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Background

• Suppose we are interested in testing an 
hypothesis about “how good” a method, P, is 
at carrying out a given task.

• Assuming a precise definition of what is 
intended by “how good” has been given, the 
hypothesis is examined by running a series of 
experiments using random data.

• The results obtained are claimed to support 
the hypothesis.
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Question –

• How can this claim be justified?
• Possible objections –
a. Random data was used and the 

results are just a coincidence.
b. The random data was “biased”.
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Possible answers

• To answer objection (a) one approach is to 
reason that the “chance” of the results being 
coincidence is “too small”.

• For example –
If a die is thrown 6000 times one would 
expect each of the 6 possible outcomes to 
occur “roughly” 1000 times.
If, however, a 6 was thrown on 5000 of the 
tests, then “most people” would agree that 
the die used was “biased”.
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Problematic issue –

• 5000 identical outcomes when only 1000 had been 
“expected” is accepted as indicating “bias” in the die 
used. 

• But, what if the the results had been –
3000 identical OR 2000 identical OR

1500 OR 1250 OR 1100 … ?
• In other words,

How large must the discrepancy between what is 
expected to happen (1000 × 6s) and what happens in 
practice (???? × 6s) be in order to be “confident” that 
the die is biased? 
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Deciding between “coincidence” 
and “real behaviour” 
• In statistics the notion of “statistical 

significance” has been developed as a 
method of answering this question.

• We will describe some of the standard ideas 
used to assess experimental results by 
statistical methods.

• Our interest is in applying these ideas when 
conducting an experiment.

• We do not consider “mathematical” properties
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Statistical approach – overview I

• Examining a claim such as:
“The outcome of this experiment will be x”

• For example,
Ø “If I add up the values that appear when this die is 

thrown 100 times then the total will be 350”
• Or, in a more general form
• “If I add up the values that appear when this die is 

thrown n times then the total will be 3.5×n”
• The claim being studied is called the

Null Hypothesis (or N.H.)
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Statistical approach – overview II

• The experiment indicates:
“The result of this experiment was y”

• For example,
Ø“On adding the values that appeared 

when this die was thrown 100 times the 
total was 380”
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Statistical approach – overview III

• In total, we have –
• An expected outcome – x.
• An actual outcome – y.
• The number of trials made – n.
• Sometimes  “expected” and “actual outcome” 

are stated as “averages” e.g. in die throwing 
case 

x = 3.5
y = (Total thrown)/(Number of throws)
n = Number of times die was thrown
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Statistical “significance” I

• The term “significance” refers to 
whether the difference between an 
expected outcome and the actual 
outcome is extreme enough to suggest 
that the Null Hypothesis is “incorrect”.

• This is described by considering how 
“likely” such a discrepancy between the 
two would be.
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Statistical “significance” II

• Conventionally three levels are used in 
practical experimental studies –

Significant = =5% likelihood
Highly significant = =1% likelihood

Very highly significant = =0.1%
• In very informal terms, these express,
• “That x is true given that y was observed is a 

1-in-20/1-in-100/1-in-1000 chance”
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Summary I

• To decide if a hypothesis is acceptable or 
not (and the level these hold) by a series of 
experiments, we need:

A. The expected result – x (Null Hypothesis)
B. The actual result – y (experiment)
C. The number of trials used to find y (n)
D. The probability of y being the outcome after 

n trials whose predicted result was x.



7

2008 13COMP114 – Experimental 
Methods in Computing

Summary II

• The main complication that arises is 
computing the value from which 
conclusions will be drawn, i.e.

D. The probability of y being the outcome 
after n trials whose predicted result 
was x.
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Some statistics jargon –

• In order properly to deal with the 
computational problem raised by finding
“The probability of the outcome y after n
trials whose predicted result was x.”
we first need to introduce some terms 
from statistics.
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Populations, Samples, Distributions

• Population – P
The collection (set) of possible outcomes, e.g. 
the six possible results from throwing a die, 
the two possible ways a coin may land.

• Sample – x
A member of a population, P.

• Distribution – D
A function describing for each sample in the 
population, its probability.
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The Uniform Distribution

• In the Uniform Distribution – each sample of 
the population is equally likely, e.g.

