
Uncover low degree vertices and minimise the mess:
independent sets in random regular graphs

William Duckworth1 and Michele Zito2

1 Mathematical Sciences Institute
Australian National University
Canberra, ACT 0200, Australia.

e-mail: Billy.Duckworth@maths.anu.edu.au
2 Department of Computer Science

University of Liverpool
Liverpool L69 3BX (UK).

e-mail: M.Zito@csc.liv.ac.uk

Abstract. We present algorithmic lower bounds on the size of the largest in-
dependent sets of vertices in a random d-regular graph. Our bounds hold with
probability approaching one as the size of the graph tends to infinity.

1 Introduction

Given a graph G = (V,E), an independent set is a subset U of V which spans no
edge. In this paper we are interested in finding (by algorithmic means) indepen-
dent sets of the largest possible cardinality. Let α(G) be the size of the largest
independent sets in G divided by |V (G)|. The problem has a long history. It is
one of the first optimisation problems whose decision version was shown to be
NP-complete [12]. Since then many results have appeared either proving that an
optimal structure can be found in polynomial time on special graph classes [1,
13] or showing that particular polynomial-time heuristics return solutions that
are not too small for particular classes of graphs [5, 6, 8, 15] or else proving that
finding heuristics returning solutions significantly close to the optimal ones is at
least as hard as solving the optimisation problem exactly [14].

The algorithmic results in this paper are valid with probability approaching
one as |V (G)| tends to infinity (or a.a.s. in short), under the assumption that
the input structure is presented according to a pre-specified probability distri-
bution. The maximum independent set problem (MIS) has been studied thor-
oughly in several of such random structures. For graphs generated according
to the well-known G(n, p) model (n vertices, edges appear independently with
probability p) it has been proven [7, 10] that as long as pn tends to infinity
α(G(n, p))n ∼ 2 log np/ log 1/(1 − p) (although no polynomial time algo-
rithm is known which returns, even just a.a.s., an independent set containing

more than half that many vertices). For random d-regular graphs the situation
is less satisfactory. For large d, α(G) is close to 2 log d

d [11]. However if d is
a small fixed constant (say 3 or 5 or even 100), only lower and upper bounds
are known. The best known bounds are reported in the second and third col-
umn of Table 1 for d up to 7. The upper bounds are derived using an argument
based on Markov’s inequality [17]. The lower bounds are algorithmic [18]. It
is quite interesting that for the past 12 years, nobody has been able to improve
these bounds (in fact the upper bounds are even older than that). More to this,
the existence of greedy algorithms that return independent sets asymptotically
larger than those promised by Wormald’s algorithm, is an open problem raised
ten years ago by Frieze and McDiarmid [9]. Notice that combinatorial methods
like the one studied in [2], although successful for other packing problems [3,
4], failed to shed any light on the exact location of α(G) [2, Chap. IV].

In this paper we argue that careful algorithm design may be of significant
help in improving the current situation. We propose a couple of heuristics that,
when followed by an algorithm, lead to improvements on the performances of
Wormald’s algorithm for all values of d with only minimal additional running
time costs. Wormald [18] showed that a simple process (termed “neighbourly”
algorithm in that paper) that repeatedly picks vertices of minimum positive de-
gree, adds them to the independent set that is being built and then removes all
edges at distance at most one from the chosen vertex, builds fairly large inde-
pendent sets a.a.s. if G ∈ G(n,d-reg). It turns out that, in some cases, it is more
convenient to add to the independent set one of the neighbours v of the initially
chosen vertex u, rather than u itself. More precisely, we will choose v if such
choice is guaranteed to create a number of low degree vertices (sparsification
principle) or if it leads to the removal of very few edges (minimal mess princi-
ple). A detailed description of our algorithm is in Section 3.

We contend that our solution is simple to analyse: the proof of our results
relies on a standard application of the differential equation method, spelled out
in [19] (the method is general enough to allow the analysis of even more sophis-
ticated algorithms). Furthermore, it seems plausible that similar principles may
lead to improvements for other optimisation problems.

