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ABSTRACT

In this paper we consider the problem of finding large collections of vertices and edges satisfying

particular separation properties in random regular graphs of degree r, for each fixed r ≥ 3. We prove

both constructive lower bounds and combinatorial upper bounds on the maximal sizes of these sets.

The lower bounds are proved by analysing a class of algorithms that return feasible solutions for the

given problems. The analysis uses the differential equation method proposed by Wormald [33]. The

upper bounds are proved by direct combinatorial means. c© ??? John Wiley & Sons, Inc.
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1. INTRODUCTION

A regular graph G = (V,E) of degree r (or simply an r-regular graph) is a graph, all

vertices of which have the same number r of incident edges. An r-regular graph on n ver-

tices contains rn/2 edges therefore it is a requirement that rn must be even. The distance

between two vertices in a graph is the number of edges in a shortest path between the two

vertices. The distance between two edges {u1, u2} and {v1, v2} is the minimum of the

distances between any two of the vertices ui and vj .

For any positive integer k, a k-independent set (resp. a k-(separated) matching) of a

graph, is a set of vertices (edges), with the additional constraint that the minimum distance

between any two vertices (edges) in the set is at least k + 1 (resp. k). Let αk(G) (resp.

νk(G)) be the size of the largest k-independent sets (resp. k-matchings) in the graph G.

For j = 1 (resp. j = 2) and any k ≥ 1, the maximum (k, j)-packing ((k, j)PACKING)

problem asks for a k-independent set (resp. k-matching) of size αk(G) (resp. νk(G)).

KNOWN RESULTS ON INDEPENDENT SETS.

Finding large k-independent sets has applications in the fields of job-scheduling on k-

machines, VLSI design layout, routing and channel assignment location [19]. Many of

these applications are in the field of distributed computing [23] and, as networks often

have bounded or even regular degree, it is of interest to consider algorithms for finding

large k-independent sets of such graphs. The (1, 1)PACKING problem is the well known

NP-hard problem of finding a maximum cardinality independent set of the given graph

[17]. Kong and Zhao [21] showed that for every k ≥ 2, (k, 1)PACKING is NP-hard.

They also showed that this problem remains NP-hard for regular bipartite graphs when

k ∈ {2, 3, 4} [22].

Due to the NP-hardness of the k-independent set problem, we are forced to relax the

optimality requirement and consider heuristics that find a solution that is somehow close

to optimal in a time that is bounded by a polynomial of the input size. Constant factor

approximations exist for graphs of bounded maximum degree [6, 18]. Duckworth [10]

presented a deterministic algorithm for finding a large 2-independent set in cubic (i.e. 3-

regular) graphs. Analysing the performances of such algorithm it was shown that the size

of a maximum 2-independent set of an n-vertex cubic graph is at least n
8 +O(1). The linear
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programming technique that was used in the analysis also demonstrated the existence of

an infinite family of cubic graphs for which the algorithm only achieves this bound. Note

that for n-vertex r-regular graphs, it is simple to show that the size of a maximum 2-

independent set is at most n
r+1 and at least n

r2+1 .

Simple heuristics often have a relatively poor worst-case performance (the interested

reader may want to consult [4]) as there may exist many extremal input instances on which

a simple algorithm may perform badly. It is therefore natural to consider the average-case

performance of such heuristics. The maximum independent set problem has been studied

thoroughly in the binomial random graph model (see [20]). Recently, results have appeared

on the (k, 1)PACKING problem, for k > 1 [3, 29]. Relatively less is known of αk for

(random) regular graphs. For the case k = 1, the current best known lower bounds on the

size of a maximum independent set of random d-regular graphs are due to Wormald [33]

and the current best known upper bounds are due to McKay [27]. Two of us investigated

(2, 1)PACKING in [12]. Assiyatun [2] gave an existence proof of a lower bound on the

size of a largest 2-independent set of a random r-regular graph for r ∈ {3, 4, 5}. However,

the analysis technique used there does not present an actual algorithm for finding a large

2-independent set.

KNOWN RESULTS ON MATCHINGS.

The (1, 2)PACKING problem is the classical maximum matching problem. Stockmeyer

and Vazirani [31] introduced the generalised (k, 2)PACKING for k ≥ 2, motivating it

(for k = 2) as the “risk-free marriage problem” (find the maximum number of married

couples such that each person is compatible only with the person (s)he is married to).

The (2, 2)PACKING problem (also known as the maximum induced matching problem)

stimulated much interest in other areas of theoretical computer science and discrete mathe-

matics as finding a maximum 2-matching of a graph is a sub-task of finding a strong edge-

colouring of a graph (a proper colouring of the edges such that no edge is incident with

more than one edge of the same colour as each other, see (for example) [14, 15, 25, 30]).

The (k, 2)PACKING problem is NP-hard [31] for each k ≥ 2 (polynomial time solvable

[13] for k = 1). Improved complexity results are known for (1, 2)PACKING [28] on

random instances. In particular it has been proven that simple greedy heuristics produce

sets of n
2 −o(n) independent edges [1] in dense random graphs and random regular graphs
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with probability tending to one as n grows to infinity. A number of results are known

on the approximability of an optimal 2-matching [8, 24, 35]. In particular the algorithm

we present for 2-matchings has been analysed deterministically in [9] where it was shown

to return a 2-matching of size at least r(n−2)
2(2r−1)(r−1) in a connected r-regular graph on n

vertices, for each r ≥ 3. Furthermore, it was shown that there exist infinitely many r-

regular graphs on n-vertices for which the algorithm only achieves this bound.

Zito [36] presented some simple results on the approximability of an optimal 2-matching

in dense random graphs. For the case r = 3, the cardinality of a largest 2-matchingM of a

random 3-regular graph a.a.s. satisfies 0.26645n ≤ |M| ≤ 0.282069n [11] (unfortunately

the optimistic 0.270413n lower bound claimed in the paper is not correct). Preliminary

a.a.s. results on the (k, 2)PACKING problem appeared in [5]. Finally, existential lower

bounds on the size of the optimal 2-matching of random regular graphs are given in [2].

