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Abstract

A t-spanner of a grapty = (V, E), is a sub-graptbe = (V, E’), such that?’ C E and for
every edgdu,v) € E, there is a path from to v in S¢ of length at most. A minimum-edge
t-spanner of a grap&¥, S¢;, is thet-spanner of5 with the fewest edges. For general graphs and
for t=2, the problem of determining for a given integewhether E(S¢,)| < s is NP-Complete
[2]. Peleg and Uliman [3], give a method for constructing a 3-spanner of-trextex Hypercube
with fewer than7n edges. In this paper we give an improved construction giving a 3-spanner of
then-vertex Hypercube with fewer thatm edges and we present a lower bound‘é’bf— o(1) on
the size of the optimal Hypercube 3-spanner.
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1 Introduction

A t-spanner of a grapty’ = (V, E), is a sub-grapt = (V, E’), such that’ C F and for every
edge(u,v) € E, there is a path from to v in S of length at most.

Spanners were introduced in [3] and have been studied in many papers. They have applications
in communication networks, distributed computing, robotics, computational geometry and a host of
other computing related topics. We refer to the paramedsrthedilation of the spanner.

A minimum-edge-spannerS;,, of a graphG, is thet-spanner with the fewest edges. For general
undirected graphs, anet2, the problem of determining for a given integewhether| E’(S;,)| < s
is NP-Complete [2]. Kortsarz and Peleg [1] have an approximation algorithm for constraptinge
2-spanner®f general undirected graphs with an approximation rati®@bg(| E|/|V|).

For Hypercubes, the minimum dilation of a spanner is 3 since a Hypercube is a bipartite graph.
Peleg and Ullman [3], give a method for constructing a 3-spanner of-tertex Hypercube with
fewer than7n edges. The only known lower bound on the size of the optimal Hypercube 3-spanner
is n-1 (sinceS(, is a connected spanning subgrapf®f In this paper we show that a more careful
analysis of the Peleg-Uliman result [3] for Hypercubes of specific dimensions gives a 3-spanner with
fewer than 3 edges. By exploiting this result and using a slightly different construction, we are able
to show a general upper bound for this problemof Binally a general lower bound 6‘51 —o(l)is
proved on the size of the optimal Hypercube 3-spanner.

In the following section we remind the reader of a few well known graph-theoretic properties and
present the Lemmas that we will use to construct a sparse 3-spanner. Section 3 gives the upper bound



and Section 4 describes our lower bound result. In the final section we present our conclusions and
comment on the further improvement of these bounds.

2 Preliminaries

The HypercubeHy,, is a graph withn = 2¢ vertices. If we label all the vertices with the binary
representations of the numbéxs .., 2¢ — 1, then two vertices are connected by an edge if and only
if their labels differ in precisely one bit position (if the labels differ in bit positiothhen that edge
is said to belong to th&” dimension). Each label has precisélpits. The Hypercubél, can be
represented as a Cartesian product of two smaller Hypercubég; # H,, x H,, thend = p + ¢
and H, can be partitioned int@? (vertex disjoint) copies off, and2” copies ofH, so that each
v € V(H,) belongs to exactly one copy éf,, and one copy of,,.

A dominating sebf a graphG = (V, E), is a setU/ C V, such that for every vertex € V, U
contains eithep itself or some neighbour aof.

Throughout the remainder of this paper we use the notd#iSpto represent a dominating set of
H,. We also useS,; to denote a 3-spanner éf;.

Lemma 1 and Lemma 2 are recalled from [3] and are based on standard results from coding theory
enabling us to calculate small dominating sets for Hypercubes using Hamming Codes.

Lemma 1 For every positive jntegek, the HypercubeH,, whered = 2% — 1, has a minimum
dominating set of size exactclﬁﬁ.

Lemma 2 For everyd > 1, the Hypercubdd,; has a dominating set of size at mast”, wherer is
the largest integer such that — 1 < d.

