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Abstract

A t-spanner of a graphG = (V,E), is a sub-graphSG = (V,E′), such thatE′ ⊆ E and for
every edge(u, v) ∈ E, there is a path fromu to v in SG of length at mostt. A minimum-edge
t-spanner of a graphG, S′

G, is thet-spanner ofG with the fewest edges. For general graphs and
for t=2, the problem of determining for a given integers, whether|E(S′

G)| ≤ s is NP-Complete
[2]. Peleg and Ullman [3], give a method for constructing a 3-spanner of then-vertex Hypercube
with fewer than7n edges. In this paper we give an improved construction giving a 3-spanner of
then-vertex Hypercube with fewer than4n edges and we present a lower bound of3n

2 − o(1) on
the size of the optimal Hypercube 3-spanner.
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1 Introduction

A t-spanner of a graphG = (V,E), is a sub-graphSG = (V,E′), such thatE′ ⊆ E and for every
edge(u, v) ∈ E, there is a path fromu to v in SG of length at mostt.

Spanners were introduced in [3] and have been studied in many papers. They have applications
in communication networks, distributed computing, robotics, computational geometry and a host of
other computing related topics. We refer to the parametert as thedilation of the spanner.

A minimum-edget-spannerS′
G, of a graphG, is thet-spanner with the fewest edges. For general

undirected graphs, andt=2, the problem of determining for a given integers, whether|E′(S′
G)| ≤ s

is NP-Complete [2]. Kortsarz and Peleg [1] have an approximation algorithm for constructingsparse
2-spannersof general undirected graphs with an approximation ratio ofO(log(|E|/|V |).

For Hypercubes, the minimum dilation of a spanner is 3 since a Hypercube is a bipartite graph.
Peleg and Ullman [3], give a method for constructing a 3-spanner of then-vertex Hypercube with
fewer than7n edges. The only known lower bound on the size of the optimal Hypercube 3-spanner
is n-1 (sinceS′

G is a connected spanning subgraph ofG). In this paper we show that a more careful
analysis of the Peleg-Ullman result [3] for Hypercubes of specific dimensions gives a 3-spanner with
fewer than 3n edges. By exploiting this result and using a slightly different construction, we are able
to show a general upper bound for this problem of 4n. Finally a general lower bound of3n

2 − o(1) is
proved on the size of the optimal Hypercube 3-spanner.

In the following section we remind the reader of a few well known graph-theoretic properties and
present the Lemmas that we will use to construct a sparse 3-spanner. Section 3 gives the upper bound
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and Section 4 describes our lower bound result. In the final section we present our conclusions and
comment on the further improvement of these bounds.

2 Preliminaries

The HypercubeHd, is a graph withn = 2d vertices. If we label all the vertices with the binary
representations of the numbers0, . . . , 2d − 1, then two vertices are connected by an edge if and only
if their labels differ in precisely one bit position (if the labels differ in bit positioni then that edge
is said to belong to theith dimension). Each label has preciselyd bits. The HypercubeHd can be
represented as a Cartesian product of two smaller Hypercubes. IfHd = Hp × Hq, thend = p + q
andHd can be partitioned into2q (vertex disjoint) copies ofHp and2p copies ofHq so that each
v ∈ V (Hd) belongs to exactly one copy ofHp and one copy ofHq.

A dominating setof a graphG = (V,E), is a setU ⊆ V , such that for every vertexv ∈ V , U
contains eitherv itself or some neighbour ofv.

Throughout the remainder of this paper we use the notationDSd to represent a dominating set of
Hd. We also useSd to denote a 3-spanner ofHd.

Lemma 1 and Lemma 2 are recalled from [3] and are based on standard results from coding theory
enabling us to calculate small dominating sets for Hypercubes using Hamming Codes.

Lemma 1 For every positive integerk, the HypercubeHd, whered = 2k − 1, has a minimum
dominating set of size exactly2

d

d+1 .

Lemma 2 For everyd ≥ 1, the HypercubeHd has a dominating set of size at most2d−r, wherer is
the largest integer such that2r − 1 ≤ d.