In this paper, we consider natural heuristics for approximating the solution to the prob-

lems defined above, and analyse their performance on random regular graphs. For k ≤ j

our algorithms mimic a greedy process that, at each step, selects a vertex (resp an edge)

of minimum positive degree, and adds it to the structure that is being built, removing from

the graph all edges that are “close” to the chosen item. A particular feature of the prob-

lems considered when k > j forces us to devise a slightly less immediate strategy to solve

those cases. We also prove combinatorial upper bounds on αk(G) and νk(G) using a direct

expectation argument.

In the next section we present the model used for generating regular graphs u.a.r. (uni-

formly at random) along with an informal statement of the results proved in this paper and

a description of the proof techniques used to prove them. In Section 3. we describe the

class of randomised algorithms that we analyse. Section 4 presents the analysis of our al-

gorithms, by first sketching the approach we use and then considering in turns each of the

problems defined above. Finally Section 5 provides details about the upper bounds.

2. RANDOM GRAPH MODELS AND RESULTS

Let G(n,r-reg) denote the uniform probability space of r-regular graphs on n vertices.

Notation G ∈ G(n,r-reg) will signify that G is selected according to such model.
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A well known construction that gives the elements of G(n,r-reg) is the configuration

model (see, for example, [20, Chapter 9]). Let n urns be given, each containing r balls. A

set F of rn/2 unordered pairs of balls is chosen u.a.r.. Let Ω be the set of all such pairings.

Each F ∈ Ω corresponds to an r-regular (multi)graph with vertex set V = {1, . . . , n} and

edge set E formed by those sets {i, j} for which there is at least one pair with one ball

belonging to urn i and the other ball belonging to urn j. Let Ω∗ be the set of all pairings

not containing an edge joining balls from the same urn or two edges joining the same two

urns. Since each simple graph corresponds to exactly (r!)n such pairings, a random pairing

F ∈ Ω∗ corresponds to an r-regular graph G without loops or multiple edges chosen u.a.r.

There are two features of this model that are particularly useful to our purposes. First,

the model gives a basis for proving properties of random regular graphs by performing

computations in Ω and conditioning on the event that the corresponding graph be simple

since any event holding a.a.s. for a random r-regular multigraph also holds a.a.s. for a ran-

dom graph in G(n,r-reg). Second, notice that a random pairing can be picked by choosing

pairs one after the other. Moreover, the first point in a pair may be selected using any rule

whatsoever, as long as the second point is chosen u.a.r. from all the remaining free (un-

paired) points. This property implies the existence of two equivalent ways of describing

each of the algorithms presented in this paper. On one hand we can present them as work-

ing on a previously generated (random) graph, on the other we could consider a process

that, at the same time, generates the graph and the structure of interest. Our exposition will

be given in terms of the first type of description, but the second one will be used in our

analysis.

In what follow we say that a property B = Bn of a random graph holds asymptotically

almost surely (a.a.s.) if the probability that B holds tends to 1 as n tends to infinity. For

other basic random graph theory definitions we refer the reader to [20].

In this paper we prove non-trivial lower and upper bounds on αk(G) and νk(G) that

hold a.a.s. assuming G ∈ G(n,r-reg). The tables below describe the specific bounds for

the first few values of r and k.
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k 2 3 4 5

r l.b. u.b. l.b. u.b. l.b. u.b. l.b. u.b.

3 0.204924 0.235551 0.090322 0.139057 0.048914 0.081725 0.022635 0.049812

4 0.142146 0.175705 0.040432 0.082791 0.01595 0.036443 0.004641 0.016137

5 0.106013 0.136759 0.021045 0.052816 0.006407 0.018165 0.001348 0.006136

6 0.082637 0.109913 0.01225 0.035646 0.002999 0.009956 0.000498 0.002688

7 0.066521 0.090557 0.007749 0.025172 0.001588 0.005888 0.000189 0.001318

Bounds on αk(G)
n

.

k 1 2 3 4

r l.b. u.b. l.b. u.b. l.b. u.b. l.b. u.b.

3 0.5 0.5 0.266454 0.282073 0.126406 0.156052 0.057922 0.094549

4 0.5 0.5 0.229526 0.25 0.079889 0.107573 0.023648 0.050068

5 0.5 0.5 0.204646 0.226949 0.055972 0.079217 0.011792 0.029335

6 0.5 0.5 0.18615 0.209101 0.041798 0.061096 0.006721 0.018586

7 0.5 0.5 0.171568 0.194651 0.032632 0.048756 0.004204 0.012506

Bounds on νk(G)
n

.

The proofs of our algorithmic results are based on the fact that, for each constant value

of r and k, the algorithm dynamics can be described with sufficient precision by a random

process that, for large n, behaves in a predictable way. Our analysis applies the differ-

ential equation method developed by Wormald (see e.g [33]). Following such approach

we estimate the expected change for each of the variables defining the random process in

question, and prove that, within a suitably defined domain, the variables satisfy a number

of smoothness conditions. We are then able to apply a result in [34] to prove, essentially,

that the variables stay close to their expected values.
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3. THE ALGORITHMS

In this section we describe the greedy heuristics used to construct feasible solutions to

instances of the various (k, j)PACKING problems. From now on a (k, j)-structure will be

a k-independent set if j = 1 or a k-matching if j = 2. The specific case will be apparent

from the context.

The algorithms are quite general and may be applied (with obvious modifications) to

any graph. The analyses presented in Section 4. give lower bounds on the size of the

resulting structures if the input graph is a random regular graph.

In what follows let Γ(u) = {v ∈ G : {u, v} ∈ E} be the neighbourhood of vertex u.

For each i ∈ {0, . . . , r} let Vi = Vi(G) denote the set of vertices whose neighbourhood

contains i elements. Each of the algorithms that we consider fits the following description

(an “element” here is either a vertex, for j = 1 or an edge, for j = 2)

Minimum Degree Process. While there is still edges in G, pick a vertex

v of minimum positive degree, select a number of edges at distance at most

k + 1 from v, add to S an element incident to some of the selected edges, and

remove all selected edges from G.