3 Constructing Sparse Hypercube 3-Spanners

A corollary of the result in [3] is that for Hypercubes of specific dimensions, we are able to construct
a sparse 3-spanner with fewer thaneiges. The bound in Theorem 1 is mainly due to exploiting this
fact. By using another slightly different construction, we are able to prove the general upper bound of
4n. The method described in [3], consideéfg as the Cartesian product of two smaller Hypercubes,
H, andH, and adds to the spanner every edge of the forms:

Type (1) {(z,9), (z,¥)} [ (v € DS, and{y,y'} € E(H,))
Type (2) {(z,y), («",y)} | («" € DSp and{z, 2’} € E(Hp))
Type (3) {(z,v), (x,4")} | (x € DSy and{y, y'} € E(H,))
Type (4) {(z,y), («",9)} | (y € DS, and{x, '} € E(H,))

where for each € V(Hy), if i andj are the labels of in H, and H,, then the concatenatidn, ;)
labelsv in Hy. These edges form a 3-spanner of the Hyperdidheln fact, all other edges dfl; are
of the forms:

Type (5) :{(z,v),(z,y)} | (x € DSy andy,y’ & DS, and{y,y'} € E(H,))
Type (6) :{(z,y), (2",y)} | (v € DSy andz, 2’ ¢ DSy and{z, 2’} € E(H,))



Let {(z,v), (z,y')} be an edge of Type (5) (the argument for edges of Type (6) is analogous). Notice
that vertexz is not a member of a dominating set in any copyhfor else the edgé(x, v), (z,vy')}
would be of Type (3) and have already been added to the spanner. Vegtéx(H,) must be dom-
inated by a vertex € V(H,) and now edge$(z,y), (z,v)}, {(z,y), (z,y)} and{(z, ), (z,¥')}
all are in the spanner because they are of Type (3), (2) and (2) respectively. We therefore have a path
of length 3 for every edge not already in the spanner.

If p andq are chosen as close to each other as possible, this construction gives a general upper
bound of7n edges in the 3-spanner for all valuesidiee [3]). However, for specific values @fwe
have the following Lemma.

Lemma 3 For every integet, the Hypercubed,, wheret = 2* — 2, has a 3-spanner of size at most

(3—#5)2"

Proof  The Hypercubéi;, can be considered as the Cartesian prodlyck H,, wherer = % By
Lemma 1, each copy aoff, has a minimum dominating set of si;%. A 3-spanner inH, is built
following the construction described above.

Counting precisely the number of edges added to construct the spanner, we have :

Type (1) 1723527 = )

Type (2) :227(2" — 25)

Type (3) : ””2;_2;171

ror—1
Type (4) : 22—

If |[E(S:)|is the number of edges in our spanner, we have :

ror 9" ror o r2ror—t - poror-l
E(S))| < 2" — 2" -
| (t)|_r+1< r—|—1>+7“+1( r+1>+ r+1 * r+1

B(S)] < (3 - th) 2!

Our main result is based on exploiting the bound proved in Lemma 3. For dyeayher than
choosing the values of andq close together, we fix close to the value of* — 2 for somek and
choosey consequently. Then we

|

¢ Build a sparse 3-spanner in each copyhf

e For every vertex that is a member of the dominating setfpr (based on the construction of
the 3-spanner itf,,), add a full copy off,,.

These edges also form a 3-spanner of the HyperéfjpeBuilding a spanner in each copy &f,
ensures that each edge in each copy is either in the spanner for that chpyothere is a path of
length three contained entirely within that copy#f for every non-present edge. Consider an edge
{(z,y), (z,y")}, of a copy ofH,, that has not been added so far. Since the 3-spanner for each copy
of H,, is built using the construction in [3], every edge connected to every member of the dominating
set forH, is present in the spanner. Vertexs then dominated by a vertexin H,,, hence both edges
{(z,y), (z,y)} and{(z,v'), (z,y) } belong to the 3-spanner. The edde, v), (z,v')} is also in the
spanner as it belongs to one of the full copiegigf We therefore have a path of length 3 for all edges
that are not already in the spanner.

In order to prove our main result, we need to establish the following Lemma.
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Lemma 4 The Hypercubéd,, wherep = 2* — 1 for some integer value @f, has a 3-spanner of size
at most3 x 2P.

