1, y j2} ⊆ Y we have

F{yi1, yi2} ≡iso F{y j1, y j2}

In essence Pudlak’s argument is as follows: ifF(Xn) is homoge-
neous over Y, with |Y| = r then the induced formulaFY falls into one
of 5 distinct classes; any formula in these classes is equivalent to
some function of the form,

(
y ∈ Y
⊕ y) θ (

y ∈ Y
\/ y)

Now if F(Xn) is a k-formula, i.e occ(xi , F) ≤ k for each 1≤ i ≤ n,
then any induced formula is again ak-formula and so we can bound
from above the number ofnon-isomorphic k-formulae of 2 variables.
By labelling each{xi , x j } ⊂ Xn with a distinct colour depending on
the structure ofF{xi , x j } we can identify, courtesy of Ramsey’s theorem,

a set Z ⊆ Xn with the property that all the pairs inZ have been iden-
tically coloured, i.eF is homogeneous over Z. The remainder of the
proof derives an upper bound on size ofk needed for the main theo-
rem to work.

In this outline the first part is the most lengthy and its proof
will be omitted.

Before presenting Pudlak’s argument in greater detail we review
the important combinatorial result alluded to in the description above.

298 Formulae

With some slight notational abuse, we useV r to denote all subsets of
a set V, which contain exactly r elements. Ak-colouring of a setV,
is a mappingχ : V → {1, 2 , . . . , k}. For a k-colouring χ of a setV,
χ j denotes the set

{ v ∈ V : χ (v) = j }

Definition 4.4: Let V = {v1 , . . . , vm} be a finite set, andh ≥ 1, l ≥ 2,
r1 , . . . , r l ≥ h integers.V has theh − (r1 , . . . , r l)-Ramsey property if
and only if:

For all l -colourings, χ of Vh, there exists W ⊆ V such that for
somek ∈ {1, 2 , . . . , l} , Wh ⊆ χk and |W | = rk. •

Let Rh
l (r1 , . . . , r l) denote the smallest value m for which any set

with m elements has theh − (r1 , . . . , r l)-Ramsey property (obviously
the property is monotonic, so if it holds for anm-element set it holds
also for an (m + 1)-element set). The following is a classical result
from combinatorial theory.

Fact 4.2: (Ramsey, 1930) For all h ≥ 1, l ≥ 2, r1 , . . . , r l ≥ 2,
Rh

l (r1 , . . . , r l) exists.

For our purposes an upper bound on this quantity, when h = 2,
is required. The bound presented below is adapted from a proof of a
simplified version of Fact(4.2) (for the casel = 2) given in Erd ̈os and
Spencer (1974).

Fact 4.3: Let t =
l

j=1
Σ r j . Then,

R2
l (r1 , . . . , r l) ≤ l t

Proof: By induction onl ≥ 2. For the inductive base it may be shown
that

Hodes/Specker/Pudlak Lower Bound 299

R2
2(p, q) ≤ 


p + q − 2

p − 1



(see for example (Erdös and Spencer, 1974) pp.22-23, or Berge
(1979), pp. 436-437).

HenceR2
2(p, q) ≤ 2p+q−2 < 2p+q.

So inductively assume that the result holds for all values
2 ≤ l ′ < l . For the inductive step note that

R2
l (r1 , . . . , r l) = R2

l (rσ (1) , . . . , Rσ (l))

for any permutation σ , hence without loss of generality we may
assume that 2≤ r1 ≤ . . . ≤ r l . With this convention a total lexico-
graphic ordering may be defined over pairs of l -tuples in the obvious
way. We prove the inductive step by a sub-induction over this order-
ing. First of all observe that R2

l (2, 2 , . . . , 2) = 2 and that
R2

l (2,r2 , . . . , r l) ≤ R2
l−1(r2 , . . . , r l). In the former case the result

clearly holds, in the latter we can appeal to the inductive hypothesis
for l which now confirms R2

l (2,r2 , . . . , r l) as at most

(l − 1)t < l t

This establishes the subinductive base. For the step letr j ≥ 3 for each
1 ≤ j ≤ l and V = {v1 , . . . , vm} where m = l t. We must show that V
has the 2− (r1 , . . . , r l)-Ramsey property. Consider any l -colouring, χ ,
of V2. Choose any v ∈ V and define

Ai = { v j : {v, v j } ∈ χ i }

Then
l

i=1
Σ | Ai | = m − 1. Hence there exists somek, 1 ≤ k ≤ l for which,

|Ak| ≥  (m − 1)/l  ≥ l t

300 Formulae

By the subinductive hypothesis,

|Ak| ≥ R2
l (r1 , . . . , rk − 1 ,. . . , r l)

hence we can identifyW ⊆ Ak ⊂ V such thatW2 ⊆ χ m for some m
and |W| ≥ rm. If m ≠ k then W is an appropriate subset ofV; if m = k,
so that |W| ≥ rk − 1, then W ∪ {v } is an appropriate subset ofV.
This completes the proof of the upper bound.

We can now turn to the proof of the lower bound theorem.

Lemma 4.3:(Pudlak, 1983) LetF(Xn) be a formula which is homoge-
neous over Xn, n ≥ 3. Then F satisfies at least one of the following
conditions.

H1) F ≡ constant

H2) F(Xn) = G(Xn) θ H(Xn), for someθ ∈ B2 and bothG and H
are homogeneous over Xn.

H3) F(Xn) = x1 θ (x2 θ (x3
. . . θ (xn−1 θ (xn φ G)) . . .)), or with the

variable order reversed, whereG is homogeneous over Xn, and
θ , φ satisfy

i) y φ z = y θ z or y φ z = y θ z and

ii) y θ z is equivalent to one ofy ⊕ z, y \/ z, y /\ z or z.

H4) F(Xn) = x1 θ (x2 θ (x3
. . . θ (xn−1 θ φ (xn)) . . .)), or with the vari-

able order reversed, where one of the the following holds,

i) y θ z ≡ y ⊕ z and (φ (z) = z or φ (z) = z).

ii) y θ z ≡ y \/ z andφ (z) = z.

iii) y θ z ≡ y /\ z andφ (z) = z.

H5) F(Xn) = G[φ (x1) , . . . , φ (xn)], where for someα ∈ {0, 1}, one
of the following holds:

Hodes/Specker/Pudlak Lower Bound 301

i) G[y1 , . . . , yn] ≡ α ⊕
n

i=1
⊕ yi .

ii) G[y1 , . . . , yn] ≡ α ⊕ (
n

i=1
\/ yi) and φ (y) ≡ y.

iii) G[y1 , . . . , yn] ≡ α ⊕ (
n

i=1
/\ yi) and φ (y) ≡ y.

Proof: Omitted.

Lemma 4.4:If F(Xn) is homogeneous over Xn, n ≥ 3 then

F(Xn) ≡ (
n

i=1
⊕ xi) θ (

n

i=1
\/ xi)

for someθ ∈ B2.

Proof: The Lemma is easily established by induction onL(F(Xn))
from Lemma(4.3) using elementary Boolean operations.

Theorem 4.10:(Pudlak, 1983) Letn ≥ 3. −− −− ε > 0 such that\/- f ∈ Bn,
r ≥ 3 if L(f) ≤ ε n (log logn − log r) then for someY ⊆ Xn having
|Y| = r it holds that,

f |Xn − Y := 0(Y) ≡ (
y ∈ Y
⊕ y) θ f (

y ∈ Y
\/ y)

for someθ f ∈ B2, depending onf .

Proof: Let F(Xn) be an optimal formula realising f and
P = occ(Xn, F) = L(f) + 1. DefineZ ⊆ Xn as the set of variables,

Z = { xi ∈ Xn : occ(xi , F) ≤  2P/n  }

Then |Z| ≥ n/2 and the induced formulaG = FZ is a k-formula for

which k =  2P/n . Any induced formula ofG is also ak-formula.
Using the method of Thm(4.1) it follows that the number of non-iso-
morphic k-formulae dependent on 2 variables is bounded above by
l = 2Ck for some constantC. Thus using Fact(4.3), if

302 Formulae

|Z| ≥ l rl (4.1)

then we can findY = {y1 , . . . , yr} ⊆ Z ⊆ Xn such that all the formu-
lae induced fromG by pairs of variables fromY are isomorphic, i.e
G is homogeneous over Y, which implies thatGY is homogeneous
over Y. Now applying Lemma(4.4) we have that the function realised
by the induced formulaGY is equivalent to

(
y ∈ Y
⊕ y) θ f (

y ∈ Y
\/ y)

From the definition of induced formula, the function computed byGY

is just f |Xn − Y := 0. So we hav e identified a suitable restriction off . It
remains to relate this toL(f).

G is a k-formula. If,

k ≤
log log |Z| − log r − logC

C + 1
(4.2)

then,

Ck + logk + logC + log r ≤ (C + 1)k + logC + log r ≤ log log |Z|

hence, 2Ck Ckr ≤ log |Z| ☞ l rl ≤ |Z|, i.e (4.2) ☞ (4. 1). Now

k =  2P/n  and |Z| ≥ n/2. So from (4.2)

2L(f) + 1

n
≤

log log(n − 1) − log r − logC

C + 1

L(f) ≤
1

2C + 1
. n (log log(n − 1) − log r − logC) − 1/2

For ε > 0 sufficiently large, the right-hand side is no more than,

ε n (log logn − log r)

for all n ≥ 3, r ≥ 3.

Hodes/Specker/Pudlak Lower Bound 303

Corollary 4.4: Let f ∈ Bn and Y ⊆ Xn be a maximal cardinality sub-
set of Xn such that f |Xn − Y := 0(Y) ≡ (

y ∈ Y
⊕ y) θ (

y ∈ Y
\/ y). (We say that

f (Xn) has a |Y|-refinementin this case). Then,

L(f) ≥ ε n (log logn − log(|Y| + 1))

whereε is the constant of Thm(4.10).

Proof: If L(f) < ε n (log logn − log(|Y| + 1)) then from Thm(4.10) we
can findZ ⊆ Xn such that |Z| ≥ |Y| + 1 and

f |Xn − Z := 0 ≡ (
z ∈ Z
⊕ z) θ (

z ∈ Z
\/ z)

and this contradicts the choice ofY.

As an application of Corollary(4.4) consider the following class
of functions.

Definition 4.5: Let f ∈ Bn and k be an integer in the range
1 ≤ k ≤ n − 3. f is said to be k-sensitive if and only if
\/- α = < a1 , . . . , an > ∈ {0, 1}n

|{ i : ai = 1 }| = k ☞ f (α) = 0, (1)

|{ i : ai = 1 }| = k + 2 ☞ f (α) = 1, (0)
•

Theorem 4.11:If f ∈ Bn is k-sensitive then L(f) ≥ δ . n log logn, for
someδ > 0.

Proof: Let f be k-sensitive and without loss of generality assume that
k ≤ n/2 (otherwise consider the dual function ¬f (x1 , . . . , xn) which is
n − k − 1-sensitive). Let Z = {x1 , . . . , xk−1} ⊂ Xn and consider the
function, g(Xn − Z) = f |Z := 1(Xn − Z) of n − k + 1 variables. Obviously
L(f) ≥ L(g). Since f is k-sensitive and k − 1 variables have been
fixed to 1 in order to obtaing, it follows thatg(Xn − Z) is 1-sensitive.
We claim that g(Xn − Z) does not have a 3-refinement. To see this

304 Formulae

suppose the contrary and thatY = {y1, y2, y3} is a subset ofXn − Z
for which,

g|Xn − Z − Y := 0(Y) ≡ (y1 ⊕ y2 ⊕ y3) θ (y1 \/ y2 \/ y3) (4.3)

for someθ ∈ B2.

But g|Xn − Z − Y := 0(Y) is still 1-sensitive and so its value when
exactly oneyi is 1 should differ from its value when all threeyi ’s are
1. Obviously the right-hand side of (4.3) does not satisfy this require-
ment; henceg(Xn − Z) does not have a 3-refinement. Applying Corol-
lary(4.4) we have,

L(g(Xn − Z)) ≥ ε (n − k + 1) log log(n − k + 1)

Sincek ≤ n/2 andL(f) ≥ L(g) this gives

L(f (Xn)) ≥ δ n log logn

Corollary 4.5: For all but 16 symmetric functions f ∈ Sn,
L(f) ≥ δ n log logn.

Proof: From Thm(4.11) if L(f) < δ n log logn and f is symmetric
then it must the case thatf is not k-sensitive for any 1 ≤ k ≤ n − 3. If
w(f) = w0 w1

. . . wn−3 wn−2 wn−1 wn is the spectrum off , this implies
that wk = wk+2 for each 1≤ k ≤ n − 3 thus there are exactly 4 possible
settings of bitsw1

. . . wn−1 which define nonk-sensitive symmetric
functions. For each of thesew0 and wn may be set arbitrarily. It fol-
lows that there are exactly 4.2. 2= 16 symmetric functions which are
not k-sensitive.

The 16 symmetric functions referred to arise by settingc1, c2,
c3 and c4 in the function below:

c1 ⊕ (c2 /\ (
n

i=1
⊕ xi)) ⊕ (c3 /\

n

i=1
/\ xi) ⊕ (c4 /\ (

n

i=1
\/ xi))

Hodes/Specker/Pudlak Lower Bound 305

all of which clearly have linear formula size.

4.2.3) The Fischer/Meyer/Paterson Lower Bound

Pudlak (1983) relatesL(f) to the cardinality of the maximal subsetY
of Xn for which,

f |Xn − Y := 0(Y) ≡ (
y ∈ Y
⊕ y) θ (

y ∈ Y
\/ y)

(Fischer et al., 1982) consider assignments toXn − Y which fix
nearly equal numbers of variables to 0 and 1 and relateL(f) to the
size of the largest subset,Y of Xn, for which:

−− −− a partial assignmentπ to Xn − Y such that,

FMP1)
0 ≤ |{ i : x|π

i : = 1}| − |{ i : x|π
i : = 0}| ≤ 1

FMP2)
f |Xn − Y := π (Y) is affine.

As with the lower bounds presented earlier, the results described
in this section are for formulae over the basisB2. In fact it is con-
venient to make use of the following fact which simplifies a number
of proofs involved.

Fact 4.4: Let F(Xn) be any formula over the basisB2. There exists a
formula G(Xn) over the basis{ /\ , ⊕, 0, 1} equivalent to F and such
that: \/- x ∈ Xn, occ(x, G) ≤ occ(x, F). Equality holding in the case of
F containing only /\ -type and⊕-type gates.

Proof: Instances of projections or constant functions may be elimi-
nated from F by applying the result of Lemma(1.3)(ii), so without
loss of generality we may assume thatF contains only /\ -type and
⊕-type gates. It is now sufficient to construct an equivalent formulaG

306 Formulae

over { /\ , ⊕, 0, 1} satisfying occ(x, G) = occ(x, F). It is easy to see
that any subformula F1 θ F2 of F , where θ ∈/ { /\ , ⊕} may be
replaced by a subformula,





((F1 ⊕ α) /\ (F2 ⊕ β)) ⊕ γ if θ is /\ − type

α ⊕ F1 ⊕ F2 if θ is ⊕ − type





where α , β , γ are constants. Clearly the number of occurrences ofx
is not increased by any such replacement and this proves the result.

From this fact it follows that we may concentrate on deriving
lower bounds forocc(Xn, G), G as above, in producing lower bounds
on L, viz L(f) = occ(Xn, F) − 1 = occ(Xn, G) − 1, F an optimal for-
mula realising f and G its equivalent { /\ , ⊕, 0, 1}-representation.

Below we use π , σ , τ (possibly subscripted) to denote partial
assignments toXn. dom(π) ⊆ Xn is the set of variables fixed byπ , so
that |π | = |dom(π)|. Theeccentricityof π , ecc(π) is the quantity

|{ x ∈ dom(π) : x|π : = 1 }| − |{ x ∈ dom(π) : x|π : = 0 }

π is central if ecc(π) is 0 or 1. σ is an extensionof π if and
only if dom(π) ⊆ dom(σ) and for any x ∈ dom(π) we hav e x|π = x|σ .
dom(σ , π) = dom(σ) − dom(π) are the additional variables fixed byσ
in extendingπ .

F , G and H (again possibly subscripted) will denote formulae
over the basis{ /\ , ⊕, 0, 1}. var(F) is the set of variables which are
used in F , note that this may be a superset of the variables upon
which the function represented byF essentially depends. Thedimen-
sion of F, dim(F), is defined to be |var(F)|. F is said to beaffine if
and only if F realises an affine Boolean function.G is an affine vari-
ant of F if the formula F ⊕ G is affine. As previously, F is an r-for-
mula if occ(x, F) ≤ r for all x ∈ var(F) and is r-minimal with respect

Fischer/Meyer/Paterson Lower Bound 307

to some property of formulae, ifocc(var(F), F) is minimal amongr-
formulae with the desired property.

Given F and π , the restriction of F w.r.t π , F|π is that formula
obtained by replacing each instance ofx ∈ dom(π) ∩ var(F) by the
constantx|π . If π is central anddom(π) ⊆ var(F) then F|π is a central
restriction of F. Finally the affine diameter of F, diam(F), is the
maximal dimension of any affine central restriction ofF .

The lower bound theorem proved by (Fischer et al., 1982)
asserts that there is some constantε > 0 with which any formula F
having var(F) = Xn satisfies

occ(Xn, F) ≥ ε n log


n

diam(F)



Important consequences of this result are lower bounds on spe-
cific symmetric functions, such asMAJn, of Ω(n log n) and an alterna-
tive lower bound on the formula size ofk-sensitive functions which
improves Thm(4.11) for certain values ofk.

Following the presentation of (Fischer et. al, 1982) we describe
this result in three stages. The core of the argument is contained in
the Main Lemma below which, with the aid of four preliminary
results whose proof forms the initial stage, establishes that given any
F and centralπ one can construct an central extensionσ of π such
that F|σ is affine and has dimension closely related todim(F|π).
Given this, the lower bound theorem is relatively easily verified.

Lemma 4.5: (The Affine Variant Lemma)Let G be any affine variant
of F . Then for allπ

i) G|π is affine ☞ F|π is affine.

308 Formulae

ii) If G is an r-minimal affine variant of F , for some r ≥ 1 and
dom(π) ⊆ var(G) then

dim(F|π) − dim(G|π) = dim(F) − dim(G)

Proof: Since F ⊕ G is affine and any restriction is also affine it fol-
lows that (F ⊕ G)|π ≡ F|π ⊕ G|π is affine. Thus ifG|π is affine then so
is the formula,

F|π ⊕ G|π ⊕ G|π ≡ F|π ⊕ 0 ≡ F|π

and this proves part(i). To prove part(ii) simply observe that
var(G) ⊆ var(F) for otherwise we can replace each variable in
var(G) − var(F) by a constant inG to yield a smaller affine variant
r-formula of F . The relation now follows easily from the facts that

dim(G|π) = dim(G) − |π | ; dim(F|π) = dim(F) − |π |

Lemma 4.6: (The Conjunction Lemma)Let π be central andF such
that F|π = G /\ H whereG and H are affine. There is a central exten-
sion σ of π for which dom(σ , π) ⊆ var(F|π), F|σ is affine, and
dim(F|σ) ≥ dim(F|π)/3.

Proof: We may expressG and H respectively as,

G ≡
u ∈ U
⊕ u ⊕

w ∈ W
⊕ w ⊕ c

H ≡
v ∈ V
⊕ v ⊕

w ∈ W
⊕ w ⊕ d

where W = var(G) ∩ var(H), U = var(G) − W, V = var(H) − W
and c, d are constants.

Now if σ1, σ2, σ3 are central extensions ofπ which add
U ∪ W, V ∪ W and U ∪ V respectively to dom(π) then each for-
mula F|σ i

is affine. Since

Fischer/Meyer/Paterson Lower Bound 309

3

i=1
∪ var(F|σ i

) = U ∪ V ∪ W = var(F|π)

it follows that one of these restrictions has the required dimension.

Lemma 4.7: (The Partition Lemma)Let S1, S2 , . . . , St be a collection
of sets and T =

1 ≤ i < j ≤ t
∪ Si ∩ Sj . There exists a partition of

{1, 2 ,. . . , t} into two sets A and B such that

|P ∩ Q| = | (
i ∈ A
∪ Si) ∩ (

j ∈ B
∪ Sj) | ≥ |T|/2

Proof: Let x ∈ T so thatx ∈ Si ∩ Sj for some 1≤ i < j ≤ t. We say
that a partition (A, B) splits x∈ Si ∩ Sj if and only if i ∈ A and
j ∈ B (or vice-versa). Clearly at least 2t−1 partitions splitx and so the
av erage size ofP ∩ Q is at least,

x ∈ T
Σ |{ (A, B) : (A, B) splits x}|

2t

which is ≥ |T|/2. It follows that at least one partition has the required
property.

The final preliminary lemma introduces a function whose prop-
erties will be essential to the inductive proof of the main lemma.

Lemma 4.8: (The Beta Lemma)There are constantsα > 0, a > 1 such
that the functionβ : N → R given by β (r) = (α ar Cr)−1, Cr being the

Catalan number

2r − 2

r − 1


/r , satisfies:

i) β (r) =
α

r−1

s=1
Σ (β (s) β (r − s))−1

for r > 1.

ii) β (r) ≤ (1 − 15α)/6 < 1 for r ≥ 1.

310 Formulae

iii) β (r) ≤ (1 − 5α)/(1 − 5α + 4r).

Proof: (i) follows from the fact thatCr =
r−1

s=1
Σ Cs Cr−s, (Knuth, 1973, pp.

388-9). (ii) and (iii) hold sinceCr ˜ d r−3/2 4r for some constantd > 0
(using Stirling’s approximation), thus for small enoughα one can find
a constanta to satisfy (ii) and (iii), e.gα = 1/30, a = 360.

The lower bound theorem will follow from the main lemma
below.

Lemma 4.10:Let F be anr-formula (r ≥ 1) and π0 be central. There
is a central extension, π of π0 such that F|π is affine;
dom(π , π0) ⊆ var(F) and

dim(F|π) ≥ β (r) dim(F|π0
)

Proof: By course-of-values on induction onr. Thus assumer ≥ 1 and
that the result holds for allr ′-formulae with r ′ < r. To establish the
lemma for allr-formulae we apply a course-of-values subinduction on
occ(var(F), F). The subinductive base being immediate, letF be any
r-formula, π0 any central assignment and assume that the lemma holds
for all r-formulaeG, having occ(var(G), G) < occ(var(F), F).

First observe that we may assumeF to be anr-minimal affine
variant of F|π0

and henceF = Fπ0
and var(F) ∩ dom(π0) = ∅. To

see this suppose that there is anr-minimal affine variant, G, of F|π0

having

occ(var(G), G) < occ(var(F), F)

Then applying the subinduction hypothesis we find a central extension
π of π0 satisfying the lemma forG. From the affine variant lemma (i)
it follows that F|π is affine and in addition,

dim(F|π) = dim(G|π) + (dim(F|π0
) − dim(G)) AVL (ii)

Fischer/Meyer/Paterson Lower Bound 311

≥ β (r) dim(G) + (dim(F|π0
) − dim(G)) Induction

≥ β (r) dim(F|π0
)

This last from the Beta Lemma (ii), sinceβ (r) < 1.

Thus if a smaller affine variant, G, exists then the central exten-
sion π that establishes the result forG also establishes the result for
F . As F|π0

is obviously an affine variant of itself and anr-formula
then such aG is guaranteed to exist unless

occ(var(F|π0
), F|π0

) = occ(var(F), F)

i.e var(F) ∩ dom(π0) = ∅ so thatF = F|π0
.

The lemma holds forF if and only if it holds for 1⊕ F so
without loss of generality we may writeF as,

F =
k

i=1
⊕ Fi

No Fi can be affine, otherwise
j ≠ i
⊕ F j is a smaller affine variant of

F = F|π0
and this contradicts the assumption thatF is r-minimal

amongst such affine variants. It follows that eachFi is of the form
Gi /\ Hi , where neitherGi nor Hi are equivalent to constant func-
tions.

Now consider the following partition ofvar(Fi) into 4 sets:

global(Fi) = var(Fi) ∩ (
j ≠ i
∪ var(F j))

joint(Gi , Hi) = (var(Gi) ∩ var(Hi)) − global(Fi)

own(Gi) = var(Gi) − (joint(Gi , Hi) ∪ global(Fi))

own(Hi) = var(Hi) − (joint(Gi , Hi) ∪ global(Fi))

312 Formulae

Clearly var(F) = global ∪ joint ∪ own where

global =
k

i=1
∪ global(Fi)

joint =
k

i=1
∪ joint(Gi , Hi)

own =
k

i=1
∪ (own(Gi) ∪ own(Hi))

and these three sets are pairwise disjoint.

The proof of the Main lemma is completed by a case analysis
involving the size of these sets in relation ton = dim(F) = dim(F|π0

).

Case 1: n≤ 1/β (r). Choose any central extension,π of π0 for which
dom(π , π0) ⊂ var(F) and dim(Fπ) = 1. Any formula in a single vari-
able is affine and by the assumption thatn ≤ 1/β (r) we hav e

dim(Fπ) = 1 ≥ β (r) n = β (r) dim(F|π0
)

as required.

Case 2: |global | ≥ 2α n. global is the set of variables ofF which
occur in at least two of the setsvar(Fi). Applying Lemma(4.7) to the
collection var(F1) , . . . , var(Fk) yields a partition (A, B) of
{1, 2 ,. . . , k} such that

|
i ∈ A
∪ var(Fi) ∩

i ∈ B
∪ var(Fi) | ≥ |global |/2 ≥ α n

F is equivalent to the formulaP ⊕ Q where

P =
i ∈ A
⊕ Fi ; Q =

i ∈ B
⊕ Fi

Consider the set of variables invar(P) ∩ var(Q). Each of these
occurs fewer thanr times in both P and Q. For 1 ≤ s < r let Vs

denote the subset of those variables invar(P) ∩ var(Q) for which

Fischer/Meyer/Paterson Lower Bound 313

occ(Vs, P) = s, henceocc(Vs, Q) ≤ r − s. We hav e,

r−1

s=1
Σ |Vs | = | var(P) ∩ var(Q) | ≥ α n

From the Beta Lemma (i),

α n =
r−1

s=1
Σ β (r) n

β (s) β (r − s)

So combining these it follows that for somet, 1 ≤ t ≤ r − 1 it holds,

|Vt | ≥
β (r) n

β (t) β (r − t)

We intend to apply the main lemma, inductively, to some
restriction of P, Q to Vt. Let σ be any central extension ofπ0 having
dom(σ , π0) = var(F) − Vt and P′, Q′ be the formulaeP|σ , Q|σ

respectively. Thus var(P′) = var(Q′) = Vt, P′ is a t-formula andQ′
an (r − t)-formula. From the inductive hypothesis, forr, there is a
central extensionτ of σ such thatP′|τ is affine and

dim(Q′|τ) = dim(P′|τ) ≥ β (t). dim(P)

= β (t). |Vt | ≥
β (r) n

β (r − t)

Q′|τ is an (r − t)-formula so again applying the inductive hypoth-
esis for r gives a central extension π of τ for which (Q′|τ)|π = Q′|π is
affine and

dim(Q′|π) ≥ β (r − t) dim(Q′|τ) ≥ β (r) n

Observing that,

(P ⊕ Q)|π = (P′|τ)|π ⊕ Q′|π

314 Formulae

is affine from the construction ofτ and π , and that
dim((P ⊕ Q)|π) = dim(Q′|π) ≥ β (r) n completes the proof of Case(2).

Case 3:| joint | ≥ 3α n. Any variable inx ∈ joint satisfies for somei :
x occurs inFi only and

1 ≤ max{ occ(x, Gi), occ(x, Hi) } ≤ r − 1

Let ui = | joint(Gi , Hi) |. Following an argument used in
Case(2) we can, for eachi , find a value ti (1 ≤ ti ≤ r − 1) such that,Vi

being the set of variables injoint(Gi , Hi) for which occ(Vi , Gi) = ti ,
satisfies

|Vi | ≥
ui β (r)

α β (ti) β (r − ti)

Since occ(Vi , Gi) = ti , clearly occ(Vi , Hi) ≤ r − ti . We now apply the
inductive hypothesis to identify a suitable extension ofπ0.

Let σ0 be any central extension ofπ0 having

dom(σ0) = var(F) −
k

i=1
∪ Vi

Furthermore letF ′i = (Fi)|σ0
, G′i = (Gi)|σ0

and H ′i = (Hi)|σ0
. An exten-

sion satisfying the requirements of the lemma is constructed ink
steps. At thei ’th step we find a central extension,σ i of σ i−1, such
that (F ′i)|σ i

is affine and

dim((F ′i)|σ i
) ≥ ui β (r)/(3α)

For step i considerG′i . This is a ti -formula andvar(G′i) = Vi . Apply-
ing the inductive hypothesis toG′i and σ i−1, yields a central extension
π i of σ i−1 such that (G′i)|π i

is affine and

dim((G′i)|π i
) ≥ β (ti) dim(G′i)

Fischer/Meyer/Paterson Lower Bound 315

Applying the inductive hypothesis toH ′i , an (r − ti)-formula, andπ i ,
we find a central extensionτ i of π i such that (H ′i)|τ i

is affine and

dim((H ′i)|τ i
) ≥ β (r − ti) dim(H ′i)

Now (G′i)|τ i
is also affine, since the restriction of an affine function is

still affine, so from Lemma(4.6), the Conjunction Lemma, there is a
central extensionσ i of τ i for which (F ′i)|σ i

is affine and

dim((F ′i)|σ i
) ≥ dim((F ′i)|τ i

)/3

From the choice ofσ0,

var(F ′i) = var(G′i) = var(H ′i) = Vi

Hence,

dim((H ′i)|τ i
) ≥ β (r − ti) dim((H ′i)|π i

) = β (r − ti) dim((G′i)|π i
)

≥ β (r − ti) β (ti) |Vi |

≥ ui β (r)/α

Thus,

dim((F ′i)|σ i
) ≥ dim((H ′i)|τ i

)/3 ≥ ui β (r)/(3α)

If we set π = σk, the assignment at the end of thek’th step,

then F|π =
k

i=1
⊕ (F ′i)|σ i

and thus is affine. In addition

dim(F|π) ≥
k

i=1
Σ dim((F ′i)|σ i

) ≥
k

i=1
Σ ui β (r)/(3α)

= | joint |β (r)/3α

316 Formulae

which is at leastβ (r) n by the condition on |joint |. This establishes
Case(3).

Case 4: |own | ≥ (1 − 5α)n and n> 1/β (r). If none of Cases(1-3)
hold then the condition of Case(4) must be satisfied.We will con-
struct a central extension,σ of π0 for which dom(σ) ⊆ var(F) and
such that the function realised byF|σ is independent of some (non-
empty) subset,V, of var(F|σ). For such an assignment letyield
denote the size of the associatedV and cost= yield + dom(σ , π0). It
will be sufficient to constructσ so thatyield ≥ β (r) cost, for then we
can find a central extension,π of σ , which satisfies the lemma forF .

To see thatyield ≥ β (r) cost implies the existence ofπ consider
the formulaG = (F|σ)|τ whereτ is any assignment toV. Since F|σ is
functionally independent ofV we have G ≡ F|σ . In addition

var(F) = dom(σ , π0) ∪ V ∪ var(G)

and these three sets are disjoint. Thusdim(F) = cost+ dim(G). By
the condition thatV ≠ ∅, τ must fix at least one variable ofF|σ hence
occ(var(G), G) < occ(var(F), F). Applying the subinduction hypoth-
esis forG andσ we find a central extensionπ such thatG|π is affine,
dom(π , σ) ⊆ var(G) and dim(G|π) ≥ β (r) dim(G). Now, G ≡ F|σ

and sinceπ extendsσ it follows thatG|π ≡ F|π thereforeF|π is affine.
Furthermoredom(π) ∩ V = ∅, by choice ofG, so

var(F|π) = V ∪ var(G|π)

Thus,

dim(F|π) = yield + dim(G|π)

≥ β (r) dim(G) + β (r) cost = β (r) dim(F)

Fischer/Meyer/Paterson Lower Bound 317

It follows that it is only necessary to identifyσ and V having
yield / cost≥ β (r) in order to complete the proof.

Let gi = |own(Gi) | and hi = |own(Hi) |. Since /\ is commuta-
tive, without loss of generality we may assume thatgi ≥ hi for each

1 ≤ i ≤ k and hence
k

i=1
Σ gi ≥ |own |/2.

For each i there are 2 possible ways in which we can prevent
F ’s dependence on a subset ofown(Gi) or own(Hi). Either we can
find a central extension,σ of π0, which rendersHi 0, and henceF
becomes independent ofvar(Gi); or we can find one which renders
Hi 1 and henceF becomes independent ofvar(Hi) − dom(σ , π0). In
the former case we wish to minimise the participation ofown(Gi) in
constructingσ the better to maximiseyield; in the latter we wish to
minimise the contribution fromown(Hi) for the same reasons. These
alternatives giv e rise to 2 possible strategies.

Strategy A: Applicable only if there is a central extension,σ of π0,
with dom(σ , π0) ⊆ var(F) and such that (Hi)|σ ≡ 0. Find a minimal
(number of variables) central extension,σ of π0, such that

(Hi)|σ ≡ 0

var(Hi) ⊆ dom(σ) ⊆ var(F)

and for which

|dom(σ) ∩ own(Gi)|

is as small as possible amongst all such extensions. With this
approachF|σ is functionally independent ofV = own(Gi) − dom(σ)

Strategy B: Applicable only if there is a central extension,σ of π0,
with dom(σ , π0) ⊆ var(Hi) and for which (Hi)|σ ≡ 1. Find a maxi-
mal (number of variables) subsetV of own(Hi) such that there is a
central extension σ satisfying (Hi)|σ ≡ 1 and

318 Formulae

dom(σ , π0) = var(Hi) − V. F|σ is functionally independent ofV; the
cost is |V|; the yielddim(Hi).

We will show that for somei at least one of these strategies
delivers a yield / cost value of the required magnitude. Recall that no
Hi is equivalent to a constant function and so there is certainly an
extensionτ of π0 for which (Hi)|τ ≡ 0. Let δ (Hi) denote the smallest
integer such that there is an extension τ of π0 having
dom(τ , π0) = var(Hi), (Hi)|τ ≡ 0 and

−δ (Hi) ≤ ecc(τ) ≤ δ (Hi) + 1

Note thatδ (Hi) ≤ dim(Hi); the "+ 1" term is necessary in the case
whereτ is already central anddim(Hi) is odd.

Suppose Strategy(A) is applicable withσ being the relevant
central extension. Letτ be such that

dom(τ) = dom(π0) ∪ var(Hi)

and for any x ∈ dom(τ) it holds thatx|τ = x|σ . Now σ is a minimal
central extension which nullifiesHi so from the definition ofδ we
must have ecc(τ) = − δ (Hi) or δ (Hi) + 1. Thus the setdom(σ , τ)
contains the minimal number of variables needed to extend τ to a
central assignment, i.e

| dom(σ , π0) | = dim(Hi) + δ (Hi)

Clearly own(Gi) − dom(σ) ⊆ var(F) − dom(σ); if this inclu-
sion were strict then there would be some variable in
var(F) − dom(σ) which could have been used in makingτ central.
σ is chosen to utilise as few variables as possible fromown(Gi) so it
follows that either dom(σ) ∩ own(Gi) = ∅ or
own(Gi) − dom(σ) = var(F) − dom(σ). Therefore,

Fischer/Meyer/Paterson Lower Bound 319

yieldA = |own(Gi) − dom(σ)| = min (gi , n − dim(Hi) − δ (Hi))

and

costA = dim(Hi) + δ (Hi) + yieldA

= min (gi + dim(Hi) + δ (Hi), n)

In the event of Strategy(A) not being applicable we set
costA = n and yieldA = 0 so that these expressions continue to be
valid.