3 Constructing Sparse Hypercube 3-Spanners

A corollary of the result in [3] is that for Hypercubes of specific dimensions, we are able to construct
a sparse 3-spanner with fewer than 3n edges. The bound in Theorem 1 is mainly due to exploiting this
fact. By using another slightly different construction, we are able to prove the general upper bound of
4n. The method described in [3], considersHd as the Cartesian product of two smaller Hypercubes,
Hp andHq and adds to the spanner every edge of the forms:

Type (1) :{(x, y), (x, y′)} | (y′ ∈ DSq and{y, y′} ∈ E(Hq))

Type (2) :{(x, y), (x′, y)} | (x′ ∈ DSp and{x, x′} ∈ E(Hp))

Type (3) :{(x, y), (x, y′)} | (x ∈ DSp and{y, y′} ∈ E(Hq))

Type (4) :{(x, y), (x′, y)} | (y ∈ DSq and{x, x′} ∈ E(Hp))

where for eachv ∈ V (Hd), if i andj are the labels ofv in Hp andHq, then the concatenation(i, j)
labelsv in Hd. These edges form a 3-spanner of the HypercubeHd. In fact, all other edges ofHd are
of the forms:

Type (5) :{(x, y), (x, y′)} | (x 6∈ DSp andy, y′ 6∈ DSq and{y, y′} ∈ E(Hq))

Type (6) :{(x, y), (x′, y)} | (y 6∈ DSq andx, x′ 6∈ DSp and{x, x′} ∈ E(Hp))
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Let {(x, y), (x, y′)} be an edge of Type (5) (the argument for edges of Type (6) is analogous). Notice
that vertexx is not a member of a dominating set in any copy ofHp or else the edge{(x, y), (x, y′)}
would be of Type (3) and have already been added to the spanner. Vertexx ∈ V (Hp) must be dom-
inated by a vertex̄x ∈ V (Hp) and now edges{(x̄, y), (x̄, y′)}, {(x, y), (x̄, y)} and{(x, y′), (x̄, y′)}
all are in the spanner because they are of Type (3), (2) and (2) respectively. We therefore have a path
of length 3 for every edge not already in the spanner.

If p andq are chosen as close to each other as possible, this construction gives a general upper
bound of7n edges in the 3-spanner for all values ofd (see [3]). However, for specific values ofd, we
have the following Lemma.

Lemma 3 For every integerk, the HypercubeHt, wheret = 2k − 2, has a 3-spanner of size at most
(3− 4

t+2)2t.

Proof The HypercubeHt, can be considered as the Cartesian productHr ×Hr, wherer = t
2 . By

Lemma 1, each copy ofHr has a minimum dominating set of size2
r

r+1 . A 3-spanner inHt is built
following the construction described above.

Counting precisely the number of edges added to construct the spanner, we have :

Type (1) : r2r

r+1(2r − 2r

r+1)

Type (2) : r2r

r+1(2r − 2r

r+1)

Type (3) : r2r2r−1

r+1

Type (4) : r2r2r−1

r+1

If |E(St)| is the number of edges in our spanner, we have :

|E(St)| ≤
r2r

r + 1

(
2r − 2r

r + 1

)
+

r2r

r + 1

(
2r − 2r

r + 1

)
+

r2r2r−1

r + 1
+

r2r2r−1

r + 1

|E(St)| ≤
(

3− 4
t + 2

)
2t

2

Our main result is based on exploiting the bound proved in Lemma 3. For everyd, rather than
choosing the values ofp andq close together, we fixp close to the value of2k − 2 for somek and
chooseq consequently. Then we

• Build a sparse 3-spanner in each copy ofHp

• For every vertex that is a member of the dominating set forHp, (based on the construction of
the 3-spanner inHp), add a full copy ofHq.

These edges also form a 3-spanner of the HypercubeHd. Building a spanner in each copy ofHp

ensures that each edge in each copy is either in the spanner for that copy ofHp or there is a path of
length three contained entirely within that copy ofHp for every non-present edge. Consider an edge
{(x, y), (x, y′)}, of a copy ofHq, that has not been added so far. Since the 3-spanner for each copy
of Hp is built using the construction in [3], every edge connected to every member of the dominating
set forHp is present in the spanner. Vertexx is then dominated by a vertex̄x in Hp, hence both edges
{(x, y), (x̄, y)} and{(x, y′), (x̄, y′)} belong to the 3-spanner. The edge{(x̄, y), (x̄, y′)} is also in the
spanner as it belongs to one of the full copies ofHq. We therefore have a path of length 3 for all edges
that are not already in the spanner.

In order to prove our main result, we need to establish the following Lemma.

3



Lemma 4 The HypercubeHp, wherep = 2k − 1 for some integer value ofk, has a 3-spanner of size
at most3× 2p.