Here, S denotes the (k, j)-structure returned by the algorithm. However, the analysis

is greatly simplified if we consider a slightly more convoluted (but equivalent) class of

algorithms. These algorithms will work in steps by repeatedly selecting and removing

edges from the given graph G according to a set of rules Op(k,j)
1 , . . . , Op(k,j)

r which will

be described in the following sections. Thus it is convenient to denote with Gt, for each

integer t, the subgraph of the input graph G after t steps have been executed (here G0 = G).

With respect to the “twinned” pairing process we will denote by Ht the collection of pairs

selected in the first t steps of the process (conditioning on the final pairing being simple,

such pairs correspond to the edges deleted from G during the first t steps). In all cases the

resulting algorithm may be described by the following pseudo-code

Algorithm DegreeGreedyk,j(G)

Input: a graph G = (V, E) on n vertices.

S ← ∅;

t← 0;
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while E 6= ∅

compute a probability distribution p(k,j)(q,
t
n
, |V1|

n
, . . . , |Vr|

n
);

update G and S by performing Op(k,j)
q with probability p(k,j)(q,

t
n
, |V1|

n
, . . . , |Vr|

n
);

t← t + 1;

return S.

Initially Vr = V and Vi = ∅ for i ≤ r − 1. The choice to perform Op(k,j)
q , for

q ∈ {1, . . . , r} is based on a probability distribution p(k,j)(q, x,y). Such distribution, re-

computed dynamically before a new operation is chosen, is affected by the birth of vertices

of smaller and smaller degree which occur as the edges of G are successively removed.

The general definition of p(k,j)(q, x,y) will be given in Section 4 (see (4.4)). An interest-

ing property of the algorithms described by the pseudo-code above is that such definition

only depends on |V1|, . . . , |Vr| and the particular moment in time, t. Furthermore, for each

particular value of j and k, there will always be only at most r − 1 different distributions

that will ever be used by the algorithm. Depending on the particular probability distribu-

tion p(k,j)(q, x,y) that is used at a given moment in time, the algorithm will be in one

of a number of different phases. The outcome of our analysis implies that the algorithm

processing, through successive phases, will mimic the minimum degree process described

above.

The following sections contain a definition of the operations Opq(k, j) in each case,

plus additional details that are specific to particular values of k and j.

Dense Matchings

A particularly simple heuristics may be used to find a large (k, j)-structure in a random

r-regular graph, when1 k ≤ j. We focus on the case j = 2 as the analogue algorithms for

j = 1 have been analysed before (see [16, 32]). For q ∈ {1, . . . , r} let Op(k,2)
q denote the

task of selecting a vertex v of degree q in a given graph, adding to S an edge incident to v

and to a vertex u ∈ Γ(v) of minimum positive degree and then removing from the graph

all edges at distance at most k − 1 from {u, v}.

1we believe that the values reported in Section 1. justify the attribute ”dense” in the title of this subsection.
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Sparse Packings

Any obvious adaptation of the dense packing algorithm to the case k > j fails. For k = 2

and j = 1, consider a subgraph of the input graph with vertex set {1, 2, 3, 4, 5, 6, 7} and

edge set {{1, 2}, {2, 3}, {3, 4}, {3, 5}, {4, 6}, {5, 7}}. Choose vertex 1 to be part of the

2-independent set and delete all vertices at distance at most 2 from vertex 1. This leaves

the edges {4, 6} and {5, 7} intact. Then choose vertex 4 (which is at distance 3 from

vertex 1) to be part of the set. The algorithm deletes vertices 4 and 6 but no more as it

has no knowledge that vertices 4 and 5 were connected by a path of length 2. It could

then continue and pick vertex 5 (which is at distance 2 from vertex 4) to be part of the set.

Since the problem is identical for matchings and independent sets, we resort to a different

class of algorithms to solve the (k, j)PACKING problem when k > j. Such algorithms

are based on the idea of repeatedly removing induced copies of a particular type of tree

from the given graph. Let t0(r) be the trivial tree formed by a single vertex. Let td(r) be

the (rooted) tree obtained by taking r copies of td−1(r) and joining their roots to a new

vertex. For any integer k ≥ 2, the tree Tk,j(r) is a rooted tree whose root uT has a child

v which is the root of a copy of tbk/2c+j−2(r − 1) and r − 1 other children v2, . . . , vr

which are roots of copies of tbk/2c−1(r − 1). In other words, Tk,1(r) is formed by joining

through a common root r identical complete (r − 1)-ary trees, whereas a copy of Tk,2(r)

consists of two complete (r − 1)-ary trees of depth bk
2 c whose roots are connected by an

edge eT = {uT , v}. The algorithms used for k > j will repeatedly try to find induced

copies of Tk,j(r), add either uT or eT to the set that is being built and remove all edges in

Tk,j(r) from the given graph. Of course a major difference w.r.t. the dense case is that the

search for a copy of Tk,j(r) may fail. In this case it is beneficial to stop the exploration

immediately, remove any edge that has been probed in the failing attempt, and start a new

attempt from scratch.

The description given so far is still too general as there are many possible ways in which

an algorithm may search a graph for a copy of Tk,j(r), and they are not all equivalent in

terms of the cardinality of the structure returned. It turns out that the best alternative is to

start exploring a possible copy of Tk,j(r) from one of its leaves. For q ∈ {1, . . . , r} let

Op(k,j)
q , denote the task of selecting a vertex v of degree q in a given graph, followed by an

attempt to uncover 1 + (q − 1)(1− ((k + j) mod 2)) copies of Tk,j(r) having v as a leaf.
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For each complete copy of Tk,j(r) that is found during an operation Op(k,j)
q , an element

(either uT or eT ) is added to the structure that is being built. Finally all edges examined in

this process (including those belonging to incomplete copies of Tk,j(r) uncovered during a

failing attempt) are removed from the graph. In particular, if k + j is odd, distinct induced

copies of Tk,j(r) must also be vertex disjoint. Therefore all edges incident to the leaves of

Tk,j(r) must be removed as well.

