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Abstract

We presentMABLE, a fully implemented programming language for multiagent
systems, which is intended to support the automatic verification of such systems
via model checking. In addition to the conventional constructs of imperative pro-
gramming languages,MABLE provides a number of agent-oriented development
features. First, agents inMABLE are endowed with aBDI-like mental state: they
have data structures corresponding to beliefs, desires, and intentions, and these
mental states may be arbitrarily nested. Second, agents inMABLE communicate
via ACL-like performatives: however, neither the performatives nor their seman-
tics are hardwired into the language. It is possible to definethe performatives and
the semantics of these performatives independently of the system in which they
are used. Using this feature, a developer can explore the design space ofACL

performatives and semantics without changing the target system. Finally,MABLE

supports automatic verification via model checking. Claimsabout the behaviour
of a MABLE system can be expressed in a linear-timeBDI-like logic, and the truth,
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or otherwise, of these claims can be automatically determined. Following a de-
scription of theMABLE language and the language ofMABLE claims, we present two
case studies to illustrate the language and its use in the verification of multiagent
systems. We then describe the key ideas underpinning the current implementation
of MABLE. Finally, we survey related work, and discuss some avenues for future
research.

1 Introduction

We presentMABLE, a fully implemented programming language for multiagent sys-
tems [45], which is intended to support the automatic verification of such systems via
model checking [4].MABLE is novel in three key respects:

• Agents inMABLE have amental stateconsisting of beliefs, desires and intentions;
mental states may be nested, so that (for example), one agentis able to have
beliefs about another agent’s intentions.

• Agents inMABLE communicate using asynchronous message passing, in the style
of theFIPA [11] andKQML [22] agent communication languages [7]. However,
in MABLE, neither the agent communication language performatives themselves,
nor their semantics, are hardwired into the language. Instead, it is possible for a
developer to define both the performatives and the semanticsof these performa-
tives independentlyof the system in which they are used. In this way, a devel-
oper can explore the design space ofACL performatives and semantics without
changing the target system itself.

• MABLE supports automatic verification via model checking [4]. Formal claims
about the behaviour of aMABLE system can be expressed in a linear-timeBDI-like
logic, and the truth or otherwise of these claims can be automatically verified.
Thus, in contrast to most logic-based agent programming languages, which per-
form reasoning atrun time, reasoning about the correctness of aMABLE system is
carried out atdesign time(we comment in more detail about the relationship of
MABLE to other agent programming languages in section 5).

We emphasise that theMABLE language, as described in this paper, has been fully im-
plemented. The implementation makes use ofSPIN [16, 17], a freely available model
checking tool for Linear Temporal Logic (LTL ). The MABLE compiler takes, as in-
put, aMABLE system together with associated claims about this system (expressed in a
BDI-like logic), and generates, as output, both a representation of theMABLE system in
PROMELA (the model specification language used bySPIN), and a translation of the
BDI logic claims into theLTL logic used bySPIN. SPIN is then invoked, either to auto-
matically verify the truth (or otherwise) of the claims, or else to simulate the execution
of theMABLE system, using thePROMELA interpreter provided as part ofSPIN.
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The remainder of this paper is structured as follows. We begin by introducing the
MABLE language, describe how claims can be made aboutMABLE programs using aBDI

logic calledMORA, and show how these claims can be automatically verified using
MABLE. We then present two detailed case studies, which illustrate the use ofMABLE in
the verification of multiagent systems. In the first case study, we demonstrate how
MABLE can be applied to the problem of verifying that multiagent systems conform to
the semantics of a particular agent communication language. While this is a well-
known problem in the multiagent systems literature [41, 42,26, 34], our work is, to
the best of our knowledge, the first to apply model cheching techniques in this area.
In the second case study, we present an implementation of thewell-known Contract
Net task allocation protocol [36, 35], and show how properties of this protocol can be
verified usingMABLE. We proceed to describe the operation of theMABLE compiler, and
outline the key techniques used in its implementation. In section 5, we describe the
relationship ofMABLE to other research on agent programming languages and model
checking for multiagent systems. Finally, we present some conclusions, and some
pointers to future research.

Throughout the paper, we assume some familiarity with multiagent systems [45],
model checking [4], and a basic understanding of conventional programming language
design.

