Vizing Theorem

Theorem 2.2 For every simple graph $\chi^{\prime}(G) \leq \Delta+1$.
Proof. Let G be the input graph. We present an algorithm that colors the edges of G using at most $\Delta+1$ colors.

The algorithm has the following framework.

Algorithm Edge-coloring

Input: a graph G on n vertices with maximum degree Δ
Output: an edge colouring of G with $\Delta+1$ colours
(1) let G_{0} be the empty graph on n vertices
/* edges of G are $e_{1}, \ldots, e_{m} * /$
(2) for $i=1$ to m
extend to colouring of G_{i-1} to colour $G_{i}=G_{i-1} \cup\left\{e_{i}\right\}$
We need to explain how the graph G_{i} can be coloured with at most $\Delta+1$ colors. Inductively, suppose that we have coloured the edges of G_{i-1} using at most $\Delta+1$ colors. Now $G_{i}=G_{i-1} \cup\left\{e_{i}\right\}$ where suppose $e_{i}=\left(v_{1}, w\right)$.

CASE 1 If both vertices v_{1} and w miss 2 a common color c, then we simply color e_{i} with c and we obtain a valid coloring for the graph G_{i}.

CASE 2. We suppose that there is no color that is missed by both v_{1} and w. Let $c_{1} \in \operatorname{Missed}\left(v_{1}\right)$ and $c_{0} \in \operatorname{Missed}(w)$. Since $c_{1} \notin \operatorname{Missed}(w)$ there is an edge $\left(v_{2}, w\right)$ colored with c_{1}. Now if v_{2} and w have a common missed colour, we stop. Otherwise, let $c_{2} \in \operatorname{Missed}\left(v_{2}\right)$ and $c_{2} \notin \operatorname{Missed}(w)$. Let $\left(v_{3}, w\right)$ be the edge coloured c_{2}.

We thus construct a "fan" (see Figure 2) that consists of h neighbours v_{1}, \ldots, v_{h} of w and $h-1$ different colours c_{1}, \ldots, c_{h-1}, such that:

Figure 2: A fan in the execution of the algorithm implicit in the proof of Vizing's theorem.
c1 for all $j=1, \ldots, h-1, v_{j}$ misses c_{j} and $\left(v_{j+1}, w\right)$ is colored c_{j};
c2 none of v_{1}, \ldots, v_{h-1} have a common missed color with w;
$\mathbf{c 3}$ for all $j=2, \ldots, h-1, v_{j}$ does not misses c_{1}, \ldots, c_{j-1}.
Notice that requirement $\mathbf{c 3}$ is true of $v_{2}\left(v_{2}\right.$ does not miss c_{1}, just because $\left(v_{2}, w\right)$ takes this colour in $\left.G_{i-1}\right)$ but in general it implies that $j-2$ edges incident to v_{j} are coloured c_{1}, \ldots, c_{j-2}.

There are three possible sub-cases.
SubCase 1. the vertex v_{h} satisfies $\mathbf{c 3}$ and v_{h} has no common missed color with w. Then we can expand the fan (there must be $\left(v_{h+1}, w\right)$ colored $\left.c_{h}\right)$. Since the degree of w is finite, SubCase 1 must fail at some stage and one of the following two other cases should happen.

SubCase 2. the vertex v_{h} has a common missed color c_{0} with w (see Figure 3).
Then we change the coloring of the fan by coloring $\left(v_{h}, w\right)$ with c_{0}, and coloring $\left(v_{i}, w\right)$ with c_{i} for $i=1, \ldots, h-1$. It is easy to verify that this gives a valid edge coloring for the graph G_{i}.

[^0]

Figure 3: Solution to SubCase 2.

Figure 4: SubCase 3.1 with $u_{t} \neq w$.

SubCase 3. the vertex v_{h} misses a color $c_{s}, 1 \leq s \leq h-1$. Let c_{0} be a color missed by w. We start from the vertex v_{s}. Since v_{s} has no common missed color with w, there is an edge (v_{s}, u_{1}) colored with c_{0}. Now if u_{1} does not miss c_{s}, there is an edge $\left(u_{1}, u_{2}\right)$ colored with c_{s}, now we look at vertex u_{2} and see if there is an edge colored with c_{0}, and so on. By this, we obtained a path P_{s} whose edges are alternatively colored by c_{0} and c_{s}. The path has the following properties:
p1 the path P_{s} must be finite and simple since each vertex of the graph G_{i-1} has at most two edges colored with c_{0} and c_{s};
$\mathbf{p} 2$ the path P_{s} cannot be a cycle since the vertex v_{s} misses the color c_{s}; and
p3 the vertex w is not an interior vertex of P_{s} since w misses the color c_{0} (it can only be u_{t}).
Let $P_{s}=\left\{v_{s}, u_{1}, \ldots, u_{t}\right\}$, where v_{s} misses color c_{s}, u_{t} misses either c_{s} or c_{0}.
If $u_{t} \neq w$, then interchange the colors c_{0} and c_{s} on the path to make vertex v_{s} miss c_{0}. Then color $\left(v_{s}, w\right)$ with c_{0} and color $\left(v_{j}, w\right)$ with c_{j}, for $j=1, \ldots, s-1$.

Figure 5: SubCase 3.2: $u_{t}=w$.

If $u_{t}=w$, we must have $u_{t-1}=v_{s+1}$ (see Figure 5). Then we grow a $c_{0}-c_{s}$ path P_{h} starting from v_{h} which also misses color $c_{s} . P_{h}$ must be finite and simple. Moreover, P_{h} cannot end at w. Therefore, we interchange colors c_{0} and c_{s} on P_{h} to make v_{h} miss c_{0}. Then color $\left(v_{h}, w\right)$ with c_{0} and $\left(v_{j}, w\right)$ with c_{j} for $j=1, \ldots, h-1$.
It is also easy to see that this process can be implemented by a polynomial time algorithm. We leave the detailed implementation of this process to the interested reader.

Exercise. Find an example graph on which the algorithm implicit in the last proof performs the Kempe interchange (with colours stored as integers, chosen in increasing order and edges colored starting from those adjacent to v_{1} then to v_{2} and so on). Petersen graphs (example of non-factorizable graphs) are $\Delta+1$ colorable but do not seem to require any color interchange.

[^0]: ${ }^{2}$ We say that a vertex u in a graph misses a color c if no edge incident on u is colored c. Note that each vertex must miss at least one color.