4. ALGORITHMIC ANALYSIS

In order to obtain estimates on the size of the structures returned by the algorithms de-

scribed in Section 3. we use the differential equation method proposed by Wormald (see

e.g. [33]). In fact all our results rely on a refinement of his technique ([34, Theorem 1]).

In this section we start by giving a summary of the general methodology (the interested

reader is referred to [34] for a more detailed presentation). We then show in details how it

can be applied in the context of induced matchings (or (2, 2)PACKING). Finally, we will

describe some of the calculations related to the other problems addressed by this work.

Given the input graph, all algorithms presented in this paper progress by peeling off a

number of edges (upper bounded by an expression depending only on r, k, and j) from the

graph and updating the structure S (St will denote the content of S before Gt is further

processed) that is being built. In each case we defined a set of elementary operations

Op(k,j)
1 , . . . , Op(k,j)

r corresponding to each possible update (see Section 3.) and described

each algorithm in terms of the operations allowed (with positive probability) at a particular

moment in time.

The second nice property of the greedy algorithms considered in this paper is that,

for each given value of k and j, we get good a.a.s. estimates on the size of the structure

returned by the algorithm by analysing the random process (Y1(t), . . . , Yr+1(t)), where

Yi(t) = |Vi(Gt)| for i ∈ {1, . . . , r} and Yr+1(t) = |St|.

Assume we can define functions fi,q in IRr+2 such that the expected change to Yi(t),

conditioned on Ht and following one occurrence of Op(k,j)
q during step t + 1 is asymptot-

ically fi,q( t
n , Y1(t)

n , . . . , Yr+1(t)
n ) + o(1), for i = 1, . . . , r + 1, and any q = 1, . . . , r such

that Yq(t) > 0. Furthermore assume these functions are continuous and bounded in
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Dε = {(x, y1, . . . , yr+1) : 0 ≤ x ≤ r, 0 ≤ yi ≤ r for 1 ≤ i ≤ r + 1, yr ≥ ε}

for some pre-chosen value of ε > 0. We can then consider the following r − 1 distinct

systems of differential equations

dyi

dx
= F (x,y, i, s) (4.1)

where

F (x,y, i, s) = fr−s−1,r−s(x,y)
fr−s−1,r−s(x,y)−fr−s−1,r−s−1(x,y)fi,r−s−1 (x,y) +

− fr−s−1,r−s−1(x,y)
fr−s−1,r−s(x,y)−fr−s−1,r−s−1(x,y)fi,r−s(x,y)

for s ∈ {1, . . . , r − 2}, and

F (x,y, i, r − 1) = fi,1 (x,y).

Under some obvious smoothness conditions on the functions fi,q (stated precisely in The-

orem 4.1 below) each of the systems in (4.1), coupled with a suitably defined initial condi-

tion, admits a unique solution over an [xs−1, xs] (for s ∈ {1, . . . , r − 1}), where

x0 = 0 and xs is defined as the infimum of those x > xs−1 for which at least

one of the following holds:

(C1) fr−s−1,r−s−1(x,y) ≥ 0 or

fr−s−1,r−s(x,y)− fr−s−1,r−s−1(x,y) ≤ ε and s < r − 1;

(C2) the component r − s of the solution falls below zero or

(C3) the solution is outside Dε or ceases to exist. (4.2)

Let ỹ = ỹ(x) = (ỹ1(x), . . . , ỹr+1(x)) be the function defined inductively as follows:

For each i ∈ {1, . . . , r + 1}, ỹi(0) = Yi(0)
n . For s ≥ 1, ỹ is the solution to

(4.1) over [xs−1, xs], with initial condition y(xs−1) = ỹ(xs−1). (4.3)

The following result (essentially a restatement of Theorem 1 in [34]) asserts that these func-

tions describe the dynamics of an algorithm obtainable from the template DegreeGreedyk,j

given in Section 3. by using particular sets of operations Op(k,j)
1 , . . . , Op(k,j)

r , and r − 1

different probability distributions p(k,j)(q, x,y) depending on the systems (4.1). In the
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following statement expressions like f ′
i,q(x̄, ỹ(x̄)) (resp. f ′

i,q(x̄, ỹ(x̄))− or f ′
i,q(x̄, ỹ(x̄))+)

refer to the derivative of fi,q taken with respect to x at the given point (x̄, ỹ(x̄)) (resp. refer

to the left or right derivative at the given point).

Theorem 4.1. Let r ≥ 3. For 1 ≤ i ≤ r and 1 ≤ q ≤ r let Yi(t) and fi,q be the functions

defined above. Assume furthermore that

(i) there is an upper bound, depending only upon r, on the number of edges deleted, and

on the number of elements added to S during any one operation;

(ii) the functions fi,q are rational functions of x and y1, . . . yr+1 with no pole in Dε;

(iii) there exist positive constants C1, C2 and C3 such that for 1 ≤ i < r, everywhere on

Dε, fi,q ≥ C1yi+1 − C2yi when q 6= i, and fi,q ≤ C3yi+1 for all q.

Then there exists a positive integer m ≤ r − 1 such that,

fr−s−1,r−s−1(xs−1, ỹ(xs−1)) < 0 and

fr−s−1,r−s(xs−1, ỹ(xs−1))− fr−s−1,r−s−1(xs−1, ỹ(xs−1)) > ε

for s ∈ {1, . . . ,min{r − 2,m}}; furthermore

fr−1,r−1(x0, ỹ(x0)) > 0

fr−s,r−s−1(xs−1, ỹ(xs−1))+f ′
r−s−1,r−s(xs−1, ỹ(xs−1))++

−f ′
r−s,r−s(xs−1, ỹ(xs−1))+fr−s−1,r−s−1(xs−1, ỹ(xs−1))+ > 0,

for s ∈ {2, . . . ,min{r − 2,m}},

f ′
r−s,r−s(xs−1, ỹ(xs−1))− > 0,

for s ∈ {2, . . . ,m}, and

f ′
1,1(xr−2, ỹ(xr−2))+ > 0

if m = r − 1. Furthermore there is a randomised algorithm for which a.a.s. there exists

t such that Yi(t) = nỹi(xm) + o(n) for 1 ≤ i ≤ r + 1. Also, for each s ∈ {1, . . . ,m},

ỹi(x) ≡ 0 for i ∈ {1, . . . , r − s− 1} if x ∈ [xs−1, xs].