If for some 1≤ i ≤ k we have
yieldA

costA
≥ β (r) then Strategy(A) is

successful.

Now consider any application of Strategy(B), whereV is the
associated redundant set of variables. We claim that
|V | ≥ min (hi , δ (Hi) − 1). For let V′ ⊆ own(Hi) with
|V′ | = min (hi , δ (Hi) − 1). Furthermore letσ be any central exten-
sion of π0 having dom(σ , π0) = var(Hi) − V′ and τ be any assign-
ment toV′. We hav e,

−δ (Hi) < − min (hi , δ (Hi) − 1) obviously

= − | dom(τ) |

≤ ecc(σ ∪ τ) By centrality of σ

≤ | dom(τ) | + 1 By centrality of σ

= min (hi , δ (Hi) + 1) < δ (Hi) + 1

320 Formulae

From the definition ofδ , it must be the case that (Hi)|σ ∪ τ ≡ 1.
This is so regardless of the choice ofτ and therefore (Hi)|σ ≡ 1 and
(Hi)|σ is functionally independent ofV′. Strategy(B) choosesV, with
these same properties, as large as possible so certainly
|V | ≥ |V′ | = min (hi , δ (Hi) − 1) as claimed.

So for Strategy(B) we have,

yieldB ≥ min (hi , δ (Hi) − 1) ; costB = dim(Hi)

If Strategy(B) does not apply setyieldB = 0 and costB = dim(Hi) so
that these continue to hold.

Again if
yieldB

costB
≥ β (r), for somei , then Strategy(B) is success-

ful.

It is now shown, by contradiction, that there is somei for
which either Strategy(A) succeeds or Strategy(B) succeeds.

Suppose neither strategy is successful. Since (A) fails
yieldA

costA
< β (r). So for each 1≤ i ≤ k,

(1− β (r)) min (gi + dim(Hi) + δ (Hi), n) ≤ dim(Hi) + δ (Hi) (4.4)

(B) also fails, so for eachi ,
yieldB

costB
≤ β (r), hence

min (hi , δ (Hi) − 1) ≤ β (r) dim(Hi) (4.5)

Let µ = |global ∪ joint | ≤ 5α n. Summing over i and applying
the Case(4) premise gives,

δ (Hi) ≤ dim(Hi) ≤ µ + hi ≤ n−
k

j=1
Σ g j

Fischer/Meyer/Paterson Lower Bound 321

≤ n−
|own|

2
≤ (1 + 5α)n/2 (4.6)

From (4.5) and (4.6) we have,

δ (Hi) − µ − 1 ≤ min (hi , δ (Hi) − 1) < β (r) dim(Hi) ≤ β (r) n (4.7)

From (4.6), (4.7), the fact thatβ (r) n > 1 and part (ii) of the
beta lemma, we get,

dim(Hi) + δ (Hi) ≤ (1 + 5α)n/2 + m + 1 + β (r) n

< (1 + 15α)n/2 + 2β (r) n ≤ (1 − β (r))n (4.8)

If the "min" in (4.4) isn then (4.8) is contradicted. Hence the
first argument is always less thann. Now (4.4) gives for each
1 ≤ i ≤ k,

(1− β (r)) gi < β (r) (dim(Hi) + δ (Hi)) ≤ 2β (r) dim(Hi) (4.9)

and so,

(1− β (r))(1 − 5α)n/2 ≤ (1 − β (r))|own|/2

≤ (1− β (r))
k

i=1
Σ gi

< 2 β (r)
k

i=1
Σ dim(Hi) < 2β (r) r n (4.10)

since F is an r-formula. (4.10) contradicts part (iii) of the Beta
Lemma and so for somei Strategy(A) or Strategy(B) must succeed.

This establishes the last case and the lemma.

322 Formulae

Theorem 4.12: (Fischer, Meyer, Paterson; 1982) There exists a con-
stant ε > 0 with which any Boolean formula,F , having var(F) = Xn

satisfies

occ(Xn, F) ≥ ε n log


n

diam(F)



Proof: Let F be any formula with var(F) = Xn. Fix r equal to

 2occ(Xn, F)/n  and letπ0 be a central assignment for which,

dom(π0) = { x : occ(x, F) > r }

F|π0
is an r-formula so from Lemma(4.10) there is a central

extension,π of π0 for which F|π is affine; dom(π , π0) ⊆ var(F) and

dim(F|π) ≥ β (r) dim(F|π0
) (4.11)

With the same argument that commenced the proof of Theo-
rem(4.10) we have,

dim(F|π0
) ≥ n/2 (4.12)

Furthermore, from the asymptotic approximation toCr , giv en in
the proof of the Beta Lemma, we can find some (large) K > 1 with
which,

β (r) ≥
2

K r
(4.13)

Combining (4.11), (4.12) and (4.13) gives

dim(F|π) ≥ 


2

K r




. 

n

2



=
n

K r

which, solved in terms ofr, yields

Fischer/Meyer/Paterson Lower Bound 323

r ≥
log(n/dim(F|π))

log K
(4.14)

Therefore,

occ(Xn, F) ≥ r n/2 by choice ofr

≥ ε n log(n/dim(F|π) by (4.14), with ε = 1/(2 log K)

≥ ε n log (n/diam(F)) by definition of diam (F)

Corollary 4.6: For all f (Xn) ∈ Bn,

L(f) ≥ ε n log


n

diam(f)



− 1

diam(f) is the natural extension ofdiam from formulae to func-
tions.

Corollary(4.6) leads to an alternative version of Thm(4.11).

Lemma 4.11:Let f ∈ Bn be  n/2 -sensitive. Then

L(f) ≥ ε n log (n/2)

Proof: It is sufficient to show that diam(f) ≤ 2 for any  n/2 -sensi-
tive f . Suppose the contrary and that there is a central restriction of
f , π say, such that |dom(π)| = n − 3 and for which
f |π (xi , x j , xk) ≡ c ⊕ xi ⊕ x j ⊕ xk. Since π is central exactly

 (n − 3)/2  variables indom(π) are set to 1, thusf |π must be 1-sen-
sitive. This contradicts the assumption thatf |π is affine. The lower
bound is now immediate from Corollary(4.6).

Theorem 4.13:Let f ∈ Bn be k-sensitive where 0≤ k ≤ n − 2. Then

L(f) ≥ ε n log min (k, n − k)

324 Formulae

Proof: Let f be k-sensitive for somek satisfying the theorem condi-

tions. As in Thm(4.11) it may be assumed thatk ≤  n/2. Let π be
any partial assignment for which |dom(π) ∩ Xn | = n− 2k and such
that x|π = 0 for eachx ∈ dom(π). Then f |π ∈ B2k and is k-sensitive.
From Lemma(4.11) it follows that,

L(f |π) ≥ ε 2k logk

At least one of the variables inXn − dom(π) must occur ≥ ε logk
times in a minimal formula,F realising f , since one must occur this
often in the restricted formulaF|π . In such a formula F , choose
dom(π) to be the n− 2k most frequently occurring variables inF .
From the previous argument it follows that with this choice
\/- x ∈ dom(π) occ(x, F) ≥ ε logk. Thus,

L(f) ≥ (n − 2k)ε + L(f |π) ≥ ε n logk

Assuming k ≤  n/2 and comparing this result with Thm(4.11)
we see that Pudlak’s methods give larger bounds fork-sensitive func-
tions whenever k = o(logr n) for all r > 0, whereas Fischer, Meyer and
Paterson’s approach is superior fork = ω (logr n) for all r > 0. In the
casek = θ (logr n) for somer > 0 both techniques give asymptotically
equal bounds.

Tw o particular classes of interest are the functionsTn
k and Cn

k.
For these we have,

L(Tn
k) = max{ Ω(n logk), Ω(n log logn) } 2 ≤ k ≤  n/2

L(Cn
k) > ε n log (n/k) Fo r k fixed

Size-Depth Trade-offs 325

4.3) Formula size and depth

At the start of Section(2.3) we outlined some results concerning the
depth complexity of functions with respect to formula size over vari-
ous bases. In particular Theorem(2.13) shows that for any formula of
size L it is possible to construct an equivalent formula of depth
O(logL). One undesirable side-effect of the transformation from a
formula F to a formulaG of depth O(logL(F)) is that L(G) may
be ω (L(F)2) using the existing constructions. Examples of such
behaviour are given by Pratt (1975a) for the algorithm of Spira
(1971a).

In this section we present a result from Commentz-Walter
(1979) which proves that for a specific family of functions decreasing
depth involves a compensating increase in formula size. Thus for
these functions there do not exist formulae which have simultaneously
minimal depth and optimal size. The results apply only to the mono-
tone basis{ /\ , \/ }. For the unate basis{ /\ , \/ , ¬} Commentz-Walter
and Sattler (1980) have proved a similar result for the same family of
functions. Given the additional technical complexity of the latter we
will be content to present only the monotone trade-off result in full.
Both are derived by obtaining a lower bound on the product
L(f) . D(f).

Consider the following family of functions,fn, defined over disjoint
sets of Boolean variablesXn = < x1 , . . . , xn > and Yn = < y1 , . . . , yn >

f1 = y1 /\ x1 ; fn = yn /\ (xn \/ fn−1)

Equivalently,

fn =
n−1

i=0
\/ (xn−i /\

n

j=n−i
/\ y j)

326 Formulae

It is not difficult to see thatfn may be realised by a formula,
over the basis{ /\ , \/ }, having size 2n and depth 2n − 1. On the other
hand Commentz-Walter (1979) has shown thatfn may also be realised
by a monotone formula of depthO(logn) but with sizeO(n log n). In
the following sections we examine the complexity measure,PΩ; the
minimal Size× Depth of a formula for f ∈ Bn, i.e

PΩ(f) = min { LΩ(F) . DΩ(F) : F is an Ω − formula for f }

Throughout this section we consider only formulae over the
basis{ /\ , \/ } and subsequentlyP instead ofP{ /\ , \/ } is used.

The aim of this section is to prove,

P(fn) = Ω(n log2 n)

Notation: It is assumed that formulae realisingfn are constructed
from the basis of arbitrary fan-in /\ and \/ gates. This is convenient
for considering formulae of constant depth. With the preceding
assumption our measure of formula size will beocc(Xn ∪ Yn, F) for
such a formulaF . For a formulaF , Ind(F) is the set of indices of
literals occurring in F , e.g if F = (x1 \/ y2) /\ x2 then
Ind(F) = {1, 2,}. For M ⊆ Ind(F), ZM denotes the set of variables,

i ∈ M
∪ { xi , yi }

occ(i , F) denotesocc(xi , F) + occ(yi , F). It will also be con-
venient to consider the average number of occurrences of any variable
in a formula F . This we denote byrel(var(F), F) and is equal to
occ(var(F), F)

| var(F) |
. When var(F) = Xn ∪ Yn we will use simply

occ(n, F) and rel(n, F).

Size-Depth Trade-offs 327

A partial assignment,π , is said to bereducing if for each fn it
holds: after renaming of variables f |π

n = fm, for somem ≤ n. Let σ i ,
where 1≤ i ≤ n, be such thatdom(σ i) = {xi , yi } and,

σ i (xi) = 0 ; σ i (yi) = 1

It is easily verified that, for each 1≤ i ≤ n,

f |σ i
n = fn−1(Xn − {xi }, Yn − {yi }) (4.15)

So σ i is a reducing assignment. Additionally since
dom(σ i) ∩ dom(σ j) = ∅ whenever i ≠ j for any set, I , of indices
one may defineσ I as

i ∈ I
σ i ; the assignment constructed by compos-

ing each of the assignmentsσ i , for i ∈ I . This is also a reducing
assignment.

The key idea in proving the lower bound onP(fn) is to con-
sider upper bounds on the measure,t defined as

max{ n : −− −− F realising fn s. t D(F) ≤ d, rel(F) ≤ s/2 }

Lemma 4.12:There is a constantc such that for alld ≥ 1, s ≥ 1:

log t ≤ √ c d s

We defer the proof of this lemma, first showing how it is
applied to yield the cited trade-off.

Theorem 4.14:For all n ≥ 1, P(fn) = Ω (n log2 n)

Proof: Consider any monotone formula,F , realising fn which is opti-
mal with respect toP(fn). For somed ≥ 1 and s ≥ 1 it holds that
D(F) = d and (s − 1)/2 ≤ rel(F) ≤ s/2 hencen ≤ t by definition. From
Lemma(4.12) we now hav e

328 Formulae

P(fn) = occ(F) . D(F) = 2n rel(F) D(F)

≥ n (s− 1) d = Ω(n log2 n)

It remains to prove Lemma(4.12). This is accomplished in two
stages; first we consider a simpler measure,t′(d, s), defined as

max




n : −− −− F realising fn s. t D(F) ≤ d and

occ({xi , y j }, F) ≤ s





It is shown thatt and t′(d, s) are closely related. Finally an
upper bound ont′(d, s) is proved which will be of sufficient magni-
tude to deduce Lemma(4.12). This last part is the most involved sec-
tion of the proof.

Before embarking on the proof of Lemma(4.12) we require
some preliminary results on the structure of monotone formulae realis-
ing fn.

Fact 4.5: Let δ be the partial assignment which fixes x1 and yn to the
constant 1. Then

f |δ
n ≡ f̃n−1(y1 , . . . ,yn−1, x2 , . . . ,xn)

Proof: The result follows easily from the expanded definition offn

using elementary Boolean manipulations.

Fact 4.6: Let m : N → R+ be given by,

m(n) = max






d + s

s



: ds≤ n, d, s ∈ N




Then for alln ∈ N, logm(n) ≤ √ c n for somec > 0.

Size-Depth Trade-offs 329

Proof: Omitted.

Lemma 4.13:Suppose that{g0 , . . . ,gl } is a set of monotone Boolean

functions over Zn = Xn ∪ Yn for which fn =
l

i=0
\/ gi . There is a partition

of the indices [1 , . . . ,n] into l + 1 sets, I0 , . . . , I l and a set ofl + 1
partial assignments{π0 , . . . ,π l } having dom(π h) = { x j , y j : j ∈/ I h }
such that

i) g|π h
h = f|Ih|

.

Furthermore, there is a permutationΠ of {0 , . . . ,l} with which

ii) For each h = 0 , . . . ,l and i = 1 , . . . ,n if i ∈ I h then

yi ∈ var(g|πk
k) for all k with Π(k) ≤ Π(h).

Proof: Let V = {1 , . . . ,n} denote the index set of fn and pi denote the

prime implicantxi /\
n

j=i
/\ y j of fn. Since fn =

l

j=0
\/ g j we have that,

{p1 , . . . , pn} ⊆
l

j=0
∪ PI(g j) ⊆ I(fn) (4.16)

From this fact we can construct some mapping
φ : PI(fn) → [0 . . . l] which satisfies for each 1≤ i ≤ n:

φ (pi) = j ☞ pi ∈ PI(g j).

If φ (pi) = j we say thatpi is assignedto g j . For each 0≤ j ≤ l , φ
affords a partition ofPI(g j) into 2 sets: those prime implicants offn

which are assigned tog j ; and the additional prime implicants. Note
that from (4.16) every additional prime implicant ofg j is an implicant
of fn. From this it follows that for every additional prime implicant,
q, there is some index iq such thatq is a lengthening ofpiq

. From

the construction ofφ and this last property we have: if q is an addi-
tional prime implicant ofgh and a lengthening ofp j then φ (p j) ≠ h.

330 Formulae

We can now construct the partition of the index set [1 . . .n] into l + 1
sets, I h, as follows: for each 0≤ h ≤ l , I h = { i : φ (pi) = h }. Now let
π h be the partial assignmentσV − Ih

. With this assignment

f|Ih| = f |π h
n

=
l

j=0
\/ g|π h

j ≡ g|π h
h

for by our previous arguments, whenever j ≠ h, g|π h
j has its assigned

prime implicants rendered 0 underπ h, as also those additional prime
implicants which are not lengthenings ofpi , for φ (pi) = h. In the
same way all additional prime implicants ofgh also become 0 under
π h. We hav e thus proved part (i) of the lemma. For part(ii) it is suffi-
cient to defineΠ as the permutation which sortsg0 , . . . ,gl in ascend-
ing order of their lowest index assigned prime implicant.

Lemma 4.14:For all d, s ≥ 1: t ≤ 3t′(d, 6s).

Proof: By definition for eachd, s ≥ 1 we can construct a monotone
formula, F , having depth at mostd and rel(F) ≤ s/2 and such thatF
realises fn with n = t. Let F be such a formula over the variable set
V = Xn ∪ Yn. Since rel(F) ≤ s/2 we have occ(V, F) ≤ ns. Consider
the setsX ⊆ Xn and Y ⊆ Yn of xi (resp. yi) variables which occur at
most 3s times in F . Since 3s(n − |X|) ≤ occ(V, F) we must have
|X| ≥ 2n/3. In the same way |Y| ≥ 2n/3 also. LetI X, IY be the sets of
indices corresponding to the variables ofX, Y and I = I X ∩ IY.
Clearly, from the lower bound on the cardinalities ofX and Y,
| I | ≥ n/3. Applying the reducing assignment,σ {1 ,...,n} − I to F yields a
formula G, of depth at mostd, which realisesf| I |. Moreover by the
construction ofI , each variable z ∈ var(G) occurs no more than 3s
times, hence for each pair of distinct indices{ j , k} ∈ I we have
occ({x j , yk}, G) ≤ 6s. It follows that t′(d, 6s) ≥ | I | ≥ n/3 and this

Size-Depth Trade-offs 331

proves Lemma(4.14).

Proof of Lemma(4.12):To prove that logt ≤ √ c d s it is sufficient,
from Lemma(4.14) and Fact(4.6), to establish

t′(d, s) ≤ 

d + s

s



− 1 (4.17)

For this induction ond ≥ 0 is used. The inductive base d = 0
and s ≤ 1 is obvious. So assume that (4.17) is valid for all values
≤ d − 1 and all s′ ≤ s − 1. It will be shown that (4.17) is also valid for
d and s.

Let n = t′(d, s). By definition there is some monotone formula,
F , realising fn in depth at mostd and having occ({xi , y j }, F) ≤ s for
all pairs of indicesi , j . We consider two cases.

Case 1F = G0 \/ G1 \/ . . . \/ Gl : Let gh be the (monotone) function
realised by the sub-formulaGh of F . Then

fn = g0 \/ g1 \/ . . . gl

Applying the result of Lemma(4.13) we findl + 1 reducing
assignments,π h (0≤ h ≤ l) and a partition of theInd(F) into l + 1
sets I h for which

f |π h
n = fnh

= g|π h
h

nh denoting |I h |. We may assume, since\/ is commutative, that the
permutation,Π, of Lemma(4.13)(ii) is the identity, i.e Π(h) = h.

Now since {I 0 , . . . , I l } defines a partition ofInd(F) clearly,
l

h=0
Σ nh = n = t′(d, s). We further have, from the properties ofΠ, that

occ({xi , y j }, G|π h
h) ≤ s− h. So since G|π h

h realises fnh
and has depth at

most d − 1 it follows that,

332 Formulae

nh ≤ t′(d − 1,s − h) \/- h 0 ≤ h ≤ l

Case 2F = G0 /\ G1 /\ . . . /\ Gl : Apply the partial assignmentδ of
Fact(4.5) to F . After relabelling of variables the resulting formula
realisest̃ n−1. Hence the dual formula (in which the final gate will be
an l + 1 input \/) realises fn−1. Using the same argument as Case(1)

we find a partition as before satisfying
l

h=0
Σ nh = n − 1 and

nh ≤ t′(d − 1,s − h) for each 0≤ h ≤ l .

Thus with both cases,

t′(d, s) = n ≤
l

h=0
Σ nh + 1

≤
l

h=0
Σ t′(d − 1,s − h) + 1

≤
l

h=0
Σ 




d − 1+ s− h

s− 1



− 1


+ 1

≤
s

h=0
Σ 


d − 1+ h

d − 1



− 1 s > 1

= 

d + s

s



− 1

The last line can be readily proved by induction on s. This
completes the proof of Lemma(4.12).

For the unate basis{ /\ , \/ , ¬} Commentz-Walter and Sattler (1980)
have also proved,

Size-Depth Trade-offs 333

Theorem 4.15:

P{ /\ , \/ , ¬} (fn) = Ω 


n logn log logn

log log log logn



4.4) Upper Bounds on Formula size for symmetric functions

We hav e seen in Chapter(2) that combinational networks can be con-
structed to realise any symmetric Boolean function ofn arguments
using O(n) gates andO(logn) depth. In the case of monotone net-
works, the monotone symmetric functions, (i.e threshold functions),Tn

k

may also be realised inkn monotone gates for fixed k, and O(n log n)
gates for non-constantk. For formulae, the methods of (Fischer et al.
1982) yieldΩ(n logn) lower bounds for specific symmetric functions,
such asMAJn, whereas Pudlak (1983) obtainsΩ(n log logn) bounds
for Tn

k, for constant k ≥ 2. For the basis{ /\ , \/ , ¬}, Krichevskii
(1964) had earlier proved Ω(n logn) lower bounds for suchTn

k.

In this section a number of upper bounds on formula size for
various symmetric functions are presented. The specific functions con-
sidered are:Cn

k in the cases wherek = 2p and k = 3; and finally mono-
tone formulae for threshold functions.

Peterson (1978) exhibits an upper bound ofO((logn) n3.33635...)
for the formula size of any symmetric function using the basisB2.
This is based on ideas similar to the upper bound derived with respect
to combinational networks: efficient formulae to compute the binary
representation of the number of 1s among then-inputs are con-

structed. Copiesof the resulting logn formulae, S0, S1 , . . . ,Sp are
then used in conjunction with an appropriate "universal" formula to
compute the required symmetric function.In this Si is the formula

for the i ’th bit of the binary representation of
n

j=1
Σ x j .

334 Formulae

Lemma 4.15:

L (Cn
k) =







O(n (logn) p−1) k = 2p (a)

O(n2) k = 3 (b)

O(n2.58) k = 7 (c)

O(n3) k = 5, 15 (d)

Proof: (a) is from (Fischer et al., 1982). We describe the construction
for k= 4 only, leaving the generalisation to arbitrary constant powers
of two as an exercise. We further assume thatn = 2r for somer ≥ 1.
For any assignmentα to Xn let

σ (α) = σ r σ r−1
. . .σ i σ i−1

. . .σ1 σ0 (α)

denote the binary expansion of the number of 1s inα . In this σ0 is
the least significant bit. ClearlyCn

4 (α) = 1 if and only if σ1(α) and
σ0(α) both equal 0. So it will suffice to construct formula for these
two Boolean functions. Partition Xn into 2 disjoint sets of variablesY
and Z each of sizen/2. Then,

σ0 (Xn) =
n

i=1
⊕ xi ; σ1(x) = 0

σ1 (Y, Z) = σ1(Y) ⊕ σ1(Z) ⊕ (σ0(Y) /\ σ0(Z))

Let S0(n), S1(n) denote the size of the resulting formulae for
σ0, σ1. Then with these expressions,

S0(n) = n − 1 ; S1(n) = 2S1(n/2) + n− 1

Hence,

S0(n) = n − 1 ; S1(n) = O(n logn)$.

Formulae for symmetric functions 335

This now establishes (a) sinceCn
4 ≡ NOR(σ0,σ1).

For (b) let Cn
3,l ∈ Bn be defined by,

Cn
3,l (Xn) ⇐⇒

n

i=1
Σ xi ≡ l (mod3)

As in (a) let Xn be partitioned into disjoint, equal sized setsY
and Z with n again a power of 2. Also letq = (2 l) mod3;
r = (2 l + 1) mod3 and s = (2 l + 2) mod3. It may be confirmed that,

Cn
3,l (Xn) = [Cn/2

3,q(Y) ⇐⇒ Cn/2
3,q(Z)] /\ [Cn/2

3,r (Y) ⇐⇒ Cn/2
3,s (Z)]

Solving the recurrence relation forL(Cn
3) giv en by these

expressions yields the result claimed.

The upper bounds (c) and (d) are proved in Van Leijenhorst
(1987).

In the remainder of this section we are concerned solely with
monotone formulae.

One consequence of theO(n logn)-size, O(logn)-depth mono-
tone sorting network of (Ajtai et al., 1983) is the existence of polyno-
mial size monotone formulae for all threshold functions, cf. Thm(2.4).
In practice there are two drawbacks to this result: the proof is non-
constructive; the degree of the bounding polynomial, for functions
such asMAJn, is extremely large. The next result described establishes
the existence of monotone formulae forMAJn of "small" polynomial
size.

Theorem 4.16: (Valiant, 1984) For eachn = 2m there is a monotone
formula realisingMAJn in depthO(logn) and with sizeO(n5.3).

Proof: The proof is non-constructive. The existence of a suitable for-
mula is shown by considering a sequence of probability distributions

336 Formulae

for monotone formulae with variable setXn.

A0, A1, A2 , . . . , Ai−1, Ai , . . . ,

This sequence is defined in such a way that fort large enough a
formula selected at random according toAt computes MAJn with
probability at least 1/2. Since each formula having non-zero probabil-
ity in At will have depth at most 2t and size at most 22t the theorem
will follo w if it can be shown that t = c logn, for some suitable con-
stant c > 0, is an appropriate choice. The distribution Ai is given by
considering the following random generation of a formulaF ∈ Ai .

Below α = (3− √5)/2.

i) If i = 0 then F is either a literalx j or the constant 0. The prob-
ability of F being the former, for any x j is 2α /(2m− 1). The
probability of the later choice is 1− 2α /(2m− 1).

ii) If i > 0 then F is formed by selecting formulaeG1, G2, G3 and
G4 independently according to the distribution Ai−1. F is then
defined as the formula (G1 \/ G2) /\ (G3 \/ G4).

Now let π0, π1 be assignments toXn in which at mostm − 1,
resp. at leastm, variables are assigned the value 1. For a formulaF
chosen according toAi let,

fi = Prob[F|π0
≡ 1]

hi = Prob[F|π1
≡ 0]

To prove the theorem it suffices to establish that for some con-
stantc > 0 and t = c logn we have

ft <
1

2n+1
; ht <

1

2n+1
(4.18)

Formulae for symmetric functions 337

For then, choosing a formula,F according toAt, we hav e

Prob[F ≠ MAJn] =
π ∈ {0,1}n

Σ Prob[F|π ≠ MAJn(π)]

and from (4.18) this summation is certainly less than 1/2.

From the definition of the distributions Ai it is immediate that:

f0 ≤
2α (m− 1)

2m− 1
= α −

α
n − 1

(4.19)

h0 ≤ 1 −
2α m

2m− 1
= 1 − α −

α
n − 1

(4.20)

fi = f 4
i−1 − 4 f 3

i−1 + 4 f 2
i−1 (4.21)

hi = − h4
i−1 + 2 h2

i−1 (4.22)

We wish to find t for which ft <
1

2n+1
and ht <

1

2n+1
. Suppose we

know that for somej ≥ 0, and someε > 0, e.g ε = 2−4, it holds that

f j < ε ; h j < ε

Let t > j and k = 2t− j . From (4.21) and (4.22) and the fact that
0 ≤ fi−1, hi−1 < 1, it is clear that

fi < 4 f 2
i−1 ; hi < 4h2

i−1

Hence,

ft < 4k−1 (f j)2k < 2−2k ; ht < 4k−1 (h j)2k < 2−2k

Hence if f j < 2−4, then ft for t =  logn + j , is less than
1

2n+1

and similarly forht.

338 Formulae

So from the previous argument the theorem follows if we can
show that f j < 2−4 for some j = c logn. (An identical argument will
hold for h j so only one analysis is given in detail).

Consider the behaviour offi as a function offi−1 and that ofhi

as a function ofhi−1. It is easy to show that,

fi (α) = α ; hi (1− α) = 1− α

Additionally, for any 0 ≤ ε ≤ α it holds,

fi (α − ε) =
4

r=0
Σ 


ε r

r !



δ r fi

δ fi−1
(α)

= α − 4α ε + ε 2 (6α + 2) − ε 3 (4α − 4) + ε 4

Here
δ r y

δ x
denotes ther’th derivative of y(x) with respect tox and

δ 0y

δ x
is taken to bey(x).

From the above expansion we have that for 0< ε < α ,

fi (α − ε) < α − ε . In particular, since f0 ≤ α −
α

n − 1
, it holds that

\/- γ < 4α − 


α
n − 1







6α − 2+ 


α

n − 1





4α − 4+

α
n − 1






,

\/- i > 0, \/- 0 < ε <
α

n − 1

fi−1 = α − ε ☞ fi < α − γ ε

Similarly

hi−1 = α − ε ☞ hi < 1 − α − γ ε

Formulae for symmetric functions 339

Combining this with (4.19) and (4.20) we conclude that,

fi < α − (γ)i 


α
n − 1




hi < 1 − α − (γ)i 


α
n − 1




It follows that for somej =
logn

logγ
+ O(1),

f j < 2−4 ; h j < 2−4

So for some constantβ ≥ 0 and any t ≥
logn

logγ
+ logn + β it

holds,

ft ≤
1

2n+1
; ht ≤

1

2n+1

Recalling that any formula with non-zero probability inAt has
size at most 22t , we conclude that there exists a monotone formula
realising MAJn of size O (n2 (1 + logγ 2)) = O(n5.3), proving the theo-
rem.

Obviously Thm(4.16) implies the existence ofO(n5.3) size
monotone formulae for all threshold functions,Tn

k. Results of
Khrapchenko (1971a, 1971b) yieldΩ(n2) lower bounds on the mono-
tone complexity ofMAJn, see the next section. For k fixed substan-
tially improved upper bounds may be proved, these matching the
lower bound of Krichevskii (1964) cited earlier.

The existenceof O(n logn) monotone formulae realisingTn
k was

first established by Khasin (1969a). Khasin considered monotone for-
mulae of the following form:

340 Formulae

Let n = pk and ∆ = < Π1, Π1 , . . . , Πk > be apartition of Xn into
k sets, each containing exactly p elements. The function

f∆ =
k

j=1
/\

x ∈ Π j

\/ x

contains pk prime implicants each with exactly k variables. Thus
PI (f∆) ⊂ PI (Tn

k). Let us say that a prime implicant,m of Tn
k is cov-

ered by a partition∆ if m ≤ f∆. If ∆1 , . . . , ∆r is a set ofr partitions
of Xn as above, then for some large enoughr we have that

Tn
k ≡

r

i=1
\/ f∆i

. Khasin was unable to explicitly demonstrate that a spe-

cific set ofO(logn) partitions would be suitable. However the follow-
ing probabilistic argument was used to prove that such a set did exist.

Let n= pk and < f1, f2 , . . . , fi , . . . , > be a sequence of monotone
functions over Xn defined as follows:

f1 = f∆1
, where∆1 is a partition ofXn into k sets of sizep. ∆1

is selected at random from the set of all such partitions with
probability (p!)k/n!, i.e each partition is equally likely. For
i > 1, fi = fi−1 \/ f∆i

. ∆i is chosen with probability (p!)k/n!,
independently of∆1 , . . . ,∆i−1.

Using Lm (f) to denote the size of the smallest monotone for-
mula realising f , it is clear from the definition of f∆ that,
L(f∆) = n− 1. Given this we wish to show that for some
r = O(logn), the probability that a functionfr , chosen as above, is
equivalent to Tn

k is strictly greater than 0. If this holds then it is
proved that,

Lm(Tn
k) = O(n logn) for k fixed

Formulae for symmetric functions 341

So consider any function fr as defined. Clearly, since ∆1, ∆2 etc
are selected independently,

Prob[fr ≠ Tn
k] ≤

m ∈PI (Tn
k)

Σ
r

i=1
Π Prob[m not coveredby ∆i]

≤ 

n

k



(1− Prob[x1
. . .xk covered by∆])r

where∆ is any partition chosen with probability (p!)k/n!.

The last expression holds since for any pair of distinct prime
implicants ofTn

k, s and t say, the number of partitions which cover s
is equal to the number of partitions which cover t, so in the summa-
tion we may without loss of generality consider the prime implicant
x1

. . .xk.

How many partitions ∆ cover m = x1
. . .xk? ∆ covers m if and

only if each classΠ j of ∆ contains exactly onexi . If xσ (j) is the vari-
able of m contained in Π j , then σ is thereby a permutation of
[1 . . .k]. Also the sets Π j − {xσ (j)} afford a partition of
n− k = (p − 1)k elements intok equal sized sets. It follows that the

number of partitions which cover m is exactly
(n − k)! k!

[(p − 1)!]k and thus,

Prob[∆ covers m] =
(n − k)! k!

[(p − 1)!]k .
(p!)k

n!
= pk . 


n

k



−1

In summary,

Prob[fr ≠ Tn
k] = 


n

k







1 − pk 

n

k



−1 



r

≤ 

n

k



exp




− r pk 

n

k



−1 



342 Formulae

r needs to be chosen large enough so that,Prob[fr ≠ Tn
k] < 1.

So, we require

exp




r pk 

n

k



−1 



> 

n

k



r > 

n

k



p−k loge


n

k



Recalling thatn = pk and 

n

k



< nk yields the condition,

r > kk+1 loge n = O(logn) fo r k fixed

In total we have just proved,

Theorem 4.17:(Khasin, 1969a) For all fixed k, and all n there exists a
monotone formula realisingTn

k of sizeO(n logn).

Following Khasin’s results there were a number of attempts to
find efficient constructive solutions. McColl (1977) derives formulae
of size O(n logn (log logn)k−2) for 2 ≤ k ≤ 5. Kleiman and Pippenger
(1978) use an intricate technique to obtain formulae of size

O(n logn

k

2



log* n

). The problem of explicitly constructing monotone

formulae of a size matching Khasin’s existential bound was finally
solved by Friedman (1986).

Friedman examined monotone formulae defined by constructing
a sequence ∆1 , . . . ,∆r of sets of disjoint subsets ofXn. Thus
∆i = < Πi

1, Πi
2 , . . . ,Πi

k > the setsΠi
s and Πi

t being disjoint for s≠ t.

Note that
k

j=1
∪ Πi

j may be a strict subset ofXn. We call any such ∆ a

Formulae for symmetric functions 343

division of Xn, to distinguish the possibility of∆ not being a strict
partition. As in Khasin’s example, monotone formulae,F , of size r n
are used being defined as:

F =
r

i=1
\/





k

j=1
/\

x ∈ Πi
j

\/ x




A concept of a division covering a prime implicant ofTn
k is

defined as before and recalling the argument used earlier in deriving
Khasin’s bound we know that a division ∆ covers xi1

. . .xik if and only
if each xi j

occurs in exactly one classΠ of ∆. A set of divisions

∆1 , . . . ,∆r which collectively cover all prime implicants ofTn
k is called

an (n,k)-scheme of size r.

