
COMP114 - Assessment 4

Semester 2 – 2011

Phase Transitions

Assessment Information

Assessment Number 4
Contribution to Overall Mark 40%
Submission deadline Friday 20th May 2011, 16.00

Relevant Learning Outcomes for this Assessment

1 Awareness of different areas of CS for which experimental methods are relevant.
3 Have an understanding of the factors involved in constructing experiment settings.
5 Ability objectively to assess, analyse, and present experimental results.

Assessment Description – Overview

A major factor in the recent expansion of experimental work in Computer Sci-
ence, came about through the observation of program behaviour in the following
contexts: a number of normally computationally challenging problems (in the
sense of taking an unreasonable amount of time to deliver results) turn out
to be quickly solvable if the instance obeys some extreme characteristics, e.g.
some “hard” problems involving graphs turn out to be “easy” for graphs with
“very few” or with “very many” edge. This phenomenon – known as a phase
transition effect has been the subject of much interest particularly in Artificial
Intelligence, Logic, and algorithm study over the past decade.

The principal aim of the current assignment is for you to investigate the
existence of such effects with respect to a widely studied problem in logic: the
so-called 2-satisfiability problem (2-sat).

1

Assessment Description – Details

A 2–cnf is a special type of logical expression defined using a set of Boolean
variables – X = {x1, x2, . . . , xn}, i.e. variables which can be assigned either
the value true or false. Such an expression is specified by a collection of
(unordered) pairs – (y, z) – (called clauses) where each member of a pair can be
some positive form of a variable (e.g. x1) or its negation (e.g. x3). For example
with the set of variables {x1, x2, x3},

{(x1, x3), (x2, x3), (x2, x3)} (a)
{(x1, x2), (x1, x2), (x2, x3), (x2, x3)} (b)

are both examples of 2-cnf expressions.
The so-called 2-sat problem asks of a 2-cnf expression, F (X), if there is

an assignment of true/false values to the variables in X that results in every
pair defining F (X) containing at least one true term – recall that if x = false
then x = true. So, for example (a), the assignment x1 = true, x2 = false,
x3 = false has this property. In contrast no such assignment is possible with
example (b): no matter which value is assigned x1, x2 must be assigned true
but this will leave it impossible to find a value for x3 to use in the clauses
{(x2, x3), (x2, x3)}.

The problem of distinguishing satisfiable logical expressions (those for which
a suitable assignment exists) from unsatisfiable expressions is a fundamental
problem in many areas of Computing e.g. Artifical Intelligence (intelligent rea-
soning), Software Development (program verification), the study of fast algo-
rithms, etc. Unfortunately, despite its prevalence, the most general versions of
this problem are unlikely to be solvable by a fast algorithm: the best existing
methods being unreasonably slow in the worst-case for more than a few hundred
variables.

Despite this it could be possible to exploit some “structural” features of
“typical” logical expressions. Concentrating on 2-cnf, the current assessment
concerns the following informal claim:

Claim 1 If a 2-cnf, F (X) has a “small number of clauses” (pairs in its defi-
nition), then since there seems to be greater freedom in choosing values for vari-
ables such an expression ought typically to be satisfiable. On the other hand, if
F (X) has “a lot of clauses”, then since there seem to be much greater restriction
on how variables can be assigned, one would expect such an expression not to
be satisfiable.

The high-level aim for this assignment is to consider what experimental
support there is for this assertion in the light of the following three questions:

Q1. Is the claim above, actually justified, i.e. are the majority of “small” 2-cnf
expressions satisfiable while the majority of “large” 2-cnf expressions are
unsatisfiable?

2

Q2. If the answers to Q1 are positive, is there an observable pattern describing
the shift from “small-to-large”, i.e. how many clauses are needed to be
confident that a 2-cnf is unlikely to be satisfiable? what is the maximum
number of clauses where we could be confident that it is satisfiable?

Q3. Again assuming the answers to Q1 are positive, how does such behaviour
affect the average amount of time taken by an algorithm to decide whether
a 2-cnf is satisfiable or not?