In Section 2 we present the model of random regular graphs that we use
and a statement of our main result. In Section 3 we describe our new algorithm.
The final part of the paper is devoted to the proof of our result: we first briefly
describe the differential equation method, then we fill in all the details needed
in the specific case.

Table 1. A.a.s. bounds on α(G) for random d-regular graphs.

d l.b. u.b. αd

3 0.4328 0.4554 0.4348
4 0.3901 0.4163 0.3921
5 0.3566 0.3844 0.3593
6 0.3296 0.3580 0.3330
7 0.3071 0.3357 0.3106

2 Model and main result

Let G(n,d-reg) denote the uniform probability space of d-regular graphs on n
vertices. Notation G ∈ G(n,d-reg) will signify that the graph G is selected
according to such model.

A construction that gives the elements of G(n,d-reg) is the configuration
model (see, for example, [16, Chapter 9]). Let n urns be given, each containing
d balls. A set F of dn/2 unordered pairs of balls is chosen u.a.r.. Let Ω be the
set of all such pairings. Each F ∈ Ω corresponds to an d-regular (multi)graph
with vertex set V = {1, . . . , n} and edge set E formed by those sets {i, j} for
which there is at least one pair with one ball belonging to urn i and the other
ball belonging to urn j. Let Ω∗ be the set of all pairings not containing an edge
joining balls from the same urn or two edges joining the same two urns. Since
each simple graph corresponds to exactly (d!)n such pairings, a random pairing
F ∈ Ω∗ corresponds to an d-regular graph G without loops or multiple edges
chosen u.a.r.

Notice that a random pairing can be picked by choosing pairs one after the
other. Moreover, the first point in a pair may be selected using any rule what-
soever, as long as the second point is chosen u.a.r. from all the remaining free
(unpaired) points. This property implies the existence of two equivalent ways
of describing the algorithm presented in this paper. The description in Section 3
works on a previously generated (random) graph. However it would be equally
easy to define a process that, by working on configurations, at the same time
generates the graph and simulates our algorithm (this approach might help un-
derstanding our analysis).

In this paper we prove the following result:

Theorem 1. For every integer n and d ≥ 3, if G ∈ G(n,d-reg) then α(G) ≥ αd

a.a.s. where the values of αd are obtained through the method described in
Section 4 and are reported, for d ≤ 7 in the fourth column of Table 1.

The proofs of Theorem 1 is based on the definition of an algorithm and
on the fact that, for each constant value of d, the algorithm dynamics can be

described with sufficient precision by a random process that, for large n, behaves
in a predictable way.

3 Greedy algorithms for independent sets

If G = (V,E) is a graph then Γ (v) = {u ∈ G : {u, v} ∈ E(G)}, for each
v ∈ V (G). The degree of a vertex v of G is the size of Γ (v). Let G be a
graph whose maximum degree is bounded by some fixed constant d > 0. We
call the isolation of u the process of deleting all edges at distance at most one
from vertex u. For each q ∈ {1, . . . , d} define Opq to be the process of picking
uniformly at random a vertex u of degree q in G, and isolating it unless the
minimal degree x in Γ (u) is at most q, there is a vertex v of degree x in Γ (u)
and one of the following conditions hold (in such case v gets isolated):

1. there are at least two vertices of degree x in Γ (u), OR
2. there is a single vertex v of degree x in Γ (u) AND

(a) q = 2 and the minimum degree in Γ (v)\u is larger than that in Γ (u)\v
OR

(b) 2 < q < d−1, the minimum degree in Γ (v)\u is larger than q, and the
sum of all degree in Γ (v) \ u is smaller than that
in Γ (u) \ v.

For each q ∈ {1, . . . , d} Opq obeys the sparsification (cases 1. and 2.(a)) and
minimal mess principles (case 2.(b)) described in Section 1. We may then con-
sider the following process:

Careful minimum degree process. While there are still edges in G,
define q as the minimum positive degree in G and perform Opq on G,
adding to I the vertex that has been (deliberately) isolated in the process.

If there is no edge left then return I and stop.