As a preliminary stage consider the problem of constructing

(n, 2)-schemes of size logn. It will be convenient to view the vari-
ables, Xn, as { x0, x1 , . . . ,xn−1 }. Let n = 2r and for 0≤ i ≤ n − 1 let
Bin j (i) denote thej ’th (most significant) bit of ther-bit binary expan-
sion of i . Define the division ∆ j by,

Π j
0 = { xi : Bin j (i) = 0 }

Π j
1 = { xi : Bin j (i) = 1 }

Now since for any two distinct xi and x j the binary expansions
of i and j must differ in at least one digit it follows thatxi x j is cov-

ered by at least one division. So the set ofr =  logn divisions

defined above giv es rise to an (n, 2)-scheme of size logn for any n.

Friedman notes that attempting to generalise this idea by repre-
senting indices in basek and defining divisions from commonality of
the j ’th digit in the expansion breaks down since, withk = 3 for
example, triples such as <222, 122, 221 >= {x26, x17, x25} have no

344 Formulae

single position differing in all 3 expansions.

The key observation made in Friedman (1986) is that an
(n, k)-scheme of sizeO(logn) can be constructed by building divi-
sions based on variable indices represented in some baseb, depending
on k. Thus for eachn and k there is a constantbk with which: −− −− a
subsetS of {1, 2, 3 , . . . ,bk}

m having sizen and with the property that
any k distinct elements ofS differ in at least one position.

More formally we proceed as follows.

Let {1, 2 , . . . ,b}m denote the set of allm-tuples of the integers
{1, 2 , . . . ,b}. For any pair of m-tuples α = < a1 , . . . ,am > and
β = < b1 , . . . ,bm >, the Hamming distance, H(α , β) is giv en as,
| { i : ai ≠ bi } |. Theball of radius r aboutα is the set ofm tuples,

Br(α) = { β : H(α , β) ≤ r }

Finally for any set, S of m-tuples, theseparationof S is defined
to be min{ H (α , β) : α , β ∈ S, α ≠ β }.

Lemma 4.16:Let l be any integer greater than 1,b = 22l and c = 2l .
For all m ∈ N there exists S ⊂ {1 , . . . ,b}mc such that |S| = bm and
having separation >(1− 1/l) mc.

Proof: For r ∈ N and any mc-tuple α it is clear that

| Br(α) | ≤ 

mc

r



br

Hence forε = 1 − 1/l and any such α we have,

| Bε mc(α) | ≤ 


mc

ε mc



bε mc

< 2mc bε mc = b(1−1/2l) mc

Formulae for symmetric functions 345

=
| {1 , . . . ,b}mc |

bm

It follows that we can construct a suitableS as follows:
S = { α1 , . . . ,α i , . . . ,α bm }. If i = 1 chooseα1 to be any mc-tuple in
{1 , . . . ,b}mc. If i > 1 α i can be chosen as any tuple in the set,

{1, 2 , . . . ,m}mc −
i−1

j=1
∪ Bε mc(α j)

From the upper bound just proved, this set is non-empty while
i ≤ bm. .

It should be noted that the setS in the preceding lemma is con-
structible in time polynomial inbmc.

Theorem 4.18:(Friedman, 1986) For fixed k and any n > k it is possi-
ble to construct (n, k)-schemes of sizeO(logn) in time polynomial in
n.

Proof: Let l = 

k

2


, m =  logb n and apply the preceding lemma to

yield a setS = {x1 , . . . ,xbm}. Consider the indices ofk distinct points
y1 , . . . , yk in S. For any two different indicesα , β in this set we
know that these indices are m2l -tuples and that
H(α , β) > (1 − 1/l) 2l m. It follows that there is somei , 1 ≤ i ≤ 2lm
such that thei ’th component of thek 2ml-tuples differs. We can thus
construct a (bm, k)-scheme of sizeO(m) as follows:

For each j , 1 ≤ j ≤ mc and each

1 ≤ t1 < t2 < . . . < tk ≤ b

the division ∆ j , t1 ,...,tk has itsi ’th subset

Π j , t1 ,...,tk
i =

346 Formulae

given by

{ p : j ′th componentof (2ml) − tuple xp equals ti }

The correctness of this construction is immediate from the pre-
ceding arguments and its size is,

mc

b

k



= O(m)

4.5) Bounds for bases other than B2

The previous section included some upper bounds on symmetric
functions for the bases{ /\ , \/ , ¬} and { /\ , \/ }. In this final section we
review some general lower bound techniques for these cases. The two
methods examined are those of Khrapchenko (1971a, b), which
improve some earlier work of Subbotovskaya (1961) concerning the
power of the basis{ /\ , \/ , ¬} and allow a lower bound onMAJn to be
determined. Thesecond method given is that of Andreev (1985)
which is notable for being the largest bound on formula size over a
complete basis attained to date, albeit for a somewhat artificial func-
tion. We note here that both techniques pertaining to the basis
{ /\ , \/ , ¬} exploit the absence of the operations⊕ and ⇐⇒ and cannot
be generalised to arbitrary bases.

4.5.1) The Khrapchenko Bound

In considering formulae over the basis{ /\ , \/ , ¬} we may with-
out loss of generality assume that negation is applied solely to the
input nodes of a formula. This follows easily from De Morgan’s Laws
using the transformation of Lemma(3.32) and noting that there is no
increase in the size of the formula because all gates have fanout equal

The Khrapchenko Lower Bound 347

to 1.

Khrapchenko’s lower bound is based on a measure defined for
any non-constant Boolean function. Given any f ∈ Bn we may define
a partition of {0, 1}n into two sets of assignments:

f −1(0) = { α ∈{0, 1}n : f (α) = 0 }

f −1(1) = { α ∈{0, 1}n : f (α) = 1 }

Let NEXTn denote the set of pairs of assignments <α , β > for
which the Hamming distance betweenα and β (i.e H(α , β) using the
notation of the previous section) is 1.

Theorem 4.19:(Khrapchenko, 1971a, b) Letf ∈ Bn be a non-constant
Boolean function,A be any non-empty subset off −1(0), B any non-
empty subset off −1(1) and C be the set of pairsA× B ∩ NEXTn.
Then for all formulaeF over the basis{ /\ , \/ , ¬} realising f it holds,

occ(Xn, F) ≥
|C|2

|A| . |B|

Proof: The proof below is due to Paterson (pers. comm). LetF be
any minimal (number of occurrences of literals) formula realisingf
over the basis{ /\ , \/ , ¬}. We proceed by induction onocc(Xn, F) ≥ 1
to prove the theorem.

The inductive base,occ(Xn, F) = 1 is trivial. F is a formula of
a single literal thus f = x or f = ¬ x. Therefore
| f −1(0) | = | f −1(1) | = 1 and |C | = 1. It follows that

occ(x, F) = 1 =
|C|2

|A| . |B|
as required.

For the inductive step assume thatocc(Xn, F) > 1 and that the
theorem holds for all smaller formulae. SinceF contains at least two
literals it follows thatF = Gθ H whereθ ∈{ /\ , \/ } and G and H are

348 Formulae

smaller formulae. The caseθ = \/ only is proved; the /\ -gate case fol-
lows from a similar argument.

Let g, h be the functions realised byG and H respectively, so

that f = g \/ h. ChooseA and B so that
|C|2

|A| . |B|
is maximised. Using

A and B we wish to construct subsets,Ag, Ah, Bg and Bh of g−1(0),
h−1(0), g−1(1) and h−1(1) in such a way that the inductive argument
will succeed. Fix Ag = Ah = A; since f = g \/ h, f is 0 only for
those assignments which render bothg and h 0. Thus these choices
are valid subsets ofg−1(0) andh−1(0). Finally chooseBg ⊆ B ∩ g−1(1)
and Bh ⊆ B ∩ h−1(1) in such a way that Bg ∩ Bh = ∅ and
Bg ∪ Bh = B. Note that neither set is empty sinceF is chosen as a
minimal formula. With these choices we have,

|Ag| = |Ah| = |A|

|B| = |Bg| + |Bh|

|C| = |Cg| + |Ch|

The last equality holds sinceBg and Bh define a partition ofB hence
Cg = (A× Bg) ∩ NEXTn and Ch = (A× Bh) ∩ NEXTn define a partition
of C. Now since F = G \/ H we have that,

occ(Xn, F) = occ(Xn, G) + occ(Xn, H)

≥
|Cg|2

|A| . |Bg|
+

|Ch|2

|A| . |Bh|
By induction

≥
|C|2

|A| . |B|

To see that the last line follows from its predecessor let
cg = |Cg|, ch = |Ch| etc and observe that the inequality asserted is

The Khrapchenko Lower Bound 349

equivalent to

(cg + ch)2 bg bh ≤ (c2
g bh + c2

hbg) (bg + bh)

and this holds if and only if

(cgbh − chbg)2 ≥ 0

Since this last condition is always satisfied the theorem fol-
lows.

Corollary 4.7: Let PARn(Xn) =
n

i=1
⊕ xi . L{ /\ , \/ , ¬}(PARn) ≥ n2.

Proof: In Theorem(4.19) letA = PAR−1
n (0) and B = PAR−1

n (1). From
the properties of⊕, any two assignmentsα and β whose Hamming
distance is 1 satisfy PARn(α) ≠ PARn(β). It follows that
| A× B ∩ NEXTn | = n |A| = n |B|. The lower bound is now immediate
from Thm(4.19).

Earlier Subbotovskaya (1961) had obtained a lower bound of
Ω(n3/2) for the same function over this basis. Her methods are devel-
oped further in Andreev’s lower bound below. It is obvious thatPARn

has formula sizen − 1 over the basisB2 and so these results show
that no exact analogue of Lemma(1.4) can be proved for formula size
over complete bases. It is known that the size can increase only poly-
nomially in changing from one complete base to another (cf.
Thm(2.13)). For the basis{ /\ , \/ , ¬} Pratt (1975a) has established that
for any f ∈ Bn L{ /\ , \/ , ¬}(f) ≤ L(f)log3 10. With the lower bound
implied by Corollary(4.7) this exponent is close to optimal.

A further example of Khrapchenko’s method is its application to
threshold functions.

Corollary 4.8: L{ /\ , \/ , ¬}(Tn
k) ≥ k (n − k+ 1).

350 Formulae

Proof: Let

A = { α : α has exactlyk − 1 1′s }

B = { β : β has exactlyk 1′s }

Then every element of A is at Hamming distance 1 from exactly
n− k+ 1 elements ofB. Similarly every element ofB is at Hamming
distance 1 from exactly k elements of A. It follows that
|C| = (n − k + 1)|A| = k|B| and this establishes the lower bound from
Thm(4.19).

The bound of Corollary(4.8) is maximised for the majority function,

k =  n/2 which has formula size≥ n2/4. The best upper bound
obtained to date, over this basis, isO(n5) using a universal symmetric
function construction from Pippenger (1974).

4.5.2) The Andreev Bound

Andreev (1986) develops techniques of Subbotovskaya (1961) and
Neciporuk (1966) to prove a lower bound of

Ω


n5/2

(log n)3/2 log logn



on the complexity of a specific n-input Boolean function when
realised by the class of formulae over the basis{ /\ , \/ , ¬}.

Let









x̃1 = (x1
1 , . . . , x1

l)

x̃2 = (x2
1 , . . . , x2

l)
. . .

. . .

x̃k = (xk
1 , . . . , xk

l)









The Andreev Lower Bound 351

be a set of disjoint tuples of Boolean variables. LetXk,l
s denote the set

of tuples,α of the form,

(j1,1 , . . . , j1,s , . . . , j k,1 , . . . , j k,s,σ1,1 , . . . ,σ k,s)

such that

1 ≤ j i ,1 < j i ,2 < . . . < j i ,s ≤ l for 1 ≤ i ≤ k

σ i ,t ∈ {0, 1} for 1 ≤ i ≤ k; 1 ≤ t ≤ s

If f (x̃1 , . . . , x̃k) is a Boolean function then forα ∈ Xk,l
s , f |α is

the subfunction off obtained by fixingxi
j i ,t = σ i ,t for each 1≤ i ≤ k,

1 ≤ t ≤ s.

Lemma 4.17: If k ≥ 1, l ≥ 5 then for any Boolean function
f (x̃1 , . . . , x̃k) having L{ /\ , \/ , ¬}(f) ≥ 2, there exists α ∈ Xk,l

1 such that

L{ /\ , \/ , ¬}(f |α) ≤ φ

1

l



L{ /\ , \/ , ¬}(f)

whereφ (x) = 1 −
3x

2
+

x2

2
Proof: The proof is a probabilistic counting argument. Letξ f be a
random variable 0≤ ξ f ≤ L{ /\ , \/ , ¬}(f) defined as follows: Randomly
choose α ∈ Xk,l

1 with probability (2l)−k, ξ f (α) is the value
L{ /\ , \/ , ¬}(f |α).

We claim that the expected value ofξ f , E(ξ f) is at most
φ (1/l) L{ /\ , \/ , ¬}(f). Clearly this is sufficient to prove the lemma. We
use induction on L{ /\ , \/ , ¬}(f) ≥ 2 to establish this claim. If
L{ /\ , \/ , ¬}(f) = 2 the claim may be verified directly. Otherwise if
L{ /\ , \/ , ¬}(f) > 2 then f ≡ f1 \/ f2 or f ≡ f1 /\ f2 for some Boolean
functions f1 ≠ f , f2 ≠ f . Thus

352 Formulae

L{ /\ , \/ , ¬}(f) = L{ /\ , \/ , ¬}(f1) + L{ /\ , \/ , ¬}(f2)

If L{ /\ , \/ , ¬}(fi) ≥ 2 for both i = 1 and i = 2 then by induction we have;

E(ξ f) ≤ E(ξ f1) + E(ξ f2)

≤ φ

1

l



(L{ /\ , \/ , ¬}(f1) + L{ /\ , \/ , ¬}(f2))

≤ φ

1

l



L{ /\ , \/ , ¬}(f)

Otherwise suppose that L{ /\ , \/ , ¬}(f2) = 1 so that
f2 = (xi

j)
σ ≡ xi

j ⊕ σ ⊕ 1. The function f1 cannot essentially depend
on xi

j and this fact and the inductive hypothesis establish the claim in
this case.

Lemma 4.18:There exists a positive constant c0 such that if k ≥ 1,

l > r ≥ 4 then for all f (x̃1 , . . . , x̃k) there exists α ∈ Xk,l
l−−r for which

L{ /\ , \/ , ¬}(f α) ≤ c0


l

r



−3/2

L{ /\ , \/ , ¬}(f)

Proof: For L{ /\ , \/ , ¬}(f) ≤ 1 the result is immediate. Otherwise repeat-
edly applying the preceding lemma establishes the existence of

α ∈ Xk,l
l−−r for which,

L{ /\ , \/ , ¬}(f α) ≤




l

m=r+1
Π φ


1

m







L{ /\ , \/ , ¬}(f)

The value of the product in parenthesis is bounded above by (l /r)−3/2

proving the result.

The Andreev Lower Bound 353

The following fact is immediate from this proof.

Lemma 4.19:If k ≥ 1, l > r ≥ 4, g1(x̃1) , . . . , gk(x̃k) do not become
constant Boolean functions then for any integralr and

f = g(g1(x̃1) , . . . , gk(x̃k))$itholds,

L{ /\ , \/ , ¬}(f) ≥
1

c0



l

r



3/2

L{ /\ , \/ , ¬}(g)

Let k be any natural numberk ≥ 3 and l = 
2k

k
, n = 2k + kl.

The tuple ỹ contains 2k distinct variables yσ1 ... σk
, where σ i ∈ {0, 1}

for each 1≤ i ≤ k. These variables are distinct from̃x1 , . . . , x̃k. Define
Fn(ỹ, x̃1 , . . . , x̃k) as

σ1 ,...,σk ∈ {0,1}
\/ yσ1 ... σk

/\ 


k

i=1
/\ (

l

j=1
⊕ xi

j)
σ i 



and Φk(ỹ, z1 , . . . , zk) as

σ1 ,...,σk ∈ {0,1}
\/ yσ1 ... σk

/\ 


k

i=1
/\ zσ i

i



Theorem 4.20:

L{ /\ , \/ , ¬}(Fn) = Ω


n5/2

(log n)3/2 log logn



Proof: Let Em be the set of all binary tuples of lengthm and B̂k

denote the set of all Boolean functions depending onk variables.
Define

L(k) =
f ∈ B̂k

max L{ /\ , \/ , ¬}(f)

354 Formulae

For λ̃ ∈ E2k let,

Φλ̃
k = Φk(λ̃ , z1 , . . . , zk)

Clearly for any λ̃ ∈ E2k

L{ /\ , \/ , ¬}(Fn) ≥ L{ /\ , \/ , ¬}(Φλ̃
k (

l

j=1
⊕ x1

j , . . . ,
l

j=1
⊕ xk

j))

It follows from Lemma(4.19) that withr = 4 we hav e,

L{ /\ , \/ , ¬}(Fn) ≥
λ̃ ∈ E2k

max
1

c0




l

4



3/2

L{ /\ , \/ , ¬}(Φλ̃
k)

Now since for any function g(z1 , . . . , zk) ∈ B̂k there exists λ̃ ∈ E2k

such thatg ≡ Φλ̃
k , so we hav e

L{ /\ , \/ , ¬}(Fn) ≥
1

c0




l

4



3/2

L(k)

≥ 

2k

k



3/2
2k

logk
= Ω


n5/2

(log n)3/2 log logn



Bibliographic Notes

Other lower bounds on formula size are given in Hodes (1970),
Mehlhorn (1976) and Wechsung (1977). Bublitz (1986) considers
monotone formulae fork-homogeneous functions. (Babai et al., 1987)
prove Ω(n logn) lower bounds on the size of (c, d)-formulae, i.e
those permitting d-ary logic gates of fan-in c; these results are
obtained for certain symmetric functions.

355

A Boolean function f ∈ Bn is said to essentially depend onm
variables if for all subsetsY of Xn of size m and all assignments
σ ∈{0, 1}m, f |Y := σ depends on all the variables Xn − Y. Malyshev
(1967) proved that almost all Boolean functions essentially depend on
m variables for m ≤ n− (1+ ε) logn, for any ε > 0 and n large enough.
Using the approach of Subbotovskaya (1961) it is proved that for any
f essentially dependent onm variables,

L(f) ≥ max




n3/2

√ n − m
,

m log m

2 log logm





Theorem(4.1) applied to monotone functions yields a lower

bound of
2n

n1/2 logn
on both monotone formula size and the size of

formulae over B2. Red’kin (1979) gives constructions matching both
lower bounds to within a constant factor. These employ ideas similar
to those used in the proof of Theorem(3.4).

Bloniarz (1979) considers the formula size off (Xn)θ g(Y) for
disjoint sets of variablesXn and Y and various θ ∈ B2. It is shown
that formula size is additive, i.e L(f θ g) = L(f) + L(g) + 1.

Paul (1977) uses Neciporuk’s lower bound method to construct
a function with linear combinational complexity but formula size
Ω(n2/ logn).

Non-trivial lower bounds on depth have been obtained by
McColl (1978c) for symmetric functions computed by the bases

{ ¬ /\ }, {¬ /\ , ☞ }. These are bounds of 2 logn. McColl (1978a)
presents a simple upper bound on the depth of monotone formulae.
Recently, Karchmer and Wigderson (1987) have proved a
Ω (log2 n/ log logn) bound on the depth of monotone formulae com-
puting transitive closure. Their argument relates monotone depth to a

356 Formulae

measure of communication complexity and then uses information-theo-
retic arguments to produce the lower bound.Razborov (1988b)
proves larger bounds of orderΩ(log2 n) on the depth of monotone
formulae for a set covering problem. Unfortunately a detailed presen-
tation of these techniques would be too long to include here.

353

Chapter 5

Bounded-Depth Networks

. . . the orderof an accidental seriesof

accidents accidentallyconceived.

Henry Miller

Tropic of Capricorn

5.1) Introduction

Bounded-depth networks allow arbitrary fan-in gates over the basis
{ /\ , \/ } but restrict depth to being constant. Formally

Definition 5.1: A depth-k network (k≥ 0) is a network which is a
member of the classΣk or Πk, these being defined inductively as fol-
lows.

i) If k = 0 then

Σ0 = Π0 = { x1 , . . . ,xn, x1 , . . . ,xn, 0, 1}

ii) If k> 0 then S ∈Σk if S ∈Πk−1 or S is formed by \/ -ing the
outputs of a finite number ofΠk−1 networks.

iii) If k> 0 then S ∈Πk if S ∈Σk−1 or S is formed by /\ -ing the
outputs of a finite number ofΣk−1 networks.

BDΣ
k (f) will denote the minimal size (number ofwires) of any Σk

network realising f . BDΠ
k (f) is defined similarly. The depth-k com-

plexity of f, denotedBDk(f) is giv en by

354 Bounded-DepthNetworks

BDk(f) = min { BDΣ
k (f), BDΠ

k (f) } •

Note that fork constant we may interpret this definition as restricting
gate fanout to be at most one, i.e dealing withbounded-depth formu-
lae. This is because such a restriction only increases size polynomi-
ally and we will be interested only in bounds which are superpolyno-
miala).

One class of bounded-depth networks has already been encoun-
tered in Chapter(1). The representation of a Boolean function in
DNF naturally defines aΣ2 network (i.e a disjunction of conjunc-
tions); the representation inCNF naturally gives rise to aΠ2 network
(i.e a conjunction of disjunctions).Σk and Πk may be seen as general-
isations of these normal forms.

At first there seems to be little motivation for considering this
class of network which was first introduced in Lupanov (1961a) and
in fact lower bounds in this model give little insight into proof tech-
niques relevant to combinational complexity. Howev er its importance
was demonstrated by (Furst et al., 1984) who established a connection
between lower bounds on depth-k complexity and therelativised poly-
nomial-time hierarchy.

Meyer and Stockmeyer (1973) introduced a hierarchy of com-
plexity classes, lying betweenP and PSPACE, ΣP

k and ΠP
k , consisting

of languages over {0, 1}* characterised as follows.

L ⊆ {0, 1}* is in ΣP
k if and only if all words y ∈ L can be

described as those satisfying an expression of the form,

−− −−P x1 \/- P x2QP
k xk R

a) Some authors define size as the total number ofgatespresent. Thisagain is polyno-
mially equivalent to total number of wires.

Introduction 355

where the quantifiers range over words (xi) of length polynomial in
| y | and R is some decision problem inP. ΠP

k is defined as
co− ΣP

k = {0, 1}* − ΣP
k .

With this P = ΣP
0 = ΠP

0 , NP = ΣP
1 , e.g the Directed Hamiltonian

cycle problem of Chapter(3) may be expressed as: "Does there exist
an ordering of the vertices (x1) of a giv en directed graph (y) such that
the ordering corresponds to a cycle of edges iny, (R) ?".

Since PSPACE=
∞

n=0
∪ ΣP

k ∪ ΠP
k , it is known that if a decision

problem were found to be inΣP
k+1 but not in ΣP

k then this would
enable a separation ofP, NP and PSPACEto be proved.

The problem of proving that the class of languages introduced
above does indeed define aproper hierarchy is thus at least as diffi-
cult as proving P ≠ NP and NP ≠ PSPACE.

The difficulty of resolving these issues led (Baker et al., 1975)
to consider the apparently simpler question of whether separation
could be achieved relative to an oracle.

An oracle, A, is just a subset of{0, 1}* , i.e a language. A Tur-
ing machine, M , with oracle A has an additional "query" tape on
which, at any stage during computation,M may consult the oracleA
by writing a string,x and entering a "query" state. The answer to the
questionx ∈? A determines the next move of M . The consultation of
A is counted as asingle stepin the M ’s computation.

Any complexity class, C, is extended in a natural way by the
provision of an oracleA to a new complexity classCA. CA is said to
be the classC relativised with respect to oracleA. In this way we
can consider the question of whether there is an oracleA for which a
separation of the classes of the polynomial-time hierarchy relativised
with respect toA can be proven.

356 Bounded-DepthNetworks

(Baker et al., 1975) successfully constructed an oracleA for
which PA ⊂ NPA could be demonstratedb). Howev er, until recently,
the best result obtained for a relativised hierarchy was an oracleA

such thatΣP,A
2 ≠ ΠP,A

2 and henceΣP,A
2 ⊂ ΣP,A

3 , proved in (Baker and
Selman, 1975). The techniques used therein did not seem powerful
enough to separate other layers.

The significant breakthrough made by (Furst et al., 1984) was
the discovery that an oracle,C, with which ΣP,C

k ⊂ ΣP,C
k+1, for all fixed

k≥ 2, could be constructed if parity functions required exponential size
depth-k networks, for all constantk≥ 2.

Lupanov (1961a) had earlier established that parity functions
had exponential depth-2 complexity. (Furst et al., 1984) could achieve
only Ω(nlogn) lower bounds onBDk for parityc), but in doing this
introduced important ideas which were subsequently valuable in prov-
ing the depth-k complexity of parity to be exponential. This final step
in separating a relativised polynomial-time hierarchy was achieved by
Yao (1985). Yao’s proof is extremely complicated but Hastad (1986)
discovered a simpler argument which gav e improved exponential lower
bounds. It is this proof which we present below in Section(5.3). Com-
mon to all three arguments is the employment of probabilistic count-
ing techniques c.f Chapter(3), Section(3.5.1.3).

The fact that parity functions could not be realised by simulta-
neous polynomial size and constant depth networks motivated the
investigation of several issues related to depth-k networks. In Sec-
tion(5.4) we describe some results which allow further exponential

b) The same paper also constructs an oracle,B, for which PB = NPB. This raises diffi-
culties in trying to establishP ≠ NP from relativisation results. A fuller discussion of
these problems may be found in (Hopcroft and Ullman, 1979).

c) Tkachev (1980) independently proved superpolynomial lower bounds for parity when
realised byΣ3 networks.

Introduction 357

lower bounds on depth-k complexity to be deduced. These are of two
kinds: those obtained via constant-depth reductions, as first outlined in
(Furst et al., 1984); and those derived as a consequence of the main
lemma proved in Hastad (1986).

The final section of this chapter deals with a different bounded-
depth model: Section(5.5) describes some recent results of Razborov
(1986) on the complexity of{ /\ , ⊕} depth-k networks.

Before these the work of Lupanov on universal depth-k formulae
is presented in Section(5.2).

5.2) Universal bounds on bounded-depth formulae

Lupanov (1961a) introduced bounded-depth networks as a generalisa-
tion of DNF and CNF. In this section we prove asymptotically match-
ing upper and lower bounds on the number of 2-input/\ and \/ gates
required to compute any Boolean function by depth-k formulae. Note
that by considering only constant fan-in gates, the concept of depth-k
formula becomes the restriction of permitting onlyk alternating levels
of gate operations, e.g depth-3 formulae with arbitrary fan-in are
equivalent to formulae over the basis{ /\ , \/ } having negated inputs, in
which every path from an input node to the output gate consists of a
sequence of/\ -gates, followed by a sequence of\/ -gates, followed by
a sequence of /\ -gates. We call such networks k-alternation or
bounded alternation formulae. There is a close relationship between
this measure and the number of wires in a depth-k network.

Fact 5.1: For a bounded alternation formula,T, let Lk(T) denote the
number of 2-input gates as before. Furthermore for a depth-k formula,
S, let Bk(S) denote the value ofBDk(S) minus the number of (arbi-
trary fanin) gates inS. For f ∈ Bn the measuresLk(f) and Bk(f)
are defined in the obvious way.

358 Bounded-DepthNetworks

For all f ∈ Bn

Lk(f) = Bk(f)

Proof: i) Lk(f) ≤ Bk(f): Let T be a depth-k formula realising f . We
proceed by induction on the number of gates inT to construct ak-
alternation formula,S, realising f and satisfyingLk(S) ≤ Bk(T). For
the inductive base,T consists of a single gate with fan-in p say. The
equivalent k-alternation formula containsp − 1 two input gates, with
the same operation as the single gate ofT. Since the only wires inT
are the p inputs this proves the inductive base. Now assume that the
upper bound for allT containing fewer thant gates and letT be a
depth-k formula realising f and containing exactly t gates. Without
loss of generality let the output gate ofT be an /\ -gate and have fan-
in p ≥ 2. Then this gate computes the conjunction ofp depth-(k − 1)
formulae each containing at mostt − 1 gates. LetT1 , . . . ,Tp denote
these. By the inductive hypothesis there are (k − 1)-alternation formu-
lae, S1 , . . . ,Sp such that for eachi , Si computes the same function as
Ti and,

Lk−1(Si) ≤ Bk−1(Ti)

Let S be thek-alternation formula which is formed by comput-
ing the conjunction ofS1 , . . . ,Sp using p − 1 /\ -gates. We hav e,

Lk(S) ≤ p − 1 +
p

i=1
Σ Lk−1(Si)

≤ p − 1 +
p

i=1
Σ Bk−1(Ti)

= Bk(T)

Bounds on all Boolean functions 359

and this completes the inductive step and proof of the upper bound.
The proof thatLk(f) ≥ Bk(f) is carried out in a similar manner
using induction on theLk(S) to construct a depth-k formula T com-
puting f and having Bk(T) ≤ Lk(S). This is left to the reader.

The following upper bounds on formulae are the best possible
for all k≥ 2; and we can prove exact bounds for the casek= 2. The
lower bound proved for this last result will be important in Sec-
tion(5.2). We employ the notation,

Lk(Bn) = max{ Lk(f) : f ∈ Bn }

Theorem 5.1:(Lupanov, 1961a)

L2(Bn) = n2n−1 − 1

Proof: For the upper bound observe that any f ∈ Bn has either at
most 2n−1 satisfying assignments or at most 2n−1 unsatisfactory assign-
ments. Supposeit is the former. Expressing f in DNF yields a for-
mula of size at most 2n−1 (n − 1) + 2n−1 − 1 and this gives the upper
bound. Anidentical argument applies if there are fewer than 2n−1 sat-
isfying assignments by using a CNF representation off .

For the lower bound consider either of the parity functions, i.e
n

i=1
⊕ xi or its negation. Since the number of gates in a 2-alternation for-

mula realising f is just the number of gates used to compute a DNF
representation off (for the ordering /\ followed by \/) or a CNF
representation (for the alternative ordering), to prove the lower bound
it suffices to show that any DNF (resp. CNF) representation of a par-
ity function must have at least 2n−1 implicants (resp. clauses) and each
implicant (clause) depends on alln variables. We giv e the proof for
DNF. The other case is proved identically. Let f (Xn) be a parity

360 Bounded-DepthNetworks

function and consider any DNF representingf . Each product term in
this must depend on alln variables ofXn, for if there is a productp,
such thatp ≤ f and p does not depend onxi , then the assignmentsα
and β which make exactly var(p) and var(p) ∪ {xi } take the value
1, both satisfy f . But this would contradict the definition of parity
function. It now follows that since all implicants off depend on all
variables there must be exactly 2n−1 product terms in any DNF
expressing f . This is because any such implicant is satisfied by
exactly one assignment and there are 2n−1 satisfying assignments for
any parity function.

Theorem 5.2:(Lupanov, 1961a; 1973) For allk ≥ 3, Lk(Bn) ˜ 2n/ logn.

Proof: This result is stated (without a detailed proof) in Lupanov
(1961a); the presentation below follows Lupanov (1973). The lower
bound, which holds for almost all Boolean functions, is immediate
from Theorem(4.1) since thek-alternation restriction involves a subset
of all formulae. It is clear thatLk+1(f) ≤ Lk(f) so it suffices to
prove the upper bound fork = 3. For this we return to the expansion
of f ∈ Bn used in proving the optimal upper bound on network depth
in Theorem(2.11). Recall that this partitionsXn into 4 setsW, Y, Z
and U of sizesw, y, z and u, with which f (W, Y, Z, U) is

σ
\/

i
\/

k
\/

j
\/ δσ (W) φ i (U) gi ,σ , k, j (Y, Z)

ρ
/\ (¬δ ρ (Y) \/ f (3)

i ,σ , ρ, k, j (U))

In this, σ ranges over all assignments to W; 1≤ i ≤ 2u/u;

1≤ k≤  2z/s; ρ ranges over all assignments toY; 1≤ j ≤ N and

N ≤
u

q
+ 2s. Here u is a power of 2, q ≤ u and s, q are parameters to

be fixed subsequently. Further recall thatφ i (U) is the characteristic
function of the sphere with centreα (i) ∈{0, 1}u; that gi ,σ , k, j is some

function of Y and Z; and f (3)
i ,σ , ρ, k, j is the disjunction of at mostq

Bounds on all Boolean functions 361

variables fromU.

To simplify presentation of the upper bound we will adopt the
following notations:

F1
i ,σ , ρ, k, j = f (3)

i ,σ , ρ, k, j (U) (5.1)

F2
ρ = ¬δ ρ (Y) (5.2)

F3
i ,σ , ρ, k, j = F1

i ,σ , ρ, k, j \/ F2
ρ (5.3)

F4
i ,σ , k, j =

ρ
/\ F3

i ,σ , ρ, k, j (5.4)

F5
i ,σ , k, j = gi ,σ , k, j (Y, Z) (5.5)

F6
i = φ i (U) (5.6)

F7
σ = δσ (W) (5.7)

F8
i ,σ , k, j = F4

i ,σ , k, j /\ F5
i ,σ , k, j /\ F6

i /\ F7
σ (5.8)

F9 =
i
\/

σ
\/

k
\/

j
\/ F8

i ,σ , k, j (5.9)

F9, i.e f (W, Y, Z, U) is realised as a formula (using 2-input gates)
from the classΣ3, thus the alternating levels of gates are\/ /\ \/ . We
first show that the constructed definition ofF9 is a formula in this
class. Thefunctions F r

... for 1≤ r ≤ 9 are realised by corresponding
formulaeGr in the following classes.

362 Bounded-DepthNetworks















G1 ∈ Σ1

G2 ∈ Σ1

G3 ∈ Σ1

G4 ∈ Π2

G5 ∈ Π2

G6 ∈ Π2

G7 ∈ Π1

G8 ∈ Π2

G9 ∈ Σ3















Using Lk
Σ and Lk

Π to denote the number of 2-input gates in aΣk or Πk

formula, it is easy to see that:







L1
Σ(G1) ≤ q

L1
Σ(G2) ≤ y

L1
Σ(G3) ≤ y + q

L2
Π(G4) ≤ 2y (y + q)







For G5, since Fi ,σ , k, j is a function ofy + z variables its CNF (i.eΠ2

representation) is of size at most 2y+z (y + z). For G6, which is com-
puted as the CNF ofφ i (U) we claim that L2

Π(G6) ≤ u2. To see this
recall that φ is the characteristic function of a sphere with centre
α = < a1 , . . . ,au > ∈ {0, 1}u. Thus the prime implicants ofφ (U) are
the u products,

u

i=1
∪ { ua1

1
. . .uai−1

i−1 u¬ai
i uai+1

i+1
. . .uau

u }

An assignment toU satisfiesφ (U) if and only if it differs in exactly
one place from the centreα . It follows that

φ (U) = Tu
1(u¬ a1

1 , . . . ,u¬ au
u) /\ ¬ Tu

2(u¬ a1
1 , . . . ,u¬ au

u)

Bounds on all Boolean functions 363

and this is,

(
u

i=1
\/ u¬ ai

i) /\
1≤ i < j ≤ u

/\ (u¬ ai
i \/ u

¬ a j

j)

which is easily verified as having sizeu2.