P = {1,2,3,4,5,6}
Prob[x chosen] = 1/6

P={Heads,Tails}
Prob[Heads]=Prob[Tails]=1/2

• The uniform distribution is often used in 
experiments dealing with estimating  the 
“typical performance” of a program. 
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Some more jargon … 

• In comparing the outcome (y) against 
the predicted outcome (x), some 
mechanism for considering how the 
values that led to y are “spread”. 

• The concept of “spread” is formally 
described by the ideas of variance and 
standard deviation (or standard error).
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Average and Variance

• Given n samples from a population P -
X=<x1,x2,x3,…,xn> - (assuming a 
uniform distribution)

• The average (or mean) value of X is
E(X) = (x1+x2+x3+…+xn)/n 

• The variance, V(X) of X is
[(x1-E(X))2+(x2-E(X))2+…+(xn-E(X))2]/n
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Average and Variance

• The notation E(X) arises from this value often being 
referred to as “the expected value of a sample”.

• In the examples and cases looked at we will assume 
that the population is sampled using a Uniform 
Distribution.

• In a number of studies, however, the Uniform 
distribution over P is replaced by by one which 
“biases” to a subset of P.

• In such cases, a refinement of the definitions for E(X)
and V(X) which considers this bias must be used.
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Standard Deviation
• Variance provides one method for describing 

the “spread” of a range of samples drawn 
(uniformly) from a population.

• Standard deviation (which is closely related to 
variance) is another. 

• Given n samples from a population P –
X=<x1,x2,x3,…,xn> – the standard deviation of 
X is

S.D(X) = [V(X)](1/2)

• i.e. the square root of variance. The notation 
σ(X) (or just σ) is sometimes used.
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The Normal Distribution

• Suppose we are interested in how likely 
it is that some number of tests will 
produce the same result. For example,

• We have a single coin; in each test this 
may land Heads; if we carry out n tests 
how often might k Heads be seen? 
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What are the possibilities with 5 tests?

• We can have 0, 1, 2, 3, 4 or 5 heads. If 
the coin is fair (equally likely to fall 
Heads or Tails), the chance of each is, 
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Number of Heads (5 tests)

0 1 2    3 4 5
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With 20 tests …

2-4
4-6 8-12
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And 100 … 

~50

<30
>70
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Finally, for 1000 tests …

~500
>540<440
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Properties –

• The term  “Normal distribution”, is used for 
the family of “bell-shaped” curves with a 
number of very important properties – e.g.

• As the number of tests (n) increases, the 
probability of the number of Heads seen 
being “noticeably” different from n/2 becomes 
very small.

• A similar behaviour would occur if a biased 
coin was used, so that if, for example, Heads 
occurred with probability 1/4 …
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Biased coin, 100 tests

~25<15
>35
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Properties of Normal Distribution
• The Normal Distribution is used/occurs in a number 

of practical situations – e.g. 
exam score ranges

• The actual “bell curve” formed is defined by two 
parameters –

µ - The mean (average value)
σ - The Standard Deviation

• The notations N(µ,σ) and Φ(x) are often used – the 
second being the value x maps to on the curve 
defined by N(µ,σ). 

• The value Φ(x) defines the “chance of x occurring”.
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Applying N(µ,σ) to Real Problems
• Recall that we are interested in dealing 

with the following problem –
“Finding the probability of an outcome y
after n tests with predicted result x.”

• How could assuming the behaviour of 
an experiment follows a Normal 
Distribution, help us?
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Distance from the mean I

• From the results giving the chance of a 
coin landing Heads on at least k tests 
out of 100, we can compute the 
following Table. 
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0.0000175

0.0001470

0.0031965

0.0345260

0.1816555

0.550

Prob[≥k heads]k
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Distance from the mean II

• When the experiment outcome (y – the 
number of Heads) is further and further from 
the predicted outcome (x), it strengthens the 
evidence that the Null Hypothesis (the coin 
lands Heads on x tests) is in fact incorrect.   

• Is the increment “5” important in the Table on 
the previous slide?

