
Lempel-Ziv Welch (LZW) compression

Lecture plan:

• Description of this refined compression scheme.

• Application in GIF’s.

• Comparison with Huffman coding.

Part of this lecture is based on an article posted on a newsgroup a while ago

(see e.g.http://www.danbbs.dk/˜dino/whirlgif/lzw.html ).

The original paper that describes the LZW algorithm is:

Terry A. Welch. A Technique for High Performance Data

Compression. IEEE Computer, Vol. 17, No. 6, 1984, pp. 8-19.

The GIF format is described in more detail in

http://ftp.funet.fi/pub/graphics/formats/gif.doc

http://ftp.funet.fi/pub/graphics/formats/gif89a.doc

1

Generalia

LZW is a way of compressing data that takes advantage of repetition

of strings in the data.

Since raster data usually contains a lot of this repetition,LZW is a good way

of compressing and decompressing it.

LZW manipulates three objects in both compression and

decompression: the input text, the (output) codestream, and a string

table.

The string table is a product of both compression and decompression,

but is never passed from one to the other.

2

Compression

The first thing we do in LZW compression is initialize a stringtable.

If A is our alphabet we start by setting up a table in which a different

code-word is assigned to each character ofA.

Example. If A = { a, b, c, d } we may create the table

character code word

a 000000

b 000001

c 000010

d 000011

3

Remarks
LZW compression algorithm works under the assumption that we can

generate a large number of distinct codewords. In the example the codeword

000000 (six bits) fora may seem a waste, but binary codewords of length 6

allow us to encode 64 different strings.

Of course one could try to same more space by using a variable length code

(e.g. Huffman code) instead.

These are implementation details that are left

aside for now. From now on we assume that

there are enough distinct codewords available.

We will denote each of these by “#” followed

by an integer order number. So the table on the

previous page would be written as reported on

the right

character code word

a #0

b #1

c #2

d #3

4



Details of the compression process

Now we start compressing data. Let’s first define something called

the ”current prefix”. It’s just a variable that we’ll store things in and

compare things to now and then. I will refer to it as[.c.] . Initially,

the current prefix has nothing in it. Let’s also define a ”current

string”, which will be the current prefix plus the next character in the

text. I will refer to the current string as[.c.]K , whereK is some

character.

5

Look at the first character in the text. Call itP. Make[.c.]P the
current string. (At this point, of course, this is justP.) Now search
through the string table to see if[.c.]P appears in it. Of course, it
does, because our string table is initialized to have all single
characters in the alphabet. So we don’t do anything.

Now make[.c.]P the current prefix. Look at the next character in
the text. Call itQ. Add it to the current prefix to form[.c.]Q , the
current string. Now search through the string table to see if[.c.]Q

appears in it. In this case, of course, it doesn’t. Add[.c.]Q (which
is PQin this case) to the string table, and output the code for[.c.]

to the codestream. Now start over again with the current prefix being
just the rootQ.

Keep adding characters to[.c.] to form [.c.]K , until you can’t
find [.c.]K in the string table. Then output the code for[.c.]

and add[.c.]K to the string table.

6

In pseudo-code, the algorithm goes something like this:

[1] Initialize string table;

[2] [.c.] <- empty;

[3] while there is a character to read

[4] K <- next character in text;

[5] If [.c.]K is in string table

[.c.] <- [.c.]K;

else

add [.c.]K to the string table;

output the code for [.c.] to the codestream;

[.c.] <- K;

[6] output the code for [.c.] to the codestream;