G7 clearly satisfiesL1
Π(G7) ≤ w and

L2
Π(G8) ≤ 2y (q + y + 2z (y + z)) + u2 + w

From this we have,

L3
Σ(G9) ≤

2u

u
2w p N (2y (q + y + 2z (y + z)) + u2 + w)

≤
2u+w

u
(

2z

s
+ 1)(

u

q
+ 2s)(2y (q + y + 2z (y + z)) + u2 + w)

If we set y =  2 logn, z=  2 log logn, u = 2 logn − 1,

q =  (logn)4  and s=  logn − 5 log logn then,

u =
n

2
; y = o(q) ; 2z(y + z) = o(q)

w + u2 = o(q 2y) ; s = o(2z) ; q 2s = o(u)

and so,

L3(f) ≤ (1+ ε)
2n

s
= (1+ ε)

2n

logn

for all ε > 0 and sufficiently large n. This complete the proof of the
upper bound.

364 Bounded-DepthNetworks

5.3) Exponential Lower Bounds On Parity Functions

We know from the lower bound proved in Theorem(5.1) that the par-

ity functions
n

i=1
⊕ xi and ¬

n

i=1
⊕ xi have exponential depth-2 complexity. In

this section it is shown that for all constantk any depth-k formula
realising a parity function ofn variables must have size exponential in
n. The proof below is that of Hastad (1986), which improves and sim-
plifies the earlier proof of this result given in Yao (1985). The key
idea in Hastad’s argument is a result which shows that any "small"
CNF-formula ofn variables can be "simplified" to a "small" DNF-for-
mula of m variables cf. Main Lemma below. This result is used to
construct an inductive proof that parity functions require exponential
size depth-k formulae: for some constantc, any depth-k networks real-

ising n-input parity of size <2c n
1

k−1 can be used to prove the existence
of depth-2 formulae realising parity functions ofm variables but with
size <2m.

As was mentioned in the introduction the proof relies on proba-
bilistic counting techniques. In trying to prove that parity required
exponential size bounded-depth formulae, one might proceed by not-
ing that since/\ (\/) gates with variables as inputs can be eliminated
by setting a chosen variable to 0 (1), a depth-k formula could be sim-
plified by finding an appropriate choice of values for a subset of the
inputs which would allow the initial 3 layers, /\ − \/ − /\ say, to be
transformed into 2 layers,\/ − /\ , without greatly increasing the for-
mula size. Observing that all sub-functions of parity functions are
again parity functions then permits an inductive proof to be con-
structed i.e depth-2 formulae for parity have exponential complexity;
the existence of sub-exponential depth-k formulae for parity implies
the existence of sub-exponential depth-k − 1 formulae for parity.
Problems arise in trying to construct appropriate reducing assignments

Exponential Bounds on Parity Functions 365

explicitly, since the number of gates at the top level may be very large
and assignments which eliminate most of these may result in the sub-
sequent parity function being dependent on too few variables to make
the induction work. Following the lead of Furst et al. (1984), Hastad
proved the existenceof appropriate assignment to input variables by
using probabilistic methods.

Definition 5.2:Let p ∈(0, 1). Rp is the class of random partial assign-
mentsπ for which,

Prob[x|π
i = 0] =

1 − p

2

Prob[x|π
i = 1] =

1 − p

2

Prob[xi ∈/ var(π)] = p

these events occurring independently for eachxi . •

We will use π (xi) = 0, π (xi) = 1 and π (xi) = * to denote the
three possible outcomes. Note that ifπ ∈Rp is applied toXn then the
expected number of variables which are not set to constants isp n.
Thus choosing a large value ofp increases the expected number of
variables remaining after simplifying a depth-k formula usingπ ∈Rp

but also decreases the probability of being able to restructure to a
depth-k − 1 formula efficiently since fewer gates are likely to be elimi-
natable.

We can now state Hastad’s Main Lemma.

Lemma 5.2 (Main Lemma):Let F be a CNF formula in which each
clause contains at mostt literals from Xn. Let π be a random partial
assignment inRp. The probability thatF |π cannot be expressed in
DNF using implicants of fewer thans variables is no more thanα s

p,t ,
α p,t being the unique positive root of,

366 Bounded-DepthNetworks




1+
4p

(1 + p) α p,t




t

− 


1+
2p

(1 + p) α p,t




t

− 1 = 0

(If p = o(1) it is straightforward to show that

α p,t ˜
2pt

loge φ
< 5pt

whereφ is the Golden Ratio.)

This result is an easy corollary of the following Lemma, which
although technically stronger is simpler to prove. Recall that a prime
implicant of f ∈ Bn is a product of literalsm such thatm≤ f and no
sub-product ofm is an implicant of f . For a given CNF, F , let
rank(F) denote the number of literals in the longest prime implicant
of the function represented byF .

Lemma 5.3:Let F =
w

i=1
/\ Fi , where eachFi is the disjunction of at

most t literals from Xn. Let π ∈Rp and g be an arbitrary Boolean
function. Then,

Prob[rank(F |π) ≥ s | g|π = 1] ≤ α s
p,t

Proof: (Note that this lemma implies Lemma(5.2) simply by choosing
g = 1.) Theproof is by induction onw ≥ 0. The inductive base,w = 0,
is immediate sinceF = 1 and hence rank(F) = 0. Assuming the
lemma holds for all values ≤ w − 1 we show it holds for F a conjunc-
tion of w clauses. Consider the effect ofπ on F1, the first clause of
F . Either F |π

1 = 1 or F |π
1 ≠ 1. Hence,

Prob[rank(F |π) ≥ s| g|π = 1]

is bounded above by,

Exponential Bounds on Parity Functions 367

max




Prob[rank(F |π) ≥ s| g|π = 1 /\ F |π
1 = 1]

Prob[rank(F |π) ≥ s| g|π = 1 /\ F |π
1 ≠ 1]

(5.10)

To prove the lemma it suffices to show that the probability of
either of these events occurring is at mostα s

p,t . Consider the first term
of (5.10). Only thoseπ which renderF1 equal to 1 are relevant in
bounding this, so the given probability is that of thew − 1 clause
w

i=2
/\ Fi having a prime implicant dependent on at leasts variables, given

that the function (g /\ F1) becomes 1 when the partial assignmentπ is
applied. The inductive hypothesis now yields the upper bound. Note
that since the lemma is stated for allg, the fact that the conditional
probability is based ong /\ F1 is catered for already.

Bounding the second term in (5.10) is rather more difficult. Let
T be the set of literals upon whichF1 depends and without loss of
generality assume that,F1 =

xi ∈T
\/ xi , i.e no negated literals occur. We

may assume this since the probability of settingxi : = 0, rendering the
literal xi equal to 1, is identical to that of settingxi = 1 which makes
the literalxi equal 1.

Any π ∈Rp may be viewed as the composition of two partial
assignments:π1, which fixes only variables inT, and π2 which sets
other variables. Given this, the conditionF |π

1 ≠ 1 is equivalent to the

condition F |π1
1 ≠ 1. Now the condition F |π1

1 ≠ 1 holding implies two
facts:

i) Some(non-empty) subsetY of T is left unaffected byπ1.

ii) Each prime implicant m of F |π contains at least one variable
which occurs inY.

Given Y ⊆ T let PIY(F |π) denote the set of those prime implicants,m
of F |π , for which Y = T∩ var(m). Furthermore, let rank(F |π ,Y)

368 Bounded-DepthNetworks

denote the length of the longest prime implicant inPIY(F |π) and
π1(Y) = * the event "π1(xi) = * f or eachxi ∈Y".

The second term of (5.10) is now at most,

Y ⊆ T,Y ≠ ∅
Σ Prob[rank(F |π ,Y) ≥ s | g|π = 1 /\ F |π1

1 ≠ 1]

and this is no more than,

Y ⊆ T,Y ≠ ∅
Σ E1 E2 (5.11)

where,

E1 = Prob[π1(Y) = * | g|π = 1 /\ F |π1
1 ≠ 1]

E2 = Prob[rank(F |π ,Y) ≥ s| g|π = 1 /\ F |π1
1 ≠ 1 /\ π1(Y) = *]

Now if,

E1 ≤ 


2p

1 + p



|Y|

(5.12)

E2 ≤ (2|Y| − 1)α s−|Y|
p,t (5.13)

then it is easy to show that the expression of (5.11) is at mostα s
p,t

and this will establish the lemma.

To see that (5.12) holds, first observe that for events A, B and
C the inequalityProb[A | B /\ C] ≤ Prob[A |C] holds if and only if
the inequalityProb[B | A /\ C] ≤ Prob[B |C] holds. Sochoosing A

as the event "π1(Y) = *", B as the event "g|π = 1" and C as "F |π1
1 ≠ 1"

it follows that (5.12) holds if both

Prob[A |C] ≤ 


2p

1 + p



|Y|

(5.14)

Exponential Bounds on Parity Functions 369

Prob[B | A /\ C] ≤ Prob[B |C] (5.15)

hold.

(5.15) is obvious from our choice ofA, B and C; informally (5.15)
asserts that forcing some variables ofF1 to be unaffected byπ1 can-
not increase the probability ofg|π being 1. For (5.14) the conditionC,

i.e F |π1
1 ≠ 1 is equivalent to

\/- x ∈T π1(x) ∈{0, * }

(recall that it is assumed thatF1 contains only positive literals).
Thus,

Prob[π (xi) = * | π (xi) ∈{0, * }] =
Prob[π (xi) = *]

Prob[π (xi) ∈{0, * }]
=

2p

1 + p

and

Prob[π (xi) = 0 |π (xi) ∈{0, * }] =
Prob[π (xi) = 0]

Prob[π (xi) ∈{0, * }]
=

1 − p

1 + p

(5.14) follows since these probabilities are independent.

Now consider the factor E2 of (5.11). In estimating this only
prime implicantsm ∈PIY(F |π) are relevant, where F |π

1 ≠ 1. We may
express any such m as m1 /\ m2 where var(m1) = Y and
var(m2) ⊆ Xn − T; this partition is possible from the fact that
m ∈PIY(F |π) and hence does not depend on any variable in T− Y.
Now if σ is the partial assignment which fixes exactly the literals in
m1 to 1, thenm2 is a prime implicant of the functionF |π σ . So by
considering the functionF |π σ instead ofF |π and g| (π1 σ) |π2 instead of
g|π we could employ the inductive hypothesis, provided that the con-

dition F |π1
1 ≠ 1 could be removed. To accomplish this we maximise

over all π1 for which,

370 Bounded-DepthNetworks

π1(Y) = * and π1(T) ∈ {0, * } |T|

Noting that rank(F |π ,Y) ≥ s implies, from the definition ofσ ,
that rank(F |π σ) ≥ s− |Y|, this gives,

E2 ≤
σ ∈{0,1} |Y| − {0} |Y|

Σ (
π1(Y) = *, π1(T) ∈{0,*} |T|

max E3) (5.16)

where E3 is the probability of an appropriateπ2 being selected, i.e

E3 = Prob[rank(F |π1 σ π2) ≥ s− |Y| |g|π1 σ π2 = 1]

Since F |π1 σ is a conjunction ofw − 1 clauses, applying the
inductive hypothesis allows the conclusionE3 ≤ α s−|Y|

p,t . There are at
most 2|Y| − 1 terms in the summation (5.16) so certainly,

E2 ≤ (2|Y| − 1)α s−|Y|
p,t

This completes the proof that (5.13) holds and the inductive
step.

It should be clear that this lemma also holds in a dual form for
converting DNF formulae to CNF.

For a depth-k formula, T, the bottom fan-inof T is defined to be
the maximal fan-in of any gate at depth 1 inT. An exponential lower
bound on the size of depth-k formulae realising parity functions is
easily deduced from the following lemma.

Lemma 5.4:Let β (n, k) = 0. 1n
1

k−1 . There exists a constantn0 such
that for all k≥ 2 and n≥ nk−1

0 , n-input parity functions cannot be com-
puted by depth-k formulae having bottom fan-in t and containing at
most 2s gates of depth at least 2, wheret ≤ β (n, k) and s≤ β (n, k).

Proof: By induction on k≥ 2. The inductive base has already been
established in Theorem(5.1), which established that depth-2 formulae

Exponential Bounds on Parity Functions 371

for parity functions must have bottom fan-in n. So assume the lemma
holds for depths≤ k − 1 and suppose thatF is a depth-k formula real-
ising a parity function onn≥ nk−1

0 variables but having bottom fan-in
t ≤ β (n, k) and fewer than 2s gates of depth at least 2, fors≤ β (n, k).
Without loss of generality it may be assumed that the gates at depth 2
in F are all /\ -gates. LetFi be the sub-formula ofF represented by
the i ’th /\ -gate at depth-2 inF , where 1≤ i ≤ 2s. Fi has bottom fan-in
≤ t. From the Main Lemma, usingp = 0. 1β (n, k)−1, s= t = β (n, k),
the probability that a random partial assignmentπ ∈Rp leaves
rank(F |π

i) ≥ s is at most α s
p,t . Hence the probability thatπ leaves

some Fi having rank(F |π
i) ≥ s is at most 2s α s

p,t ≤ (2α p,t)
s. In addition

for n large enough the probability thatF |π depends on at least

m= n p = n
k−2

k−1

variables is at least 1/3. It follows that the probability thatF |π

depends on fewer thanm variables or that there is someFi for which
rank(F |π

i) ≥ s is at most

2

3
+ (2α p,t)

s

Since α p,t < 1/2, for large enoughn, this probability is less than 1. It
follows that there certainly exists a partial assignmentπ with which
F |π depends on at leastm variables and which allows eachF |π

i to be
re-written as a DNF formula having bottom fan-in no more thans.
Suppose such aπ is applied toF and the formulaF |π re-written so
that eachF |π

i is expressed as a DNF formula; letG be the resulting
formula which computes a parity function of at leastm variables, has
bottom fan-in at mosts and depthk − 1 since there are two adjacent
\/ -levels in G which may be collapsed to a single level (i.e levels 2
and 3). Note that the number of gates of depth at least 2 inG is still

372 Bounded-DepthNetworks

at most 2s.

Now

s ≤ β (n, k) = 0. 1n
1

k−1

= 0. 1 (n
k−2

k−1)
1

k−2

≤ 0. 1m
1

k−2 = β (m, k − 1)

Also,

m ≥ n
k−2

k−1 ≥ (nk−1
0)

k−2

k−1 = nk−2
0

These contradict the inductive hypothesis and soF does not
exist.

Theorem 5.3: Let γ (n, k) = 20.1 (0.3n)
1

k−1 . There exists a constantn0,
such that for allk≥ 2 any depth-k formula computing a parity function
of n≥ nk

0 variables, contains at leastγ (n, k) gates.

Proof: Suppose the theorem does not hold, so that there is a depth-k
formula realising a parity function ofn variables containing fewer
than γ (n, k) gates. Such a formula may be regarded as one of depth
k + 1 having bottom fan-in 1. Letp = 0. 3, t = 1 and s= logγ (n, k).
Using arguments similar to the proof of Lemma(5.4) we find a partial
assignmentπ which leads to a depth-k − 1 formula realising parity of
m≥ 0. 3n variables which has bottom fan-in s≤ β (m, k − 1) and fewer
than 2β (m, k−1) gates of depth at least 2. But this contradicts
Lemma(5.4) which showed that such formulae do not exist.

Exponential Bounds on Parity Functions 373

5.4) Consequences of the Parity Function Lower Bound

The work commenced in (Furst et al., 1984) and its subsequent devel-
opment by Yao (1985) and Hastad (1986) gives rise to a number of
further questions concerning bounded-depth networks, some of which
we examine in this section.

(Furst et al., 1984) showed that the depth-k complexity of sev-
eral natural Boolean functions was polynomially related to the depth-k
complexity of parity. These results rely on a concept ofconstant-depth
reducibility which was formalised and considered explicitly in (Chan-
dra et al., 1984). This paper introduced the complexity class
S− D(S(n), D(n)). A family, [fn] of n-input Boolean functions is in
this class if and only if,

\/- n≥ 1, fn is computable by a depth-k network of size at most
S(n), for some (not necessarily constant)k≤ D(n)

Specific cases of interest are

S− D(poly, const) =
c, d, k≥ 0
∪ S− D(cnk, d) (5.17)

S− D(poly, D(n)) =
c, k≥ 0
∪ S− D(cnk, D(n)) (5.18)

S− D(poly, poly − log) =
c, k, d, l ≥ 0

∪ S− D(cnk, d (logn)l) (5.19)

We will also refer to the classesPOLY− Σk (POLY− Πk) of families
of Boolean functions which can be realised by polynomial sizeΣk

(Πk) networks; POLY− Σm
k and POLY− Πm

k refer to the monotone
variants of these classes.

Theorem (5.3) established thatPARn ∈/ S− D(poly, const).

374 Bounded-DepthNetworks

To inv estigate the structure of these classes (Chandra et al.,
1984) considered two concepts of reducibility: reductions viap-pro-
jections, as defined by (Skyum and Valiant, 1985) viz Defn (2.1)
above; and a weaker form known asconstant-depth truth-table
reducibility. Giv en two families F = [fn] and G = [gn] F is said to be
constant-depth truth-table reducible toG, denoted F ≤cd−tt G if and
only if there is a polynomial,p(n) and a constantc such that,

\/- n≥ 1, fn can be computed by aG-networkof size ≤ p(n) and
depth ≤ c.

Here aG-network is defined similarly to a depth-k network but addi-
tionally permits gates which compute functionsg j ∈G provided that
j ≤ p(n) and there are no paths from the outputs of any such gates to
the inputs of otherG gates.

For families F and G we use the notationF ≤proj G if F is
reducible toG via a p-projection.

From the definitions of≤cd−tt and ≤proj it is easy to verify the follow-
ing lemma.

Lemma 5.5:

i) ≤cd−tt and ≤proj are both reflexive and transitive relations.

ii) F ≤proj G ☞ F ≤cd−tt G.

iii) Let S(n) and D(n) be monotone non-decreasing functions. If
F ≤cd−tt G or F ≤proj G and G ∈S− D(S(n), D(n)) then there is a
polynomial, p(n), and a constantc for which,

F ∈S− D(p(n) S(p(n)), c D(p(n)))

Thus if G ∈S− D(poly, const) then F ∈S− D(poly, const) also.

As examples of such reductions we use the following functions,
in addition to parity. A number of other examples are given in

Constant-depth Reductions 375

(Chandra et al., 1984).

ADD and MULT are the functions which compute the sum (product)
of two n-digit binary numbers.COMP takes as input two n-digit
binary numbers,x and y, returning the result 1 if and only ifx> y.
TC takes as inputn2 Boolean variables encoding an adjacency matrix,
A= [ai , j] and outputs then2 Boolean entries of the matrixA+ being
the transitive closure of A.

First some examples of efficiently computable functions are pre-
sented.

Theorem 5.4:
i) ADD ∈S− D(poly, const);
ii) COMP∈S− D(poly, const).

Proof: i) Let x= xn−1 xn−2
. . .x0 and y = yn−1 yn−2

. . . y0 be the n-bit
binary representations of the two numbers being added. The so-called
carry look-ahead scheme is used. This proceeds by computing
fi = xi yi and gi = xi ⊕ yi = xi yi \/ xi yi for eachi (0≤ i < n). All of these
can be computed in depth 2 using onlyO(n) wires. The final stage is
to compute each of the output sum bits,sj 0≤ j ≤ n; for this a
sequence of carry bits,c j , 0≤ j < n must be computed. The carry bits
are computed by

c j =
j

i=0
\/ gi /\

j

k=i+1
/\ hk

The sum bits are given by s0 = h0, sn = cn−1 and for 0< j < n
sj = h j ⊕ c j−1. The resulting network, with negation restricted to net-
work inputs, clearly has polynomial size and constant-depth.

ii) x> y if and only if there is somei , 0≤ i < n for which xi = 1 > 0= yi

and x j = y j for each i + 1≤ j < n. Whether this property holds can be
tested by implementing the expression,

376 Bounded-DepthNetworks

n−1

i=0
\/ (xi /\ yi /\

n−1

j=i+1
/\ (x j ≡ y j))

Since x≡ y = x y \/ x y this can be computed by a network of size
O(n2) and depth 4.

Theorem 5.5:

i) PARITY≤proj MULT

ii) PARITY≤cd−tt TC

Proof:

i) Let Xn be the input variables for an instance of a parity function
and r = log2 n. Construct the two n-bit numbers;

P =
n

i=1
Σ xi 2r ; Q =

n

i=1
Σ 2r

With theseP Q =
n

i=1
Σ ci 2r , where theci are r-bit numbers. The least

significant bit ofcn gives the parity of
n

i=1
Σ xi and this yields the result.

ii) As before letXn be the input variables for an instance of a parity
function. Consider the following n + 2-vertex undirected graph,G. G
has vertices v0, v1 , . . . ,vn, vn+1. There is an edge betweenv0 and the
lowest indexed vi for which xi = 1 and x j = 0, \/- j < i . Similarly there is
an edge betweenvn+1 and the highest indexed vi for which xi = 1 and
x j = 0, \/- j > i . Finally there are edges all pairsvi and v j such that
j > i , xi = x j = 1 and xk = 0 for all i < k< j . Let A= [ai , j], where
0≤ i , j ≤ n + 1 be the adjacency matrix corresponding toG. The entries
of A are easily computed byΠ1 networks by using the identities,

Constant-depth Reductions 377

a0,i = (
i−1

j=1
/\ x j) /\ xi

ai ,n+1 = xi /\ (
n

j=i+1
/\ x j)

ai , j = xi /\ (
j−1

k=i+1
/\ xk) /\ x j

Now let B = [bi , j] be the adjacency matrix in which bi , j = 1 if and
only if there is a path of containing exactly 2 edges betweenvi and
v j in G. The entries of this matrix can be computed usingΣ2 net-
works, whose inputs are theai , j computed previously, and the relation

bi , j =
n

k=1
\/ ai ,k ak, j

Since all theai , j are computed byΠ1 networks, it follows that all the
bi , j are computed byΣ2 networks. The final stage of the construction
is to compute the transitive closure of B using a single transitive clo-
sure gate. Sincebi , j = 1 if and only if there is a path of exactly 2
edges betweeni and j , it follows thatb+

i , j = 1 if and only if there is a
path containing an even number of edges betweeni and j . Any such
path contains an odd number of vertices and so in the resulting

matrix, b+
0,n+1 = 1 if and only if

n

i=1
Σ xi ≡ 1 (mod2). This completes the

reduction.

The inductive proof of Theorem (5.3) requires only 2 properties
of parity functions; that any subfunction of a parity function is again
a parity function; that this function requires many (in fact all) of its
inputs to be determined before its result is known. These properties
are shared by other Boolean functions and it turns out that the tech-
niques used in proving parity to be difficult can be applied almost
directly in such cases.

378 Bounded-DepthNetworks

For the classSn of symmetric Boolean functions, (Fagin et al.,
1985) used the results of (Furst et al., 1984) to characterise those
symmetric functions having superpolynomial depth-k complexity. By
applying Hastad’s techniques Moran (1987), and independently (Brust-
mann and Wegener, 1986), generalised these results on symmetric
functions.

Following Moran (1987) we introduce the terminology below.

Definition 5.3: Let f ∈Sn and w0
. . .wn be the spectrum off . For

0≤ j ≤ n we say that j is a left (right) boundaryof f if w j = 1 and
w j−1 = 0 (w j+1 = 0). j is a boundary if it is a left or a right boundary
of f . B(f) ⊆ {0, 1 , . . . ,n} denote the set of boundaries off and
b(f) the value of

j ∈ B(f)
max min{ j , n − j} . •

(Fagin et al., 1985) proved,

Theorem 5.6:Let p(n) be a polynomial, k a natural number andε > 0
some constant. Iff ∈Sn has a boundaryj such thatnε ≤ j ≤ n − nε

then f ∈/ S− D(p(n), k).

Moran (1987) extends the interval of this theorem to,

[(logn)r , n− (logn)r] (5.20)

wherer is any function ofn such thatr → ∞.

In combination with (Fagin et al., 1985), which established that
f ∈S− D(poly, const) if f ∈Sn does not have a boundary in the
interval given by (5.20), Moran’s result completely characterises those
symmetric functions which are not inS− D(poly, const) and also
gives explicit lower bounds onf in terms ofb(f).

The results are obtained in two stages. First a lower bound on
the size of depth-k networks computing functions with boundaries at
n/2 is proved. This mirrors the proof of Lemma(5.4) and

Applications of the Main Lemma 379

Theorem(5.3). The second stage reduces arbitrary symmetric functions,
of n variables, to ones ofn − m variables having boundariesat
(n − m)/2. Prior to these, two simple technical lemmas are needed.

Lemma 5.6:Let f ∈Sn and π any partial assignment which fixes l
variables to 1 andn − m − l variables to 0. Then for all 0≤ j ≤ m − 1,
resp. 1≤ j ≤ m f |π j is a right (left) boundary off |π if and only if
m + j is a right (left) boundary off .

Proof: Let w0
. . .wn be the spectrum off . For any assignmentπ as

in the Lemma statement, the spectrum off |π consists of the subword
wl wl+1

. . .wl+m = v0
. . .vm. The lemma now follows since j is a right

(left) boundary of the function,f |π with spectrumv0
. . .vm if and only

if l + j is a right (left) boundary of a function,f , whose spectrum
contains the subword wl

. . .wl+m.

Lemma 5.7:Let f ∈Sn. Any depth-2 network realisingf has bottom
fan-in at leastb(f).

Proof: Let T be a depth-2 network computing f and j = b(f). First
suppose thatT is a Σ2-network. If j is a left boundary then there is
some /\ -gate, g, of T becoming 1 under the assignment,π , which
fixes xi = 1 for each 1≤ i ≤ j and all remaining variables to 0. Sincej
is a left boundary eachxi with 1≤ i ≤ j must be an input ofg, for if
not then modifyingπ so that xi becomes 0, leaves the output ofg
unchanged. Henceif j is a left boundary thenT has bottom fan-in at
least j . A similar argument, identifying a gate with fan-in at least
n − j , holds if j is a right boundary by fixing an additional variable to
1, i.e xi must be an input ofg for each j + 1≤ i ≤ n.

Now suppose thatT is a Π2-network. Consider the assignment,
π , which fixes xi = 1 for 1≤ i ≤ j − 1 and all remaining variables to 0.
If j is a left boundary then some\/ -gate, h of T is made 0 underπ .
The literal xi must be an input ofh, for each j ≤ i ≤ n otherwise

380 Bounded-DepthNetworks

increasingxi to 1 leaves the result ofh and T unchanged. If j is a
right boundary we can identify an\/ -gate with fan-in at leastj + 1 in
a similar manner by considering the assignment which fixes xi = 1 for
1≤ i ≤ j + 1.

In summary, if j is a left boundary thenT has bottom fan-in at
least min{ j , n − j + 1} if j is a right boundary thenT has bottom fan-
in at least min{n − j , j + 1} hence T has bottom fan-in at least
min { j , n − j} .

Lemma 5.8:Let f ∈Sn have a boundary at j = n/2 and β (n, k) be as
in Lemma(5.4). There is a constantn1 such that for all constantk≥ 2
and n≥ nk−1

1 , f cannot be computed by depth-k networks having bot-
tom fan-in t and containing at most 2s gates of depth at least 2, where
t ≤ β (n, k) and s≤ β (n, k).

Proof: By induction onk≥ 2. The inductive base is immediate from
Lemma(5.7). Theinductive step is identical to the proof of the same
stage in Lemma(5.4), noting that withp = 0. 1β (n, k)−1 the probability
that a random partial assignmentπ ∈Rp sets equal numbers of vari-
ables to 0 and 1 and leaves m≥ np variables unassigned is at least
1/n. With such an assignmentf |π ∈Sm has, from Lemma(5.6), a
boundary atm/2, and so the inductive argument used in Lemma(5.4)
can be applied directly.

Theorem 5.7: Let f be as Lemma(5.8). For all constantk≥ 2 any
depth-k network computing f contains Ω (γ (n, k)) gates, where
γ (n, k) is defined exactly as in Theorem(5.3).

Proof: Exactly as Theorem(5.3).

Theorem 5.8: Let f ∈Sn, b = b(f)/n (so that 0< b ≤ 0. 5) and

η(n, k, b) = 20.1 (0.6b n)
1

k−1 . Every depth-k network realising f contains
Ω (η(n, k, b)) gates.

Applications of the Main Lemma 381

Proof: Without loss of generality letbn be a boundary off , the case
where n − bn is a boundary off is dealt with similarly. Let π be the
partial assignment which setsxi = 0 for each 1≤ i ≤ n − 2bn and leaves
all other variables unset.f |π ∈S2bn and from Lemma(5.6)bn is a
boundary of f |π . These two facts and Theorem(5.7) now yield the the-
orem.

It should be noted that both Theorem(5.8) and Theorem(5.3) hold not
only for constantk, but more generally for allk≤ log n/(log logn+ C),
for some constantC.

None of the preceding results indicate whether the sequence of com-
plexity classes [S− D(poly, k)]∞k=2 forms a proper hierarchy, i.e if

S− D (poly, k) ⊂ S− D (poly, k + 1) \/- k≥ 2

The question was first resolved, affirmatively, by Sipser (1983).
Sipser’s proof is non-constructive, establishing the existence of fami-
lies, [fn] ∈S− D(poly, k) but not in S− D(poly, k + 1). Hastad
(1986) proved this result for specific families of functions. This is
stated below without proof, as

Theorem 5.9:Let n= mk and

Xn = { xi1 i2 ... ik : 1 ≤ i1, i2 , . . . ,ik ≤ m }

Define,

F \/
k,n(Xn) =

i1
\/

i2
/\

i3
\/ . . .

i j

Q j
. . .

ik

Qk xi1 ... ik

whereQ j ≡ /\ if j is odd, and\/ if j is even.

F /\
k,n is defined similarly, but with Q j ≡ \/ if j is odd and /\ if j is

ev en.

382 Bounded-DepthNetworks

For all constantk≥ 3;

F \/
k,n ∈ POLY− Σk ; F \/

k,n ∈/ S− D(poly, k − 1)

F /\
k,n ∈ POLY− Πk ; F /\

k,n ∈/ S− D(poly, const)

More generally the following containment results are known.

Theorem 5.10:

POLY− Σk ⊂ POLY− Σk+1 ⊂ S− D(poly, const) (5.21)

POLY− Πk ⊂ POLY− Πk+1 ⊂ S− D(poly, const) (5.22)

POLY− Σk ⊂ POLY− Πk+1 (5.23)

POLY− Πk ⊂ POLY− Σk+1 (5.24)

POLY− Σm
k ⊂ POLY− Σk ∩ { [fn] : fn ∈Mn } (5.25)

Proof: (5.21)-(5.24) are merely restatements of Theorem(5.9); (5.25) is
from Okol’nishnikova (1982).

It is an open question as to whetherPOLY− Σk = POLY− Πk, for
k≥ 3, even in the monotone cases. That this does not hold for the case
k= 2 is easily shown by considering the functionsF \/

2,n and F /\
2,n.

5.5) Bounded-Depth { /\ , ⊕}-formulae

The basis{ /\ , \/ , ¬} has been shown to lack sufficient strength to
compute efficiently a number of natural symmetric functions using
depth-k circuitry. The results rely on the fact that the functions exam-
ined have exponentially many prime implicants and clauses thus nei-
ther short DNF nor CNF representations are possible. However in

The Basis {/\ , O+} 383

Chapter(1) we described another normal form representation for
Boolean functions: the ringsum expansion using the basis{ /\ , ⊕, 1}.
Consider,

Definition 5.4:The classΛk of n-input depth-k formulae (over { /\ , ⊕})
is inductively defined as follows:

i) If k= 0 then,

Λk = {x1 , . . . ,xn, 1⊕ x1 , . . . , 1⊕ xn}

ii) If k> 0 and odd, thenS ∈Λk if and only if S is the ⊕ of some
(possibly empty) set of formulaeS1 , . . . ,Sp, whereSi ∈Λk−1.

iii) If k> 0 and even, thenS ∈Λk if and only if S is the /\ of some
(possibly empty) set of formulaeS1 , . . . ,Sp, whereSi ∈Λk−1.

It will sometimes be convenient to regard S ∈Λk as the set of formu-
lae Si ∈Λk−1 defining it and so writeSi−1 ∈S.

We use BD*
k(S) to denote the size (number of gates) inS ∈Λk;

for f ∈ Bn, BD*
k(f) is defined in the obvious way from this. •

There are two points which should be noted about this model. First
the classΛ3 does not correspond with the form of the ringsum expan-
sion. Thelatter does not permitx⊕ 1 inside a product; clearly direct
implementations of the ringsum expansion form a subset ofΛ3. This
contrasts withΣ2 and Π2. Secondly BD*

k(f) is at most polynomially
larger thanBDk+2(f). This is immediate from the fact that,

n

i=1
\/ xi = 1 ⊕ (

n

i=1
/\ (1⊕ xi))

cf De Morgan’s Laws and the identityx= 1⊕ x.

It is obvious that parity functions, and hence families reducible to par-
ity functions, have polynomial complexity in this model. Razborov

384 Bounded-DepthNetworks

(1986) investigated the question of whether some simple function
could be shown to require exponential sizeΛk formulae. This section
presents the exp (Ω(n1/k−2)) lower bound proved by him for the
majority function. Our proof follows the simplified approach con-
structed by Paterson (1986) which yields a slightly improved lower
bound. It is worth noting that the style of the proof is forced to be
radically different from the arguments of Furst, Hastad et al., since⊕
can not be determined from a strict subset of its inputs and so there
can be no analogue of, for example, Hastad’s Main Lemma. Whereas
results for { /\ , \/ , ¬} were obtained by largely combinatorial tech-
niques, the lower bound proved by Razborov employs ideas from lin-
ear algebra, exploiting the correspondence between computation using
{ /\ , ⊕, 1} and formal polynomials over the field GF(2). The reader
will observe some similarities to Razborov’s methods for reasoning
about monotone network complexity, giv en in Section(3.5.1); specifi-
cally the mapping ofΛk formulae into a set-theoretic construct; and
using the fact that this can be regarded as computing an approxima-
tion to the function considered.

Definition 5.5:For f ∈ Bn, let

| f | = | { α ∈{0, 1}n : f (α) = 1 } |

For H ⊆ Bn and f ∈ Bn the distanceof f from H is given by

ρ(f , H) = min { | f ⊕ g | : g ∈ H } (5.26)

A regular patternof depth-k, M, is a sequence,

M = < M0, M1 , . . . ,Mk ; Π1, Π2 , . . . ,Πk > (5.27)

where Mi ⊆ Bn, { xi , 1⊕ xi : 1≤ i ≤ n } ⊆ M0 and Πi : 2Mi−1 → Mi .

If H ⊆ Mi−1 then thediscrepancyof H with respect toMi−1,
δ (H , i) is,

The Basis {/\ , O+} 385

δ (H , i) = |Πi (H) ⊕
f ∈ H
* f | (5.28)

where *= ⊕ if i is odd and/\ otherwise. For a regular pattern,M, as
in (5.27) thediscrepancy ofM, denoted∆(M) is

∆(M) =
1≤ i ≤ k
max

H ⊆ Mi−1

max δ (H , i) (5.29)

Finally the outer cover of M is the set of functions comprisingMk. •

Comparing these with Definitions (3.12-13) the following lemma
is analogous to Lemma(3.15).

Lemma 5.9:For all regular patterns,M, of depth-k having outer cover
Mk and for all f ∈ Bn,

BD*
k(f) ≥

ρ(f , Mk)

∆(M)

Proof: Let S be any Λk formula realising f . With each sub-formula,
T, of S, whereT ∈Λi , we associate a functionf M

T ∈ Mi . Subsequently
fT will denote the function computed by a sub-formulaT, so that
fS = f .