Note that other vertices (apart from u or v) may get isolated while performing
Opq. They are not taken into account by our analysis. Denote by Gt, for each
integer t, the graph obtained from G by removing all edges at distance at most
one from any of the first t vertices added to I (of course G0 ≡ G).

The differential equation method [19] will allow us to estimate the size of I
at the end of the process from (approximate) knowledge of the dynamics of the
vector (|V1|, . . . , |Vd|) (where Vi = Vi(t) = {v ∈ Gt : |Γ (v)| = i}, for each
i ∈ {1, . . . , d}). However, to avoid certain technicalities in the analysis, it will
be convenient to analyse the following related process (here d is a fixed integer
and ε a small positive real number):

Algorithm CarefulGreedyd,ε(G)
Input: a graph G = (V, E) on n vertices and maximum degree d.

I ← ∅;
for t← 0 to dεne perform Opd;
while E 6= ∅

compute a probability distribution p(q, t
n
, |V1|

n
, . . . , |Vd|

n
),

for q ∈ {1, . . . , d};
choose q ∈ {1, . . . , d} with probability p(q, t

n
, |V1|

n
, . . . , |Vd|

n
);

perform Opq on Gt;
t← t + 1;

return I.

A step of this algorithm is a complete iteration of the algorithm main while
loop. Assuming that each vertex adjacencies are retrievable in time O(d) and
that all vertex degrees are computed before the main loop is executed and then
updated as edges get removed, it is easy to believe that the algorithm time com-
plexity is O(dn).

Initially Vd = V and Vi = ∅ for i ≤ d− 1. For t > dεne, the choice to per-
form Opq, for q ∈ {1, . . . , d−1} is based on a probability distribution p(q, x,y).
The general definition of p(q, x,y), valid when G is a random d-regular graph,
will be given in Section 4. Depending on the particular probability distribution
p(q, x,y) that is used at a given step, the algorithm will be in one of a num-
ber of different phases. The outcome of our analysis implies that the algorithm
processing goes through successive phases. In phase j ∈ {1, 2, . . .} the process
performs only Opd−j or Opd−j−1. In this sense algorithm CarefulGreedyd,ε sim-
ulates the careful minimum degree process described above.

4 Analysis method

In order to obtain estimates on the size of the independent set returned by al-
gorithm CarefulGreedyd,ε(G) we use the differential equation method proposed
by Wormald [19]. Given the input graph, our algorithm peels off a number of
edges (upper bounded by an expression depending only on d) from the graph
Gt and updates the structure I (It will denote the content of I before Gt is
further processed) that is being built. Let Yi(t) = |Vi(t)| for i ∈ {1, . . . , d} and
Yd+1(t) = |It|. In what follows, for i ∈ {1, . . . , d + 1} and q ∈ {1, . . . , d− 1},
functions fi,q in IRd+2 will be such that the expected change to Yi(t), condi-
tioned on the history of the process up to step t and following one occurrence of
Opq during step t+1 is asymptotically fi,q(t

n , Y1(t)
n , . . . ,

Yd+1(t)
n)+o(1), when-

ever Yq(t) > 0. Assuming that these functions are continuous and bounded in

Dε = {(x, y1, . . . , yd+1) : 0 ≤ x ≤ d, 0 ≤ yi ≤ d for 1 ≤ i ≤ d + 1, yd ≥ ε}

we may consider the following d− 1 distinct systems of differential equations

dyi

dx = fd−s−1,d−s(x,y)
fd−s−1,d−s(x,y)−fd−s−1,d−s−1(x,y)fi,d−s−1 (x,y) +

− fd−s−1,d−s−1(x,y)
fd−s−1,d−s(x,y)−fd−s−1,d−s−1(x,y)fi,d−s(x,y) (1)

for s ∈ {1, . . . , d − 2}, and also, dyi

dx = fi,1 (x,y). If the functions fi,q are
rational with no pole in Dε and there exist positive constants C1, C2, and C3

such that for each i ∈ {1, . . . , d}, everywhere in Dε, fi,q ≥ C1yi+1 −C2yi (for
q 6= i), and fi,q ≤ C3yi+1 for all q (see [19]) then each of the systems in (1),
coupled with a suitably defined initial condition, admits a unique solution over
an [xs−1, xs] (for s ∈ {1, . . . , d− 1}), where

x0 = 0 and xs is defined as the infimum of those x > xs−1 for which at
least one of the following holds:

(C1) fd−s−1,d−s−1(x,y) ≥ 0 or
fd−s−1,d−s(x,y)− fd−s−1,d−s−1(x,y) ≤ ε and s < d− 1;

(C2) the component d− s of the solution falls below zero or

(C3) the solution is outside Dε or ceases to exist. (2)

Let ỹ = ỹ(x) = (ỹ1(x), . . . , ỹd+1(x)) be the function defined inductively as
follows:

For each i ∈ {1, . . . , d + 1}, ỹi(0) = Yi(0)
n . For s ≥ 1, ỹ is the solution

to (1) over [xs−1, xs], with initial condition y(xs−1) = ỹ(xs−1). (3)

We may now state the result which bounds from below α(G). The values of
m and ỹd+1(xm)(= αd) referred to in Theorem 2 were found solving the vari-
ous systems numerically using Maple’s Runge-Kutta Fehlberg method (a very
primitive solver written in C for the case d = 3 is enclosed in the Appendix).
The distributions used in algorithm CarefulGreedyd,ε(G) satisfy the following
definition

p(q, x,y) =

− fd−s−1,d−s−1(x,y)

fd−s−1,d−s(x,y)−fd−s−1,d−s−1(x,y) q = d− s

fd−s−1,d−s(x,y)
fd−s−1,d−s(x,y)−fd−s−1,d−s−1(x,y) q = d− s− 1

0 otherwise

(4)

when x ∈ [xs−1, xs], for each s ∈ {1, . . . ,m}.

Theorem 2. Let d be a positive integer with d ≥ 3, and ε an arbitrarily small
positive real number. For q ∈ {1, . . . , d−1}, let fi,q, for each i ∈ {1, . . . , d+1}
be the functions referred to in the description above and defined in Sections
4.1 and 4.2. Then there exists a positive integer m such that the algorithm
CarefulGreedyd,ε(G) a.a.s. returns a structure of size nỹd+1(xm) + o(n) where
functions ỹ1, . . . , ỹd+1 are defined in (3) and x0, . . . , xm in (2) when G ∈
G(n,d-reg).

The proof of this result is carried out invoking Theorem 1 in [19]. The im-
portant point to stress is that the argument has two quite separate components.
The definition of a number of functions and numerical quantities (satisfying cer-
tain conditions) related to the particular algorithm and the proof that everything
works and the solutions of (1) actually give us information on |I| after the exe-
cution of CarefulGreedyd,ε(G). As long as we are able to define the various fi,q

and verify that various smoothness conditions are satisfied, we do not need to be
concerned with the second part of the argument (which will mirror Wormald’s
general argument). The quantitative analysis of CarefulGreedyd,ε(G) is thus re-
duced to the definition of a number of functions and parameters that directly
relate to the algorithm processing.

Before digging into the details of the specific cases we introduce few nota-
tions specific to G(n,d-reg). In what follows for integers a and b, δa,b is equal to
one (resp. zero) if a = b (resp. otherwise). Given a vertex u, the probability of
creating a vertex of degree i−1 in Γ (u) when removing an edge incident to u is
asymptotically Pi = iYiP

iYi
. In what follows Sb

a will denote the sum of all Pi’s for
a ≤ i ≤ b (with Sb

a = 0 if a > b). Furthermore let Minc(a) = (Sb
a)

c − (Sb
a+1)

c.
For large n, Minc(a) approximates the probability that the minimum degree in
a given set of c vertices is a, given that all degrees are between a and b. The
expected change in Yi due to the degree changes in Γ (u) following the removal
of an edge incident to u can be approximated by ρi = Pi+1−Pi with Pd+1 = 0.
Similarly, if e = {u, v} the expected change in Yi due to the removal of e and of
any other edge incident to v is asymptotically µi = −Pi + ρi

∑d
z=2 Pz(z − 1).