[7] delete the string table

7

Example

Σ = { A, B, C, D}, T = ABACABA.
We initialize our string table to: #0=A, #1=B, #2=C, #3=D.
The first character ofT is A, which is in the string table, so[.c.] be-

comes A. Next we get B.[.c.] B (which is AB) is not in the table, so we
output code #0 (for[.c.] ), and add AB to the string table as code #4. [.c.]
becomes B. Next we get[.c.] A = BA, which is not in the string table, so
output code #1, and add BA to the string table as code #5.[.c.] becomes A.
Next we get AC, which is not in the string table. Output code #0, and add AC to
the string table as code #6. Now[.c.] becomes C. Next we get[.c.] A =
CA, which is not in the table. Output #2 for C, and add CA to table as code#7.
Now [.c.] becomes A. Next we get AB, which IS in the string table, so
[.c.] gets AB, and we look at ABA, which is not in the string table, soout-
put the code for AB, which is #4, and add ABA to the string tableas code #8.
[.c.] becomes A. We can’t get any more characters, so we just output#0 for
the code for A, and we’re done.

The codestream is “#0#1#0#2#4#0”.

7-1



Efficiency?
>>>> use a hashing strategy<<<<<

The search through the string table can be computationally intensive.

Also, note that ”straight LZW” compression runs the risk of

overflowing the string table - getting to a code which can’t be

represented in the number of bits you’ve set aside for codes.There

are several ways of dealing with this problem, and GIF implements a

very clever one, but we’ll get to that.

8

Issue

An important thing to notice is that, at any point during the

compression, if a string of the form[...]K is in the string table,

then[...] is there too. This fact suggests an efficient method for

storing strings in the table. Rather than store the entire string of K’s

in the table, realize that any string can be expressed as a prefix plus a

character:[...]K . If we’re about to store[...]K in the table, we

know that[...] is already there, so we can just store the code for

[...] plus the final characterK.

9

Decompression

We again have to start with an initialized string table (thisassumes

we know the alphabetA and the codewords for each of its characters.

The beauty of LZW, though, is that this is all we need to know atthe

beginning. We will build the rest of the string table as we decompress

the codestream.

We need to define something called acurrent code, (referred to as

<code> ), and anold-code, which I will refer to as<old> .

10

Details

To start things off, look at the first code. This is now<code> . This code will

be in the intialized string table. Output the correspondingcharacter to the

text. Make this code the old-code<old> .

Now look at the next code, and make it<code> . It is possible that this code

will not be in the string table, but let’s assume for now that it is. Output the

string corresponding to<code> to the codestream. Now find the first

character in the string you just translated. Call thisK. Add this to the prefix

[...] generated by<old> to form a new string[...]K . Add this string

to the string table, and set the<old> to <code> . Repeat from the

beginning of the paragraph, and you’re all set (this is the most common case

so you should understand this before going on).

11



What if <code> is not in the string table? (A case which can only occur for

strings of the formP[...]P (for any characterP).)

Think back to compression. What happens whenP[...]P[...]PQ

appears in the text? SupposeP[...] is already in the string table, but

P[...]P is not. The compressor parsesP[...] , and find thatP[...]P

is not in the table. It outputs the code forP[...] , and addsP[...]P to the

string table. Then it gets up toP[...]P for the next string, and finds that

P[...]P is in the table, as the code just added. So it outputs the code for

P[...]P if it finds thatP[...]PQ is not in the table.

The decompressor is always ”one step behind” the compressor. When the

decompressor sees the code forP[...]P , it will not have added that code to

it’s string table yet because it needed the beginning character of P[...]P to

add to the string for the last code,P[...] , to form the code forP[...]P .

However, when a decompressor finds a code that it doesn’t knowyet, it will

always be the very next one to be added to the string table. So it can guess at

what the string for the code should be, and, in fact, it will always be correct.