• Yes. In the example, the mean is 50, and the 
standard deviation is ≈5
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Distance from the mean III
• An outcome (60) at least 2 standard 

deviations away from the mean (50) is 
already “significant” (<1-in-20 chance)

• An outcome (65) at least 3 standard 
deviations away from the mean is already 
“highly significant” (<1-in-100 chance)

• An outcome (70) at least 4 standard 
deviations away is “very highly significant” 
(<1-in-1000 chance).

• So we could reject the claim that “the coin 
was fair” on the basis of an experiment giving 
such results.
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Overview – basic approach.
• Given a population, P, whose mean is claimed to 

be µ and whose standard deviation σ is known the  
aim is to consider if P does indeed have mean µ
(e.g. is this a fair coin?)

1. Set the significance level (5%/1%/0.1%) used.
2. Perform experiment to find y.
3. Calculate by how many standard deviations y

differs from µ, i.e the value q=(|y-µ|/σ)
4. Find the probability of a value at least q standard 

deviations away from the mean in N(µ,σ).
5. Reject the claim if this probability is under the 

significance level being used, i.e. 0.05/0.01/0.001.
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Example – Collusion/Cheating in a Game

• Below is very basic single die game.
• There are two players – Alice and Bill – each 

of whom pay £1 per round.
• A referee – Chris – throws a die twice. The 

value thrown first is given to Alice. The value 
thrown second is given to Bill. Only Chris 
knows both values.

• If Alice’s score is higher she wins (£2).
• If Bill’s score is higher then he wins (£2).
• If the scores are equal, Chris gets £1 and the 

remaining £1 is shared by Alice and Bill.
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Example continued
• The die being used is known to be fair, 

i.e. each of the six possibilities are 
equally likely to occur.

• Alice becomes suspicious that the game 
is “fixed” because of the amount of 
money she has lost.

• Problem – based on the results how can 
she be  “reasonably confident” she is 
being cheated as opposed to simply 
being “unlucky”?
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Collecting data for experiment.

• Suppose 120 rounds are played.
• There are 3 possibilities –
1. Alice is not being cheated (the game is fair).
2. Chris is cheating both players (claiming the same 

value occurred when it had not).
3. Bill and Chris are colluding to cheat Alice (Chris 

wrongly reports that Bill has won or that both 
players had the same value throw) .

• The data collected by Alice are the amounts that 
she, Bill, and Chris have after 120 rounds.
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Analysing the Outcome

• If the game is being played fairly, then 
“typically” after 120 rounds we expect –

A. Alice to have “about” £110.
B. Bill also to have “about” £110.

C. Chris to have “about” £20.
• The standard deviation with (A,B) is ≈5.5
• The standard deviation with (C) is ≈4.1
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Forming Null Hypotheses

• The Null Hypothesis is that the game is 
being played fairly. In this case, Alice 
should have ~£110, (x=110).

• In order to decide if she is being 
cheated, the Normal Distribution with 
µ=110 and σ=5.5 – N(110,5.5) is used.
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Deciding significance of y (result)

• Statistical studies have shown that
• |x-y| ≥ 1.65×σ ⇒ Significant

• |x-y| ≥ 2.33×σ ⇒ Highly Significant
• |x-y| ≥ 3.09×σ ⇒ Very Highly Significant
• The values (1.65,2.33,3.09) apply in any

experiment in which σ is known, for a 
Normally Distributed population.
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Deciding if game was fair  – I

• Since σ=5.5 is known, if, after 120 rounds, 
Alice has won 

1. At most £100 i.e. 110-(5.5×1.65),
Ø she is 95% sure she is being cheated.

2. At most £97 i.e. 110-(5.5×2.33),
Ø she is 99% sure she is being cheated.

3. At most £93 i.e. 110-(5.5×3.09),
Ø she is 99.9% sure of she is being cheated.
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Deciding if game was fair  – II

• With µ claimed to be 20 and σ known
to be 4.1, Alice has  95%/99%/99.9% 
confidence that Chris is cheating if, 
after 120 rounds, Chris wins 
1. At least £27 i.e. 20+(4.1×1.65)
2. At least £30 i.e. 20+(4.1×2.33)
3. At least £33 i.e. 20+(4.1×3.09)
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The q-test

q =
| y µ |

σ

y=µ (N.H.)y =Outcome

–

q ≥
(1.65 ; 2.33 ; 3.09) 

N.H. has at best a
(20-to-1/100-to-1/1000-to-1) 

chance of holding
⇒
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Using the q-test – I 
• The main application is in settings studying a 

collection of outcomes
Y = { y(1), y(2), … , y(n) }

sampled from a Normally Distributed 
population, P, with Standard Deviation σ.