2 The MABLE Programming Language

MABLE is intended to be used as a language in which programmers can express and ver-
ify designs for multiagent systems. As such, one of the aims of MABLE is to provide a
collection of constructs which closely resemble those usedin conventional program-
ming languages. However, a design requirement ofMABLE was that it should be possi-
ble to automatically verify properties of systems using model checking: this require-
ment imposes some significant constraints on the facilitiesavailable to programmers
in MABLE. For example, at an early stage ofMABLE’s development, the possibility of pro-
viding a JAVA-like object-oriented programming model was investigated. However,
to provide such features would have necessitated the implementation of an object-
oriented interpreter (similar to theJAVA virtual machine) in the modelling language of
the target model checker, resulting in a dramatic blow-up inthe size and complexity
of models. The resulting state space explosion would almostcertainly make the ver-
ification of systems impossible. For this reason, it was decided instead to provide a
C-like imperative language, enriched by a number of key agent-oriented constructs. In
particular, the key agent oriented features provided byMABLE over and above the basic
system modelling facilities available in model checking systems such asSPIN [16, 17],
SMV [24], andMOCHA [1] are as follows:

• Agents inMABLE have amental stateconsisting of beliefs, desires and intentions.
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• Agents inMABLE communicate usingACL performatives, and it is possible for a
developer to define both the performatives and the semanticsof these performa-
tives independently of the system in which they are used.

In addition,MABLE provides “syntactic sugar” for many programming language features
that are not provided as standard in most model checker system modelling languages
(which tend to be rather low-level guarded command languages). In particular,MABLE

provides the full range of iteration, sequence, and selection operations familiar from
languages such asC andJAVA, C-like structure type declarations, and several high level
synchronisation constructs. Note that we comment on the relationship ofMABLE to other
agent programming languages in section 5.

Over the past two decades, many logics and related formalisms have been pro-
posed for representing and reasoning about multiagent systems, of which Rao and
Georgeff’sBDI logics are perhaps the best known [29, 44]. Ideally, then, wewould
like to take aBDI logic such asLORA (described in [44]) off the shelf, and develop
verification tools that would allow us to determine whether or not systems implement
specifications expressed in this logic. However, it is well-known that the link between
such logics and implemented systems is informal at best. There is, in general, no sys-
tematic way of associating models for such logics with implemented systems: this is
known as the problem ofcomputational grounding[40, 43]. So, what we have done
instead is to develop a slightly simplified and cut-down version of LORA, known as
MORA, in which claims about systems can be expressed. We have thendeveloped
a mapping from thisBDI-like logic to the Linear Temporal Logic used by theSPIN

model checker; in this way, we can leverage existing model checking tools — and in
particular,SPIN [16, 17] — to verify properties ofMABLE systems.

In summary, then, aMABLE system consists of:

• a number of agent definitions and associated type and variable declarations,
where each agent is programmed using theMABLE agent programming language;

• explicit semantics for the performatives used in the system;

• a number of formal claims about the system.

In the subsections that follow, we briefly describe these three elements. We begin with
a survey of the agent programming language; we then describethe way in which the
semantics of communication language performatives may be defined, and the use of
claims inMABLE systems.

2.1 The Agent Programming Language

For a programmer, the core component ofMABLE is of course the agent programming
language. As noted above, this language is in essence aC-like imperative language,
enriched by agent-oriented features. The concrete syntax of the conventional program
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constructs inMABLE is based on that ofC/JAVA, and so we will not give a detailed
description here. Instead, we will give an overview of the main language features,
focussing on those that are unique toMABLE.

Agent declarations and initialisation

Agents are declared via theagent keyword, followed by the agent’s name (which
must be unique), and the body of the agent. At startup, agentsare invoked in the
order in which they are declared; an agent terminates when itreaches the end of its
code body. (Agents are not functions, and therefore do notreturn values; however,
there is afunction facility in MABLE, described below.) There is at present no way
of invoking multiple copies of the same agent inMABLE, or of passing initialisation
parameters to agents. However, it is possible for programmers to declare an explicit
init section, which can be used for initialisation of system parameters. Theinit
section is executed before any agent is invoked.