12

So the decompression pseudo-code goes something like:

[1] Initialize string table;

[2] <code> <- first codeword;

[3] output the string for <code> to the text;

[4] <old> <- <code>;

[5] <code> <- next code in codestream;

[6] If <code> exists in the string table

output the string for <code> to the text;

[...] <- translation for <old>

K <- first character of translation for <code>

else

[...] <- translation for <old>

K <- first character of [...];

output [...]K to text;

[7] add [...]K to the string table;

[8] <old> <- <code>

[9] go to [5] unless the codestream is empty;

13

Detailed simulation

A = { A, B }; #0 is the code forA, #1 is the code forB. Suppose we

get the encode string

#0 #1 #2 #4 #0

14

instructions processed <code> <old> [...] K output
[2] to [4] #0

’’ A
’’ #0

[5] #1
[6] (then branch) B

’’ A
’’ B

[7] and [8] add “AB - #2” to string table
’’ #1

[5] #2
[6] (then branch) AB

’’ B
’’ A

[7] and [8] add “BA - #3” to string table
’’ #2

[5] #4
[6] (else branch) AB

’’ A
’’ ABA

[7] and [8] add “ABA - #4” to string table
’’ #4

[5] #0
[6] (then branch) A

’’ ABA
’’ A

[7] and [8] add “ABAA - #5” to string table
’’ #0

14-1



GIF variation

In part of the header of a GIF file, there is a field, in the RasterData

stream, calledcode size. This is the number of bits (currently)

associated with the characters. The actual size, in bits, ofthe

compression codes actually changes during

compression/decompression, and I will refer to that size here as the

compression size.

The initial table is just the codes for all the characters in the alphabet,

as usual, but two special codes are added on top of those. The code

sizeN is set to max(2,bits-per-pixel). In the table, the individual

characters take up slots #0 through #(2N − 1), and the special codes

are at #(2N ) and #(2N + 1). The initial compression size will be

N + 1 bits per code.

15

Special codes

If you’re encoding, you output the codesN + 1 bits at a time to start

with, and if you’re decoding, you grabN + 1 bits from the

codestream at a time. As for the special codes:CCor the clear code,

is 2N , andEOI, or end-of-information, is2N + 1. CCtells the

compressor to re-initialize the string table, and to reset the

compression size toN + 1. EOI means there’s no more in the

codestream.

16

How does it all work?

If you’re encoding or decoding, you should start adding things to the

string table atCC+ 2. If you’re encoding, you should outputCCas

the very first code, and then whenever after that you reach code

#4095 (hexFFF), because GIF does not allow compression sizes to

be greater than 12 bits. If you’re decoding, you should reinitialize

your string table when you observeCC.

17

Variable compression size

If you’re encoding, you start with a compression size ofN + 1 bits,

and, whenever you output the code2compression size− 1, you bump

the compression size up one bit. So the next code you output will be

one bit longer. Remember that the largest compression size is 12 bits,

corresponding to a code of 4095. If you get that far, you must output

CCas the next code, and start over. If you’re decoding, you must

increase your compression size AS SOON AS YOU write entry

#(2compression size− 1) to the string table. The next code you read

will be one bit longer. Don’t make the mistake of waiting until you

need to add the code2compression sizeto the table. You’ll have

already missed a bit from the last code.

18



The packaging of codes into a bitstream for the raster data isalso a

potential stumbling block for the novice encoder or decoder. The

lowest order bit in the code should coincide with the lowest available

bit in the first available byte in the codestream.

For example, if you’re starting with 5-bit compression codes, and

your first three codes are, say,abcde , fghij , klmno , wheree, j ,

ando are bit #0, then your codestream will start off like:

byte \#0: hijabcde

byte \#1: .klmnofg

19

P.S.

You may have noticed that a compressor has a little bit of flexibility

at compression time. I specified a ”greedy” approach to the

compression, grabbing as many characters as possible before

outputting codes. This is, in fact, the standard LZW way of doing

things, and it will yield the best compression ratio. But there’s no rule

saying you can’t stop anywhere along the line and just outputthe

code for the current prefix, whether it’s already in the tableor not,

and add that string plus the next character to the string table. There

are various reasons for wanting to do this, especially if thestrings get

extremely long and make hashing difficult. If you need to, do it.

20