• The Null Hypothesis tested is
“The population P has mean x”

• It can be rejected (with some confidence) if y
(the average value of Y) is “too many” 
standard deviations away from x.
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Using the q-test – II 
• Assuming that σ has been given (or can be “easily”

found), the only computations needed are –
1. Collecting the experimental data, (the sample of 

outcomes, Y).
2. Computing y (the average value of the sample 

outcomes Y).
3. Comparing y with the “alleged mean”, x, (presented 

in the Null Hypothesis).
4. Compute q to determine whether there are grounds 

to reject the Null Hypothesis.
• Note that no explicit calculation of probability using

N(x,σ) is needed: it’s already been done with the 3 
significance values – (1.65 ; 2.33 ; 3.09)!
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A problem with the q-test
• A major requirement to be satisfied in 

correct applications of the q-test is that,
The Standard Deviation (σ) of the
population (P) being sampled is known.

• It is, however, rarely the case with “real” 
studies, that σ is known or easily found.

• When investigating hypotheses in such 
situations, the q-test cannot be used. 
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Estimating Standard Deviation I

• Suppose, given a collection 
Y={Y(1), Y(2), … ,Y(n)}

drawn from a normally distributed population, 
P, with σ(P) not known, an “estimate” of σ(P)
can be computed (using Y).

• If this “estimate” is “good enough” then it 
could be used in a significance test, other 
than the q-test.
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Estimating Standard Deviation II

• A “natural” starting point is the sample 
Y={Y(1), Y(2), … ,Y(n)}

• This is making the assumption that S.D(Y)
ought to provide a “good enough estimate” of 
σ(P).

• We can then replace q (in the q-test) by the 
number of “estimated deviations” (S.D.(Y)) 
that y (the experiment outcome) is from x (the 
predicted result).
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The t-test

t =
| y x |

S.D(Y)

y=x  (N.H.)

Y = Exp. Data

–

t ≥
(??? ; ??? ; ???) 

N.H. has at best a
(20-to-1/100-to-1/1000-to-1) 

chance of holding
⇒

y =Outcome



26

2008 51COMP114 – Experimental 
Methods in Computing

Problem – how large must t be?

• The “confidence values” used in the q-test 
cannot always be used in the t-test. 

• This is because S.D(Y) is an estimate of σ
(the “true” standard deviation of P).

• Fortunately, a number of methods are 
available to compute the value of t that is 
needed to ensure a given level of 
significance, e.g. pre-computed tables.

• The number of samples, n, in Y is an 
important factor in computing this value and 
is referred to as the “number of degrees of 
freedom”.
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3.39
…

t(d.f. n)

2.46
…

t(d.f. n)

1.70
…

t(d.f. n)

30
… 
n

22.33
…

4.14

6.97
…

2.76

2.92
…

1.81

2
…
10

318.531.826.311

0.1% signif.
(number of SD 
needed).

1% signif.
(number of SD 
needed).

5% signif.
(number of SD 
needed).

Degrees of 
freedom

(d.f.)
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More about t–tables I
• The columns give the “number of (estimated) 

SDs” that a result must differ from the 
prediction in order for a given level of 
significance to hold.

• As the “degrees of freedom” value increases, 
these get smaller, i.e. the larger the sample 
size (n) the smaller the distance from x has to 
be to achieve a particular significance level.

• In practice, n=100 (1.66/2.36/3.17) and 
n=500 (1.65/2.34/3.11) are already “close”, 
and with n=5000 (1.645/2.327/3.092) are 
approaching the values used in the q-test.
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More about t–tables II

• This last property indicates an important aspect of the 
so-called “t-distributions”, namely

• Larger population samples (that is, the degrees of 
freedom) when used to estimate standard deviation 
give more accurate estimates.

• As a result t(d.f. n) is “closer to” the confidence limits 
used in q-tests than t(d.f. n-1).