Beliefs, desires, and intentions

Perhaps the most obvious way in whichMABLE differs from conventional programming
languages is that the processes — agents — in aMABLE system have explicitly repre-
sented data structures corresponding to beliefs, desires,and intentions [29, 44]. These
mental states can be nested, so that (for example) an agent can have beliefs about an-
other agents intentions. Intuitively, an agent’s beliefs are the information it has about
the environment; these beliefs may be incorrect. An agent’sdesires and intentions
come into play primarily when the agent is involved in communication.

In MABLE an agent’s mental states are attitudes to the variables in the system. So,
for example, agentone might have the belief that agenttwo intends that variablex
has value greater than 10. Programmers can directly refer toan agent’s mental state by
means ofmodal expressions, ormodalities. The intended meaning of the modality( m

ag c) is that agentag has attitudem (wherem is believe , desire , or intend )
towards the condition (predicate)c. The identifierag must be the name of an agent
in the system, andc must be aMABLE condition. The following is thus a legal modal
expression inMABLE.

(believe agent1 (a == 10))

Suppose this expression is evaluated byagent2 . Then it will “true” if agent2 be-
lieves thatagent1 believes thata == 10 . Mental states are implemented inMABLE

as nested sets of facts (in the style of [18]): to evaluate this expression,agent2
will check in its belief set, and inside this set will look forthe set of facts represent-
ing agent1 ’s beliefs. If it finds thata == 10 in this set (i.e., the set representing
agent2 ’s beliefs aboutagent1 ’s beliefs), then the expression will evaluate to “true”.

As modalities are themselves conditions, they may be arbitrarily nested. For ex-
ample, the following is also a legal modal expression inMABLE:
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(intend agent1 (believe agent2 (a == 10)))

Again, suppose this expression is evaluated byagent1 : it will evaluate to “true” if
agent2 believes thatagent1 intends thatagent2 believes thata == 10 .

In order to directly manipulate beliefs, desires, and intentions, MABLE provides
assert andretract statements. These statements take a single argument — a con-
dition — and behave rather like thePROLOG assert andretract predicates [5].
Thus, for example, consider the followingMABLE statement.

assert((intend agent2 x == 10))

The effect of this statement is to make the agent executing itsubsequently believes that
agent2 intends that variablex has the value 10.

An agent’s mental state can also be modified in two other ways.First, an agent’s be-
liefs can be changed by assignment andobserve statements, as described in the fol-
lowing section. Second, communication actions may change an agent’s mental state,
as defined by in the performative semantics; we shall see how this works in section 2.2.

Types, variables, expressions, and assignments

MABLE supportsC-style structure and array declarations, which may be composed in
terms of integer and boolean data types. Variables inMABLE may belocal, shared, or
global. A local variable is private to an individual agent. A sharedvariable is declared
outside an agent, and is visible to all agents in the system: all agents implicitly have
access to shared variables, and moreover all agents can write to shared variables.

Like shared variables, global variables are also declared outside the scope of an
agent. However, there is an important difference between global and shared variables.
All agents implicitly know the value of shared variables; all agents have complete,
correct, up-to-datebeliefsabout the value of shared variables. With global variables,
however, the situation is slightly different. While all agents may still access global
variables,they must explicitly request access in order to discover their value. They
do this by executing aMABLE observe statement. Theobserve construct can thus
be viewed as asensing action. When an agent executes anobserve instruction, its
beliefs about the value of the variable it observes are synchronised with the true value
of this variable. However, if the value of the variable is subsequently changed, then the
agent will not necessarily be aware of this — its beliefs about the value of the variable
may thus become “out of date”. If an agent modifies the value ofa global variable,
then its beliefs about the value of this variable are similarly synchronised. Once again,
however, its beliefs may become out of date if the value of this variable is changed by
some other agent.

The syntax of variable declarations is broadly the same asC/JAVA. Expressions and
assignment statements inMABLE also follow the conventions ofC/JAVA; all the arith-
metic operators that one would expect to find in an imperativelanguage are present.
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Conditional expressions

Conditional (boolean) expressions inMABLE may be constructed from expressions via
the usual relational operators (<, >, ==, . . . ). However,MABLE also permits conditions
to contain modalities, as described above: in particular, belief, desire, and intention
modalities.