For T ∈Λi , f T
M is defined inductively as follows:

f M
T = fT if i = 0

f M
T = Πi ({ f M

W : W ∈T }) i > 0
(5.30)

We claim that for eachT,

| f M
T ⊕ fT | ≤ BD*

k(T) ∆(M) (5.31)

f M
T is the "approximation" tofT when the computation byT is mod-

elled by a computation using the regular patternM. (5.31) asserts that
the number of points in{0, 1}n on which fT and its approximation

386 Bounded-DepthNetworks

differ can be bounded in terms of the discrepancy of the regular pat-
tern M, cf the role ofλ , δ − andδ + in the proof of Lemma(3.15).

(5.31) is established by induction oni , for T ∈Λi . The inductive
base,i = 0, is trivial since fT = f M

T and so the LHS of (5.31) is equal
to 0. Assuming (5.31) for all depths <i we show it holds for i also.
Clearly, the LHS of (5.31) is at most

V ∈T
Σ | f M

V ⊕ fV | + |
V ∈T
* f M

V ⊕ Πi ({ f M
V : V ∈T}) |

i.e the total number of differences introduced in the sub-formulae ofT
plus the number of new differences introduced.

From the Inductive Hypothesis, (5.28) and (5.29) this is at most,

V ∈T
Σ BD*

k−1(V) ∆(M) + ∆(M)

which is BD*
k(T) ∆(M) as claimed.

The lemma now follows from (5.26) sincef M
T ∈ Mk and so,

BD*
k(f) ≥

ρ(f , Mk)

∆(M)

We now define a regular pattern of depth-k for which large lower
bounds on distance and small upper bounds on discrepancy can be
proved.

P(d) denotes the linear space consisting of the set of formal
polynomials in <x1 , . . . ,xn > over GF(2) having degree at mostd.
Any g ∈ P(d) has the form,

g = c ⊕
l

i=1
⊕ mi

where mi is a monom of size at mostd and c ∈{0, 1}. It is natural to

The Basis {/\ , O+} 387

equate such polynomials with the Boolean functions they represent.

Recall the following two facts concerning this linear space:

\/- g, h ∈ P(d) g ⊕ h ∈ P(d) (5.32)

\/- c ∈{0, 1}, g ∈ P(d) c /\ g ∈ P(d) (5.33)

M = < M0 , . . . ,Mk ; Π1 , . . . ,Πk >

is defined as follows.

For some parameter, r, to be fixed subsequently set

M2 j = M2 j+1 = P(r j) \/- j ≥ 0 (5.34)

Πi will be defined so that

H ⊆ Mi−1

max δ (H , i) ≤ 2n−r (5.35)

When i is odd this is relatively easy; forH ⊆ Mi−1 simply set

Πi (H) =
f ∈ H
⊕ f (5.36)

From (5.32) and (5.34) we have Πi (H) ∈ Mi and from (5.28)
δ (H , i) = 0.

That Πi can be chosen to satisfy (5.35) wheni is even is
slightly harder to prove. This fact is established in,

Lemma 5.10:For any H ⊆ P(d) there is someg ∈ P(dr) such that
|

f ∈ H
/\ f ⊕ g | ≤ 2n−r .

Proof: (Paterson, 1986) For H ⊆ P(d) let h =
f ∈ H
/\ f and

388 Bounded-DepthNetworks

H * = {
f ∈ H
⊕ ef . ¬ f : ef ∈{0, 1} }

so that H * is the linear subspace spanned by{ ¬ f : f ∈ H }. Obvi-
ously for all q ∈ H * q /\ h = 0.

Now let,

Null = { α ∈{0, 1}n : h(α) = 0 }

We claim that \/- α ∈ Null

| { q ∈ H * : q(α) = 1 } | = | H * |/2 (5.37)

To see this note that,

h(α) = 0 ⇐⇒ −−−− f ∈ H s. t f (α) = 0

So for this f and any q ∈ H * , (q ⊕ ¬ f)(α) ≠ q(α) and q ⊕ ¬ f ∈ H *

since H * is a linear space. (5.37) is immediate from these two facts.

From (5.37) it is clear that for eachS⊆ Null we can find some
q ∈ H * for which,

| S∩ { β : q(β) = 1 } | ≥ | S|/2 (5.38)

Using (5.38) we can identify a sequence of functionsq1 , . . . ,qr in H *

(for any r ≥ 1), such that forg′ =
r

i=1
\/ qi it holds,

| ¬h /\ g′ | ≥ (1− 2−r) | ¬h| and g′ /\ h = 0 (5.39)

This follows since obviously we can construct a sequence of pairwise
disjoint sets,Defi , i = 1, 2 , . . . ,r for which

| Defi | ≥ | Null |/2i

The Basis {/\ , O+} 389

So from (5.38), for each 1≤ i ≤ r, there is someqi ∈ H * with which

| Defi ∩ { β : qi (β) = 1 } |≥ | Null |/2i+1

Settingg′ =
r

i=1
\/ qi , we hav e

| ¬h /\ g′ | ≥
1

2

r

i=1
Σ | ¬h |

2

= | ¬h | (1− 2−r)

Also h /\ (
r

i=1
\/ qi) =

r

i=1
\/ h qi = 0.

Lemma(5.10) follows by choosingg = ¬ g′ =
r

i=1
/\ ¬ qi . For with this

choice,g ∈ P(dr) and h ≤ g, i.e

g(α) = 0 ☞ g′(α) = 1 ☞ h(α) = 0

thus,

| h ⊕ g | = |{ α ∈{0, 1}n : h(α) = 0 and g(α) = 1}|

= | ¬h | − |{ β ∈{0, 1}n : ¬ h(β) = 1 and g′(β) = 1 }|

≤ | ¬h | − | ¬h /\ g′ | ≤ | ¬h |/2r

≤ 2n−r

since |¬ h | = | Null |≤ 2n.

Lemma(5.10) shows that fori = 2 j we can defineΠi to satisfy
δ (H , i) ≤ 2n−r for all H ⊆ Mi−1 = P(r j−1).

390 Bounded-DepthNetworks

Corollary 5.1: For all f ∈ Bn using the regular pattern,M, of depth-k
just defined

BD*
k(f) ≥

ρ(f , Mk)

2n−r

Proof: Immediate from Lemmas(5.9) and (5.10).

In order to prove the existence of a symmetric Boolean function
having large distance inM, Razborov (1986) introduces a linear map-
ping, R: Bn → MA,B; here MA,B is the set of Boolean matrices whose
rows are labelled with the elements ofA⊆ {0, 1}n and whose columns
are labelled with the elements ofB ⊆ {0, 1}n. Paterson (1986)
employs a simpler linear mapping which is used below. In what fol-
lows #c(α) denotes the number of positions inα ∈{0, 1}n which are
equal toc (c ∈{0, 1}) and for

α = < a1 , . . . ,an > ∈{0, 1}n

γα is the monotone Boolean function,

γα (Xn) =
i : ai = 1

/\ xi

Let A⊆ {0, 1}n, B ⊆ {0, 1}n. For α = < a1 , . . . ,an > ∈ A, and
β = < b1 , . . . ,bn > ∈ B define,

α ∗ β = < a1 /\ b1 , . . . ,an /\ bn >

i.e the bit-wise conjunction ofα and β .

The linear mappingR: Bn → MA,B is given by,

R(f)α ,β = f (α ∗ β) α ∈ A, β ∈ B

Lemma 5.11:

The Basis {/\ , O+} 391

i) If f ≤ ¬ Tn
d+1 and #1(α ∗ β) > d, for each α ∈ A, β ∈ B, then

R(f) = 0, the zero matrix.

ii) rank(R) ≤ 1.

Proof: (i) is obvious. For (ii) let ζ ∈ A and ξ ∈ B. Rζ ,ξ = 1 if and
only if,

δα ≤ δζ ∗ ξ

Therefore the row of R(γα) indexed by ζ consists entirely of 0’s
unlessδα ≤ δζ . If δα ≤ δζ then the column ofR indexed by ξ contains
the value γα (ξ) reg ardless of the value ofζ . It follows that all non-
zero rows ofR are identical establishing (ii).

Lemma 5.12:Let A= B = { α ∈{0, 1}n : #0(α) = s }, for some parameter
s to be fixed. If f ∈ Bn which satisfies,\/- α ∈{0, 1}n

#0(α) = s ☞ f (α) = 1

s< #0(α) ≤ 2s ☞ f (α) = 0
(5.40)

then R(f) has full row rank 

n

s


.

Proof: For eachα ∈ A, β ∈ B, Rα ,β = 1 if and and only ifα = β .

The significance of the linear mapping,R, is due to the fact that there
is a close connection between row rank and distance. Paterson (1986)
describes an elegant method of establishing this by exploiting the
properties of a simple linear transformation,T : Bn → Bn. Using the
notationα ≤ β as a shorthand forai ≤ bi \/- 1≤ i ≤ n, where

α = < a1 , . . . ,an > , β = < b1 , . . . ,bn > ∈{0, 1}n

T is defined by

T(α) =
β ≤ α
⊕ f (β) (5.41)

392 Bounded-DepthNetworks

The useful properties of this transformation are summarised in,

Lemma 5.13:

i) T = γα

ii) T = δα

iii) \/- f ∈ Bn, T = f

iv) f ∈ P(d) ☞ T≤ ¬ Tn
d+1

Proof:

i) T(ζ) =
β ≤ ζ
⊕ δα (β). Thus T(ζ) = 1 if and only if α ≤ ζ . The only

prime implicant of this function is the monom
i : ai = 1

/\ xi = γα .

ii) T(ζ) =
ξ ≤ ζ
⊕ γα (ξ)

=
α ≤ ξ ≤ ζ

⊕ 1 = δα (ζ)

The last equality holds since the interval { ξ : α ≤ ξ ≤ ζ } is either
empty or contains exactly 2t members.t = 0 in the latter case if and
only if ζ = α .

iii) Immediate from (i) and (ii) using the linearity ofT.

iv) From (i) and (ii) T transforms the productδα (Xn) to the monom,
obtained by deleting negated literals,γα (Xn); in the reverse direction
T replaces the monomγα by the productδα . Thus if g ∈ P(d) then

g =
r

i=1
⊕ mi , where mi is a monom containing at mostd variables, hence

T =
r

i=1
⊕ T

where T(mi) = δα i
for someα i . Each of these products is 0 for any

assignment containing more thand 1’s, and soT≤ ¬ Tn
d+1.

The Basis {/\ , O+} 393

Lemma 5.14: Tnn−s is such thatT satisfies (5.40) of Lemma(5.12).

Proof: T(α) =
β ≤ α
⊕ Tn

n−s(α). If #0(α) = s then every β ≤ α has

#0(β) ≥ s with equality if and only ifα = β . Thus eachβ <α has
#1(β) < n − s and so Tn

n−s(β) = 0 unless β = α . If #0(α) > s, then
#1(α) < n − s and thus,Tn

n−s(β) = 0 for every β ≤ α in this case.

Theorem 5.11:Let l =  k/2. If 2s+ r l < n then

BD*
k(Tn

n−s) ≥ 

n

s



2r−n

Proof: Let Tn
n−s be written as,

Tn
n−s =

φ ∈Φ
⊕ δφ ⊕ g

whereg ∈ P(r l).

Note that any f ∈ Bn can always be written in this form; simply use
the identity f ≡ (

α : f (α) = 1
⊕ δα) ⊕ 0.

With this, it follows that

h ∈ P(r l)
min |Tn

n−s ⊕ h | ≥ min |Φ | (5.42)

Now considerT, we hav e from Lemma(5.13) (i) and (iv),

T =
φ ∈Φ
⊕ γφ ⊕ g′

whereg′ ≤ ¬ Tn
r l +1.

Thus, sinceR = R⊕ R, from Lemma(5.11)(i),

R =
φ ∈Φ
⊕ R

and now from Lemma(5.11)(ii), Lemma(5.12) and Lemma(5.14) it

394 Bounded-DepthNetworks

follows that |Φ |≥ 

n

s


. (5.42) and Corollary(5.1) now yield the theo-

rem.

Corollary 5.2: For all constant,k≥ 3,

BD*
k(MAJn) = exp (Ω(n1/(k−2)))

Proof: Let r, s, l be as in Theorem(5.11) and setn= 2m− 2s. Con-
sider a minimalΛk formula, S, realising MAJn. Under the partial
assignment,π , which setsxi = 0 for each 1≤ i ≤ m − 2s, S|π computes
the functionTm

m−s. Thus,

BD*
k(MAJn) ≥ BD*

k(Tm
m−s)

Note that 2l − 1 ≥ k − 2. In Theorem(5.11) fix r =  m1/(2l−1)  and

s=  (m − r l − 1)/2. From the theorem,BD*
k(Tm

m−s) ≥ 

m

s



2r−m.

For p =
1

2
−

s

m
, it holds,

log






m

s



2r−m




= r − 2mp2/ loge 2+ O(mp3)

and this isΩ(r).

It follows that,

BD*
k(Tm

m−s) ≥ exp (Ω (m1/(k−2)))

Now the Corollary is established by observing thatm≥
n

1 + ε
for

some constantε > 0, thus BD*
k(MAJn) ≥ exp (Ω (n1/(k−2))) also.

395

5.6) Bibliographic Notes

Although it has not been discussed extensively above there is a con-
siderable literature covering the realisation of Boolean functions by
DNF. The use of Programmable Logic Arrays (PLAs) as a method of
building complex VLSI systems has led to some revival of interest in
this area. The classical DNF minimisation algorithms are those
described by Karnaugh (1953), McCluskey (1956) and Quine (1952,
1955). Other approaches are presented in Andreev (1983, 1984), Gim-
pel (1965), Kuznetsov (1983b), Nguen (1982) and (Rhyne et al.,
1977). Zhuravlev and Kogan (1985) consider DNF for functions with
large numbers of implicants. Arevalo and Bredeson (1978) and Young
and Muroga (1979) discuss issues relevant to PLA design. Zhuravlev
(1979) considers certain algorithms utilising DNF representations. Var-
ious results on the number of distinct DNFs within certain classes are
proved by Chukhrov (1982, 1984). Techniques for estimating the
complexity of DNF are presented in Mamatov (1979b) and
Sapozhenko (1968).

The ringsum expansion has not attracted the same volume of
work, however minimisation techniques for this normal form are con-
sidered by (Bioul et al., 1973), (Even et al., 1967), (Fleisher et al.,
1983), Jagadeesan and Chuang (1970), Mukhopadhay and Schmitz
(1970), Papakonstantinou (1979), Schmookler (1969) and Saluja and
Ong (1979).

The known results on monotone bounded-depth networks have
been superseded by the work of Razborov and Hastad; Boppana
(1986) and Yao (1983) had proved exponential lower bounds for
threshold functions; Valiant (1983) proves similar results for certain
clique functions when realised by depth-3 networks.

396 Bounded-DepthNetworks

Smolensky (1986) generalises Razborov (1986) by showing that
depth-k networks with ¬, \/ and mod p-gates (for p prime) must have
exponential size to compute themod− r functions for any r ≠ pm.
Razborov (1987) considers the realisation of Boolean functions, byΛk

formulae, for functions which are "complex" in the sense that related
combinatorial structures associated with the functions have interesting
extremal properties. The paper proves the existence of polynomial
size formulae for the functions examined.

A more powerful bounded-depth model, in which unbounded
fan-in threshold functions provide the basis operations, has been intro-
duced by Parberry and Schnitger (1985). As yet no non-trivial lower
bounds have been obtained for this.

A different model, in which arbitrary unbounded fan-in gates are
permitted, is considered by Hromkovic (1985) and Chandra et al.,
(1983). The latter paper proves small superlinear bounds forn-input,
n-output prefix functions.

396 PlanarNetworks

Chapter 6

Planar Networks

En toutechose il faut consid́erer la fin.

Jean dela Fontaine

Fables, III, 5

Le Renard et le boue

6.1) Introduction

In this, concluding, chapter we examine a network model which
imposes an, at first sight, rather artificial restriction: that the networks,
consisting of 2-input gates, do not contain any pair of wires which
cross. In graph-theoretic terms the undirected graph formed by the
nodes and their interconnecting wires is planar.a) In Chapter(4) it was
observed that much early work relevant to the study of formula com-
plexity was developed in terms of relay-contact schemes; a now obso-
lete technology. In contrast to this, the planar network restriction is of
interest because of close links between it and the complexity issues
pertaining to computational models of a recently proposed technology:
VLSI circuits. It is not the aim of this text to consider extensively
existing work on VLSI complexity. The reader interested in a detailed
examination of this topic should consult Ullman (1984). Background
on VLSI circuits may be found in Mead and Conway (1980). We will

a) A more rigorous technical formulation of the term planar network is given subse-
quently at the start of Section(6.2)

Introduction 397

be content to outline the relationship between planar network com-
plexity and one class of VLSI models.

Below, in Section(6.2) some results connecting planar and com-
binational networks are presented. Section(6.3) considers asymptoti-
cally matching upper and lower bounds on the size of planar networks
realising any Boolean function. The lower bound is from McColl
(1985a); the upper bound from McColl and Paterson (1987). A brief
overview of VLSI models and their relation to planar networks is
given in Section(6.4) which also examines some lower bound results.

6.2) Relations between Planar and Combinational Complexity

In what follows to avoid unnecessary verbiage we say thatv is a ter-
minal node of a network S if v is an input or an output ofS.

Definition 6.1: Let S be an Ω-network (Ω ⊆ B2) computing some
function f ∈ Bn with I = < i1 , . . . ,in > the set of input nodes ofS and
t the unique output node. Supposeπ is a finite region of the plane
with π bounded by a simple, closed curve γ . An embedding,ρ, of S
onto π is specified by 2 mappings,PLACE and ROUTE. PLACE is
an injective mapping associating each node,v, of S with some point
PLACE(v) on π ; if v is a terminal node thenPLACE(v) must lie on
the bounding curve γ , otherwise PLACE(v) must be properly con-
tained withinπ , i.e not on the boundary. ROUTE is also injective and
maps wires <v, w > of S onto simple connected curves inπ in such a
way that ROUTE(< v, w >) has one endpoint located atPLACE(v)
and one endpoint located atPLACE(w). With these two exceptions,
ROUTE(< v, w >) contains no pointα such thatPLACE(u) = α for
any node u of S.

If ζ = < z1, z2 , . . . ,zn+1 > is a giv en ordering of the terminal
nodes ofS, then an embeddingρ respectsζ if the terminal nodes of

398 PlanarNetworks

S occur in the cyclic order given by ζ for ρ(S). •

Definition 6.2: Let S be an Ω-network and ζ be the ordering
< x1 , . . . ,xn, t > of the terminal nodes ofS. S is a planar Ω-network
if and only if there exist a region π with boundaryγ , as in Defini-
tion(6.1), and an embeddingρ = (PLACE, ROUTE) of S onto π
which respectsζ and such that: for all distinct pairs of wires <v, w >
and <h, u> in S the curves PLACE(< v, w >) and PLACE(< h, u >)
have no points of π in common, except possibly endpoints.•

With this formalism established we can introduce the particular com-
plexity measures which are considered in this chapter.

PCΩ(S) denotes the number of gates in the planarΩ-network S. For
f ∈ Bn

PCΩ(f) = min { PCΩ(S) : S realises f}

If f is not computable by a planarΩ-network then the quantity
PCΩ(f) is undefined. As previously ifΩ = B2 then we use simply
PC(S) and PC(f) to denote these measures. Similarly in this case
we refer to planar networks rather than planarΩ-networks.

With the exception of the following proof, any planar network
will be considered as already being embedded to conform to the defi-
nition above. For any gate, g, of a planar network we distinguish the
two nodes supplying the inputs ofg as theleft input node,Left(g),
and theright input node,Right(g). Left(g) is found by considering
g as a single output gate and rotating the output wire clockwise;
Left(g) is the first input ofg encountered.

The following result establishes two important facts: thatPC(f)
is always well defined, i.e every f ∈ Bn can be computed by a planar
network; and thatPC(f) is "not much greater" thanC(f).

Relating Planar and Combinational Complexity 399

Theorem 6.1: (Lipton and Tarjan, 1980) For all f ∈ Bn,
PC(f) = O(C(f)2).

Proof:b) Let f ∈ Bn and S be a minimal combinational network realis-
ing f . Consider the following, not necessarily planar, embedding of
S onto the real plane.

Partition the nodes ofS into levels L0 = < x1 , . . . ,xn > , . . . , LD

as described in Chapter(1).

The PLACE component of the embedding maps nodes,v of S,
to points (xv, yv) of R2. All nodes v in level Li are mapped to posi-
tions (xv, yi). In this yi > yi+1 for all 0≤ i < D(S) and for i = 0 the
input nodes have the x co-ordinate set so as to respect the left to right
ordering <x1 , . . . ,xn >. The wires ofS are embedded as straight lines
connecting nodes. It is assumed that thex-coordinates of nodes are
configured so that no embedded wire intersects with an embedded
node (other than at endpoints) and that for any giv en point of R2

which is not the image of a node, at most 2 wires cross it.

It should be clear that the embedding described above can be
constructed for any network S. This embedding has the following
properties.

E1) A simple closed curve, γ , can be drawn so that all terminal
nodes lie onγ , these occurring in the prescribed cyclic order.
FurthermoreS is embedded onto the region π enclosed byγ .

E2) Sinceall wires are straight line segments, any pair of wires have
at most one point in common, other than end-points.

(E1) and our construction establish that an embedding respecting the
correct cyclic order has been defined. This embedding may not be

b) Lipton and Tarjan (1980) does not give as pedantic a description of the embedding
process as our proof does. The reason for the detailed presentation is explained follow-
ing the theorem proof.

400 PlanarNetworks

planar, howev er since S contains exactly 2C(f) wires it follows from
(E2) that there are at most

C(f) (2C(f) − 1) = O(C(f)2)

pairs of wires which cross. If we re-impose direction on the embed-
ded wires then a typical crossing appears similar to that depicted in
Figure(6.1).

Crossing Environment

Figure 6.1

To complete the proof it suffices to show how any crossing may be
simulated by a small planar network. This is accomplished by the net-
work of Figure(6.2).

From the properties of⊕ it is clear that res(gv) = res(u) and
res(gu) = res(v) in Figure(6.2).

Now noting that all edges in the embedding are directed "down-
wards", since it has been constructed to respect the partition ofS into
levels, the action of replacing each crossing by the crossover network

Relating Planar and Combinational Complexity 401

Planar Crossover Network

Figure 6.2

of Figure(6.2) does not introduce any directed cycles. The new
embedding, which results by replacing each crossing pair, is a planar
realisation of some combinational network, T, computing f . Thus,

PC(f) ≤ PC(T) ≤ 3C(f) (2C(f) − 1) + C(f)

= 6C(f)2 − 2C(f)

= O(C(f)2)

402 PlanarNetworks

To see why some care must be exercised in constructing the initial
embedding ofS used in the theorem proved above, consider the sub-
network embedded as in Figure(6.3).

Figure 6.3

Suppose the crossing atα is directly simulated by the network
of Figure(6.2) without any other changes being made to the embed-
ding. This would result in the scheme depicted in Figure(6.4).

The new sub-network, although clearly planar, is not admissible
since the nodes <a, gd, d > constitute a directed cycle. Thus in con-
structing a planar realisation it is not sufficient merely to remove all
crossings from an arbitrary embedding because this may introduce
cycles.

One could define an alternative model, superficially similar to
the planar restriction, in which the cost of a given network embedding

Relating Planar and Combinational Complexity 403

Figure 6.4

includes the total number of crossing pairs as well as the number of
gates. Formally given a network S and ρ = (PLACE, ROUTE), an
embedding ofS a complexity measureXΩ is defined as:

XΩ(S, ρ) = CΩ(S) + | { (v, w) : ROUTE(v) crosses ROUTE(w) } |

In this v and w are distinct wires inS. For f ∈ Bn

XΩ(f) =
ρ

min
S

min { XΩ(S, ρ) : S computes f}

Obviously XΩ(f) ≤ PCΩ(f). Noting behaviour such as that depicted
in Figures(6.3, 6.4) McColl (pers. comm.) has posed the following
question.

404 PlanarNetworks

Open Problem: Does there exist any family, [fn], of Boolean func-
tions for whichPCΩ(f) is defined and such that

XΩ(f) = o(PCΩ(f)) ? •

No examples of this are known, but it has yet to be proved that
XΩ(f) = Θ(PCΩ(f)), even in the caseΩ = B2.

Theorem(6.1) uses a basis of 2-input⊕-gates to implement a
planar crossover network; a planar network with ordered inputs
< x, y > and ordered outputs <y, x>. McColl (1981) completely char-
acterises those basesΩ ⊆ B2 from which such crossover networks can
be constructed.

Theorem 6.2: (McColl, 1981) A planar crossover can be constructed
from a basisΩ ⊆ B2 if and only if at least one of the following holds:

i) Ω is complete.

ii) Ω ∩ { ⊕, ⇐⇒ } ≠ ∅.

iii) { /\ , ☞, ☞} ⊆ Ω.

iv) { \/ , ☞, ☞} ⊆ Ω.

Proof: (Outline) It is easy to verify that any basis satisfying one of
the conditions above permits a planar realisation of⊕ or ⇐⇒. This
can then be used in the scheme of Figure(6.2) to construct a planar
crossover. The proof of necessity reduces to considering the sets

S1 = { /\ , \/ , ☞ }

S2 = { /\ , \/ , ☞}

S3 = { /\ , ☞, ☞ }

S4 = { /\ , \/ , ☞ }

S5 = { /\ , \/ , ☞}

S6 = { \/ , ☞, ☞}

Relating Planar and Combinational Complexity 405

where for eachk (1≤ k≤ 6) and any Ω ⊆ Sk it may be shown that a
planar crossover is not constructible. The argument used to establish
this considers the ordered sequences of 2-input functions that may be
obtained as outputs of planar networks over such bases and proves
that given the ordered inputs <x, y > the order cannot be reversed in
any admissible output sequence.

6.3) Bounds on Planar Network Complexity

As with the network forms examined in earlier chapters asymp-
totically matching upper and lower bounds on

PC(Bn) = max{ PC(f) : f ∈ Bn }

have been proved. This section presents both of these results, which in
combination establish that

PC(Bn) = Θ(2n) (6.1)

the lower bound holding for almost alln-input functions. Comparing
this lower bound with the upper bounds of Theorem(2.7) and Theo-
rem(4.2) it may be seen that in general planar networks are less effi-
cient than either combinational networks or formulae. This result is
from McColl (1985a) and employs Shannon’s counting argument in
conjunction with a technique for concisely encoding planar networks
containing exactly m gates. In deriving this we can restrict attention
to B̂n; those f ∈ Bn which are non-degenerate.

In order to improve the lower bound on planar network size
implied by Theorem(2.6) we need to show that there are significantly
fewer planar networks containing exactly m gates than there are com-
binational networks of sizem. To accomplish this McColl (1985a)
defines the following relations between nodes in a planar network.

406 PlanarNetworks

Let S be a planar network, with unique output nodet, and let N
be the set of nodes inS. For v, w in N we say thatv →→ w if and
only if v = w or there is a directed path fromv to w in S. Now sup-
pose thatv, w are in N but neither v →→ w nor w →→ v hold. In this
case define,

M(v, w) = { m ∈ N : v →→ m and w→→ m }

For any appropriate v and w, M(v, w) ≠ ∅ since t ∈ M(v, w). Fur-
thermore, sinceS is planar it cannot contain any subgraph homeomor-
phic to that of Figure(6.5).

Figure 6.5

So there is a unique gate µ(v, w) ∈ M(v, w) for which

v →→ µ(v, w) ; w →→ µ(v, w) ; \/- m ∈ M(v, w) µ(v, w) →→ m

We can now define an ordering relation⊂⊂∗∗ over the nodes,N of
S. For v, w in N v⊂⊂∗∗ w if and only if (6.2) or (6.3) below hold.

v →→ w (6.2)

Bounds on Planar Network Complexity 407









¬ (v →→ w or w →→ v)

and

v →→ Left(µ(v, w))

and

w →→ Right(µ(v, w))









(6.3)

Lemma 6.1:The relation⊂⊂∗∗ totally orders the nodes,N, of any planar
network S.

Proof: Exercise.

It is immediate from this lemma that we can assign to each node,u,
of an m-gate planar network S, a unique number, λ(u), with
1≤ λ(u) ≤ n + m, where

λ(u) = | { v ∈ N : v ⊂⊂∗∗ u } |

Clearly λ(t) = n + m.

Definition 6.3:Let N be the set of nodes in ann-input, m-gate planar
network S. The RL-specificationof S is the sequence ofn + m − 1
ordered pairs,

< R1, L1 > ; . . . ; < Rn+m−1, Ln+m−1 >

where

Ri = | { v ∈ N : λ(Right(v)) = i } |

Li = | { v ∈ N : λ(Left(v)) = i } |
•

Informally Ri (Li) is the total number of gates for which the node
labelled i by λ supplies the right (left) input. Obviously for each
1≤ i ≤ n + m − 1 we hav e Ri + Li > 0 since every node, except t, has
fan-out at least 1. In addition since every gate has exactly one left
input and exactly one right input it holds that

408 PlanarNetworks

n+m−1

i=1
Σ Ri =

n+m−1

i=1
Σ Li = m (6.4)

Lemma 6.2:Any RL-specification describes the graph structure of at
most one planar network.

Proof: Suppose the contrary. Let P be the RL-specification of 2 dif-
ferent n + m node graph structures,G and H say. Define G(k) to be
the structure consisting of the nodes:

λ−1(1) , . . . ,λ−1(k)

from G and the left-right ordered sequence of directed edges leaving
these nodes. Should an edge leaving a node in this set enter a gate
not in G(k) then the other endpoint is labelledr (l) according to
whether the edge forms theRight (Left) input of its destination gate.
The structureH(k) is defined analogously. We adopt the convention
of definingG(0) and H(0) as the empty graph.

Since G and H have distinct graph structures there must be
some value k, 1≤ k≤ n + m, for which

G(k − 1) = H(k − 1) ; G(k) ≠ H(k)

To prove the lemma it is sufficient to show that G(k) is solely deter-
mined by G(k − 1) and the RL-specification P. For then, since
G(0)= H(0), we have G(k) = H(k) for each 0≤ k≤ n + m, contradict-
ing the assumption thatG and H are distinct. Note thatG = G(n + m)
and H = H(n + m).

To obtain G(k) from G(k − 1) the node λ−1(k) has to be
added. Suppose that the ordered sequence of edges directed out of
G(k − 1) contains a consecutive pair labelled <l , r >. From the defini-
tion of ⊂⊂∗∗ the leftmost such pair from the input edges for the node
λ−1(k), which is a gate. ThereforeG(k) is formed by adding this

Bounds on Planar Network Complexity 409

gate and an ordered sequence ofRk + Lk edges directed out of it.
These edges do not enter any gate in G(k) and are labelled, in order,
with the sequence

< r , r , . . . ,r , l , l , . . . ,l >

there beingRk r’s and Lk l ’s. If no appropriate pair of edges is pre-
sent then, again from the definition of⊂⊂∗∗ , λ−1(k) is an input node
which is placed to the right ofG(k − 1), together withRk + Lk outgo-
ing edges labelled as before, to formG(k).

The argument above applies equally toH(k). Hence we conclude that
starting fromG(0)= H(0) and following the procedure above, using
P, results in two identical graph structures

G = G(n + m) = H(n + m) = H

Theorem 6.3:(McColl, 1985a) For almost allf ∈ Bn, for all ε > 0 and
n sufficiently large,

PC(f) ≥ 

1

8
− ε 


2n

Proof: We proceed by counting the number of distinct planar networks
with n inputs and exactly m gates. A planar network being completely
specified by describing its graph structure and the operation associated
with each gates, it follows that RL(n, m) 16m, where RL(n, m) is the
number of different RL-specifications forn-input m-gate planar net-
works, is an upper bound on this quantity.

Any RL-specification may be viewed as a pair of partitions of
m into n + m − 1 non-negative integers, cf (6.6) above. The total num-

ber of such partitions is

n + 2m − 2

m



hence

410 PlanarNetworks

RL(n, m) ≤ 

n + 2m − 2

m



2

It follows that the number of distinct planar networks withn inputs
and at mostM gates does not exceed

M

m=0
Σ 


n + 2m − 2

m



2

16m

Since M >>n this quantity is asymptotically



2M

M



2

16M ≤
c 28M

√ M

So if M ≤ 

1

8
− ε 


2n then the total number of different networks is

o(|Bn |) and this proves the theorem.

By using a more detailed counting argument McColl (1985a) shows
that the contant factor 1/8 may be increased to logβ 2 where

β =
5(√5− 1)

18− 8√5
. logβ 2 being 0.172618. . ..

Savage (1981) decribes an upper bound of (11/2)2n on PC(f),
asymptotically matching the lower bound of Theorem(6.3). We now
present a slightly better, although not optimal, construction based on
ideas mentioned in McColl (1985a).

Given any f ∈ Bn with arguments Xn = < x1 , . . . ,xn > define
functionsg0 and g1 in Bn−1 with arguments <x1 , . . . ,xn−1 > by,

g0 = f |xn := 0(x1 , . . . ,xn−1)

g1 = g0 ⊕ f |xn := 1(x1 , . . . ,xn−1)

Bounds on Planar Network Complexity 411

It is trivial to verfiy that for any f ∈ Bn

f = g0 ⊕ (g1 /\ xn) (6.5)

We may employ relation (6.5) as the basis of a recursive construction
yielding a planar network forf . This is that network which results by
simulating each crossing in the network of Figure(6.6) with the
crossover previously described.

Figure 6.6

Theorem 6.4:For all f ∈ Bn, PC(f) ≤ 4. 2n.

412 PlanarNetworks

Proof: Consider the network of Figure(6.6). Assuming that the sub-
functions, f |xn := 0 and f |xn := 1 are both realised by planar networks,
using the construction recursively, the only crossings that occur are
those which arise by placing the inputs for the networks computing
these subfunctions. The total number of crossings arising in this way

is exactly
n−2

k=1
Σ k = (n − 1)(n − 2)/2. Each of these crossings is simulated

by the 3 gate crossover network.

Let an denote the total number of gates in the final network; obvi-
ously PC(f) ≤ an. From Figure(6.6) and the fact that each crossing is
simulated by a 3 gate network, it is immediate that the recurrence
relation below describes the behaviour ofan.

an = 2 an−1 +
3 (n − 1) (n − 2)

2
+ 3

or equivalently

an − 2an−1 =
3 (n − 1) (n − 2)

2
+ 3 (6.6)

Relations such as (6.6) have a general solution of the form,

an = A2n + c2 n2 + c1 n + c0 (6.7)

For some constantsA, c2, c1 and c0.

Combining (6.6) with (6.7) and equating coefficients of nk, for
0≤ k≤ 2 we obtain

c2 = c1 = − 3/2 ; c0 = − 6

Hence,

an = A2n −
3n2

2
−

3n

2
− 6 (6.8)

Bounds on Planar Network Complexity 413

To obtain the value ofA note thata2 = 1; any 2-input Boolean func-
tion can be realised using a single gate, the resulting network clearly
being planar. Substituting this is (6.8) gives A= 4 hence,

an = 4 . 2n −
3n2

2
−

3n

2
− 6

and hencePC(f) ≤ 4. 2n as claimed.