Theorem 4.1 will be used to analyse algorihtm DegreeGreedyk,j(G) where the proba-

bility distributions described in Section 3. satisfy the following definition:
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p(k,j)(q, x,y) =


− fr−s−1,r−s−1(x,y)

fr−s−1,r−s(x,y)−fr−s−1,r−s−1(x,y) q = r − s

fr−s−1,r−s(x,y)
fr−s−1,r−s(x,y)−fr−s−1,r−s−1(x,y) q = r − s− 1

0 otherwise

(4.4)

when x ∈ [xs−1, xs], for each s ∈ {1, . . . ,m}. The interval [xs−1, xs] represents phase

s when, following a minimum degree strategy, the algorithm will a.a.s. perform either

Op(k,2)
r−s or Op(k,2)

r−s−1 all the time.

We can now state the result which bounds from below the size of the optima of the

(k, j)PACKING problems. The values of yr+1(xm) were found solving the various sys-

tems numerically using Maple’s Runge-Kutta Fehlberg method. The resulting values, for

the first few values of k and r, are given in the columns marked “l.b.” in the tables in

Section 2.. Details of its proof will be completed in the subsequent parts of this section.

Theorem 4.2. Let r, j and k be positive integers with r ≥ 3, j ≤ 2. For q ∈ {1, . . . , r},

define p(k,j)(i, x,y) as in (4.4) where functions fi,q , for each i ∈ {1, . . . , r+1} are defined

in (4.5) for k ≤ 2 and j = 2, in (4.6) for all cases when k > j and k+j is even, and in (4.7)

for all other cases. Let m be the integer associated with Yi and fi,q in Theorem 4.1. The

algorithm DegreeGreedyk,j(G) a.a.s. returns a structure of size nỹr+1(xm) + o(n) where

functions ỹ1, . . . , ỹr+1 are defined in (4.3) and x0, . . . , xm in (4.2) when G ∈ G(n,r-reg).

Proof. (Sketch) Hypothesis (i) of Theorem 4.1 is immediate since in any operation only

the edges involving the selected element and its neighbours within a constant distance are

deleted, and a bounded number of elements are added to S. The functions fi,q satisfy (ii)

because, in each case, the possible singularities satisfy
∑

iyi = 0 which defines a region

outside Dε. Hypothesis (iii) follows again using
∑

iyi ≥ yr ≥ ε and the boundedness

of the functions ỹi (which follows from the boundedness of Dε). Thus, defining ỹ as in

(4.3) we may solve the various systems of differential equations and find m, verifying the

conditions on fi,q and its derivatives stated in Theorem 4.1 at the appropriate points of

the computation. It turns out that these hold in the given domain, for each r, for suffi-

ciently small ε > 0. For such ε, the value of ỹr+1(xm) may be computed numerically,

and then by Theorem 4.1, this is the asymptotic value of |S| where S is the set returned
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by DegreeGreedyk,j(G). So the conclusion in each case is that a random r-regular graph

a.a.s. has a k-independet set (or matching) of size at least nỹr+1(xm) + o(n).

A. Induced Matchings

The results proven in this section are identical to those reported, for k ≤ 2 in [5]. However

the analysis given here is simpler and it results in systems of differential equations that can

be numerically solved much more quickly than those described in [5].

We analyse the algorithm DegreeGreedyk,2, for k ≤ 2 described in Section 3. and prove

that hypotheses (ii) and (iii) of Theorem 4.1 are satisfied (hypothesis (i) is an obvious

consequence of the algorithm definition).

In the remainder of this paper if P(. . .) is a logical expression (typically obtained by

applying boolean connectives to simple relational operators on integers) then [P(. . .)] is a

function that returns one (zero) if the logical expression evaluates to TRUE (resp. FALSE).

The probability of creating a vertex of degree i − 1 in the neighbourhood of a given

vertex u when removing an edge eu is asymptotically Pi = iYiP
iYi

. In what follows Sb
a will

denote the sum of all Pi’s for a ≤ i ≤ b (with the convention that Sb
a = 0 if a > b). The

expected change in Yi due to the degree changes in Γ(u) following the removal of eu can

be approximated by −Qi(0) where:

Qi(0) = Pi − Pi+1 with Pr+1 = 0.

Using the same reasoning, if eu = {u, v} the expected change in Yi due to the removal of

eu and of any other edge incident to v is asymptotically −Qi(1) where:

Qi(1) =
∑r

z=1 Pz([i = z] + (z − 1)Qi(0)).
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For each i, q ∈ {1, . . . , r − 1}, and x ∈ {1, . . . , r}, let

χq,x = (Sr
x)q − (Sr

x+1)
q

φi,x = −[i = x]− (x− 1)Qi(k − 1)

βx,d = (q
d)(Px)d(Sr

x+1)
q−d

χq,x
d ∈ {1, . . . , q}

εx,d,m = (q − d) Pm

Sr
x+1

d ∈ {1, . . . , q}, x < r

γi,m = −[i = m] + [k = 1 ∧ i = m− 1]− [k = 2](m− 1)Qi(0)

m ∈ {x + 1, . . . , r}, x < r

.

Lemma 4.3. Let r ≥ 3, and k ≤ 2. Suppose Op(k,2)
q are defined as the updates related

to algorithm DegreeGreedyk,2, for k ≤ 2. For each q ∈ {1, . . . , r}, conditioned on Ht

and Op(k,2)
q , the expected change to Yi(t) is asymptotically

fi,q

(
t

n
,
Y1(t)

n
, . . . ,

Yr+1(t)
n

)
=

−[i = q]+

rX
x=1

“
χq,x(φi,x − γi,x) + γi,xqPx(Sr

x)q−1+

+ [x < r]
q(χq,x − Px(Sr

x)q−1)

Sr
x+1

rX
m=x+1

Pmγi,m

”
,

i ≤ r

1 i = r + 1.