Selection

MABLE contains the selection statements that one would expect from an imperative pro-
gramming language —if . . .else and multi-way selection viaswitch statements.
However, as noted earlier, the conditions in these constructs may contain belief, desire,
and intention modalities. For example, suppose that agentagent1 was executing the
following statement.

if (intend agent2 (a == 10)) XYZ;

Then, in this case,agent1 would execute statementXYZ if it believed thatagent2
intended thata == 10 .

Loops

MABLE provides all the loop constructs found inC/JAVA (i.e., for , while , anddo),
and the syntax follows the conventions of these languages. There is an additional loop-
like construct, which is not found in languages likeC/JAVA: await . This construct
implements an idle (non-busy) wait construct: it takes a single parameter, a condition,
and the effect is that the agent executing theawait is suspended until it believes the
condition is satisfied.

Communication

MABLE provides two built-in communication primitives:send andreceive . Their
syntax is as follows:

send( p ag of c);
receive( p ag of c);

wherep is the performative,ag is the name of an agent (the recipient of the message,
in the case ofsend , the sender in the case ofreceive ), andc is the message con-
tent, which must be aMABLE conditional expression. For example, the following is a
syntactically acceptablesend statement.

send(inform agent2 of (x == 10));

(Note thatof is just syntactic sugar, which play no other role.) The following is also
a legalsend statement.
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send(inform agent2 of (intend agent3 x == 10));

The effect of communication is to change the mental state of the recipient of the mes-
sage. However, the actual effect that a message has is not defined within the program.
It is defined externally, in the semantic definition file, as described below.

Note that message delivery is guaranteed, but is asynchronous: receive state-
ments block until a message is available to be received, althoughsend statements do
not block. Broadcast message passing is not currently supported.

Synchronisation

In order to allow agents to synchronise their activities,MABLE provides facilities for
enforcing mutual exclusion over critical sections of code.A MABLE system can contain
an arbitrary number oflocks, each of which is identified by a unique name. Sections
of code can be wrapped in alock statement, associated with a particular named lock.
Only one agent can access a lock at any given time. When an agent comes across a
locked section of code, it suspends until the associated lock is free, at which point it
obtains the lock in an atomic operation, and enters the critical section; when it exits
the code, the lock is released.

In addition,MABLE enables an agent to obtain exclusive access to a shared variable
via theread construct. As long as an agent uses theread construct, it is impossible
for other agents to access the variable locked with this construct. The lock is released
when the agent exits theread block.

Functions

MABLE provides functions as a structuring mechanism for programs, and the syntax used
for defining and invoking functions is again based on that ofC. Functions may take
arbitrary parameters, although at present may onlyreturn integer (int ) values. All
functions have global scope, and can be invoked either by agents or by other functions.

I/O

MABLE is intended primarily as a framework for model checking and,as such, there
are critical limitations on theI /O facilities available in the language. Contemporary
model checking techniques are focussed aroundfinite stateand henceclosedsystems.
Thus it is not possible for aMABLE system to obtain input at run time from the outside
environment. Where this is desired, a solution is to model the environment as an
agent that provides appropriate input to other agents. However, aprint statement is
provided as a means to display output fromMABLE.
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Pre-processing

Before processing source code, theMABLE compiler runs the standardC pre-processor
over files. This makes it possible to use all the pre-processor directives available inC:

• macro definitions, via the#define directive;

• textual file inclusion, via the#include directive;

• conditional compilation, via the#if . . .#endif directive.

2.2 Communication in MABLE

A key component of the current version ofMABLE is that programmers can define their
ownsemantics for performatives, separately from a program in which these performa-
tives are used. The formalism we use for defining semantics isa STRIPS-style pre-
/post-condition model, in the way pioneered for the semantics of speech acts by Cohen
and Perrault [6], and subsequently applied to the semanticsof theKQML [19] andFIPA

languages [11]. Thus, to give a semantics to performatives in MABLE, a user must define,
for every such communicative act, a pre-condition and a post-condition. Formally, the
semantics for a communicative actCA is defined as a pair〈CApre ,CApost〉, where
CApre is a condition (aMABLE predicate), andCApost is a condition to be asserted. The
basic idea is that, when an agent executes asend statement with performativeCA,
this message will not be sent untilCApre is true. When an agent executes areceive
statement with performativeCA, then when the message is received, the assertion
CApost will be made true.