Using the supporting Java classes provided and described in the detailed de-
scription, the purpose of this assignment is to propose not only answers to these
three questions but also to support those answers with experimental findings.

Assessment - Details

The module resource page provides the Java source code – CNF2.java – which
implements a series of methods for

a. Generating a random sequence of n variable 2-cnf expressions.

b. Testing whether the (current) instance is satisfiable and reporting the time
taken to determine this.

Although this contains a number of fields the only fields that are important for
your experimental study are:

Type Name Meaning
int n The number of variables defining F (X), i.e. |X|
boolean satis Records whether the current F (X) is satisfiable or not
int steps Records the number of steps taken to decide if F (X) is satisfiable

The single constructor – CNF2(int n) sets the number of variables (|X|) to
be used in the sequence of random 2-cnfs.

The only methods you need to use are

a. public void SatTest()

b. public void nextRandomCNF (double cp)

c. public boolean IsSat()

d. public int StepCount()

The method SatTest() decides whether the current 2-cnf stored is satisfiable
or not (satting the field satis to be true or false accordingly) and updates the
the value of steps to record how long this decision took to make.

The method nextRandomCNF (double cp) (in which cp should be a value
0 ≤ cp ≤ 1) constructs a new random 2-cnf expression as follows: given that
there are 2n(n − 1) distinct choices for the pairs defining any clause, each of

3

these possible choices is considered in turn. On the k’th choice – for each
1 ≤ k ≤ 2n(n−1) – a random double value (between 0 and 1) is chosen; if this
value is ≤ cp the k’th clause is added to the 2-cnf being generated, otherwise
it is ignored.

Notice that the 2-cnf formed in this method will have “roughly” (cp)× 2n2

clauses.

Experiment Details

The main body of the program implementing your experimental study should
do the following,

1. Read in a value of n (this can be supplied by the user).

2. Read in an int value, Trials, for the number of experiments to run for a
specific choice of cp.

3. Create an instance of the CNF2 class, F = new CNF2(n).

4. For a suitable range of values of cp, using Trials experiments for each
value

a. Create the next random 2-cnf, by calling F.nextRandomCNF (cp).

b. Test whether the 2-cnf just formed is satisfiable by calleing F.SatTest().

c. Add F.StepCount() to the total number of steps Total taken (with
the current value of cp).

d. If F.IsSat() is true then increase the number of satisfiable cases
(SatCases) found (with the current value of cp) by 1.

5. Output (to a file!) the values of cp and the double value SatCases/Trials.

6. Output (to a different! file) the values of cp and the double value
Total/Trials.

7. Repeat (a)–(d) (and 5 and 6) with next value for cp.

Having implemented the experimental framework just described you should then
carry out the following.

A. Generate output from the experiment in 2×K files (where K is the number
of distinct values of n used). You should carry out the experiment using
at least three very different and moderate size values of n (with values
differing by at least 10), e.g. n = 100, 250, 500 would be suitable, however,
n = 20, 21, 22 would not.

B. Using the gnuplot script provided (you will have to edit this to reflect the
filenames you’ve chosen for output) generate two graphical outputs: the
first showing how the proportion of satisfiable cnfs found varies with the
range of values for cp in your experiments (hence, the y-axis has a value
between 0 and 1); the second showing how the average number of steps
changes with with the range of values for cp used.

4

C. Based on the results obtained you should then discuss the following:

C1 What (if any) distinctive features do you see in the output plots
generated in (B)?

C2 Do these features provide support or rebuttal of the assertion in
Claim 1?

C3 What relationship(s) are noticeable between the average time graph
and the proportion of satisfiable cases graph?