(4.5)

Proof. We calculate the expected change in Yi when performing an operation Op(k,2)
q start-

ing from a vertex u given Ht by conditioning on the minimum degree of a vertex in Γ(u)

and then on the number of vertices of minimum degree in Γ(u).

The probability that the minimum degree in Γ(u) is x, is χq,x+o(1). Conditioned to this

event, the expected change in Yi(t) due to the removal of all edges incident with the chosen

minimum degree vertex v ∈ Γ(u) and, for k = 2, all remaining edges incident to vertices

in Γ(v), is φi,x + o(1). To get an expression for fi,q(x,y) it is useful to further condition

on the size of Vx ∩ Γ(u). The probability that |Vx ∩ Γ(u)| = d (where 1 ≤ d ≤ q) given

that the minimum degree of the vertices in Γ(u) is x, is βx,d + o(1). The expected change
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in Yi due to the removal of all edges incident with the d − 1 vertices in Vx ∩ Γ(u) \ {v},

conditioned on the minimum degree in Γ(u) being x, is (d − 1)γi,x + o(1). Finally, the

expected size of Vm ∩ Γ(u) (where x + 1 ≤ m ≤ r) given that the minimum degree in

Γ(u) is x and |Vx ∩ Γ(u)| = d, is εx,d,m + o(1), with the convention that the expected

value is zero if x = r. Putting all this together, fi,q( t
n , Y1

n , . . . , Yr+1
n ), for i, q ∈ {1, . . . , r}

can be written as

−[i = q] +

rX
x=1

χq,x

 
φi,x +

qX
d=1

βx,d

 
(d− 1)γi,x + [x < r]

rX
m=x+1

εx,d,mγi,m

!!

(whereas fr+1,q( t
n , Y1

n , . . . , Yr+1
n ) = 1 since an edge is added to S following each Op(k,2)

q ).

Distributing χq,x inside the main bracket, and replacing βx,d with its definition, the sum

becomes
rX

x=1

 
χq,xφi,x +

qX
d=1

 
q

d

!
(Px)d(Sr

x+1)
q−d

 
(d− 1)γi,x + [x < r]

rX
m=x+1

εx,d,mγi,m

!!
.

Since γi,x does not depend on d, this can be written as
rX

x=1

“
χq,xφi,x+γi,x(qPx(Sr

x)q−1−χq,x)+[x < r]

qX
d=1

 
q

d

!
(Px)d(Sr

x+1)
q−d

rX
m=x+1

εx,d,mγi,m

”
Using the definition of ε such expression becomes

rX
x=1

“
χq,xφi,x + γi,x[qPx(Sr

x)q−1 − χq,x]+

+ [x < r]

qX
d=1

 
q

d

!
(Px)d(Sr

x+1)
q−d−1(q − d)

rX
m=x+1

Pmγi,m

”
.

Some further simplification is possible since the rightmost sum does not depend on d,

giving
rX

x=1

 
χq,xφi,x + γi,x[qPx(Sr

x)q−1 − χq,x] + [x < r]
q(χx − Px(Sr

x)q−1)

Sr
x+1

rX
m=x+1

Pmγi,m

!
.

Notice that, for each i and q, fi,q(x,y) can be written as (
∑r

i=1 iyi)−(k+q) × p(y)

where p is a polynomial of degree k + q in y1, . . . , yr+1. Hypothesis (ii) of Theorem 4.1

therefore follows from the definition of Dε. Hypothesis (iii) can also be easily verified in

each case. For instance, when k = 2 and r = 3,

f2,2(x, y1, y2, y3, y4) =

− 1 + φ2,2χ2,2 + φ2,3χ2,3 + γ2,2P2(2P1 + P2) + γ2,3P3(2P1 + 2P2 + P3)
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which never exceeds some sufficiently large positive constant C. Thus, for a sufficiently

small ε > 0,

f2,2(x, y1, y2, y3, y4) ≤ C
ε y3.

B. Sparse case when k + j is even

An operation Op(k,j)
q consists of the selection of a random vertex of degree q followed by

an attempt to find q copies of Tk,j(r) around it. It is convenient to talk of the vertices in

Tk,j(r) as separated into a number of levels. Level 0 is formed by a single leaf, level 1 by

a vertex of degree r, level 2 by at least one vertex of degree r and r − 2 leaves. Generally

level l (for 0 < l < 2bk−j
2 + 1c+ j − 1) is composed of (r− 1)dl/2e−1 vertices of degree

r and, when l > 0 is even, of (r − 2)(r − 1)l/2−1 leaves. Level 2bk−j
2 + 1c + j − 1 is

composed of (r − 1)b
k−j
2 +1c leaves only.

Lemma 4.4. Let r ≥ 3 and k > j. Suppose that, for q ∈ {1, . . . , r}, Op(k,j)
q are defined

as the updates related to algorithm DegreeGreedy, for k > j, when k + j is even. For

each q ∈ {1, . . . , r}, the expected change to Yi(t), conditioned on Ht and Op(k,j)
q , is

asymptotically

fi,q

(
t

n
,
Y1(t)

n
, . . . ,

Yr+1(t)
n

)
=

−[i = q]− q
“
Qi(0)+

+

k−1X
l=0

lY
m=0

Pm

“
(r − 1)bl/2c[i = r − 1] + (r − 1)bl/2c+1Qi(0)

”” i ≤ r

q
Qk−1

m=0 Pm i = r + 1

(4.6)

where Pm represents the probability of succeeding at level m.

Proof. Success at level m occurs if the right combination of vertex degrees is found at

level m + 1. Hence Pm is asymptotically equal to (Pr)(r−1)m/2
when m is even, and

it is 1 − (1 − Pm−1)r−1 otherwise. If success does occur at level l then the previously

accounted for contribution to fr−1,q given by the removal of a single edge incident to

each of the (r − 1)bl/2c vertices of degree r at level l + 1 must be detracted, and then all
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edges connecting vertices at level l + 1 with those at level l + 2 can be removed. This is

asymptotically equal to −(r − 1)bl/2c[i = r − 1]− (r − 1)bl/2c+1Qi(0).