By default, theMABLE compiler looks for performative semantics in a file that is
namedmable.sem . A mable.sem file contains a number of performative defini-
tions, where each performative definition has the followingstructure:

i: CA(j, phi)
pre-condition
post-condition

wherei , j andphi are bound to the sender, recipient, and content of the message
respectively, andCA is the name of the performative. The following two lines define
the pre-condition and post-condition associated with the communicative actCA.

The way in which pre-conditions are used is as follows. Suppose an agentagent1
executes the following statement

send(P agent2 of C)

where the semantics of the performativeP are defined as follows.
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i: P(j, phi)
pre
post

Then the agentagent1 will suspend(i.e., enter a non-busy wait state) until the con-
dition pre is believed to be true byagent1 , at which point it will send the message.
Notice that it is possible to define the pre-condition of a performative simply as “1”,
i.e., a logical constant for truth. In this case, the agent executing thesend will never
be suspended — the message will be sent immediately.

With respect to the post-condition, the idea is that once a message is received,
the corresponding post-condition will be made true. Noticethat post-conditions in a
mable.sem file do notcorrespond to the “rational effect” parts of messages inFIPA

semantics [9]; we elaborate on the distinction below.
Here is a concrete example of amable.sem performative semantic definition:

i:inform(j,phi)
1
(believe j (intend i (believe j phi)))

This says that the sender of a message will always send aninform message directly;
it will not wait to check whether any condition is true. It also says that when an agent
receives aninform message, it will subsequently believe that the sender intends that
the receiver believes the content.

By disconnecting the semantics of a communicative act from aprogram that carries
out such an act, we can experiment to see the effect that different kinds of semantics
can have on the same agent.

2.3 Claims

Another key component ofMABLE is that agents may be augmented with formalclaims
about their behaviour. Claims are expressed inMORA, a subset of theLORA BDI

logic introduced in [44]. These claims can beautomaticallychecked, by making use of
the underlyingSPIN model checker. If the claim is disproved, then a counter example
is provided, illustrating why the claim is false.

A claim is introduced outside the scope of an agent, with the keyword claim
followed by aMORA formula, and terminated by a semi-colon. The formal syntax of
MORA claims is given in Figure 1. The language of claims is thus that of quantified
linear temporalBDI logic, with the dynamic logic style “happens ” operator, similar
in intent and role to that inLORA [44]. The operators ofMORA have the following
intuitive meaning. First, any validMABLE condition is an acceptableMORA formula,
and thus it is possible to express conditions over all sharedand global variables of a
system.MABLE also supports theLTL operators ofSPIN, as follows. First,[] (“always”)
is thealways in the futureoperator: thus a formula[]P asserts thatP will be true now
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〈formula〉 ::=

forall IDEN : 〈domain〉 〈formula〉 /* universal quantification */
| exists 〈IDEN 〉 : 〈domain〉 〈formula〉 /* existential quantification */
| any primitiveMABLE condition /* primitive conditions */
| ( 〈formula〉 ) /* parentheses */
| (happens 〈Ag〉 〈stmt〉) /* statement is executed by agent */
| (believe 〈Ag〉 〈formula〉) /* agent believes formula */
| (desire 〈Ag〉 〈formula〉) /* agent desires formula */
| (intend 〈Ag〉 〈formula〉) /* agent intends formula */
| [] 〈formula〉 /* always in the future */
| <> 〈formula〉 /* sometime in the future */
| 〈formula〉 U〈formula〉 /* until */
| ! formula /* negation */
| 〈formula〉 &&〈formula〉 /* conjunction */
| 〈formula〉 || 〈formula〉 /* disjunction */
| 〈formula〉 -> 〈formula〉 /* implication */

〈domain〉 ::=

agent /* set of all agents */
| 〈NUMERIC 〉 .. 〈NUMERIC 〉 /* number range */
| { 〈IDEN 〉, . . . ,〈IDEN 〉 } /* a set of names */

Figure 1: The syntax ofMORA claims.