Finally, if P is some boolean condition, define �r(P) = (r − 1)ρi − δi,r (resp.
δi,r−1 − δi,r) if P is true (resp. false).

4.1 The simple case d = 3

Before describing the general case, it may be useful to follow an informal de-
scription of the analysis on cubic graphs.

For d = 3, we may assume that, at the beginning of a step, vertex u has
degree either one or two (the initial dεne steps will make sure that this assump-
tion is valid). Algorithm CarefulGreedy3,ε(G) behaves exactly like Wormald’s

algorithm except in the case when we perform Op2 and the two neighbours of u
both have degree two. In such case our algorithm chooses a random neighbour
of u rather than u itself. Thus, if fW

i,q denotes the function fi,q associated with
Wormald’s algorithm (a precise definition is given in formula (2.12) of [19])
then fi,q = fW

i,q + δq,2(P2)2(δi,1 + µi − 2ρi), for i ∈ {0, . . . 3} and q ∈ {1, 2}
(whereas f4,q = fW

4,q). Of course each fi,q satisfies the conditions that imply
Theorem 2 (this follows from the properties of fW

i,q in [19]). For d = 3 it turns
out that m = 1. Conditions (C2) eventually becomes true exactly when the vec-
tor (x, y1, y2, y3, y4) hits the boundary of Dε. At that point the process stops and
ỹ4 ' 0.4347531298, which agrees with the value for α3 stated in Table 1.

4.2 Arbitrary d ≥ 4

We next state the general result characterising the dynamics of (Y1, . . . , Yd+1)
for arbitrary d ≥ 4 following an instance of Opq, for q ∈ {1, . . . , d− 1}.

Lemma 1. Let d ≥ 4 and ε > 0. For each q ∈ {1, . . . , d − 1}, conditioned on
the history of algorithm CarefulGreedyd,ε(G) up to step t, the expected change
to Yi(t) following one occurrence of Opq is asymptotically

−δi,q + (Sd
q+1)

q ×
Pd

k=q+1 q Pk

Sd
q+1

((k − 1)ρi − δi,k) +

+
Pq

x=1

h
(Minq(x)− qPx(Sd

x+1)
q−1) ((x− 1)µi − δi,x) +

− (qPx(Sd
x)q−1 −Minq(x)) (δi,x − δi,x−1) +

− q(Minq−1(x)− (q − 1)Px(Sd
x+1)

q−2)
Pd

k=x+1 Pk(δi,k − δi,k−1)
i

+

+ qP1(S
d
2)q−1(−δi,1 + (q − 1)

Pd
k=2((k − 1)ρi − δi,k)Pk

Sd
2
) +

+
Pq

x=2 qPx

nPd−1
z=x+1

h Pq+(d−q)δq,2
m=1

h
− δi,xMinq−1(z)Minx−1(m) +

+ (q − 1)Minx−1(m)× ((Sd
z)q−2 �z (m ≤ z)Pz + Minq−2(z)

Pd
r=z+1 �r(m ≤ z)Pr) +

+ (x− 1)Minq−1(z) · ((Sd
m)x−2 �m (m > z)Pm + Minx−2(m)

Pd
s=m+1 �s(m > z)Ps)

i
+

+
Pd

m=q+(d−q)δq,2+1

P
j:jz>0

`
q−1

jz,...,jd

´
P jz

z . . . P
jd
d

P
k:km>0

`
x−1

km,...,kd

´
P km

m . . . P
kd
d γ(j, k)

i
+

+ P q−1
d ((x− 1)ρi − δi,x + ((d− 1)ρi − δi,d)(q − 1))

o
.

where γ(j,k) =
∑d

r=z �r(P) · jr − δi,x −
∑d

r=m �r(¬P) · kr and P ≡∑d
r=z rjr <

∑d
r=m rkr, if i ≤ d. Finally fd+1,q = 1 for all values of q.