Proof The Hypercubeld,, can be considered as the Cartesian produc/pfind H;, where
t = 2" —2. From Lemma 3, each copy &f; has a 3-spanner of size at m¢3t- ;5 )2. Constructing
a 3-spanner itl; using the method described in Lemma 3 defines the dominating sHt fehich is

of size at mosii%l. There are precisely 2 copies 8 in H,. This gives a dominating set iff,, of

size at mos?p%. We construct this spanner in each copyrhfwhich gives a total of3 — t%)zp
edges added so far. We then add a copfofor each of the members of the dominating sekin
Again, denoting the number of edges in the spanngiliy,, )|, we have :

[E(Sp)| < |E(St)] x 2+ [DSy|

4 )215 2t+1
t+2

< -
B, <2 (3 —

B(S,)| <3x 2P
[

We are now ready to prove our main result. We construct our spanner in the following way. We
consider the HypercubH, for d > 1, as the Cartesian product of two smaller Hypercultgsand
H,. We chose the value df such thal* — 1 < d < 2¥1 — 1 and fixp = 2¥ — 1. We construct
a 3-spanner in each copy éf,._; and connect these in such a way as to ensure a 3-spanner for the
HypercubeH .

By Lemma 4, each copy aff,, has a 3-spanner of size 3 x 2P. There are precisely? copies
of H,, giving a total of3 x 2 edges. For each member of the dominating sd¥jrthat is used to
construct the 3-spanner in that copy, we add a copy/ péand this completes the 3-spannerdp.

Based on the construction of the 3-spanners in each copj,peach copy off{, in H; has a

dominating set of size of at mo%i%.
Theorem 1 For every integetl > 1, the size of a minimum-edge 3-spannerfbyis at mostd x 2.
Proof If |[E(Sy)]| is the number of edges in our spanner, then we have

[E(Sa)l < |E(Sp)| x 27+ [DSp| x |E(Hy)|

2p+1q2q—1

< PY24d
[B(Sa)] < (3 220 4+ = =5

q2¢

E(S))| <3x2¢4 22
|E(Sq)| < P

As p is fixed, ¢ increases linearly witld and so we have a bound on the sizegphamelyl <
q < 2*. Interms ofp thisis1 < ¢ < p + 1, which gives :

|E(Sy)| <4 x 24



4 Lower Bounding the Size of a Sparse 3-Spanner

A strong constraint on our construction is the use of dominating sets. It is not known whether, for
all d, H; has a dominating set of sizﬁ—l. A variation on our construction, would in this case give

an upper bound ofs3 on the size of a 3-spanner for @l This remark raises the natural question
about the existence of much sparser 3-spanners in Hypercubes. Although we are not able to give a
conclusive answer to this question the following result gives the first non-trivial lower bound.

Theorem 2 A 3-spanner of the Hyperculdé; has at Ieastﬁ—idg) edges.

Proof Let S; be a 3-spanner of thé-dimensional Hypercube. For any path of length 35in
spanning an edge not if; with edgese, f, €' it must be that ande’ are in the same dimension,
sayj. We then say ande’ are “i-useful” wherei is the dimension off, and we say the edggis
“j-spoiled”. Note thatf cannot bej-useful because, for that, eitheor ¢’ would have to be missing
from Sj;.

For each edge missing froffy in dimensioni there is a 3-path as above, in which the two terminal
edges of the 3-path areuseful. Note that theseuseful edges are distinct from any othienseful
edges that are part of the 3-path for any other edge missing $toim dimension:. So, lettingu(7)
denote the number afuseful edges irb;, we have

d

B(H)| ~ |B(S:)] = 5 3 uli)
i=1

Since aj-spoiled edge can only be adjacent to two edges in dimernsitrere can only be one
pair of edges which cause it to hespoiled. Each pair of useful edges spoil one edge, sgifis the
number ofj-spoiled edges, we have

d 1
> s(h) = 5 2 uld)
j=1 i=1

Since no edge is bothspoiled and-useful, we also have

u(jg) +s(7) < |E(Sq)l

Summing this ovet < j < d and using the previous equations, we get
d
|E(Ha)| — |E(Sa)| < 51E(Sq)l

from which the statement follows sin¢g(H,)| = d2¢-1. O

5 Conclusions

In this paper we considered the problem of finding sparse 3-spanners for Hypercubes. We have
shown that for all values af > 1, the Hypercubéd,; has a 3-spanner of size at mdst 2¢. We have

also shown that the optimal 3-spanner fé§ has at Ieas% edges. A strong constraint on the
construction we use in order to prove our upper bound is t%e use of dominating sets. Much sparser

3-spanners may exist, but we feel different constructions are needed.
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