By computer analysis McColl and Paterson (1987) establish that for
all f ∈ B4, PC(f) ≤ 10. By combining this new boundary condition
with a more sophisticated recursive implementation of relation (6.5)
they obtain the best upper bound known to date:PC(f) ≤ (61/48) 2n.

In summary the results of McColl (1985a) and (McColl and
Paterson, 1987) establish that

0. 172 . 2n ≤ PC(Bn) ≤ 1. 271 . 2n

6.4) Planar Networks and VLSI Circuits

Thompson (1980) pioneered the systematic study of VLSI complexity,
presenting a formal model of VLSI circuits, defining complexity mea-
sures based upon this and developing techniques for proving lower
bounds on these with respect to computationally interesting functions
such as sorting. The work of Brent and Kung (1981), Vuillemin
(1980) and (Lipton and Sedgewick, 1981) produced variants of
Thompson’s model and gav e rise to further lower bound results.

The largest of these bounds were quadratic, in the number of
inputs and outputs, and referred to the productAT2; here A is some
measure of the area (amount of silicon) required to realise the func-
tion by a VLSI chip;T an interpretation of the time taken. However
the torrent ofAT2 = Ω(n2) results produced between 1980 and 1981

414 PlanarNetworks

has not continued to the present and now this particular stream of
VLSI theory appears to have dried up.

One can attempt to account for the current lack of interest in
such results in a number of ways; that existing methods are incapable
of producing lower bounds ofω (n2) and no progress has been made
in constructing more powerful approaches affords only a partial expla-
nation - we have seen that a similar block exists in proving superlin-
ear lower bounds on combinational complexity but there has continued
to be some activity within the complexity theory of Boolean networks
- howev er two other reasons could be proposed. Firstly, research into
VLSI complexity theory has diversified over a number of related areas
e.g the study of formal models of parallel computation (see Gibbons
and Rytter (1988) for a survey of this field), although arguably this is
a consequence rather than a cause. The second reason may be the
close connection exhibited betweenAT2 lower bounds and lower
bounds on planar network size in Savage (1981). Savage, building on
work of Lipton and Tarjan (1979, 1980), unified a number of results
on VLSI complexity and established that any lower bound on planar
network size held also for the measureAT2. In many cases the net-
work lower bound was easier to derive; compare the bound on integer
multiplication given below with the sophisticated analysis required to
obtain theAT2 bound directly (Brent and Kung, 1981).c)

A VLSI chip may be viewed as a set ofν layers, each layer
containing gates and wires. If two wires cross they must lie on differ-
ent layers. A constant parameter called theminimum feature width,
denotedλ , controls certain characteristics of the embedding of gates
and wires into layers: each wire must be of width at leastλ and

c) This comparison is slightly unfair since Brent and Kung produce a lower bound on
the productAT2α for all α ≥ 0; Savage correlates Area-Time products with planar net-
work size only forα = 1 in this case.

Planar Networks and VLSI Circuits 415

separated from any other wire by a space of widthλ . Any gate occu-
pies area at leastλ2. The chip realises a sequential machine, thus the
output of a gate at some timet may provide the input of some other
gate at time t + 1. For the computation of a functionf ∈ Bn,m we
assume a chip has exactly n input ports and m output ports; the input
values being supplied exactly once.A denotes the chip area, thus
A= p λ2 for some value p. T denote the number of iterations taken
for the computation to complete. Savage (1981) describes how an
equivalent combinational network can be constructed by breaking
feedback loops and usingT copies of a chip in sequence; the inputs
for the t + 1 copy being supplied by the outputs of gates on thet’th
copy. From this method we have,

Theorem 6.5:(Savage, 1981) For allf ∈ Bn,m,

C(f) ≤ ν (A/λ2) T(f)

Theorem 6.6:(Savage, 1981) For allf ∈ Bn,m

PC(f) = O(AT2(f))

Proof: (Outline) Given any VLSI circuit realising f in area A and T
iterations theT copies, in the construction described above, may be
embedded so that the total number of crossing wires isO(AT2). In
combination with Theorem(6.5) this gives the upper bound.

Theorem(6.6) shows that lower bounds on the Area-Time product can
be deduced from lower bounds on planar network size. To conclude
this chapter we describe a general approach to proving such bounds
and illustrate its application to integer multiplication.

An important tool in all existing lower bound approaches is the
following well-known result due to Lipton and Tarjan (1979).

416 PlanarNetworks

Theorem 6.7: (Planar Separator Theorem) Let G(V, E) be an n-vertex
planar graph in which each vertex v ∈V is assigned a non-negative
cost, c(v), and let wt(G) =

v ∈V
Σ c(v). There is a partition ofV into 3

sets,A, B andC satisfying the following properties.

i)
v ∈ A
Σ c(v) ≤

2 wt(G)

3
.

ii)
v ∈ B
Σ c(v) ≤

2 wt(G)

3
.

iii) | C | ≤ √ 8n .

iv) A and B are separated by C;that is every path from a vertex in A
to a vertex in B must go through some vertex in C.

Lipton and Tarjan (1980) described how this result could be
applied to obtain quadratic bounds on the planar network complexity
of certainm-output functions.

Suppose we wish to prove a lower bound for somef ∈ Bn,m.
Consider any planar network realisingf . Assign unit cost to some
subsetV of the input nodes and some subsetW of the output nodes.
To all other nodes assign cost 0. Applying the planar separator theo-
rem we can subsequently identify collectionsX′ ⊆ V, Y′ ⊆ W which

are separated by some set of gates C. Now |C | ≤ √ 8(PC(f) + n)
and if some subfunction off , g : X′ → Y′ has sufficiently many points
in the image of its domain then we may be able to apply the pigeon-
hole principle to argue that |C |= Ω(n). If this is so then it follows
that PC(f) = Ω(n2).

Of course in order for this approach to be successful the struc-
ture of f must be such that an appropriate subfunction,g, can always
be identified regardless of which variables result inX′ andY′.

Planar Networks and VLSI Circuits 417

A class of suitable functions has been identified by Savage.

Definition 6.4: Let f ∈ Bn,m with input variables Xn and outputs
Ym = < y1 , . . . ,ym >. Let V ⊆ Xn and W ⊆ Ym. f has aw-flow (with
respect toV ∪W) if and only if: for all partitions ofV ∪W into 2
sets A and B such that

| A | ≤
2(|V|+ |W|)

3
; | B | ≤

2(|V|+ |W|)

3

there exist X′ ⊆ A∩ V and Y′ ⊆ B ∩ W (or X′ ⊆ B ∩ V and
Y′ ⊆ A∩ W) such that for some assignment,π to Xn − X′ the subfunc-
tion g = f |π : X′ → Y′ has at least 2w points in the image of its domain.

f ∈ Bn,m has aw-flow if appropriate subsetsV andW exist. •

Theorem 6.8:(Savage, 1981) If f ∈ Bn,m has aw-flow then

PC(f) ≥
w2

8
− O(n + m)

Proof: Let f ∈ Bn,m have a w-flow with respect to subsetsV of Xn

and W of Ym. Consider an optimal planar network, T, realising f . It
is convenient to make a minor modification toT in order to simplify
the proof; arrange that every input nodexi of V has fanout exactly
one, every output nodey j of W has fanin exactly one and that every
path from any such input to any such output contains at least one
other node. These alterations can be carried out using at mostn + m
extra gates. S will denote the network resulting by modifyingT in
this way.

Assign unit cost to each node inV ∪W and a cost of zero to
ev ery other node inS. Applying the Planar Separator Theorem parti-
tions the nodes ofS into 3 setsA′′, B′′ andC′′ which satisfy

418 PlanarNetworks

| A′′ ∩ (V ∪W) | ≤
2 |V ∪W|

3
(6.9)

| B′′ ∩ (V ∪W) | ≤
2 |V ∪W|

3
(6.10)

|C′′ | ≤ √ 8 (PC(S) + n) (6.11)

In addition A′′ and B′′ are separated byC′′. A′′ ∪ B′′ may not
contain every node in V ∪W since some of these may have been
allocated toC′′. Let U = C′′ ∩ (V ∪W). From the way S has been
constructed eachu ∈U has either fanin 1, if it is an output, or fanout
1, if it is an input node. Rearrange the partition so that the nodes in
U are distributed over A′′ and B′′ to preserve (6.9) and (6.10). This
rearrangement may result inA′′ and B′′ no longer being separated,
however this can only happen if the unique input (output),v, of some
nodeu ∈U is in A′′ and u is assigned toB′′ or vice-versa. Thesepa-
ration property can now be restored by moving v to C′′. Let A′, B′
and C denote the new partition which results after moving U out of
C′′ and additional nodes, as necessary, into C′′. Clearly (6.9), (6.10)
and (6.11) still hold for this new separating partition since |C | ≤ |C′′ |.
Additionally let

A = A′ ∩ (V ∪W) ; B = B′ ∩ (V ∪W)

A and B form a partition ofV ∪W satisfying the conditions of
Definition(6.4).d)

d) The restructuring ofT is required to ensure that the partition just described can be
constructed. Lipton and Tarjan (1980) proves lower bounds directly without this modifi-
cation, however the analysis used in the final stages of their proofs becomes more com-
plicated as a result.

Planar Networks and VLSI Circuits 419

S realises f and f has aw-flow, therefore, without loss of gen-
erality, we can find X′ ⊆ A∩ V, Y′ ⊆ B ∩ W and a partial assignment
π fixing Xn − X′ so that the subfunctiong = f |π : X′ → Y′ has at least
2w points in the image of its domain. Consider the sub-network ofS|π

containing only those nodes which are ancestors of nodes inY′. In
this sub-network, sinceX′ and Y′ are separated, every path from a
node in X′ must encounter a gate in C. It follows that if
< z1, z2 , . . . ,z|C| > is some ordering of the gates inC then over all
assignments toX′ there are at most 2|C| distinct values that this
sequence can take. However the values taken by these gates com-
pletely determine the values at the outputsY′. It follows that 2|C| ≥ 2w

thus |C|≥ w. Hence from (6.11) and our earlier observation that
|C|≤ |C′′| it follows thatPC(f) ≥ w2/8− O(n + m) as required.

Definition 6.5: Let f ∈ Bn+s,n which hasn data inputs, <x1 , . . . ,xn >;
s≥ 0 shifting inputs, <z1 , . . . ,zs >; andn outputs <y1 , . . . ,yn >. f is a
shifting functionif for all 0 ≤ k≤ n there is an assignment to the shift-
ing inputs with whichyi+k : = xi for each 1≤ i ≤ n − k. •

Theorem 6.9: Let f ∈ Bn+s,n be a shifting function. f has an
(n/18)-flow.

Proof: (Below we assume n is even). Let V = { x1 , . . . ,xn/2 } and
W = { yn/2+1 , . . . ,yn }. Consider any partition of V ∪W into two sets,
A and B, satisfying

| A | ≤
2n

3
; | B | ≤

2n

3

Let AX = A∩ V, AY = A∩ W, BX = B ∩ V and BY = B ∩ W.
Without loss of generality it may be assumed that |A |≤ | B | and
| AX |≥ | AY |. With these assumptions we therefore have

420 PlanarNetworks

n

3
≤ | A | ≤

n

2

and so |AX |≥
n

6
. In addition,

| BY | = n − | A | − | BX | ≥
n

6

Given xp ∈ AX and yq ∈ BY there is exactly one value r in the
range 1≤ r ≤ n/2 for which q = p + r . We call the triple <p, q, r > in
this case amatch. Since |AX |≥ n/6, |BY |≥ n/6 the total number a
possible matches is at leastn2/36. However there are onlyn/2 choices
for the value ofr so there must be some value l , 1≤ l ≤ n/2 which
forms a match with at leastn/18 pairs of indices inAX × BY. Thus for
this value ofl we can findk≥ n/18 inputsX′ = < xi1 , . . . ,xik > ⊆ AX for
which

Y′ = < yi1+l , . . . ,yik+l > ⊆ BY

Since f is a shifting function and none of the shifting inputs occur in
V the variables <z1 , . . . ,zs > may be fixed to realise a shift byl
places, the remaining inputs, aparts fromX′, can be fixed arbitrarily.
The resulting subfunctiong : X′ → Y′ has exactly 2|X′| points in the
image of its domain and since |X′ |≥ n/18 this proves the theorem.

Corollary 5.1: If f ∈ Bn+s,n is a shifting function then

PC(f) ≥
n2

648
− O(n)

Corollary 5.2: Let MULT ∈ B2n,2n−1 be the integer multplication func-
tion.

PC(MULT) ≥
n2

648
− O(n)

Planar Networks and VLSI Circuits 421

Proof: The first n inputs of MULT may be regarded as data inputs,
the remainingn inputs as shifting inputs. The sub-function formed by
considering only then least significant bits of the (2n − 1)-bit output
tuple defines a shifting function.

Bibliographic Notes

The proof of Theorem(6.3) can be readily adapted to show
X(f) = Ω(2n) for almost all f ∈ Bn. The "proof" in Mamatov (1975)
which purports to establishX{ /\ , \/ , ¬}(f) = O(2n/n) contains a number
of serious errors. McColl (1985a) further shows that Theorem(6.3)
continues to hold for more general forms of planar network in which
multiple copies of inputs are permitted, provided the total number of
input nodes allowed is o(2n/ logn). When O(2n/ logn) inputs nodes
are used the formula size upper bound of Theorem(4.2) applies.

Savage (1981) also improves the lower bound on the planar
complexity of Boolean Matrix Product originally given by Lipton and
Tarjan (1980), as well as transforming VLSI lower bounds of
Vuillemin (1980) to planar networks. Also in the field of VLSI com-
plexity, Kramer and Van Leeuwen (1983) obtain an analogue of
Lupanov’s results on combinational complexity for VLSI circuits.

Planar monotone networks were first considered in McColl
(1985b). There an exact value for the planar monotone complexity of
Tn

2 is obtained. It is also proved that Tn
k for 3≤ k≤ n − 2 cannot be

computed by networks (of 2-input gates) which are simultaneously
monotone and planar. Beynon and Buckle (1987) describe an effec-
tive procedure which decides if any giv en f ∈Mn is planar monotone
computable. Their results establish that

PC{ /\ , \/ }(f) = O(n4)

422 PlanarNetworks

for any f ∈Mn for which this is defined. The best lower bound for
this measure is

PC{ /\ , \/ }(Tn
2) = Ω(n2)

from McColl (1985b). At present no Shannon style counting argument
has been discovered.

⊃Εν δ’ ⊃επεσ’ ⊃Ωχεανω λαµπρον φαος ⊃ηελιοιο,
⊂Ελχον νυχτα µελαιναν ⊃επι ζειδωρον ⊃αρουραν

Illiad, viii, 485-6

1

Bibliography

[1] Abullaev, D.A; Yunosov, D: (1975) Symmetrical Boolean function decomposition;
Avtom. i Telemekh, 2, 12-13 (In Russian)

[2] Aho, A.V; Hopcroft, J.E; Ullman, J.D: (1974) The design and analysis of computer
algorithms; Addison-Wesley

[3] Ajtai, M: (1983) Σ1
1-formulae on finite structures; Ann. Pure and Appl. Logic, 24,

1-48

[4] Ajtai, M; Ben-Or, M: (1984) A theorem on probabilistic constant depth computa-
tions; Proc. 16th ACM Symposium on Theory of Computing, 471-474

[5] Ajtai, M; Komlos, J; Szemeredi, E: (1983) AnO(n log n) sorting network; Proc.
15th ACM Symposium on Theory of Computing, 1-9

[6] Alekseev, V.B: (1973) On the number ofk-valued monotonic functions; Doklady
Akademii Nauk SSSR, 208, 505-508 (In Russian) (Transl: Sov. Math.-Doklady, 14,
87-91)

[7] Alekseev, V.B: (1976) The decipherment of certain classes of monotone multivalued
functions; Z. Vysicl. Mat. Fiz., 16, 189-198 (In Russian)

[8] Alon, N; Boppana, R: (1986) The monotone circuit complexity of Boolean func-
tions; Combinatorica, 7, 1-22

[9] Alt, H: (1984) Comparison of arithmetic functions with respect to Boolean circuit
depth; Proc. 16th ACM Symposium on Theory of Computing, 466-470

[10] Andreev, A.E: (1983) On the synthesis of disjunctive normal forms which are close
to minimal; Sov. Math.-Doklady, 27, 265-269

[11] Andreev, A.E: (1984) On the problem of minimising disjunctive normal forms; Sov.
Math.-Doklady, 29, 32-36

[12] Andreev, A.E: (1985) A method of proving lower bounds on the complexity of
monotone Boolean functions; Doklady Akademii Nauk SSSR, 282, 1033-1037 (In
Russian) (Transl: Sov. Math.-Doklady, 31, 530-534)

[13] Andreev, A.E: (1986) A method of proving superquadratic lower bounds on the
complexity of Π-schemes; Vestn. Moscow Un-ta Series 1, Matematika Mechanika,
No. 6, 73-75 (In Russian)

[14] Andreev, A.E: (1987) A method of proving effective lower bounds on monotone
complexity; Algebra and Logic, T.26, 1, 3-26 (In Russian)

[15] Arevalo, Z; Bredeson, J.G: (1978) A method to simplify a Boolean function into a
near minimal sum-of-products for programmable logic arrays; IEEE Trans. Comput.,
C-27, 1028-1030

[16] Aslanjan, L.A: (1975) A method of recognition that is based on division into
classes by disjunctive normal forms; Kibernetika, 5, 103-110 (In Russian) (Transl:
Cybernetics, 11, (1976), 779-787)

[17] Avgustinovich, S.V: (1980) An approach to obtaining lower bounds on complexity
for Boolean functions; Metody Diskret. Analiz., 35, 104 (In Russian)

[18] Avizienis, A: (1961) Signed-digit number representations for fast parallel arithmetic;
IRE Trans. Electron. Computers, EC-10, 389-400

[19] Babai, L; Pudlak, P; Rodl, V; Szemeredi, E: (1987) Lower bounds to the complex-
ity of symmetric Boolean functions; Internal Report

2

[20] Baker, T; Gill, J; Solovay, R: (1975) Relativizations of theP = ?NP question;
SIAM Jnl. on Computing, 4, 161-173

[21] Baker, T; Selman, A: (1975) A second step toward the Polynomial Hierarchy; Proc.
17th IEEE Symposium on Foundations of Computer Science

[22] Barak, A; Shamir, E: (1976) On the parallel evaluation of Boolean expressions;
SIAM Jnl. on Computing, 5, 678-681

[23] Batcher, K.E: (1968) Sorting networks and their applications; Proc. AFIPS Spring
Joint Computer Conf., 32, 307-314

[24] Beame, P.W; Cook, S; Hoover, H.J: (1984) Log-depth circuits for division and
related problems; Proc. 25th IEEE Symposium on Foundations of Computer Sci-
ence, 1-6

[25] Berge, C: (1979) Graphs and Hypergraphs; North-Holland

[26] Berkowitz, S: (1982) On some relationships between monotone and non-monotone
circuit complexity; Technical Reoprt, Univ. of Toronto

[27] Beynon, W.M: (1984) Replaceability and computational equivalence for monotone
Boolean functions; Acta Informatica, 22, 433-449

[28] Beynon, W.M; Buckle, J: (1987) Monotone Boolean functions computable by planar
circuits; Theoretical Computer Science, 53, 267-279

[29] Bini, D; Pan, V. Ya: (1987) A logarithmic Boolean time algorithm for parallel poly-
nomial division; Inf. Proc. Letters, 24, 233-237

[30] Bioul, G; Davio, M; Deschamps, J.P: (1973) Minimization of ring-sum expansions
of Boolean functions; Philips Res. Rep., 28, 17-36

[31] Bloniarz, P: (1979) The complexity of monotone Boolean functions and an algo-
rithm for finding shortest paths in a graph; Ph.D Dissertation; Technical Report No.
238, Lab. for Computer Science, MIT

[32] Blum, N: (1984a) A Boolean function requiring 3n network size; Theoretical Com-
puter Science; 28, 337-345

[33] Blum, N: (1984b) AnΩ(n4/3) lower bound on the monotone network complexity of
n-th degree convolution; Theoretical Computer Science, 36, 59-70

[34] Blum, N; Seysen, M: (1984) Characterization of all optimal networks for a simulta-
neous computation of AND and NOR; Acta Informatica, 21, 171-181

[35] Boppana,R; Lagarias, J.C: (1986) One-way functions and circuit complexity; Struc-
ture In Complexity Theory, Springer-Verlag, Lecture Notes in Computer Science,
223, 51-65

[36] Boppana,R: (1986) Threshold functions and bounded-depth monotone circuits; Jnl.
of Comp. and Syst. Sci., 32, 222-229

[37] Born, R.C; Scidmore, A.K: (1968) Transformation of switching functions to com-
pletely symmetric switching functions; IEEE Trans. Computers, C-17, 596-599

[38] Borodin, A: (1977) On relating time and space to size and depth; SIAM Jnl. on
Computing, 6, 733-744

[39] Borodin, A; Munro, I: (1975) The computational complexity of algebraic and
numeric problems; American Elsevier, New York

[40] Breitbart, Y.Y: (1968) Comparison of the complexities of realisation of Boolean
functions by Automata and Turing machines; Doklady Akademii Nauk SSSR, 180,

3

1053-1055 (In Russian) (Transl: Sov. Phys.-Doklady, 13, 524-526)

[41] Breitbart, Y.Y; Reiter, B: (1975a) Algorithms for fast evaluation of Boolean expres-
sions; Acta Informatica, 4, 107-116

[42] Breitbart, Y.Y; Reiter, B: (1975b) A branch-and-bound algorithm to obtain an opti-
mal evaluation tree for monotonic Boolean functions; Acta Informatica, 4, 311-319

[43] Breitbart, Y.Y; Gal, S: (1978) Analysis of algorithms for the evaluation of mono-
tonic Boolean functions; IEEE Trans. Comput., C-27, 1083-1087

[44] Bremer, H: (1974) Upper and lower bounds for the complexity of Boolean func-
tions; Springer-Verlag, Lecture Notes in Computer Science, 33, 99-102

[45] Brent, R; Kuck, D.J; Maruyama, K: (1973) The parallel evaluation of arithmetic
expressions without division; IEEE Trans. Computers, C-22, 532-534

[46] Brent, R; Kung, H.T: (1981) The Area-Time complexity of binary multiplication;
Jnl. of the ACM, 28, 521-534

[47] Brown, W.G: (1966) On graphs that do not contain a Thompson graph; Canadian
Math. Bull., 9, 281-285

[48] Brustmann, B; Wegener, I: (1986) The complexity of symmetric functions in
bounded-depth circuits; Preprint

[49] Bublitz, S: (1986) Decomposition of graphs and monotone formula size of homoge-
neous functions; Acta Informatica, 23, 689-696

[50] Chandra,A.K; Fortune, S; Lipton, R: (1983) Lower bounds for constant depth cir-
cuits for prefix problems; Proc. 10th ICALP, Springer-Verlag, Lecture Notes In
Computer Science, 154, 109-117

[51] Chandra,A.K; Stockmeyer, L.J; Vishkin, U: (1984) Constant depth reducibility;
SIAM Jnl. on Computing, 13, 423-439

[52] Chiang, K-W; Vranesic, Z.G: (1983) A tree representation of combinational net-
works; IEEE Trans. Comput., C-32, 3, 315-319

[53] Chukhrov, I.P: (1982) On the number of irredundant disjunctive normal forms; Sov.
Math. Dokl., 25, 254-257

[54] Chukhrov, I.P: (1984) On the number of minimal disjunctive normal forms; Sov.
Math. Dokl., 29, 714-718

[55] Church, R: (1940) Numerical analysis of certain free distributive structures; Duke
Math. Jnl., 6, 732-734

[56] Commentz-Walter, B: (1979) Size-depth tradeoff in monotone Boolean formulae;
Acta Informatica, 12, 227-243

[57] Commentz-Walter, B; Sattler, J: (1980) Size-depth tradeoff in non-monotone
Boolean formulae; Acta Informatica, 14, 257-269

[58] Cook, S.A: (1971) The complexity of theorem proving procedures; Proc.3rd ACM
Symposium on Theory of Computing, 151-158

[59] Cook, S.A: (1974) An observation on time-storage trade-off; Jnl. of Computer and
System Sciences, 9, 308-316

[60] Cook, S.A: (1979) Deterministic CFLs are accepted simultaneously in polynomial
time and log squared space; Proc. 11th ACM Symposium on Theory of Computing,
338-345

4

[61] Cook, S.A: (1981) Tow ards a complexity theory of synchronous parallel computa-
tion; L’Ensiegnement Mathematique, 1-2, 99-124

[62] Cook, S.A; Hoover, H.J: (1985) A depth-universal circuit; SIAM Jnl. on Computing,
14, 833-839

[63] Dedekind, R: (1897) Uber Zerlegungen von Zahlen durch ihre grossten gemein-
samen Teiler; Reprinted in: Ges. Math. Werke II, Chelsea, N.Y (1969), 103-108

[64] Denenberg, L; Gurevich, Y; Shelah, S: (1983) Cardinalities definable by constant-
depth, polynomial-size circuits; Report TR-26-83, Aiken Computation Lab., Harvard
University

[65] Dudich, V.N: (1973) Synthesis of schemes of switching contacts; Kibernetika, 9,
21-25 (In Russian) (Transl: Cybernetics, 9, 392-396)

[66] Dunne, P.E: (1984a) Techniques for the analysis of monotone Boolean networks;
Ph.D Dissertation; Theory of Computation Report No.69, Univ. Of Warwick,

[67] Dunne,P.E: (1984b) Lower bounds on the monotone complexity of threshold func-
tions; In: Proc. of 22nd Annual Allerton Conf. on Communication, Control and
Computing, 911-920

[68] Dunne, P.E: (1984c) Some Results On Replacement Rules In Monotone Boolean
Networks; Theory Of Computation Report No.64, Univ. Of Warwick

[69] Dunne,P.E: (1985a) A 2.5n lower bound on the monotone network complexity of
Tn

3; Acta Informatica, 22, 229-240

[70] Dunne, P.E: (1985b) On monotone simulations of non-monotone networks; Report
CSR 85/7 Dept. of Computer Science, Univ. of L iv erpool

[71] Dunne, P.E: (1985c) Approximate replacement rules and pseudo-complementation;
Report CSR 85/9 Dept. of Computer Science, Univ. of L iv erpool

[72] Dunne,P.E: (1986) The complexity of central slice functions; Theoretical Computer
Science, 44, 247-257

[73] Dunne, P.E: (1987) Sympathetic bases and the complexity of realising Boolean
functions by networks involving non-monotone operations; Report CSR 87/4, Dept.
of Computer Science, Univ. of L iv erpool

[74] Edenbrandt,A: (1987) Chordal graph recognition is inNC; Inf. Proc. Letters, 24,
239-241

[75] Ehrenfeucht,A: (1975) Practical decidability; Jnl. of Computer and System Sci-
ences, 11, 392-396

[76] Elspas,B; Kautz, H.W; Stone, H.W: (1968) Properties of modular multifunctional
computer networks; Stanford Res. Inst, Menlo Park, California, Project 4641
(AFRCL), Final report

[77] Erdös, P; Spencer, J: (1974) Probabilistic methods in combinatorics; Academic
Press, New York

[78] Even, S: (1979) Graph Algorithms; Pitman

[79] Even, S; Kohavi, I; Paz, A: (1967) On minimal modulo 2 sums of products for
switching functions; IEEE Trans. Electron. Computers, 16, 671-674

[80] Fagin, R; Klawe, M; Pippenger, N.J; Stockmeyer, L: (1985) Bounded-depth, polyno-
mial size circuits for symmetric functions; Theoretical Computer Science, 36,
239-250

5

[81] Finikov, B.I: (1957) On a family of classes of functions in the logic algebra and
their realisation in the class ofΠ-schemes; Doklady Akademii Nauk SSSR, 115,
247-248 (In Russian)

[82] Fischer, M: (1974) The complexity of negation-limited networks; Springer-Verlag,
Lecture Notes in Computer Science 33, 71-82

[83] Fischer, M; Meyer, A; Paterson, M.S: (1982)Ω(n log n) lower bounds on the length
of Boolean formulas; SIAM Jnl. on Computing, 11, 416-426

[84] Fischer, M; Pippenger, N.J: (1979) Relations among complexity measures; Jnl. of
the ACM, 26, 361-381

[85] Fischer, M; Rabin, M.O: (1974) Super-exponential complexity of Presburger arith-
metic; In: Complexity of Computation (Ed: R.M.Karp)

[86] Fleisher, H; Tav el, M; Yeager, J.D: (1983) Exclusive-Or representation of Boolean
functions; IBM Jnl. Res. Dev., 27, 412-416

[87] Friedman,A.D: (1975) Logical Design Of Digital Systems; Pitman

[88] Friedman,J: (1986) ConstructingO(n log n) size monotone formulae for thek-th
threshold function ofn Boolean variables; SIAM Jnl. on Computing, 15, 641-654

[89] Furst, M; Saxe, J.B; Sipser, M: (1984) Parity, circuits and the polynomial Time
hierarchy; Math. Syst. Theory; 17, 13-27

[90] Galbiati, G; Fischer, M: (1981) On the complexity of 2-output Boolean networks;
Theoretical Computer Science, 16, 177-185

[91] Galil, Z; Paul, W: (1983) An efficient general purpose parallel computer; Jnl. of the
ACM, 2, 360-387

[92] Garey, M; Johnson, D: (1979) Computers and intractability - a guide to the theory
of NP-completeness; Freeman

[93] Gaskov, S.B: (1978) The depth of Boolean functions; Problemy Kibern., 34,
265-268 (In Russian)

[94] Gaskov, S.B: (1980) The complexity of realisation of Boolean functions by schemes
and formulas in bases consisting of continuous functions; Sov. Math. Doklady, 21,
186-190

[95] Gavrilov, M.A; Kuznetsov, O.P; Khazotskii, V.E: (1969) Description and analysis of
switching circuits with large numbers of input variables; Avtom. i Telemekh, 16,
108-115 (In Russian) (Transl: Autom. Remote Control, 16, 1643-1650)

[96] Gershkovich, Y.B; Poltervich, V.M: (1967) Nonrepeating superpositions of Boolean
functions of two variables; ibid, 5, 753-760 (In Russian) (Transl: ibid, 5, 109-152)

[97] Gibbons,A.M; Rytter, W: (1988) Efficient parallel algorithms; Cambridge Univer-
sity Press

[98] Gilbert, E.N: (1954) Lattice theoretic properties of frontal switching functions; Jnl.
Math. and Phys., 33, 57-97

[99] Gimpel, J.F: (1965) A method of producing a Boolean function having an arbitrarily
described prime implicant table; IEEE Trans. Computers, 14, 484-488

[100] Greene,C; Kleitman, D: (1976) Strong versions of Sperner’s theorem; Jnl. Combi-
natorial Theory, Series A, 20, 80-88

[101] Grigoriev, D.Y: (1976) Using the concepts of separability and independence to
obtain lower bounds on the complexity of circuits; Zap. Nauk. Sem. Leningrad

6

Otdel Mat. Inst. Steklov (LOMI), 60, 221-222 (In Russian)

[102] Gurevich, I.B; Zhuravlev, Y.U: (1974) Minimisation of Boolean functions and effec-
tive recognition algorithms; Kibernetika, 10, 16-20 (In Russian) (Transl: Cybernet-
ics, 10, 393-7)

[103] Hansel, G: (1964) Nombre minimal de contacts de fermeture necessaires pour
realiser une fonction Booleene symmetrique den variables; C.R Acad. Sci., Parise,
Groupe 1, 6037-6040

[104] Hansel,G: (1966a) Sur le nombre des fonctions Booleenes monotones den vari-
ables; ibid, 262 Series A, 1088-1090

[105] Hansel,G: (1966b) Construction d’un schema de contacts bipolaire pour une fonc-
tion Booleene isotone arbitrarie den variables; ibid, 263 Series A, 651-654

[106] Harper, L.H: (1975) A note on some classes of Boolean functions; Stud. Appl.
Math, 54, 161-164

[107] Harper, L.H; Hsieh, W.N; Savage, J.E: (1975) A class of Boolean functions with
linear combinational complexity; Theoretical Computer Science, 1, 161-183

[108] Harper, L.H; Savage, J.E: (1972) On the complexity of the marriage problem;
Advances in Mathematics, 9, 299-312

[109] Harrison,M.A: (1965) Introduction to switching and automata theory; McGraw-Hill

[110] Hastad,J: (1986) Almost optimal lower bounds lower bounds for small depth cir-
cuits; Proc. 18th ACM Symposium on Theory of Computing, 6-20

[111] Hennie, F.C; Stearns, R.E: (1966) Two-tape simulation of multitape Turing
machines; Jnl. of the ACM, 13, 533-546

[112] Hodes,L: (1970) The logical complexity of geometric properties in the plane; Jnl.
of the ACM, 17, 339-347

[113] Hodes,L; Specker, E: (1968) Lengths of formulas and elimination of quantifiers I;
in Contributions to Mathematical Logic, H.A.Schmidt, K.Schutte and H.-J.Thiele
(editors); North-Holland, 175-188

[114] Hoover, H.J; Klawe, M.M; Pippenger, N.J: (1984) Bounding fan-out in logical net-
works; Jnl. of the ACM, 31, 13-18

[115] Hopcroft, J.E; Karp, R.M: (1973) Ann5/2 algorithm for maximum matching in
bipartite graphs; SIAM Jnl. on Computing, 2, 225-231

[116] Hopcroft, J.E; Ullman, J.D: (1979) Introduction to automata theory, languages and
computation; Addison-Wesley

[117] Hromkovic, J: (1985) Linear lower bounds on unbounded fan-in Boolean circuits;
Inf. Proc. Letters, 21, 71-74

[118] Huynh, D.T: (1987) On solving hard problems by polynomial size circuits; Inf.
Proc. Letters, 24, 171-176

[119] Hyafil, L: (1976) Bounds for selection; SIAM Jnl. on Computing, 5, 109-114

[120] Hyafil, L; Kung, H.T: (1975) The complexity of parallel evaluation of linear recur-
rences; 7th ACM Symposium on Theory of Computing, 12-22

[121] Jagadeesan, M; Chuang, Y.H: (1970) Minimization of Boolean functions in mod-2
sum of products form; In: 1970 SW IEECO IEEE Conf., Rec., 473-477

[122] Jerrum,M; Snir, M: (1982) Some exact complexity results for straight-line compu-
tations over semirings; Jnl. of the ACM, 29, 874-897

7

[123] Jukna,S.P: (1986) Lower bounds on the complexity of local circuits; Proc. 12th
Symp. on Mathematical Foundations of Comp. Sci., Springer-Verlag, Lecture Notes
in Computer Science, 233, 440-448

[124] Jukna,S.P: (1987) Computations in lattices of partitions; Mathematical Logic and
its Applications, No. 5, 17-21

[125] Jung,H: (1985) Depth efficient transformations of arithmetic into Boolean circuits;
FCT ’85, Springer-Verlag, Lecture Notes in Computer Science, 199, 167-174

[126] Karatsuba,A; Ofman, Y: (1962) Multiplication of multidigit numbers on automata;
Doklady Akademii Nauk SSSR, 145, 293-294 (In Russian) (Transl: Sov. Phys.-Dok-
lady, 7 (1963), 595-596)

[127] Karchmer, M; Wigderson, A: (1987) Monotone circuits for connectivity require
super-logarithmic depth; Internal Report, Hebrew Univ., Jerusalem

[128] Karnaugh,M: (1953) The map method for synthesis of combinational logic circuits;
Trans. AIEE, 72, 593-598