Proof The HypercubeHp, can be considered as the Cartesian product ofHt and H1, where
t = 2k−2. From Lemma 3, each copy ofHt has a 3-spanner of size at most(3− 4

t+2)2t. Constructing
a 3-spanner inHt using the method described in Lemma 3 defines the dominating set forHt which is
of size at most2

t+1

t+2 . There are precisely 2 copies ofHt in Hp. This gives a dominating set inHp of

size at most2
p+1

p+1 . We construct this spanner in each copy ofHt which gives a total of(3 − 4
t+2)2p

edges added so far. We then add a copy ofH1 for each of the members of the dominating set inHt.
Again, denoting the number of edges in the spanner by|E(Sp)|, we have :

|E(Sp)| ≤ |E(St)| × 2 + |DSt|

|E(Sp)| ≤ 2
(

3− 4
t + 2

)
2t +

2t+1

t + 2

|E(Sp)| ≤ 3× 2p

2

We are now ready to prove our main result. We construct our spanner in the following way. We
consider the HypercubeHd, for d > 1, as the Cartesian product of two smaller Hypercubes,Hp and
Hq. We chose the value ofk such that2k − 1 < d ≤ 2k+1 − 1 and fixp = 2k − 1. We construct
a 3-spanner in each copy ofH2k−1 and connect these in such a way as to ensure a 3-spanner for the
HypercubeHd.

By Lemma 4, each copy ofHp has a 3-spanner of size≤ 3 × 2p. There are precisely2q copies
of Hp, giving a total of3 × 2d edges. For each member of the dominating set inHp that is used to
construct the 3-spanner in that copy, we add a copy ofHq and this completes the 3-spanner inHd.

Based on the construction of the 3-spanners in each copy ofHp, each copy ofHp in Hd has a
dominating set of size of at most2p+1

p+1 .

Theorem 1 For every integerd ≥ 1, the size of a minimum-edge 3-spanner forHd is at most4× 2d.

Proof If |E(Sd)| is the number of edges in our spanner, then we have

|E(Sd)| ≤ |E(Sp)| × 2q + |DSp| × |E(Hq)|

|E(Sd)| ≤ (3× 2p)2q +
2p+1q2q−1

p + 1

|E(Sd)| ≤ 3× 2d +
q2d

p + 1

As p is fixed,q increases linearly withd and so we have a bound on the size ofq, namely1 ≤
q ≤ 2k. In terms ofp this is1 ≤ q ≤ p + 1, which gives :

|E(Sd)| ≤ 4× 2d

2
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4 Lower Bounding the Size of a Sparse 3-Spanner

A strong constraint on our construction is the use of dominating sets. It is not known whether, for
all d, Hd has a dominating set of size2

d

d+1 . A variation on our construction, would in this case give
an upper bound of 3n on the size of a 3-spanner for alld. This remark raises the natural question
about the existence of much sparser 3-spanners in Hypercubes. Although we are not able to give a
conclusive answer to this question the following result gives the first non-trivial lower bound.

Theorem 2 A 3-spanner of the HypercubeHd has at least 3d2d

2(d+3) edges.

Proof Let Sd be a 3-spanner of thed-dimensional Hypercube. For any path of length 3 inSd

spanning an edge not inSd with edgese, f , e′ it must be thate ande′ are in the same dimension,
sayj. We then saye ande′ are “i-useful” wherei is the dimension off , and we say the edgef is
“j-spoiled”. Note thatf cannot bej-useful because, for that, eithere or e′ would have to be missing
from Sd.

For each edge missing fromSd in dimensioni there is a 3-path as above, in which the two terminal
edges of the 3-path arei-useful. Note that thesei-useful edges are distinct from any otheri-useful
edges that are part of the 3-path for any other edge missing fromSd in dimensioni. So, lettingu(i)
denote the number ofi-useful edges inSd, we have

|E(Hd)| − |E(Sd)| =
1
2

d∑
i=1

u(i)

Since aj-spoiled edge can only be adjacent to two edges in dimensionj, there can only be one
pair of edges which cause it to bej-spoiled. Each pair of useful edges spoil one edge, so ifs(j) is the
number ofj-spoiled edges, we have

d∑
j=1

s(j) =
1
2

d∑
i=1

u(i)

Since no edge is bothi-spoiled andi-useful, we also have

u(j) + s(j) ≤ |E(Sd)|

Summing this over1 ≤ j ≤ d and using the previous equations, we get

|E(Hd)| − |E(Sd)| ≤
d

3
|E(Sd)|

from which the statement follows since|E(Hd)| = d2d−1. 2

5 Conclusions

In this paper we considered the problem of finding sparse 3-spanners for Hypercubes. We have
shown that for all values ofd ≥ 1, the HypercubeHd has a 3-spanner of size at most4× 2d. We have
also shown that the optimal 3-spanner forHd has at least 3d2d

2(d+3) edges. A strong constraint on the
construction we use in order to prove our upper bound is the use of dominating sets. Much sparser
3-spanners may exist, but we feel different constructions are needed.
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