Hints and Suggestions

Output to a named file

The java.io package provides a suite of methods to output to several files within
a single program. The following code will set up output streams that can be
used to collect experimental data from your program:

//**

// Start of main program -- remember to include the IOException

//***

public static void main(String[] args) throws IOException {

public static FileWriter PropnSat;

public static PrintWriter AvSat;

public static FileWriter NumSteps;

public static PrintWriter StepsData;

//**

int n // For number of variables in CNF2 constructor

//**

// Once n has been read in (from Standard input)

// define two Strings for the output files as follows

//**

String SatD = "SatStats"+String.valueOf(n);

String StepD = "SatTime"+String.valueOf(n);

//**

// The output streams are then created by

//***

PropnSat = new FileWriter(SatD);

AvSat = new PrintWriter(PropnSat);

NumSteps = new FileWriter(StepD);

StepsData = new PrintWriter(NumSteps);

//**

// You then have the same methods as available with System.out,

// e.g if n=100

//**

AvSat.println(.......); // will print to a file called SatStats100

StepsData.println(.......); // will print to a file called SatTime100

5

//**

// !!!!!!! EXTREMELY IMPORTANT !!!!!!!!

//**

// The last thing that should be done in your main() program is to ‘‘flush’’

// the output streams AND ‘‘close’’ the files, i.e. in the example above

// the statments below MUST be included.

//**

AvSat.flush(); AvSat.close();

StepsData.flush(); StepsData.close();

}

Choosing the probability range and number of Trials

As was mentioned earlier, the instance method nextRandomCNF (double cp)
constructs a random 2-cnf expression using n variables, by including each of
the 2n(n− 1) clauses (pairs) with probability cp. If you only consider constant
values of cp, e.g cp ∈ {0.1, 0.2, . . . , 0.9} then the all of the resulting random
2-cnf expressions will be “large” (particularly if n itself is moderately sized,
e.g. n ≥ 20). In order to obtain “meaningful” results, the range of probabilities
should be allowed to change as a function of n. A suitable range (from “small”
to “large” 2-cnfs) is obtained by fixing cp ∈ {0.05/n, 0.1/n, 0.15/n, . . . , 3.0/n},
e.g. use a for loop

int interval=0.05;

for (int ProbRange=1; ProbRange<61; ProbRange++)

{

cp = (interval*(double)ProbRange)/((double)n);

Total=0 ; SatCases=0;

for (int i=0: i<Trials; i++)

{

Generate and test next random CNF2

Update data (i.e. Total and SatCases)

};

Output data to relevant files

};

If you choose a number of trials which is very large combined with a moderate
size for n, e.g. n ≥ 750 and Trials > 500 you will probably find that the
program takes a while to deliver its results. Assuming your code is correct, this
is pefectly normal: the 2-sat solver implemented in the class is CNF2 is not
(nor is it intended to be) the most efficient possible. It will be able to generate
data for cases such as n = 1000 and Trials = 50 within around 10 minutes
run-time.

Using gnuplot

gnuplot is a Unix graphical tool that allows data to be plotted in a variety of
styles. The module resource page contains a script – PlotSatData – (which you

6

may have to edit depending on the choice of files for your output and range
of sizes chosen) which will generate 2 postscript files: SatProbability.ps and
SatTime.ps. gnuplot can be invoked (within Unix) by giving the command
gnuplot<PlotSatData. (When you run this script ignore the noise text will
appear on the page).

What should be Submitted

a. The java source code of your main experimental program.

b. A description of the experimental framework used, i.e. range of values of
n, range of probabilities examined, the number of trials carried out with
each case.

c. The graphical plots – SatProbability.ps and SatTime.ps – generated
by your experimental data.

d. Your answers to the questions (C1), (C2), and (C3) and a justification for
these based on your experimental findings.

e. A completed and signed Declaration On Plagiarism and Collusion Form.

How the work should be submitted

Items (a–e) should handed in to the Student Office. A cover sheet should indicate
all of the following information:

a. The Assessment number.

b. Your name and University e-mail address

c. Your lab group.

d. The name of the demonstrator/tutor responsible for this group.

e. Your degree programme, e.g. G400 Computer Science, G500 Computer
Information Systems.

7