• If it were possible to use unlimited degrees of 
freedom, then the “estimated” S.D., would in fact be 
the “true” value of σ needed, i.e. the q-test and t-test 
would be identical.
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Important applications of the t-test

• There are three main forms –
I. Is a single mean (y) “significantly different” 

from a predicted mean (x)?
II. Given a collection of paired samples (from 

the same population), is there a significant 
difference between the 2 means?

III. Given two collections of samples (from the 
same population) is there a significant 
difference between the means? (unpaired)

• We consider (I) and (II) only.
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Using the t-test – Single Mean
• We have a collection of outcomes

Y = { y(1), y(2), … , y(n) }
sampled from a Normally Distributed 
population, P.

• The Null Hypothesis tested is
“The population P has mean x”

• It can be rejected (with some 
confidence) if y (the average value of Y) 
is “too many”  “estimated standard 
deviations” away from x.
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Using the t-test – Paired Samples I

• Suppose we have two methods, Q and R, 
for solving the same problem, e.g. the two 
methods for permutations earlier. 

• It is often hard to justify claims such as “In 
general, Q and R are equally good”; or “Q is 
typically much faster than R”.

• Such claims concern behaviour on average.
• One possibility is to use experiments where 

the result of comparing Q(Y) with R(Y), 
when Y is chosen at random.
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Example – checking upgrades
• Consider the following scenario:

The Megahard Corporation releases an 
upgraded and (allegedly) improved version 
of its antivirus software. Many clients 
complain that the upgrade is noticeably 
slower than its predecessor.

Q. Assuming that all of the complaints about 
speed come from users with similar 
hardware (e.g. notebook, laptop) and 
Operating system, how can Megahard 
convince its clients that the upgrade is OK? 
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Example continued

A. Megahard selects a random sample of its 
clients and invites them to report the results 
of running both versions of the antivirus 
software, over a given trial period – the 
reports are given as pairs of the form 

{AV-Old Time ; AV-New Time}
with the time units being, e.g. Millisecond.
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Experiment Structure

• Data – the n pairs of run-time data sent.
• Null Hypothesis – the average time taken by AV-New 

is no worse than that of AV-Old.
• How is a t-test used to analyse this?
• Suppose Megahard recognise that the new system is 

slower but claim the difference is not significant. They 
will consider further investigation if there are “highly 
significant” indications  that the new version is slower 
than as its predecessor.

• In this case, both 5% and 1% significance levels are 
relevant: the Null Hypothesis should be rejected if the 
data show a <1-in-100 chance of the (average) run-
time of the new version being at most the average 
run-time of the old version; i.e. a significance level of 
1% is used.
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Methodology
• Given n pairs {AVO,AVN} 

{<AVO(1),AVN(1)>, …, <AVO(n),AVN(n)>}
define  

diff(i) = AVN(i) – AVO(i)
1. Compute MD, i.e. the average value of the 

difference between these values (the Null 
Hypothesis claims this is 0).

2. Compute SDD an (estimate) of the standard 
deviation of  diff(i).

3. Compute the standard error of the the value 
MD using SED =SDD/n0.5.

4. Calculated the t-test value as  t=MD/SED.
5. If t ≥ t(n d.f.) then the Null Hypothesis (that 

the new version is “no slower”) is rejected.
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Some features of this experiment
a. Is the time taken by an antivirus 

program its only relevant feature? 
Does it even matter?

b. The second Assessment deals with an 
alternative experimental comparison of 
the two antivirus approaches.
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Summary

• Statistical significance tests provide methods 
by which an experimental outcome (y) may 
be compared with a prediction: the (Null) 
hypothesis, x.

• The q-test and t-test are 2 examples.
• Important: the outcome of an experiment may 

fail to reject an hypothesis; this does not 
imply the hypothesis is accepted.

NOT (Rejected N.H) ≠ Accepted N.H.
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Experiments are not error-proof
• Type I errors

Rejecting a true hypothesis. 
• Type II errors

Not rejecting a false hypothesis.
• A “low” significance level (5%) can avoid Type II but 

increase Type I.
• For example, a true hypothesis could fail a 5% test 

but pass one at 1%
• A “high” significance level (0.1%) can avoid Type I

but increase Type II. 
• For example, a false hypothesis could pass a 0.1%

test but fail with one at 1%