[129] Karpova, N.A: (1975) Some remarks on the asymptotic behaviour of Shannon’s
functions; Problemy Kibernet., 30, 313-318 (In Russian)

[130] Karpovski, M.G; Moskalev, E.S: (1967) Realisation of a system of logical functions
by means of an expansion in orthogonal series; Avtom. i Telemekh, 12, 119-129 (In
Russian) (Transl: Autom. Remote Control, 12, 1921-1931)

[131] Kasim-Zade,O.M: (1980a) A measure of complexity of networks composed of
functional elements; Doklady Akademii Nauk SSSR, 250, 797-800 (In Russian)

[132] Kasim-Zade,O.M: (1980b) A measure of the complexity of schemes of functional
elements; Sov. Math. Dokl., 21, 203-206

[133] Khasin,L.S: (1969a) Complexity bounds for the realisation of monotonic symmetri-
cal functions by means of formulas in the basis{/\, \/, ¬}; Doklady Akademii Nauk
SSSR, 189, 752-755 (In Russian) (Transl: Sov. Phys. Dokl., 14 (1970), 1149-1151)

[134] Khasin,L.S: (1969b) On realisations of monotone symmetric functions by formulas
in the basis{/\, \/, ¬}; Problemy Kibernet., 21, 253-257 (In Russian) (Transl: Syst.
Theory Res., 21 (1971), 254-259)

[135] Khrapchenko, V.M: (1963) On a method of transforming a multiserial code into a
uniserial one; Doklady Akademii Nauk SSSR, 148, 296-299 (In Russian) (Transl:
Sov. Phys.-Doklady, 8, 8-10)

[136] Khrapchenko, V.M: (1967) Asymptotic estimation of addition time of a parallel
adder; Problemy Kibernet., 19, 107-122 (In Russian) (Transl: Syst. Theory Res., 19
(1970), 105-122)

[137] Khrapchenko, V.M: (1971a) On the complexity of the realisation of the linear func-
tion in the class ofΠ-circuits; Mat. Zametki, 9, 35-40, (In Russian) (Transl: Math.
Notes of Academy of Sciences of USSR, 9, 21-23)

[138] Khrapchenko, V.M: (1971b) Methods of determining lower bounds for the complex-
ity of Π-schemes; ibid, 10, 83-92 (In Russian) (Transl: ibid, 10, 474-479)

[139] Khrapchenko, V.M: (1972) The complexity of the realisation of symmetrical func-
tions by formulas; ibid, 11, 109-120 (In Russian) (Transl: ibid, 11 (1972), 70-76)

[140] Khrapchenko, V.M: (1976) Complexity of realisation of symmetric algebraic logic
functions on finite bases; Problemy Kibernet, 31, 231-234 (In Russian)

8

[141] Khrapchenko, V.M: (1978) Depth and delay in a network; Soviet Math., 19,
1006-1009

[142] Kleiman,M; Pippenger, N.J: (1978) An explicit construction of short monotone for-
mulae for the monotone symmetric functions; Theoretical Computer Science, 7,
325-332

[143] Kleitman, D: (1969) On Dedekind’s problem: the number of monotone Boolean
functions; Proc. AMS, 21, 677-682

[144] Kleitman,D: (1973) The number of Sperner families of subsets of ann element set;
Colloq. Math. Soc. Janos Bolyai, 10, Infinite and Finite sets, Keszthely, Hungary,
989-1001

[145] Kleitman,D; Markowsky, G: (1975) On Dedekind’s problem: the number of isotone
Boolean functions II; Trans. AMS, 213, 373-390

[146] Kloss, B.M: (1966) Estimates of the complexity of solutions of systems of linear
equations; Doklady Akademii Nauk SSSR, 171, 781-783 (In Russian) (Transl: Sov.
Math.-Doklady, 7, 1537-1540)

[147] Kloss, B.M; Malyshev, V.A: (1965) Estimates of the complexity of certain classes
of functions; Vestn. Moskva. Univ. Ser. 1, 4, 44-51 (In Russian)

[148] Knuth, D.E: (1973) Fundamental algorithms; Addison-Wesley

[149] Kodanpani, K.L; Seth, S.C: (1978) On combinational networks with restricted fan-
out; IEEE Trans. Comput., C-27, 309-318

[150] Korobkov, V.K: (1965) On monotone functions in the algebra of logic; Problemy
Kibernet., 13, 5-28 (In Russian)

[151] Korshunov, A.D: (1981) On the number of monotone Boolean functions; Problemy
Kibernet., 38, 5-108 (In Russian)

[152] Kramer, M; van Leeuwen, J: (1983) The VLSI complexity of Boolean functions;
Springer-Verlag, Lecture Notes in Computer Science, 171, 397-407

[153] Krichevskii, R.E: (1959) Realisations of functions by superpositions; ibid, 2,
123-138 (In Russian) (Transl: Problems of Cybernetics, 2 (1961), 458-477)

[154] Krichevskii, R.E: (1963) Complexity of contact circuits realising a function of logi-
cal algebra; Doklady Akademii Nauk SSSR, 151, 803-806 (In Russian) (Transl: Sov.
Phys.-Doklady, 8 (1964), 770-772)

[155] Kriegel, K; Waack, S: Lower bounds for Boolean formulae of depth 3 and the
topology of then-Cube; FCT ’85, Springer-Verlag, Lecture Notes in Computer Sci-
ence, 199, 227-233

[156] Kuznetsov, S.E: (1981) Combinatorial circuits with no null chains over the basis
{/\, \/, ¬}; Izvestija VUZ, Matematika, 5, 56-63 (In Russian)

[157] Kuznetsov, S.E: (1983a) On the complexity of the realisation of a sequence of
Boolean functions by formulas of depth 3 in the basis{/\, \/, ¬}; Ver. Met. Kib.; 19,
40-43 (In Russian)

[158] Kuznetsov, S.E: (1983b) On the lower estimate of the length of the shortest disjunc-
tive normal form for almost all Boolean functions; ibid, 19, 44-47

[159] Ladner, R.E; Fischer, M: (1980) Parallel prefix computation; Jnl. of the ACM, 27,
831-838

[160] Lai, H.C; Muroga, S: (1979) Minimal parallel binary adders with NOR (NAND)
gates; IEEE Trans. Comput., C-28, 648-659

9

[161] Lamagna,E.A: (1979) The complexity of monotone networks for certain bilinear
forms, routing problems, sorting and merging; IEEE Trans. Computers, C-28,
773-782

[162] Lamagna,E.A; Savage, J.E: (1974) Combinational complexity of some monotone
functions; Proc. 15th IEEE Symposiaum on Switching and Automata Theory,
140-144

[163] Langheld,E: (1976) Inroduction to threshold and majority logic; Elektronik, 25,
46-52 (In German)

[164] Lenz,K; Wegener, I: (1987) The conjunctive complexity of quadratic Boolean func-
tions; Internal Report FB Nr. 240, Abteilung Informatik, Univ. Dortmund

[165] Levey, S.Y; Paull, M.C: (1969) An algebra with application to sorting algorithms;
Proc. Princeton Conf. on Information Sci. and Systems, 285-291

[166] Lingas, A: (1979) Lower bounds for straight-line algorithms; (from Ph.D Disserta-
tion)

[167] Lipton, R; Sedgewick, R.E: (1981) Lower bounds for VLSI; Proc. 13th ACM Sym-
posium on Theory of Computing, 300-307

[168] Lipton, R; Tarjan, R.E: (1979) A separator theorem for planar graphs; SIAM Jnl. on
Applied Mathematics, 36, 177-189

[169] Lipton, R; Tarjan, R.E: (1980) Applications of a planar separator theorem; SIAM
Jnl. on Computing, 9, 615-627

[170] Long, D: (1986) The monotone circuit complexity of threshold functions; Unpub-
lished manuscript; Univ. Of Oxford

[171] Lupanov, O.B: (1958) On a method of circuit synthesis; Izvestia VUZ (Radiofizika),
1, 120-140 (In Russian)

[172] Lupanov, O.B: (1959) On the asymptotic bounds of the complexities of formulas
which realise logic algebra functions; Doklady Akademii Nauk SSSR, 128, 464-467
(In Russian) (Transl: Autom. Expr., 2 (1960), 12-14)

[173] Lupanov, O.B: (1960a) The complexity of realising functions of logical algebra by
means of formulas; Problemy Kibernet., 3, 61-80 (In Russian) (Transl: Autom.
Expr., 3 (1961), 30)

[174] Lupanov, O.B: (1960b) Complexity of formula realisation of functions of logical
algebra; Problemy Kibernet., 3, 61-80 (In Russian) (Transl: Problems of Cybernet-
ics, 3 (1962), 782-811)

[175] Lupanov, O.B: (1961a) Implementing the algebra of logic functions in terms of
bounded depth formulas in the basis Of{/\, \/, ¬}; Doklady Akademii Nauk SSSR,
136, 1041-1042 (In Russian) (Transl: Sov.-Phys.-Doklady, 6, 107-108)

[176] Lupanov, O.B: (1961b) On the principle of local coding and the realisation of func-
tions of certain classes of networks composed of functional elements; Doklady
Akademii Nauk SSSR, 140, 322-325 (In Russian) (Transl: Sov. Phys.-Doklady, 6,
750-752)

[177] Lupanov, O.B: (1961c) On the realisation of functions of logical algebra, by formu-
lae of finite classes (formulae of limited depth) in the basis{/\, \/, ¬}; Problemy
Kibernet., 6, 5-14 (In Russian) (Transl: Problems of Cybernetics, 6 (1965), 1-14)

[178] Lupanov, O.B: (1962a) On comparing the complexity of the realisations of mono-
tonic functions by contact networks containing only closing contacts and by

10

arbitrary contact networks; Doklady Akademii Nauk SSSR, 144, 1245-1248 (In
Russian) (Transl: Sov. Phys.-Doklady, 7, 486-489)

[179] Lupanov, O.B: (1962b) A class of circuits of functional elements; Problemy Kiber-
net., 7, 61-114 (In Russian)

[180] Lupanov, O.B: (1965a) The problem of realising symmetric functions in the algebra
of logic by contact schemes; Problemy Kibernet., 15, 85-99 (In Russian)

[181] Lupanov, O.B: (1965b) An approach to systems synthesis - The principle of Local
Coding; Problemy Kibernet., 14, 31-110 (In Russian)

[182] Lupanov, O.B: (1970) Effect of the depth of formulas on their complexity; Kiber-
netika, 2, 46-49 (In Russian) (Transl: Cybernetics, 6 (1970), 62-66)

[183] Lupanov, O.B: (1972) Circuits using threshold elements; Doklady Akademii Nauk
SSSR, 202, 1282-1291 (In Russian) (Transl: Sov. Phys.-Doklady, 17, 91-93)

[184] Lupanov, O.B: (1973) Complexity of the universal parallel-series network of depth
3; Trudy Matem. Inst. Steklov, 133, 127-131 (In Russian)

[185] Machtey, M; Young, P: (1978) An introduction to the general theory of algorithms;
North-Holland

[186] Madatjan,H.A: (1980) On correction of the totality of recognition algorithms by
schemes of functional elements; Sov. Math. Dokl., 22, 687-691

[187] Malyshev, V.A: (1967) The class of "almost all" functions with nonlinear complex-
ity in the class ofΠ-networks; Problemy Kibernet., 19, 299-306 (In Russian)
(Transl: Syst. Theory Res., 19 (1970), 305-312)

[188] Mamatov, Y.A: (1975) Asymptotic estimation of the complexity of plane logical
grids realising logic functions; Tekh. Kibernet., 13, 135-9 (In Russian) (Transl: Eng.
Cybernetics, 13, 107-110)

[189] Mamatov, Y.A: (1979a) Concerning a principle for obtaining lower bounds on the
complexity of formulas; Sov. Math.-Doklady, 20, 339-342

[190] Mamatov, Y.A: (1979b) On a principle for obtaining high (exponential for some
parameter values) lower bounds for the complexity of disjunctive normal forms;
Sov. Math.-Doklady, 20, 399-401

[191] Markov, A.A: (1957) On the inversion complexity of a system of functions; Dok-
lady Akademii Nauk SSSR, 116, 917-919 (In Russian) (Transl: Jnl. of the ACM, 5
(1958), 331-334)

[192] Masek, W.J: (1978) Some NP-complete set covering problems; (unpublished
manuscript)

[193] McCluskey, E.J: (1956) Minimization of Boolean functions; Bell Sys.Tech. Jnl.,
35, 1417-1444

[194] McColl, W.F: (1976) The depth of Boolean functions; Proc. 3rd ICALP, 307-321

[195] McColl, W.F: (1977) Some results on circuit depth; Ph.D Dissertation; Theory of
Computation Report No.18, Dept. of Computer Science, University of Warwick

[196] McColl, W.F: (1978a) The maximum depth of monotone formulae; Inf. Proc. Let-
ters, 7, 65

[197] McColl, W.F: (1978b) Complexity hierarchies for Boolean functions; Acta Informat-
ica, 11, 71-77

11

[198] McColl, W.F: (1978c) The circuit depth of symmetric Boolean functions; Jnl. of
Computer and System Sciences, 17, 108-115

[199] McColl, W.F: (1981) Planar crossovers; IEEE Trans. Comput., C-30, 223-225

[200] McColl, W.F: (1985a) Planar circuits have short specifications; Proc. 2nd Annual
Symposium on Theoretical Aspects of Computer Science, Springer-Verlag, Lecture
Notes in Computer Science, 182, 231-242

[201] McColl, W.F: (1985b) On the planar monotone computation of threshold functions;
ibid, 219-230

[202] McColl, W.F; Paterson, M.S: (1977) The depth of all Boolean functions; SIAM Jnl.
on Computing, 6, 373-380

[203] McColl, W.F; Paterson, M.S: (1987) The planar realization of Boolean functions;
Inf. Proc. Letters, 24, 165-170

[204] Mead,C; Conway, L: (1980) Introduction to VLSI systems; Addison-Wesley

[205] Mehlhorn,K: (1976) An improved lower bound on the formula complexity of con-
text-free recognition; Elektron. Informationsverarbeiten Kybern., 12, 523-4 (In Ger-
man)

[206] Mehlhorn, K: (1979) Some remarks on Boolean sums; Acta Informatica, 12,
371-375

[207] Mehlhorn, K; Galil, Z: (1976) Monotone switching networks and Boolean matrix
product, Computing, 16, 99-111

[208] Meyer, A; Stockmeyer, L: (1973) The equivalence problem for regular expressions
with squaring requires exponential space; Proc 13th IEEE Conf. on Switching and
Automata Theory

[209] Miller, R.E: (1965) Switching theory: Volume 1: Combinational circuits; Wiley

[210] Mirwald, R; Schnorr, C.P: (1987) The multiplicative complexity of quadratic
Boolean forms; Proc. 28th FOCS

[211] Moran, S: (1987) Generalized lower bounds derived from Hastad’s Main Lemma;
Inf. Proc. Letters, 25, 383-388

[212] Muchnik, B.A: (1970) Bound on complexity of realisation of a linear function by
formulas in certain bases; Kibernetika, 4, 29-38 (In Russian) (Transl: Cybernetics, 4
(1973), 395-406)

[213] Mukhopadhyay, A; Schmitz, G: (1970) Minimization of Exclusive-Or and Logical
Equivalence switching circuits; IEEE Trans. Comput., C-19, 132-140

[214] Muller, D.E: (1956) Complexity in electronic switching circuits; IRE Trans. Com-
puters, EC-5, 15-19

[215] Muller, D.E; Preparata, F.P: (1975) Bounds to complexities of networks for sorting
and for switching; Jnl. of the ACM, 22, 195-201

[216] Muroga, S; Lai, H.C: (1976) Minimization of logic networks under a generalised
cost function; IEEE Trans. Comput., C-25, 893-907

[217] Nakasima,A: (1936) The theory of relay circuits; Nippon Elec. Communication
Engineering, May, 197-226

[218] Neciporuk,E.I: (1960) On the complexity of superpositions in bases that contain
non-trivial linear formulas with zero weight; Doklady Akademii Nauk SSSR, 136,
560-563 (In Russian) (Transl: Sov. Phys.-Doklady, 6 (1961), 6-9)

12

[219] Neciporuk,E.I: (1961) Complexity of networks in containing non-trivial elements
with zero weights; ibid, 139, 1302-1303 (In Russian) (Transl: Sov. Math.-Doklady,
2, 1087-1088)

[220] Neciporuk,E.I: (1962a) On the complexity of networks in certain bases containing
non-trivial elements with zero weights; Problemy Kibernet., 8, 123-160 (In Russian)

[221] Neciporuk,E.I: (1963) On the synthesis of logical nets in incomplete and degener-
ate bases; Doklady Akademii Nauk SSSR, 155, 299-301 (In Russian) (Transl: Sov.
Phys.-Doklady, 9 (1964), 299-301)

[222] Neciporuk, E.I: (1964a) Synthesis of circuits from threshold elements; ibid, 154,
763-766 (In Russian) (Transl: Sov. Math.-Doklady, 5, 163-166)

[223] Neciporuk,E.I: (1964b) On self correcting gating circuits; ibid, 156, 1045-1048 (In
Russian)

[224] Neciporuk,E.I: (1964c) The synthesis of networks from threshold elements; Prob-
lemy Kibernet., 11, 49-62 (In Russian) (Transl: Autom. Expr, 7, 35-39)

[225] Neciporuk,E.I: (1965) Complexity of gating circuits which are realised by Boolean
matrices with undetermined elements; Doklady Akademii Nauk SSSR, 163, 40-42
(In Russian) (Transl: Sov. Phys.-Doklady, 10 (1966), 591-593)

[226] Neciporuk,E.I: (1966) A Boolean function; Doklady Akademii Nauk, 169, 765-766
(In Russian) (Transl: Sov. Math.-Doklady, 7, 999-1000)

[227] Neciporuk,E.I: (1969) On a Boolean matrix; Problemy Kibernet., 21, 237-240 (In
Russian) (Transl: Syst. Theory Res., 21 (1971), 236-239)

[228] Neciporuk,E.I: (1970) Realisations of disjunctions and conjunctions in monotone
bases; Problemy Kibernet., 23, 291-293 (In Russian) (Transl: Syst. Theory Res., 23
(1973), 305-307)

[229] Nguen,K.A: (1982) On some characteristics of algorithms for minimizing Boolean
functions; Sov. Math.-Doklady, 26, 741-745

[230] Nigmatullin, R.G: (1984) The complexity of universal functions and lower bounds
on the complexity; Izvestija VUZ, Matematika, 11, 10-20 (In Russian)

[231] Nigmatullin, R.G: (1985) Are lower bounds on the complexity lower bounds for
universal circuits?; FCT ’85, Springer-Verlag, Lecture Notes in Computer Science,
199, 331-340

[232] Ofman, Y: (1962) On the algorithmic complexity of discrete functions; Doklady
Akademii Nauk SSSR, 145, 48-51 (In Russian) (Transl: Sov. Phys.-Doklady, 7
(1963), 589-591)

[233] Ofman, Y: (1963) Approximate realisation of continuous functions by automata;
ibid, 152, 823-826 (In Russian) (Transl: Sov. Math.-Doklady, 4, 823-826)

[234] Okol’nishnikova, B: (1982) On the influence of negations on the complexity of a
realisation of monotone Boolean functions by formulae of bounded-depth; Metod.
Diskr. Anal., 38, 74-80 (In Russian)

[235] Orlov, V.A: (1971) The algorithmic unsolvability of the problem of finding the
asymptotic behaviour of the Shannon function in the realisation of boundedly deter-
ministic operators using networks in an arbitrary basis; Doklady Akademii Nauk
SSSR, 196, 1036 (In Russian) (Transl: Sov. Phys.-Doklady, 16, 81-83)

[236] Papakonstantinou, G: (1979) Minimization of modulo-2 sum of products; IEEE
Trans. Comput., C-28, 163-167

13

[237] Parberry, I; Schnitger, G: (1985) Parallel computation with threshold functions;
Report CS-85-32, Dept. of Comp. Sci., Penn. State Univ.

[238] Paterson, M.S: (1975) Complexity of monotone networks for Boolean matrix prod-
uct; Theoretical Computer Science, 1, 13-20

[239] Paterson, M.S: (1986) Bounded-depth circuits over {+, /\}; Preprint, Univ. of War-
wick

[240] Paterson, M.S: (1987) Improved sorting networks withO(logn) depth; Research
Report RR89, Univ. of Warwick

[241] Paterson, M.S; Valiant, L.G: (1976) Circuit size is nonlinear in depth; Theoretical
Computer Science, 2, 397-400

[242] Paterson, M.S; Wegener, I: (1986) Nearly optimal hierarchies for network and for-
mula size; Acta Informatica, 23, 217-221

[243] Paul, W: (1975) Boolean minimal polynomials and covering problems; Acta Infor-
matica, 4, 321-336

[244] Paul, W: (1976) Realizing Boolean functions on disjoint sets of variables; Theoreti-
cal Computer Science, 2, 383-396

[245] Paul, W: (1977) A 2.5n lower bound on the complexity of Boolean functions;
SIAM Jnl. on Computing, 6, 427-443

[246] Peterson,G.L: (1978) An upper bound on the size of formulae for symmetric
Boolean functions; Tech. Report No. 78-03-01, Dept. of Computer Science, Univ. of
Washington

[247] Pippenger, N.J: (1974) Short formulae for symmetric functions; IBM Report RC
5143, Yorktown Heights, NY

[248] Pippenger, N.J: (1976) The realization of monotone Boolean functions; Proc.8th
ACM Symposium on Theory of Computing, 204-210

[249] Pippenger, N.J: (1977) Information theory and the complexity of Boolean functions;
Math. Sys. Theory, 10, 129-167

[250] Pippenger, N.J: (1978) The complexity of monotone Boolean functions; Math. Sys.
Theory, 11, 289-316

[251] Pippenger, N.J: (1980) Pebbling with an auxiliary pushdown; IBM Research Report
RJ3012

[252] Pippenger, N.J; Valiant, L.G: (1976) Shifting graphs and their applications; Jnl. of
the ACM, 23, 423-432

[253] Post, E.L: (1941) Two-valued iterative systems of mathematical logic; Annals of
Math. Studies, 5, Princeton Univ. Press

[254] Pratt,V.R: (1975a) The effect of basis on size of Boolean expressions; Proc. 16th
IEEE Symposium on FOCS, 119-121

[255] Pratt,V.R: (1975b) The power of negative thinking in multiplying Boolean matrices;
SIAM Jnl. on Computing, 4, 326-330

[256] Preparata,F.P; Muller, D.E; Barak, A.B: (1977) Reduction of depth of Boolean net-
works with a fan-in constraint; IEEE Trans. Comput., C-26, 474-479

[257] Preparata,F.P; Muller, D.E: (1970) Generation of near-optimal universal Boolean
functions; Jnl. of Computer and System Sciences, 4, 93-102

14

[258] Preparata,F.P; Muller, D.E: (1971) On the delay required to realise Boolean func-
tions; IEEE Trans. Computers, C-20, 459-461

[259] Preparata,F.P; Muller, D.E: (1976) Efficient parallel evaluation of Boolean expres-
sions; ibid, C-25, 548-549

[260] Pudlak,P: (1983) Bounds for Hodes-Specker Theorem; Logic and Machines: Deci-
sion Problems and Complexity (Proceedings); Springer-Verlag, Lecture Notes In
Computer Science, 171, 421-445

[261] Pulatov, A.K: (1979) Lower bounds on the complexity of implementation of charac-
teristic functions of group codes byΠ-networks; Combinatorial-Algebraic methods
in Applied Mathematics, Gorki, 81-95 (In Russian)

[262] Pupyrev, E.I: (1977) On finding a redundant subformula in a Boolean function for-
mula; Prob. Control and Inf. Theory, 6, 243-7

[263] Quine, W.V: (1952) The problem of simplifying truth functions; American Mathl.
Monthly, 59, 521-531

[264] Quine,W.V: (1955) A way to simplify truth functions; American Mathl.Monthly,
62, 627-631

[265] Ramsey, F.P: (1930) On a problem of formal logic; Proc. London. Mathl. Soc., 30,
264-286

[266] Razborov, A.A: (1985a) Lower bounds on the monotone complexity of some
Boolean functions; Doklady Akademii Nauk SSSR, 281, 798-801; (In Russian)
(Transl: Sov. Math. Doklady, 31, 354-357)

[267] Razborov, A.A: (1985b) A lower bound on the monotone complexity of the logical
permanent; Mat. Zametki, 37, 887-901; (In Russian) (Transl: Mathem. Notes of the
Acad. of Sci. of the USSR, 37, 485-493)

[268] Razborov, A.A: (1986) Lower bounds on the complexity of bounded-depth networks
over the basis{/\, +}; Preprint, Steklov Institute, Moscow Univ. (In Russian);

Extended abstract in: Uspekhi Mat. Nauk, T.41 No.4 (1986), 219-220 (In Russian); (Transl:
Russian Math. Surveys (Comm. Moscow Mathl. Soc. section), 41 No.4 (1986), 181-182)

[269] Razborov, A.A: (1987) Bounded-depth formulae over the basis{/\, +} and some
combinatorial problems; "Complexity of algorithms and applied mathematical logic",
Series: Questions in Cybernetics (In Russian)

[270] Razborov, A.A: (1988a) On the method of approximations; Preprint, Steklov Insti-
tute, Moscow Univ.

[271] Razborov, A.A: (1988b) An application of matrix methods to the theory of lower
bounds on the complexity of computation; Preprint, Steklov Institute, Moscow Univ.
(In Russian)

[272] Red’kin, N.P: (1969a) Synthesis of two-layer threshold-element circuits; Avtom. i
Telemekh, 2, 82-91 (In Russian) (Transl: Autom. Remote Control, 2, 233-241)

[273] Red’kin, N.P: (1969b) Complexity of realisation of incompletely defined Boolean
functions; ibid, 9, 118-122 (In Russian) (Transl: ibid, 3 (1970), 1474-1477)

[274] Red’kin, N.P: (1970) Decompositional approach to circuit synthesis; ibid, 8, 84-88
(In Russian) (Transl: ibid, 1273-1277)

[275] Red’kin, N.P: (1971) Realisation of Boolean functions in a certain class of thresh-
old element circuits; ibid, 8, 102-107 (In Russian) (Transl: ibid (1972), 1252-1256)

15

[276] Red’kin, N.P: (1973) Proof of minimality of circuits consisting of functional ele-
ments; Problemy Kibernet., 23, 83-102 (In Russian) (Transl: Syst. Theo. Res, 23,
85-103)

[277] Red’kin, N.P: (1975) Realization of systems of conjunctions by contact circuits;
ibid, 30, 263-76 (In Russian)

[278] Red’kin, N.P: (1979) On the realisation of monotone Boolean functions by contact
circuits; ibid, 35, 87-110 (In Russian)

[279] Reznik, V.I: (1961) The realization of monotonic functions by means of networks
consisting of functional elements; Doklady Akademii Nauk SSSR, 139, 566-569 (In
Russian) (Transl: Sov. Phys.-Doklady, 6 (1962), 558-561)

[280] Reischer, C; Simovici, D: (1984) Graph functions of Boolean functions; IEEE
Trans. Comput., C-33, 97-99

[281] Rhyne, T.V; Noe, P.S; McKinney, M.H; Pooch, U.W: (1977) A new technique for
the fast minimization of switching functions; IEEE Trans. Comput., C-26, 757-764

[282] Riordan,J; Shannon, C.E: (1942) The number of two-terminal series-parallel net-
works; Jnl. Math. and Phys. 21, 83-93

[283] Rivest, R.L: (1977) The necessity of feedback in minimal monotone combinational
circuits; IEEE Trans. Comput., C-26, 606-607

[284] Romankevich, H.M; Yatsunov, A.I: (1974) On a method of representing Boolean
functions; Avtom. i Telemekh, 3, 30-35 (In Russian)

[285] Rudich,S; Berman, L: (1987) Optimal circuits and transitive automorphism groups;
IBM Research Report RC12688

[286] Ruzzo,W.L: (1981) On uniform circuit complexity; Jnl. of Computer and System
Sciences, 22, 365-383

[287] Saluja,K.K; Ong, E.H: (1979) Minimimization of Reed-Muller canonic expansion;
IEEE Trans. Comput., C-28, 535-537

[288] Sapozhenko, A.A: (1968) On the greatest length of a dead-end disjunctive normal
form for almost all Boolean functions; Mat. Zametki, 4, 649-658 (In Russian)

[289] Sarkisjan,G.Z: (1978) Effective computability of arithmetic predicates and functions
on the basis of schemes of functional elements; Izv. Akad. Nauk Armjan. SSSR Ser.
Mat., 13, 128-139 (In Russian, English summary)

[290] Savage, J.E: (1971) The complexity of decoders - Part II Computational work and
decoding time, IEEE Trans. Inf. Theory, IT-17, 77-84

[291] Savage, J.E: (1972) Computational work and time on finite machines, Jnl. of the
ACM, 19, 660-674

[292] Savage, J.E: (1974) An algorithm for the computation of linear forms; SIAM Jnl.
on Computing, 3, 150-158

[293] Savage, J.E: (1976) The complexity of computing; John Wiley

[294] Savage, J.E: (1981) Planar circuit complexity and the performance of VLSI algo-
rithms; VLSI Systems and Computation. H.T.Kung, B.Sproull and G.Steele (Edi-
tors), Computer Science Press, 61-68

[295] Savitch, W.J: (1970) Relationship between nondeterministic and deterministic tape
complexities; Jnl. of Computer and System Sciences, 4, 166-192

16

[296] Schmookler, M.S: (1969) On mod-2 sums of products; IEEE Trans. Computers,
C-18, 957

[297] Schnorr, C.P: (1974) Zwei lineare untere schranken fur die komplexitat Boolescher
funktionen; Computing, 13, 155-171

[298] Schnorr, C.P: (1976a) The network complexity and Turing machine complexity of
finite functions; Acta Informatica, 7, 95-107

[299] Schnorr, C.P: (1976b) The combinational complexity of equivalence; Theoretical
Computer Science, 1, 289-295

[300] Schnorr, C.P: (1976c) A lower bound on the number of additions in monotone com-
putations of monotone rational polynomials; Theoretical Computer Science, 2,
305-317

[301] Schnorr, C.P: (1976d) The network complexity and the breadth of Boolean func-
tions; Logic Colloquium 76, 491-504

[302] Schnorr, C.P: (1980) A 3n-lower bound on the network complexity of Boolean
functions; Theoretical Computer Science, 10, 83-92

[303] Schnorr, C.P: (1986) A G̈odel theorem on network complexity lower bounds;
Zeitschr. f. math. Logik und Grundlagen d. Math., 32, 377-384

[304] Schonhage,A; Strassen, V: (1971) Schnelle multiplikation grosser zahlen; Comput-
ing, 7, 281-292

[305] Schurfeld,U: (1983) New lower bounds on the formula size of Boolean functions;
Acta Informatica, 19, 183-194

[306] Sethi, I.K: (1980) Fast sequential evaluation of monotonic Boolean functions; Inf.
Sci., 20, 101-113

[307] Shamir, E; Snir, M: (1980) On the depth complexity of formulas; Math.Syst. The-
ory, 13, 301-322

[308] Shannon,C.E (1938) A symbolic analysis of relay and switching circuits; Trans.
AIEE, 57, 713-723

[309] Shannon,C.E: (1949) The Synthesis of two-terminal switching circuits; Bell System
Tech. Jnl., 28, 59-98

[310] Shestakov, V.I: (1938) Some mathematical methods for the construction and simpli-
fication of two-terminal electrical networks of class A; Dissertation, Lomonosov
State Univ. (Moscow) (In Russian)

[311] Sholomov, L.A: (1967) On functionals characterising the complexity of a system of
undetermined Boolean functions; Problemy Kibernet., 19, 123-140 (In Russian)
(Transl: Syst. Theory Res., 19 (1970), 123-141)

[312] Sholomov, L.A: (1969) On the realization of incompletely defined Boolean func-
tions by circuits of functional elements; ibid, 21, 215-226 (In Russian) (Transl: ibid,
21 (1972), 211-223

[313] Sholomov, L.A: (1970) On calculating the complexity of Boolean functions on Tur-
ing machines; ibid, 22, 53-66 (In Russian) (Transl: ibid, 22 (1972), 51-65)

[314] Sholomov, L.A: (1971) Information complexity of problems associated with minimal
realisation of Boolean functions by networks; Doklady Akademii Nauk SSSR, 200,
556-559 (In Russian) (Transl: Sov. Phys.-Doklady, 16 (1972), 714-717)

[315] Sipser, M: (1983) Borel sets and circuit complexity; Proc. 15th ACM Symposium
on Theory of Computing, 61-69

17

[316] Sklansky, J: (1960a) An evaluation of several two-sum and binary adders; IRE
Trans. Electron. Computers, EC-9, 213-226

[317] Sklansky, J: (1960b) Conditional sum addition logic; ibid, EC-9, 226-231

[318] Skyum, S: (1983) A measure in which Boolean negation is exponentially powerful;
Inf. Proc. Letters, 17, 125-128

[319] Skyum, S; Valiant, L.G: (1985) A complexity theory based on Boolean algebra; Jnl.
of the ACM, 32, 484-502

[320] Smolensky, R: (1987) Algebraic methods in the theory of lower bounds for Boolean
circuit complexity; Proc. 19th ACM Symposium on Theory of Computing, 77-82

[321] Soprunenko, E.P: (1965) Minimal realisations of functions by circuits using func-
tional elements; Problemy Kibernet., 15, 117-134 (In Russian)

[322] Spira, P.M: (1971a) On time-hardware complexity tradeoffs for Boolean functions;
Proc. 4th Hawaii Int. Symposium on System Sciences, 525-527

[323] Spira, P.M: (1971b) On the time necessary to compute switching functions; IEEE
Trans. Computers, C-20, 104-105

[324] Spira, P.M: (1973) Computation times or arithmetic and Boolean functions in
(d, r)-circuits; IEEE Trans. Computers, C-22, 552-555

[325] Stockmeyer, L: (1977) On the combinational complexity of certain symmetric
Boolean functions; Math. Syst. Theory, 10, 323-336

[326] Subbotovskaya, B.A: (1961) Realisations of linear functions by formulas using
{/\, \/, ¬}; Doklady Akademii Nauk SSSR, 136, 553-555 (In Russian) (Transl: Sov.
Math.-Doklady, 2, 110-112)

[327] Subbotovskaya, B.A: (1963) Comparison of bases in the realisation by formulas of
functions of the algebra of logic; Doklady Akademii Nauk SSSR, 149, 784-787 (In
Russian) (Transl: Sov. Math.-Doklady, 4, 478-481)

[328] Tardos, E: (1988) The gap between monotone and non-monotone circuit complexity
is exponential; To appear Combinatorica

[329] Tarjan, R.E: (1978) Complexity of monotone networks for computing conjunctions;
Ann. Discrete Math., 2, 121-133

[330] Thompson,C.D: (1979) Area-Time complexity for VLSI; Proc. 11th ACM Sympo-
sium on Theory of Computing, 81-88

[331] Thompson,C.D: (1980) A complexity theory for VLSI; Ph.D Disseratation; Report
No. CMU-CS-80-140, Dept. of Computer Science, Carnegie-Mellon Univ.