Similarly the asymptotic expression for fr+1,q is q
∏k−1

m=0 Pm as q attempts are made to

increase the size of S during an Op(k,j)
q operation.

C. Sparse case for k + j is odd

In this case an operation Op(k,j)
q consists of the selection of a random vertex v of degree

q followed by an attempt to reveal a Tk,j(r) structure around it. The analysis for this case

is complicated by the requirement that distinct copies of Tk,j(r) must be vertex disjoint.

The expected change in Yi can be computed, as in the case k ≤ 2, by conditioning on the

degree distribution in Γ(v) but major differences arise. First of all we must condition on

the maximum degree in Γ(v) and some interesting updates occur only if this maximum

degree is r. Secondly this conditioning needs to be performed at successive levels in the

retrieval of a copy of Tk,j(r) (otherwise the current trial has no hope of finding a copy

of Tk,j(r)). Finally the major complication in the asymptotic expression for fi,q comes

from the need of being able to delete all edges incident with the leaves of Tk,j(r) and these

leaves (in the graph) can have arbitrary degree.

Let c be an integer. For each i, q ∈ {1, . . . , r − 1}, and x ∈ {1, . . . , r}, let

χc
x = (Sx

1 )(r−1)c − (Sx−1
1 )(r−1)c

βc
x,d =

(
(r−1)c

d

)
(Px)d(Sx−1

1 )(r−1)c−d d ∈ {1, . . . , (r − 1)c}

εc
x,d,m = ((r − 1)c − d) Pm

Sx−1
1

d ∈ {1, . . . , (r − 1)c}, x > 1

ζi,x,m = −[i = m] + [x 6= r ∧ i = m− 1]− [x = r](m− 1)Qi(0) m ∈ {1, . . . , r},

.

Lemma 4.5. Let r ≥ 3 and k > j. Suppose that, for q ∈ {1, . . . , r}, Op(k,j)
q are defined

as the updates related to algorithm DegreeGreedy, for k > j when k + j is odd. For

each q ∈ {1, . . . , r}, the expected change to Yi(t), conditioned on Ht and Op(k,j)
q , is
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asymptotically

fi,q

(
t

n
,
Y1(t)

n
, . . . ,

Yr+1(t)
n

)
=

−[i = q]− qQi(0)+

(1− (1− Pr)
q)
“
− [i = r − 1]+

rX
x=1

χ1
x(−[i = x] + [x 6= r ∧ i = x− 1] + [x = r]Ξb

k
2 c+j−2(1)− ζi,x,x)+

ζi,x,x((r − 1)Px(Sx
1 )r−2 − χ1

x) + [x > q]
(r − 1)(χ1

x − Px(Sx
1 )r−2)

Sx−1
1

x−1X
m=1

Pmζi,x,m

”
i ≤ r

(1− (1− Pr)
q)×

P0(1 + [j = 1]((Pr)
(r−1)

k
2−1

− 1))

b k
2 c+j−3Y

l=1

P (r−1)l

r Pl.
i = r + 1

(4.7)

In the expressions above Pl stands for the probability of succeding at a certain level in the

discovery of a copy of Tk,j(r). Furthermore Ξb(a) describes the updating of the graph

due to the inspection of all edges to vertices at level 2a and beyond in a candidate copy of

Tk,j(r).

Proof. Suppose that, for c ≥ 1, (r − 1)c−1 vertices of degree r − 1 are chosen in Gt. If

c is independent of n then a.a.s. such vertices are adjacent to (r − 1)c distinct vertices.

The probability that the maximum degree among these vertices be x, with 1 ≤ x ≤ r

is χc
x + o(1). The probability of having exactly d vertices of degree x in the experiment

outlined above is βc
x,d + o(1), while the expected number of vertices of degree m, with

1 ≤ m < x, is εc
x,d,m + o(1). The expected change in Yi(t) due to the removal of all

remaining edges out of a vertex of (initially) degree m is ζi,x,m + o(1). To complete the

description of fi,q(x,y) we need to understand the meaning of the term Ξb k
2 c+j−2(1).

Function Ξb(a) models the behaviour of the algorithm from level 2a onwards. Assume,

generally, that the algorithm has reached an even level where there are (r− 1)a−1 vertices

of degree r, we remove the r − 1 edges incident with each one of them and we change

the degree of (r − 1)a vertices which all must have degree r initially. This happens with

probability P
(r−1)a

r . Then we expose the remaining r − 1 edges from all of them and

we have a success if there is at least 1, out of the possible r − 1, (r − 1)a-tuple being

D R A F T August 17, 2006, 3:08pm D R A F T



20 !! PLEASE WRITE \authorrunninghead{<Author Name(s)>} IN FILE !!

composed of vertices with degree r. The success probability Pa can be approximated as

1− (1− P
(r−1)a

r )r−1.

Since we condition on the maximum degree (see χc
x), when x 6= r we certainly have a

failure. If x = r the success or failure depends on the number of vertices of degree r and in

some cases on the arrangement of such vertices. Let d be the number of vertices of degree

r out of the (r− 1)a+1 edges that have been exposed. Clearly, when d < (r− 1)a we have

a failure with probability 1. On the other hand, when d ≥ (r− 1)a +(r− 2)((r− 1)a− 1)

the success is certain. In any other case we may have either a failure or a success.

In case of a failure the expected behaviour of the algorithm can be described by

Aa = d(−[i = r] + [i = r − 1]) +
r−1∑
m=1

εa+1
r,d,m(−[i = m] + [i = m− 1]).