Remark. The first line in the asymptotic expression for fi,q (i ≤ d) refers to the
case when the minimum degree around u is at least q + 1. The subsequent sum
deals with the case when there is at least two vertices of minimum degree x ≤ q
in Γ (u). The remainder of the expression covers the case when there is a single
vertex of minimum degree x ≤ q in Γ (u).

Proof. We sketch the definition of fi,q for each q in the given range and i ≤ d.
The stated expression (more convenient from the numerical point of view) can
then be obtained through simple algebraic manipulations.

For arbitrary, fixed d ≥ 4, each iteration in the while loop of algorithm
CarefulGreedyd,ε(G) may perform Opq for q ∈ {1, . . . , d − 1}. More im-
portantly the execution of such an operation generates a number of alterna-
tive events whose probabilities can be approximated quite easily under the as-
sumption that G ∈ G(n, d-reg). Hence, for each i ∈ {1, . . . , d} and q ∈
{1, . . . , d− 1} function fi,q satisfies (a.a.s.) the following definition:

fi,q = −δi,q +
∑(

q
jq+1,...,jd

)
P

jq+1

q+1 . . . P jd
d (

∑d
k=q+1((k − 1)ρi − δi,k)jk) +

∑q
x=1{ gi,q,x +

∑
j:jx>1

(
q

jx,...,jd

)
P jx

x . . . P jd
d ((x− 1)µi − δi,x +

−
∑d

k=x(δi,k − δi,k−1)(jk − δk,x)}.
where the first sum is over all sequences of non-negative integers (jq+1, . . . , jd)
adding up to q, the second sum on the second line is over all (jx, . . . , jd) with
the further restriction that jx must be positive (x represents the minimum degree
in Γ (u)), and gi,q,x is the expected change to Yi conditioned on performing Opq

and on the existence of a single vertex of minimum degree x around u. Function
gi,d−1,x has a very simple definition, since if we perform Opd−1 we are essen-
tially just replicating Wormald’s algorithm. To define gi,q,x for q < d − 1 we
need to condition on the degree structure in Γ (v) \u and Γ (u) \ v. In particular
if x = 1 then Γ (v) \ u is empty and therefore (just following Wormald’s algo-
rithm) gi,q,1 =

∑(
q

1,js,...,jd

)
P1 . . . P jd

d (−δi,1 +
∑d

k=2((k− 1)ρi− δi,k)jk). For
x ≥ 2,

gi,q,x = qPx

{∑d−1
z=x+1

[
hi,q,x,z +

∑
m6=z

∑
j:jz>0

(
q−1

jz ,...,jd

)
P jz

z . . . P jd
d ×

×
∑

k,km>0

(
x−1

km,...,kd

)
P km

m . . . P kd
d γi,q,x,z,m

]
+

+ P q−1
d ((x− 1)ρi − δi,x + ((d− 1)ρi − δi,d)(q − 1))

}
where hi,q,x,z describes the case when the minimum degree in Γ (u) \ v and
Γ (v) \u are the same and γi,q,x,z,m the expected updates necessary in any other

case. If z 6= m the algorithm’s rule is quite simple: v is added to I if the min-
imum degree in Γ (v) \ u is larger than that in Γ (u) \ v. Then γi,q,x,z,m =∑d

r=z �r(m ≤ z)jr +
∑d

s=m �s(m > z)ks. Finally, for q > 2, function hi,q,x,z

is computed conditioning on each possible pair of sequences (jz, . . . , jd) and
(kz, . . . , kd) adding up to q − 1 and x − 1 respectively, and having jz > 0 and
kz > 0. Vertex v is added to I if

∑d
r=z rjr >

∑d
r=m rkr. ut

References

1. V. E. Alekseev. Polynomial algorithm for finding the largest independent sets in graphs
without forks. Discrete Applied Mathematics, 135(1–3):3–16, 2004.

2. H. Assiyatun. Large Subgraphs of Regular Graphs. PhD thesis, Department of Mathematics
and Statistics - The University of Melbourne, 2002.