[332] Tiekenheinrich, J: (1984) A 4n lower bound on the monotone Boolean network
complexity of a one output Boolean function; Inf. Proc. Letters, 18, 201-202

[333] Tkachev, G.A: (1980) On the complexity of a sequence of Boolean functions by
implementing in terms of circuits andΠ-circuits under additional restrictions on the
circuits structure; Combinatorial-Algebraic methods in Applied Mathemetatics,
Gorki, 261-267 (In Russian)

[334] Toom, A.L: (1963) The complexity of a scheme of functional elements realising the
multiplication of integers; Doklady Akademii Nauk, 150, 496-498 (In Russian)
(Transl: Sov. Math.-Doklady, 3, 714-716)

[335] Toom, A.L: (1967) Complexity of realisation of binary functions with small sub-
functions; Problemy Kibernet., 18, 83-90 (In Russian) (Transl: Syst. Theory Res., 18
(1968), 77-84)

18

[336] Trakhtenbrot, B.A: (1959) Asymptotic evaluation of the complexity of logic nets
with memory; Doklady Akademii Nauk SSSR, 127, 281-284 (In Russian) (Transl:
Autom. Expr., 2, 13-14)

[337] Turing, A.M: (1936) On computable numbers, with an application to the Entschei-
dungsproblem; Proc. London Mathl. Soc. Series 2, 42, 230-265; Corrections: ibid
43, (1937), 544-546

[338] Ugolnikov, A.B: (1976) Realization of monotonic functions by networks of func-
tional elements; Problemy Kibernet., 31, 167-85 (In Russian)

[339] Ugolnikov, A.B: (1979) The synthesis of schemes and formulas in incomplete bases;
Sov. Math.-Doklady, 20, 1224-1227

[340] Ugolnikov, A.B: (1983) On the realisation of functions from closed classes by
schemes of functional elements in a complete basis; ibid, 28, 45-46

[341] Ugolnikov, A.B: (1987) On the complexity of realising Boolean functions by
schemes over the basis of majority and implication; Vestn. Mosc. Un-ta. Ser. 1,
Matematika Mechanika, 4, 76-78 (In Russian)

[342] Ulig, D: (1974) On the synthesis of self-correcting schemes from function elements
with a small number of reliable elements; Matem. Zametki, 6, 937-944 (In Russian)
(Transl: Math. Notes Acad. Sci. USSR, 15, 558-562)

[343] Ullman, J.D: (1984) The complexity of VLSI algorithms; Addison-Wesley

[344] Valiant, L.G: (1976) Universal circuits; Proc. of 8th ACM Symposium on Theory of
Computing, 196-203

[345] Valiant, L.G: (1979a) The complexity of computing the permanent; Theoretical
Computer Science, 8, 189-201

[346] Valiant, L.G: (1979b) Negation can be exponentially powerful; Proc. 11th ACM
Symposium on Theory of Computing, 189-196

[347] Valiant, L.G: (1979c) Completeness classes in algebra; Proc. 11th ACM Symposium
on Theory of Computing, 249-261

[348] Valiant, L.G: (1983) Exponential lower bounds for restricted monotone circuits,
Proc. 15th ACM Symposium on Theory of Computing, 110-117

[349] Valiant, L.G: (1984) Short monotone formulae for the majority function; Jnl. of
Algorithms, 5, 363-366

[350] Valiant, L.G: (1986) Negation is powerless for Boolean slice functions; SIAM Jnl.
on Computing, 15, 531-535

[351] Van Leijenhorst, D.C: (1987) A note on the formula size of the "mod k" functions;
Inf. Proc. Letters, 24, 223-224

[352] Van Voorhis, C.C: (1972) An improved lower bound for sorting networks; IEEE
Trans. Computers, C-21, 612-613

[353] Vascenko, V.P: (1979) On the computation of all non-trivial simple decompositions
of a function of the algebra of logic; Sov. Math.-Doklady, 20, 629-632

[354] Vilf an, B: (1976) Lower bounds for the size of expressions for certain functions in
d-ary logic; Theoretical Computer Science, 2, 246-69

[355] Voigt, B; Wegener, I: (1988) Minimal polynomials for the conjunction of functions
on disjoint variables can be very simple; Internal Report, Univ. of Dortmund, Nr.
252

19

[356] Vuillemin, J: (1980) A combinatorial limit to the computing power of VLSI circuits;
Proc. 12th ACM Symposium on Theory of Computing, 294-300

[357] Wallace, C.S: (1964) A suggestion for a fast multiplier; IEEE Trans. Electron.
Computers, EC-13, 14-17

[358] Ward, M: (1946) Note on the order of free distributive lattices; Abstract 135, Bull.
Amer. Math. Soc., 52, 423

[359] Wechsung, G: (1977) A nonlinear lower bound for the formula complexity of cer-
tain Boolean functions; Information Processing 77, 831-833

[360] Wegener, I: (1979) A counterexample to a conjecture of Schnorr referring to mono-
tone networks; Theoretical Computer Science, 9, 147-150

[361] Wegener, I: (1980) A new lower bound on the monotone network complexity of
Boolean sums; Acta Informatica, 13, 109-114

[362] Wegener, I: (1981) An improved complexity hierarchy on the depth of Boolean
functions; Acta Informatica, 15, 147-152

[363] Wegener, I: (1982) Boolean functions whose monotone complexity is of size
n2

log2 n
;

Theoretical Computer Science, 21, 213-224

[364] Wegener, I: (1985) On the complexity of slice functions; Theoretical Computer Sci-
ence, 38, 55-68

[365] Wegener, I: (1986) More on the complexity of slice functions; Theoretical Computer
Science, 43, 201-211

[366] Wegener, I: (1987) The complexity of Boolean functions, Wiley-Teubner

[367] Weiss, J: (1983) AnΩ(n3/2) lower bound on the complexity of Boolean convolution;
Information and Control; 59, 84-88

[368] Winograd, S: (1965) On the time required to perform addition; Jnl. of the ACM,
12, 277-285

[369] Winograd, S: (1967) On the time required to perform multiplication; Jnl.of the
ACM, 14, 793-802

[370] Yablonskii, C.V: (1954) Realisation of linear functions in the class ofΠ-schemes;
Doklady Akademii Nauk SSSR, 94, 165-179 (In Russian)

[371] Yablonskii, C.V: (1959a) On the impossibility of eliminating the trials of all func-
tions in P2 in solving certain problems in the theory of networks; Doklady
Akademii Nauk SSSR, 124, 44-47 (In Russian)

[372] Yablonskii, C.V: (1959b) On algorithmic obstacles in synthesis of minimal contact
schemes; Problemy Kibernet., 2, 75-121 (In Russian)

[373] Yamamoto, K: (1954) Logarithmic order of free distributive lattice; Jnl. Math. Soc.
of Japan, 6, 343-353

[374] Yao, A.C-C: (1983) Lower bounds by probabilistic arguments; Proc 24th IEEE
Symp. on FOCS, 420-428

[375] Yao, A.C-C: (1985) Separating the polynomial-time hierarchy by oracles: Part I;
Proc. 26th IEEE Symp. on FOCS, 1-10

[376] Yao, A.C-C; Yao, F.F: (1976) Lower bounds on merging networks; Jnl. of the
ACM, 23, 566-571

20

[377] Young, M.H; Muroga, S: (1985) Symmetric minimal covering problems and mini-
mal PLAs with symmetric variables; IEEE Trans. Comput., C-34, 523-541

[378] Zakharova, E.Y: (1972) The realisation of functions of thePk by formulae (k ≥ 3);
Mat. Zametki, 11, 99-108 (In Russian)

[379] Zhegalkin, I.I: (1927) The technique of calculation of statements in symbolic logic;
Matem. Sbornik, 34, 9-28 (In Russian)

[380] Zhuravlev, Y.I: (1979) Local algorithms over disjunctive normal forms; Sov.
Math.-Doklady, 20, 286-289

[381] Zhuravlev, Y.I; Kogan, A.Y: (1985) Realization of Boolean functions with a small
number of zeros by disjunctive normal forms and related problems; ibid, 32,
771-775

461

Summary of Notations

The following lists summarise notation which is in use throughout most
of the text above. Notation which is specific to only one chapter is not
included.

1) Boolean functions and sets of functions

Bn Set of all n-input single output Boolean
functions

Bn,m Set of alln-input, m-output Boolean func-
tions

Mn Set of all n-input single output monotone
Boolean functions

Mn,m Set of all n-input m-output monotone
Boolean functions

Sn Set of alln-input symmetric Boolean func-
tions

f̃ Dual function of f ∈ Bn

f |π Subfunction off induced by partial assign-
mentπ

f or ¬ f Negation (complement) off ∈ Bn

[fn] Family of Boolean functions
f (n) n’th member of family [fn]

π1 Projection functionπ1(x, y) = x
π2 Projection functionπ2(x, y) = y

462

¬ Logical not (negation or complement)
/\ Conjunction
\/ Disjunction

☞ Left implication
☞ Right implication
⇐⇒ Equivalence
⊕ Exclusive or

ge g ⊕ e⊕ 1; e ∈{0, 1}, f ∈ Bn

ADD Integer addition
BMP Boolean Matrix Product
Cn

k Congruent modk
COMP Comparison
CONV Boolean convolution
DHC Directed Hamiltonian cycle
DIVN Integer division
En

k Exactlyk
MULT Integer multiplication
PM Perfect matching (=Logical permanent)
SAT Satisfiability
Tn

k Thresholdk
UHC Undirected Hamiltonian cycle

Xn < x1 , . . . ,xn >, ordered set ofn Boolean
variables

α Assignment,α = < a1 , . . . ,an > ∈{0, 1}n

γα
{i : ai = 1}

/\ xi , α ∈{0, 1}n

463

δα

n

i=1
/\ (xi ⇐⇒ ai)

2) Complexity relations and classes

C Combinational network complexity (of net-
work or function)

CΩ Ω-network complexity
Cm Monotone network complexity
D Combinational network depth
DΩ Ω-network depth
L Formula size (over basisB2)
LΩ Ω-formula size
Lm Monotone formula size
P Deterministic polynomial-time computable
NP Non-deterministic polynomial-time com-

putable

When f , g are functionsN → N.

f (n) = O (g(n)) if and only if there is a constantc > 0 such that for
all n, f (n) ≤ c . g(n).

f (n) = Ω (g(n)) if and only if g(n) = O (f (n)).

f (n) = o (g(n)) if and only if
n→ ∞
lim

f (n)

g(n)
= 0

f (n) = ω (g(n)) if and only if g(n) = o (f (n)).

464

3) Miscellaneous

CNF Conjunctive Normal Form
DNF Disjunctive Normal Form
I(f) Set of implicants off ∈ Bn

op(g) Operation associated with gateg in a network
PC(f) Set of prime clauses off ∈ Bn

PI(f) Set of prime implicants off ∈ Bn

res(u) Boolean function computed by nodeu of a network
var(h) Set of variables defining a monom or clauseh

φ (u) Fanout of nodeu in a network
Ω Arbitrary logical basis

f ≤ g f (α) = 1 ☞ g(α) = 1 for all α ∈{0, 1}n

2S Set of all subsets of a (finite) setS

 x Smallest integer which is≥ x

 x Largest integer which is≤ x

465

Bibliographic Categories

The following index is intended to summarise the bibliographic entries
which are relevant to various specific areas within the field of Boolean
complexity theory. The numbers next to headings refer to the bibliogra-
phy ordering and are not page numbers.

Bounded-depth networks 3,4, 35, 48, 51, 64, 80,
89, 110, 118, 155, 157,
175, 177, 184, 211, 234,
237, 315, 320, 333, 375

- { /\ , ⊕} 239, 268, 269
- arbitrary basis 50, 117
- DNF 10,11, 15, 16, 53, 54,

128, 158, 190, 192, 193,
229, 243, 263, 264, 281,
288, 355, 377, 380, 381

- monotone 36,348, 374
- ringsum expansion 30,79, 86, 121, 213,

236, 287, 296, 379

Combinational networks and complexity 44,75, 186, 191, 219,
220, 225, 230, 231, 235,
241, 249, 257, 273, 285,
290, 291, 301, 303, 308,
314, 336, 344

- Arithmetic functions 9, 18, 24, 45, 126, 136,
160, 289, 304, 316, 317,

466

334, 335, 357, 368, 369
- Disjoint variable sets 244, 342
- Hierarchies 197,242, 362
- Lower bounds 17, 32, 106, 107, 129,

245, 276, 297, 299, 302,
309, 325

- Ω-networks 34,156, 210
- Relationships to other models 38, 40, 84, 298, 313
- Restricted fan-out 114,149
- Synthesis 52,94, 95, 99, 102, 171,

176, 179, 181, 183, 216,
221, 222, 223, 224, 272,
273, 275, 312, 321, 339,
340

- Upper bounds 120, 135, 136, 159, 171,
215, 292

Combinatorics and graph theory 25, 47, 77, 78, 115, 144,
168, 265

Complexity theory 2, 58, 59, 85, 92, 111,
148, 208, 232, 233, 295,
337, 345

- abstract 20,21, 116, 186
- algebraic 39,122, 165, 166, 300,

346, 347
- Boolean 41,293, 319, 366
- Parallel 61,91, 97
- uniform 60,74, 251, 286

467

Depth 9,22, 29, 41, 62, 76, 93,
125, 141, 182, 194, 195,
198, 202, 214, 256, 258,
259, 307, 322, 323, 324

- Monotone 42,43, 127, 196

Formulae 131,132, 140, 154, 172,
180, 212, 217, 218, 254,
262, 277, 318, 327, 371,
372, 378

- Lower bounds 13, 19, 49, 56, 57, 83, 108,
112, 113, 137, 138, 139,
146, 147, 187, 189, 205,
226, 260, 261, 271, 282,
305, 326, 354, 359

- Monotone 49,56, 88, 142, 178, 271,
278, 279, 349

- Synthesis 65,81, 173, 174
- Unate 13,57, 133, 134, 137,

138, 187, 261, 271, 326,
370

- Upper bounds 88, 133, 134, 142, 173,
174, 246, 247, 349, 351

Monotone Networks 31,66, 164, 283, 306
- Disjoint variable sets 90
- Lower bounds 8, 12, 14, 33, 67, 69,

101, 123, 161, 162, 170,

468

206, 207, 227, 228, 238,
252, 255, 266, 267, 270,
328, 329, 332, 352, 360,
361, 363, 367, 376

- Multivalued 6,7
- Number of monotone functions 6, 55, 63, 98, 100, 103,

104, 105, 143, 144, 145,
150, 151, 358, 373

- Planar 28,201
- Relationships to other bases 26, 70, 71, 72, 73, 82,

270, 328, 341, 350, 364,
365

- Replacement rules 27, 68, 207, 238
- Sorting 5,23, 161, 240, 352
- Upper bounds 5, 23, 119, 240, 248, 250,

338

Planar Networks 169,188, 199, 200, 203,
294

Switching theory 1, 37, 87, 96, 109, 130,
153, 163, 209, 253, 280,
310, 311, 353

VLSI 46,152, 167, 204, 330,
331, 343, 356

469

Author Index

Abullaev, D.A. 422
Aho, A.V. 25, 422
Ajtai, M. 269, 337, 422
Alekseev, V.B. 268,422, 423
Alon, N. 120, 195, 196-224, 232, 238, 269, 423
Alt, H. 115, 423
Andreev, A.E. 121,195, 224-232, 238, 269, 272, 343,

347-351, 394, 423
Arevalo, Z. 394, 423
Aslanjan, L.A. 424
Avgustinovich, S.V. 424
Avizienis, A. 116, 424

Babai, L. 351, 424
Baker, T. 355-356, 424
Barak, A.B. 70, 424, 448
Batcher, K.E. 245,424
Beame, P.W. 115, 424
Berge, C. 254, 297, 424
Berman, L. 451
Ben-Or, M. 422
Berkowitz, S. 121, 238, 239, 243-244, 248-249, 425
Beynon, W.M. 268,421, 425
Bini, D. 425
Bioul, G. 394, 425
Bloniarz, P. 184, 352, 425

470

Blum, N. 74, 76, 90-99, 116, 161, 425
Boppana, R. 121, 195, 196-224, 232, 238, 269, 394, 423,

425, 426
Born, R.C. 426
Borodin, A. 25, 26, 37-39, 426
Bredeson, J.G. 394, 423
Breitbart, Y.Y. 115, 426
Bremer, H. 116, 426
Brent, R. 68-69, 413, 414, 426
Brown, W.G. 170,427
Brustmann, B. 377, 427
Bublitz, S. 351, 427
Buckle, J. 421, 425

Chandra, A.K. 373-377, 395, 427
Chiang, K-W. 427
Chuang, Y.H. 394,434
Chukhrov, I.P. 394, 427
Church, R. 123, 427
Commentz-Walter, B. 272, 323-330, 428
Conway, L. 396, 443
Cook, S.A. 6, 25, 42, 115, 424, 428

Davio, M. 394, 425
Dedekind, R. 118, 119, 123, 428
Denenberg, L. 428
Deschamps, J.P. 394, 425
Dudich, V.N. 428
Dunne, P.E. 120,121, 149-154, 172-191, 239, 242-243,

471

249, 251, 252-253, 253-259, 260, 261-263,
265-268, 269, 429

Edenbrandt, A. 429
Ehrenfeucht, A. 429
Elspas, B. 58, 430
Erd ̈os, P. 209, 297, 430
Even, S. 394, 430

Fagin, R. 377-378, 430
Finikov, B.I. 274-277,430
Fischer, M. 25, 27-28, 32-36 100, 101-111, 269,

270, 272, 280, 303-322, 331, 430,
431, 438

Fleisher, H. 394, 431
Fortune, S. 395, 427
Friedman, A.D. 25, 431
Friedman, J. 339-343, 431
Furst, M. 354-356, 372, 377, 431

Gal, S. 426
Galbiati, G. 270, 431
Galil, Z. 120, 148-150, 157-160, 269, 431, 443
Garey, M. 25, 431
Gaskov, S.B. 43,51, 58-63, 431
Gavrilov, M.A. 431
Gershkovich, Y.B. 432
Gibbons, A.M. 413, 432
Gilbert, E.N. 123, 432

472

Gill, J. 355-356, 424
Gimpel, J.F. 14, 394, 432
Greene, C. 125, 432
Grigoriev, D.Y. 432
Gurevich, I.B. 432
Gurevich, Y. 428

Hansel, G. 119, 123-133, 136, 432
Harper, L.H. 116,272, 280, 288-289, 433
Harrison, M.A. 25, 433
Hastad, J. 356, 364-372, 377, 381, 433
Hennie, F.C. 32,433
Hodes, L. 272, 280, 293-303, 351, 433
Hoover, H.J. 115,424, 428, 433
Hopcroft, J.E. 25, 224, 356, 422, 433, 434
Hromkovic, J. 395, 434
Hsieh, W.N. 116,433
Huynh, D.T. 434
Hyafil, L. 434

Jagadeesan, M. 394, 434
Jerrum, M. 119, 434
Johnson, D. 25, 431
Jukna, S.P. 269, 434
Jung, H. 115, 434

Karatsuba, A. 116, 434
Karchmer, M. 352, 435
Karnaugh, M. 14, 394, 435

473

Karp, R.M. 224, 433
Karpova, N.A. 115,435
Karpovski, M.G. 435
Kautz, H.W. 58, 430
Kasim-Zade, O.M. 435
Khasin, L.S. 337-339, 435
Khazotskii, V.E. 431
Khrapchenko, V.M. 111,115, 272, 337, 343, 344-347, 435, 436
Klawe, M. 377-378, 430, 433
Kleiman, M. 339, 436
Kleitman, D. 119, 123-124, 125, 140, 432, 436, 437
Kloss, B.M. 289-290, 437
Knuth, D. 58, 308, 437
Kodanpani, K.L. 437
Kogan, A.Y. 394, 460
Kohavi, I. 394, 430
Komlos, J. 269, 337, 422
Korobkov, V.K. 123,437
Korshunov, A.D. 68,119, 124, 147, 437
Kramer, M. 421, 437
Krichevskii, R.E. 331, 337, 437, 438
Kriegel, K. 438
Kuck, D.J. 68-69, 427
Kung, H.T. 413, 414, 427, 434
Kuznetsov, O.P. 431
Kuznetsov, S.E. 394,438

Ladner, R.E. 100,101-111, 438
Lagarias, J.C. 425

474

Lai, H.C. 438, 444
Lamagna, E.A. 161, 269, 438
Langheld, E. 439
Lenz, K. 270, 439
Levey, S.Y. 439
Lingas, A. 119, 439
Lipton, R. 395, 399-401, 413, 415, 418, 420, 427, 439
Long, D. 269, 439
Lupanov, O.B. 42,45-50, 51, 58, 116, 119, 136-138, 274,

278-280, 354, 356, 357, 359-360, 360-363,
439-441

Machtey, M. 25, 441
Madatjan, H.A. 441
Malyshev, V.A. 351,437, 441
Mamatov, Y.A. 290,394, 420, 441, 442
Markov, A.A. 269,442
Markowsky, G. 119, 123-124, 140, 437
Maruyama, K. 68-69, 427
Masek, W.J. 14,442
McCluskey, E.J. 14,394, 442
McColl, W.F. 43, 51-58, 64-65, 70, 245, 268, 339, 352,

397, 403, 404-405, 406-410, 410-412, 420,
421, 442, 443

McKinney, M.H. 394,451
Moskalev, E.S. 435
Mead, C. 396, 443
Mehlhorn, K. 120, 148-150, 157-160, 166-170, 269, 351,

443

475

Meyer, A. 25, 272, 280, 303-322, 331, 354, 430, 443
Miller, R.E. 25,443
Mirwald, R. 270, 443
Moran, S. 377-380, 443
Muchnik, B.A. 443
Mukhopadhyay, A. 394, 444
Muller, D.E. 58,70, 100, 111-114, 115, 444, 448
Munro, I. 6, 426
Muroga, S. 394, 438, 444, 460

Nakasima, A. 271, 444
Neciporuk, E.I. 166, 272, 280, 281-293, 347, 352, 444-445
Nguen, K.A. 394, 445
Nigmatullin, R.G. 116, 445
Noe, P.S. 394,451

Ofman, Y. 116, 434, 446
Okol’nishnikova, B. 381, 446
Ong, E.H. 394, 451
Orlov, V.A. 115,446

Pan, V. Ya. 425
Papakonstantinou, G. 394, 446
Parberry, I. 395, 446
Paterson, M.S. 27, 43, 51-58, 65-67, 68, 70-73, 120, 148,

156-160, 245, 269, 272, 280, 282-284,
303-322, 331, 344-346, 383-393, 397, 412,
430, 443, 446-447

Paz, A. 394, 430

476

Paul, W. 75, 76, 77, 90, 93, 116, 352, 431, 447
Paull, M.C. 439
Peterson, G.L. 331, 447
Pippenger, N.J. 25,27-28, 32-36, 116, 136, 139-140, 161,

269, 339, 377-378, 430, 433, 436, 447-448
Poltervich, V.M. 432
Pooch, U.W. 394, 451
Post, E.L. 11-12, 448
Pratt, V.R. 269,323, 448
Preparata, F.P. 58, 70, 100, 111-114, 115, 444, 448
Pudlak, P. 272, 280, 293-303, 331, 351, 424, 448
Pulatov, A.K. 449
Pupyrev, E.I. 449

Quine, W.V. 14, 394, 449

Rabin, M.O. 25, 430
Ramsey F.P. 296-298, 449
Razborov, A.A. 120,195, 196-224, 232-233, 269, 352,

383-393, 395, 449-450
Red’kin, N.P. 116, 119, 140-146, 352, 450
Reiter, B. 426
Reznik, V.I. 450
Reischer, C. 451
Rhyne, T.V. 394, 451
Riordan, J. 50, 271, 273-274, 451
Rivest, R.L. 270, 451
Rodl, V. 351, 424
Romankevich, H.M. 451

477

Rudich, S. 451
Ruzzo, W.L. 25,451
Rytter, W. 413, 432

Saluja, K.K. 394, 451
Sapozhenko, A.A. 394, 451
Sarkisjan, G.Z. 451
Sattler, J. 272, 323, 330, 428
Savage, J.E. 116, 261, 269, 272, 280, 288-289, 410, 413,

414-415, 416-418, 420, 433, 438, 452
Savitch, W.J. 7,452
Saxe, J.B. 354-356, 372, 377, 431
Schmitz, G. 394, 444
Schmookler, M.S. 394,452
Schnitger, G. 395, 446
Schnorr, C.P. 28, 29-32, 74, 76, 77-79, 116, 119, 269, 270,

443, 452-453
Schonhage, A. 115, 453
Sch ̈urfeld, U. 272, 280, 290-293, 453
Scidmore, A.K. 426
Sedgewick, R.E. 413, 439
Selman, A. 356, 424
Seth, S.C. 437
Sethi, I.K. 453
Seysen, M. 116, 425
Shamir, E. 70, 424, 453
Shannon, C.E. 27, 42-45, 50, 119, 271, 273-274, 405, 451,

453
Shelah, S. 428

478

Shestakov, V.I. 271,453
Sholomov, L.A. 115,116, 453-454
Simovici, D. 451
Sipser, M. 354-356, 372, 377, 381, 431, 454
Sklansky, J. 116, 454
Skyum, S. 27, 40-42, 269, 373, 454
Smolensky, R. 395, 454
Snir, M. 119, 434, 453
Solovay, R. 355-356, 424
Soprunenko, E.P. 454
Specker, E. 272, 280, 293-303, 433
Spencer, J. 209, 297, 430
Spira, P.M. 52,70, 116, 323, 455
Stearns, R.E. 32, 433
Stockmeyer, L. 25, 74, 76, 77-89, 184, 354, 373-377,

377-378, 427, 430, 443, 455
Stone, H.W. 58, 430
Strassen, V. 115, 453
Subbotovskaya, B.A. 343, 347, 351, 455
Szemeredi, E. 269, 337, 351, 422, 424

Tardos, E. 224, 455
Tarjan, R.E. 269, 399-401, 414, 415, 418, 420, 439, 455
Ta vel, M. 394, 431
Thompson, C.D. 413, 455-456
Tiekenheinrich, J. 120, 172, 191-192, 456
Tkachev, G.A. 356,456
Toom, A.L. 116, 456
Trakhtenbrot, B.A. 456

479

Turing, A.M. 2, 456

Ugolnikov, A.B. 140,239, 263, 265-267, 456-457
Ulig, D. 116, 457
Ullman, J.D. 25, 26, 356, 396, 422, 434, 457

Valiant, L.G. 27, 40-42, 68, 70-73, 115, 161, 239,
244-248, 269, 333-337, 373, 394, 447,
448, 454, 457-458

Van Leijenhorst, D.C. 333, 458
Van Leeuwen, J. 421, 437
Van Voorhis, C.C. 269, 458
Vascenko, V.P. 458
Vi lfan, B. 280, 294, 458
Vishkin, U. 373-377, 427
Voigt, B. 458
Vranesic, Z.G. 427
Vuillemin, J. 413, 421, 458

Waack, S. 438
Wallace, C.S. 116, 458
Ward, M. 123, 458
Wechsung, G. 351, 458
We gener, I. 65-67, 121, 165, 166, 170-171, 224, 232,

239, 244, 249, 251-252, 258, 259-260, 261,
269, 270, 377, 427, 439, 447, 458-459

Weiss, J. 120, 161-164, 459
Wigderson, A. 352, 435
Winograd, S. 459

480

Yablonskii, C.V. 116, 459-460
Yamamoto, K. 460
Yao, A.C-C. 356, 364, 372, 394, 460
Yao, F.F. 460
Yatsunov, A.I. 451
Yeager, J.D. 394,431
Young, M.H. 394, 460
Young, P. 25, 441
Yunosov, D. 422

Zakharova, E.Y. 460
Zhegalkin, I.I. 14, 460
Zhuravlev, Y.I. 394,432, 460

481

Subject Index

Absorption property 10
addition 18,107-111, 115,

116, 374
affine 11
algorithm 2
almost all 43
ancestor 19
AND (/\) 8
/\ -type function 20
Area-Time complexity 413-5
arithmetic functions 18, 115, 116
assignment 9
associative property 10

Basis 11,18
bipartite graph 170
Boolean algebra 7-18
Boolean function 7-18
Boolean matrix product 120, 149, 155-160
Boolean (Ω)-network 18-25
Boolean sum 12, 165
Boolean product 12, 45
Boolean variable 7
bottom level fanin 370
bound pair 125
boundary 377-378

482

bounded alternation 357
bounded-depth formula 357
bounded-depth network 117,353-395

- { /\ , \/ , ¬} 353-382
- Upper bound (all functions) 359-363
- Lower bounds 364-381

- { /\ , ⊕, 1} 382-394

Canonical slice function 251-253
central slice function 251, 253-258
centre (of sphere) 58
chain 124
clause 15
clique function 195, 213-218, 250,

252, 254-255,
290-293

CLOSED(f) 197, 200-208,
209-213

collector 94
combinational complexity 20,27-116

- and Depth 39, 68, 70-73
- and Formula size 39
- Lower bound 36, 43-45, 74-99
- Upper bound 45-50, 100-115

combinational network 19,27-116, 117
commutative property 10
comparison function 374
complement 9,11
complement property 10

483

complete (logical) basis 11, 22
complexity class 5, 24
complexity gap 63-68
complexity hierarchy 5, 63-68, 120,

146-7, 381-382
complexity measure 4, 20, 39
complexity theory 1
congruent modk (Cn

k) 17, 89, 322,
331-333

conjunction 8
conjunctive expansion 51
conjunctive normal form (CNF) 12-13, 15, 357,

359-360
constant-depth, polynomial-size 373-382
constant-depth reduction 373
constant function 8
constant property 10
convolution 119,160-164
counting argument 42-45
cover (of basis) 11
cyclic convolution 160-164

De Morgan’s Laws 10, 240, 344, 383
decision problem 1, 7, 24
Dedekind’s problem 118-119,122-133
degenerate Boolean function 9, 65-66
depth 20,36-40, 50-64

- Lower bound 50
- Upper bound (schemes) 52-58

484

- Upper bound (networks) 58-63
depth-universal 115
descendant 19
determinant (DET) 289-290
deterministic 4
Direct Matrix Product (DMP) 171-172
disjunction 8
disjunctive expansion 51,72
disjunctive normal form (DNF) 12-13, 15, 357,

359-360
distributive property 10
division 115
DLOGSPACE 6, 42
DSPACE 5
DTIME 5, 24, 36
dual function 11

embedding 397-398
equivalence (⇐⇒) 8
equivalence function (δα) 46-47
exactlyk (En

k) 17
exclusive-or (⊕) 8
⊕-type function 20
explicitly defined 74
expression 11

Family (of functions) 24, 75
fanin 18,22
fanout 18,23

485

finite state transducer 104
first node 155
formula 23-24,117,

271-352
formula size 24, 271-352

- and depth 39, 68-70, 322-330
- Lower bound (almost all functions) 50, 272, 273-274,

280-322
- Lower bounds (/\ , \/ , ¬) 343-351
- Lower bounds (B2) 281-322
- Upper bound (all functions) 274-280
- Upper bounds (B2) 330-333
- Upper bounds (monotone) 334-343

free input functions 165, 224, 232
free path 94
free split 94
free 0 125
free 1 125

Gate 18
graph 18
graph theory 117

Hamiltonian circuit 250, 252, 255-257,
355

Hamming distance 341
(h, k)-disjoint set of sums 165-170
homogeneous formula 295

486

Idempotency 10
identity 10
implicand 12
implicant 12
incomplete (logical) basis 11
inductive gate elimination 75, 116, 147, 154,

172
input 18
isomorphic formulae 295

k-formula 296
k-sensitive function 302-303,306, 321

Language 4
last node 155
lattice method 196-224, 232
left implication (☞) 8
level 20
lexicographic ordering 45
local coding 119, 136-140
literal 11
logical basis 11
LOGSPACE-complete 6
Lupanov decomposition 46-49,278-280

Majority (MAJn) 17, 89, 184-191,
269, 306, 333-337,
343, 393

marriage problem 280

487

merging network 245
model of computation 2
monom 15
monotone 15
monotone basis 16, 118
monotone Boolean function 15-17
monotone Boolean network 19,117-270
monotone network complexity 117-270

- and combinational complexity 238-268
- Lower bound (almost all) 122
- Lower bounds (sets) 154-172
- Lower bounds (single output, linear) 172-192
- Lower bounds (single output, superlinear) 195-238
- Upper bound (combinational networks) 136-140
- Upper bound (monotone networks) 140-146,192-194

monotone formula
monotone projection 40
multiplication 115,116, 119,

374, 415, 420

n-ordered network 46
NAND (¬ /\) 8
negation (¬) 9, 224, 269
network 18
network depth 20
network size 20
node 18
non-degenerate 9,65-66
non-deterministic 4

488

non-uniform 24,42
NOR (¬ \/) 8
NP 5, 40
NP-complete 6,25, 41, 118, 249
NSPACE 5, 36
NTIME 5

Oblivious 28
occurences (of literal in formula) 282
optimal network 20
OR (\/) 8
oracle 355-356
output 18

P 5, 354
pC 41
pD 41
p-complete 41
p-definable 40
p-projection 40
p-universality 40
parallel prefix 100-104
parity function 346, 356, 359-360,

364-372
partial assignment 9
perfect matching 195, 213, 218-224,

268
planar crossover 401, 404-405
planar monotone computation 421

489

planar network 117,398
planar network complexity 396-421

- and combinational networks 397-405
- Lower bound (almost all functions) 405-410
- Lower bounds 416-420
- Upper bound 410-412

planar separator theorem 415
polynomially reducible 6
polynomial time 5
polynomial-time hierarchy 354-356
predecessor 18
PREFIX 273
prefix problem 100-104
prime clause 12, 15
prime clause extension 152
prime implicant 12, 15
prime implicant extension 152
principle of duality 11
probabilistic method 209, 364-372
problem size 2
product network 100-104
programmable logic array (PLA) 394
projection 40
projection functions (π1 etc) 8
pseudo-complement 121,239-243
PSPACE 7, 42, 354

Quadratic Boolean form 270

490

Ramsey property 296
random assignment 365
reducing assignment 365
regular lattice 196
relativisation 354-356
relay-contact network 271
replacement rule 120, 147-154,

164, 239
restricted model 117
restriction (of function) 294
right implication (☞) 8
ringsum expansion 14,270, 286-287
RL-specification 407

Satisfiability (SAT) 41, 250, 252-253,
257-258

satisfying assignment 9
scheme 51
self-dual 11
Shannon function 115
shifting convolution 160
shifting function 418
simulation (TM space by Depth) 36-39
simulation (TM time by Size) 28-36
size 20,39
slice function 121, 239, 243-263
space complexity 4
spectrum 17,377
sphere 58

491

split 94
Stable Marriage Problem 288-289
standard circuit 121, 239-243
strong-complete basis 11
subfunction 9
successor 18
switching theory 14
symmetric Boolean function 17, 77, 100,

112-114, 281, 293,
303, 330-343,
377-380

sympathetic basis 265

Threshold function (Tn
k) 17, 89, 118,

172-191, 192-194,
322, 330, 331,
337-343, 347

TIED (and properties) 126-130
time complexity 4
topological order 20
transitive closure 36,374
truth-table 8-9
Turing machine 2

Uniform circuit complexity 24
universal function 40, 115
universal circuit 115

Variable 7

492

Weak-complete basis 11
well-formed string 125
wire 18
wire counting 172, 177-183

Value function 170-171
VLSI 26,396, 413-415