Let (r− 1)a ≤ d < (r− 1)a +(r− 2)((r− 1)a− 1), for d fixed there are Λ =
(
(r−1)a+1

d

)
equiprobable cases for the arrangements of the vertices of degree r. We can choose (r−1)a

vertices of degree r in r−1 ways in order to have a success and the remaining d− (r−1)a

vertices of degree r may be distributed in any of the
(
(r−2)(r−1)a

d−(r−1)a

)
possible ways. Hence

there are Θ = (r − 1)
(
(r−2)(r−1)a

d−(r−1)a

)
successful cases and Λ − Θ unsuccessful ones. Of

course in case of a success the algorithm may proceed at the next even level where it either

starts the above procedure all over again and this can be described by

Ξb(a) = −(r − 1)aQi(0) + P (r−1)a

r

(
− [i = r − 1](r − 1)a +

r−1∑
x=1

(
([i = x− 1]− [i = x])((r − 1)a+1Px(Sx

1 )(r−1)a+1−1 − χa+1
x ) +

+[x > 1]
(r − 1)a+1(χa+1

x − Px(Sx
1 )(r−1)a+1−1)

Sx−1
1

x−1∑
m=1

εa+1
x,d,m([i = m− 1]− [i = m])

)
+

(r−1)a−1∑
d=1

βa+1
r,d Aa +

(r−1)a+(r−2)((r−1)a−1)−1∑
d=(r−1)a

βa+1
r,d Ba +

(r−1)a+1∑
d=(r−1)a+(r−2)((r−1)a−1)

βa+1
r,d (Ξb(a + 1) + ξa

i,d)
)

,

with

ξa
i,d = −(r − 1)a[i = r] + (d− (r − 1)a)ζi,r,r +

r−1∑
m=1

εa+1
r,d,mζi,r,m,
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or it has reached the final level which can be described by the following base case

Ξb(b + 1) = −(r − 1)b

(
Qi(j − 1) + [j = 1](Pr)(r−1)b

([i = r − 1] + (r − 1)Qi(j))
)

.

The behaviour of the algorithm in the cases where we may have either success or failure

can be described by

Ba =
Θ
Λ

(Ξb(a + 1) + ξa
i,d) +

(
1− Θ

Λ

)
Aa.

5. UPPER BOUNDS

The argument leading to the upper bounds given in Section 2. is based on finding a close

estimate on the expected number Xy of (k, j)-structures of size y = µn for G ∈ G(n,r-

reg) in terms of a decreasing function of the form f(µ)n, for fixed values of k, j, and r,

and then on the numerical estimation of the smallest value µ∗ larger than the lower bounds

found through the algorithms in Section 3. that makes f(µ) < 1.

We focus on the case k > j as the dense cases have been considered before [7, 11, 27]

(notice in particular that our analysis covers, the case k = j = 2 for arbitrary values of

r). For each value of k and j, since random regular graphs do not contain many short

cycles, the expectation of Xy can be computed by counting occurrences of Tk,j(r) in

G. Furthermore standard results on the configuration model imply that such counting can

indeed be performed on the analogous structures that can be identified in the underlying

pairings. For the forthcoming exposition it is convenient to think of the vertices in each

copy of Tk,j(r) as arranged in levels uT (resp. the end-points of eT ) being at level zero

and its (their) descendants being at level i if their distance from uT (resp. one of the end-

points of eT ) is i. Let λ = λ(k, j) = bk+j−2
2 c − j. In a (k, j)-structure of size y there

are jy vertices at level 0, and in general (r − j + 1)jy(r − 1)i vertices at level i. Define

V (−1) = jy and, for i ≥ 0,

V (i) = jy + (r − j + 1)jy (r−1)i+1−1
r−2 .

Furthermore, define
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Ak,j(y) =


(
n
y

)
j = 1

(
n
2y

)
(2y − 1)!!r2y j = 2

and

Rk,j(y) =


(n− jy)

(r−j+1)jy(r−1)
(r−1)λ+1−1

r−2
r(r−j+1)jy(r−1)

(r−1)λ+1−1
r−2 k + j odd

Rk−1,j(y)(r(n− V (λ(k, j))))(r−j+1)jy(r−1)λ+1 k + j even

(with R1,2(y) = 1). Finally, define

Υk,j(y) = r(n− V (λ(k, j)))− (r − j + 1)jy(r − 1)λ(k,j)+1

(notice that for each h > 1, Υ2h−1,1(y) = Υ2h,1(y) whereas Υ2h,2(y) = Υ2h+1,2(y)).

Lemma 5.1. E(Xy) ∼ Ak,j(y)Rk,j(y) (Υk,j(y)−1)!!
(rn−1)!! , where x!! = x(x − 2) . . . 3 · 1 for

any odd positive integer x.

Proof. Calculations are performed on configurations. The term Ak,j(y) counts the num-

ber of ways in which the y components of S can be chosen. Rk,j(y) counts the num-

ber of ways in which the elements in such structure can be embedded in a configuration

so that they are at distance at least k from each other. Finally Υk,j counts the number

of points still to be paired after the pairs asssociated with S have been selected. Hence

Ak,j(y)Rk,j(y)(Υk,j(y) − 1)!! counts the number of configurations containing a (k, j)-

structure of size y formed by copies of Tk,j(r). Since structures formed in a different way

are rare, the expectation of Xy can be computed by simply dividing such number by the

total number of configurations on nr points.

Using Lemma 5.1 and Stirling’s approximation to the factorial it is possible to prove

that the asymptotic expression for E(Xy) has the form nO(1)(f(µ))n, with the function f

being continuous and unimodal, greater than one for values of µ close to (but larger than)

the lower bounds given in Section 2. and smaller than one for some µ < 1
2 . We are now

ready to state our main result.
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Theorem 5.2. Let r ≥ 3. For each k and j, the value µ∗ obtained by solving f(µ) = 1 is

such that a.a.s. G ∈ G(n,r-reg) does not contain any (k, j)-structure of size greater than

µ∗n.

Maximal vs. non-maximal (k, j)-structures.

It should be remarked that slightly smaller upper bounds can be found by counting max-

imal (k, j)k-structures (a stronger 0.28206915 value for j = k = 2 is reported in [11]).

However we prefer to keep the simpler exposition presented above as the magnitude of the

improvements makes the more complicated analysis rather uninteresting.
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[15] R. J. Faudree, A. Gyárfas, R. H. Schelp, Z. Tuza. Induced matchings in bipartite graphs.

Discrete Mathematics, 78(1-2):83–87, 1989.

[16] A.M. Frieze, S. Suen. On the Independence Number of Random Cubic Graphs. Random

Structures and Algorithms, 5:649–664, 1994.

[17] M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman and Company, 1979.
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