3. H. Assiyatun and N. Wormald. 3-star factors in random d-regular graphs. European Journal
of Combinatorics, 27(8):1249–1262, 2006.

4. Hilda Assiyatun. Maximum induced matchings of random regular graphs. In Combinatorial
geometry and graph theory, volume 3330 of Lecture Notes in Comput. Sci., pages 44–57.
Springer, Berlin, 2005.

5. B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal
of the Association for Computing Machinery, 41(1):153–180, January 1994.

6. P. Berman and T. Fujito. On approximation properties of the independent set problem for
low degree graphs. Theory of Computing Systems, 32(2):115–132, 1999.

7. B. Bollobás and P. Erdős. Cliques in random graphs. Mathematical Proceedings of the
Cambridge Philosophical Society, 80:419–427, 1976.

8. Z-Z. Chen. Approximation algorithms for independent sets in map graphs. Journal of Algo-
rithms, 41(1):20–40, 2001.

9. A. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random Structures and
Algorithms, 10:5–42, 1997.

10. A. M. Frieze. On the independence number of random graphs. Discrete Mathematics,
81(2):171–175, 1990.

11. A. M. Frieze and T. Łuczak. On the independence and chromatic number of random regular
graphs. Journal of Combinatorial Theory, B 54:123–132, 1992.

12. M. R. Garey and D. S. Johnson. Computer and Intractability, a Guide to the Theory of
NP-Completeness. Freeman and Company, 1979.

13. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, June 1972.

14. J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathem., 182:105–142, 1999.
15. H. B. Hunt, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and R. E.

Stearns. NC-approximation scheme for NP- and PSPACE-hard problems for geometric
graphs. Journal of Algorithms, 26:238–274, 1998.

16. S. Janson, T. Łuczak, and A. Ruciński. Random Graphs. John Wiley and Sons, 2000.
17. B. D. McKay. Independent sets in regular graphs of high girth. Ars Combinatoria, 23A:179–

185, 1987.
18. N. C. Wormald. Differential equations for random processes and random graphs. Annals of

Applied Probability, 5:1217–1235, 1995.
19. N. C. Wormald. Analysis of greedy algorithms on graphs with bounded degrees. Discrete

Mathematics, 273:235–260, 2003.

Appendix

We enclose a short C program that solves the single system relevant for d = 3.
The final print statement outputs α3. While the code is by no mean numerically
sound (in particular it contains no checking on fi,q or ỹ) the fact that it gives an
answer that is very close to the one returned by Maple’s solver may be taken as
further evidence of the robustness of our numerical results.

#include <stdio.h>

inline double pw(double value, int pwer) {
double answer=1.0;
int i;
for (i=pwer;i;i--) answer=answer*value;
return answer;

}

double p (int i, double y[]) {return i*y[i]/(y[1]+2*y[2]+3*y[3]);}
double R (int i, double y[]) {return (i<3?p(i+1,y):0.0) - p(i,y);}
double M (int i, double y[]) {return -p(i,y)+R(i,y)*(p(2,y)+2*p(3,y));}

double f (int i, int q, double y[]) {
if (i==4) return 1.0;
else return -(i==q)+q*M(i,y)-(q==2)*pw(p(2,y),2)*(2*R(i,y)-M(i,y)-(i==1));

}

double F(int i,double y[]) {
double p2=-f(1,1,y)/(f(1,2,y)-f(1,1,y));
return p2*f(i,2,y)+(1-p2)*f(i,1,y);

}

main(int argc, char *argv[]) {
int i,l;
double h = 0.00000001;
double w[5],mid[5];

for(i=0;i<5;i++) w[i]=0.0+(!(3-i));

for (l=0;;l++) {
for (i=0;i<5;i++) mid[i]=w[i]+(h*F(i,w)/2.0);
for (i=0;i<5;i++) w[i]=w[i]+h*F(i,mid);

if ((f(1,1,w)>0||f(1,2,w)-f(1,1,w)<=h) || (w[2]<=0.0)) {
printf("|I| = %11.10f\n",w[4]); break;

}
}

}

