
Vizing Theorem

Theorem 2.2 For every simple graph ���������
	����� .

Proof. Let � be the input graph. We present an algorithm that colors the edges of � using at most ����
colors.

The algorithm has the following framework.

Algorithm Edge-coloring
Input: a graph � on � vertices with maximum degree �
Output: an edge colouring of � with ���� colours
(1) let ��� be the empty graph on � vertices

/* edges of � are ������������� ��! */
(2) for "�# � to $

extend to colouring of ��%�& � to colour ��% # �'%�& �)(+* � %-,
We need to explain how the graph �.% can be coloured with at most �/�� colors. Inductively, suppose

that we have coloured the edges of �.%�& � using at most �01� colors. Now ��% # �'%2& �3(4* � %5, where
suppose � % # �26 � �87 � .

CASE 1 If both vertices 6 � and 7 miss 9 a common color : , then we simply color � % with : and we
obtain a valid coloring for the graph � % .

CASE 2. We suppose that there is no color that is missed by both 6 � and 7 . Let :;�.< Missed �26 � � and
: � < Missed � 7 � . Since :;�>=< Missed � 7 � there is an edge ��6 9 � 7 � colored with :;� . Now if 6 9 and 7 have a
common missed colour, we stop. Otherwise, let : 9 < Missed �26 9 � and : 9 =< Missed � 7 � . Let �26�? �87 � be the
edge coloured : 9 .

We thus construct a ”fan” (see Figure 2) that consists of @ neighbours 6 �A��������� 6�B of 7 and @)C � different
colours :��D���������E: B & � , such that:
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Figure 2: A fan in the execution of the algorithm implicit in the proof of Vizing’s theorem.

c1 for all FG# � ���������E@HC � , 6�I misses : I and �26;I J � � 7 � is colored : I ;

c2 none of 6 � ��������� 6 B & � have a common missed color with 7 ;

c3 for all FG#/KL���������E@HC � , 6�I does not misses : � ��������� : I�& � .
Notice that requirement c3 is true of 6 9 ( 6 9 does not miss : � , just because �26 9 � 7 � takes this colour in ��%2& � )
but in general it implies that F�CMK edges incident to 6DI are coloured : � ��������� : I�& 9 .

There are three possible sub-cases.

SubCase 1. the vertex 6NB satisfies c3 and 6NB has no common missed color with 7 . Then we can expand
the fan (there must be ��6NB J �D� 7 � colored : B ). Since the degree of 7 is finite, SubCase 1 must fail at
some stage and one of the following two other cases should happen.

SubCase 2. the vertex 6NB has a common missed color : � with 7 (see Figure 3).

Then we change the coloring of the fan by coloring ��6OB �87 � with : � , and coloring �26 % �87 � with : % for
"P# � ���������Q@HC � . It is easy to verify that this gives a valid edge coloring for the graph � % .R

We say that a vertex S in a graph misses a color T if no edge incident on S is colored T . Note that each vertex must miss at least
one color.
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Figure 3: Solution to SubCase 2.
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Figure 4: SubCase 3.1 with ���3=#�7 .

SubCase 3. the vertex 6NB misses a color :�� , �'	��'	 @HC � . Let : � be a color missed by 7 . We start from
the vertex 6 � . Since 6 � has no common missed color with 7 , there is an edge ��6 �D��� � � colored with
: � . Now if � � does not miss :�� , there is an edge � � ����� 9 � colored with :�� , now we look at vertex � 9
and see if there is an edge colored with : � , and so on. By this, we obtained a path

	
� whose edges

are alternatively colored by : � and : � . The path has the following properties:

p1 the path
	
� must be finite and simple since each vertex of the graph � %2& � has at most two edges

colored with : � and : � ;
p2 the path

	
� cannot be a cycle since the vertex 6 � misses the color :�� ; and

p3 the vertex 7 is not an interior vertex of
	
� since 7 misses the color : � (it can only be � � ).

Let
	
� # * 6 ����� �;����������� � , , where 6 � misses color :�� , � � misses either :�� or : � .

If ���'=#�7 , then interchange the colors : � and : � on the path to make vertex 6 � miss : � . Then color�26 � � 7 � with : � and color �26�I �87 � with : I , for FG# � ��������� � C � .
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Figure 5: SubCase 3.2: � � #�7 .
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If � � # 7 , we must have � � & � # 6 � J � (see Figure 5). Then we grow a : � C�: � path
	 B starting

from 6NB which also misses color :�� . 	 B must be finite and simple. Moreover,
	 B cannot end at 7 .

Therefore, we interchange colors : � and : � on
	 B to make 6�B miss : � . Then color ��6�B �87 � with : �

and ��6 I � 7 � with : I for FG# � ���������E@HC � .

It is also easy to see that this process can be implemented by a polynomial time algorithm. We leave
the detailed implementation of this process to the interested reader.

Exercise. Find an example graph on which the algorithm implicit in the last proof performs the Kempe
interchange (with colours stored as integers, chosen in increasing order and edges colored starting from
those adjacent to 6 � then to 6 9 and so on). Petersen graphs (example of non-factorizable graphs) are ��4�
colorable but do not seem to require any color interchange.
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