(i.e., in the present state) and forever (i.e., in all futurestates). The<>P (“sometimes
P”) construct means “eventually,Pwill be true”. In other words,Pwill either be true in
the present state, or at some future state. (The<> construct does not assert theunique
existenceof such a state: it may be thatP is several times in the future, or even that
P is always true.) TheU (“until”) operator is a binary operator, and a formulaP U Q
asserts thatP is true now, and will remain true untilQis true.

MORA supports quantification over finite domains, and in particular, over the
following sets:

• agents (e.g., “every agent believesϕ”);

• finite sets of objects (e.g., enumeration types); and

• integer number ranges.

The believe , desire , and intend operators make it possible to make claims
about agents’ mental states. These constructs have the sameinterpretation inMORA
claims as in conditionals, as described above.

To better understand how these constructs may be combined tomake claims, con-
sider the following informal examples.

First, suppose we want to express the fact that, whenever agent a1 believes the
reactor failed, thena1 intends thata2 believes the reactor failed (i.e.,a1 wants to com-
municate this toa2).

We can express such a property directly as the followingMORA claim.

claim
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[] ((believe a1 reactorFailed)
-> (intend a1 (believe a2 reactorFailed)));

The outer [] is the temporal “always” operator, and ensures that this property
is checked in every possible state that the system enters. Here, the variable
reactorFailed is assumed to be boolean.

Next, suppose we want to say that if some agent wants agenta2 to believe that the
reactor has failed, then eventually,a2 will believe it has failed.

This translates directly into the followingMORA claim.

claim
forall i : agent
[]((intend i (believe a2 reactorFailed))

-> <>(believe a2 reactorFailed));

Next, we describe the “happens ” construct. Recall that the syntax of this construct
is as follows:

(happens ag stmt)

whereag is the name of an agent andstmt is aMABLE program statement. This predicate
will be true in a state whenever the next statement that agentag will perform is stmt .
Consider the following concrete example.

claim
[]((happens a1 x = 10;)

-> <>(believe a1 x==10));

This claim says that, whenever the next statement to be executed by agenta1 is the as-
signmentx=10; , then eventually,a1 believes that variablex has the value 10. Notice
that the semi-colon is part of the assignment program statement, and must therefore
be included in thehappens construct. Also recall that a single equals sign inMABLE

is an assignment, while a double equals sign is the equality predicate. As we will see
below, thehappens construct plays a key role in our approach toACL compliance
verification.

Finally, let us consider exactly how claims are checked by the MABLE compiler.
Suppose that a system contains a single claim,ϕ, and that the programmer invokes
the MABLE compiler signalling that this claim should be checked1. Then MABLE will
systematically generate, (by means of theSPIN system), every possible computation
c = s0, s1, s2, . . . of the system. Each computationc corresponds to amodel for
MORA, and the claimϕ will either be true or false when interpreted in this model.
So, for every computationc, MABLE will check whether this computation satisfiesϕ; if

1The default behaviour of theMABLE compiler is to ignore claims; a user indicates to the compiler
that claims should be checked by means of a command line argument.
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MABLE ever encounters a computationc such thatc 6|= ϕ, thenMABLE halts, and reports
c as a counterexample to the claimϕ. If no such computation is found, thenMABLE

(or more accurately,SPIN!) will continue until it has exhaustively examined the entire
space of possible computations.

3 Two Case Studies

This section presents two detailed case studies. The first case study demonstrates how
MABLE can be used to verify that agents correctly implement the semantics of an agent
communication language [41]. In the second case study, we show how MABLE can be
used to implement the Contract Net protocol [36, 36], and we show how properties of
this protocol can be established via model checking.

3.1 Verifying Compliance with respect to ACL Semantics

In this section, we will show how conformance to the pre-condition and rational effect
parts ofACL semantics can be verified withMABLE. We also show how, by varying the
semantics of performatives, we achieve different results for the same agent programs.
We begin with a brief introduction to theACL verification problem.

The need for agents to be able to inter-operate has led to the development of several
standardisedagent communication languages(ACLs) [22, 10]. However, in order to
gain acceptance, particularly for sensitive applicationssuch as electronic commerce,
it must be possible to determine whether or not any system that claims toconform
to an ACL standard actually does so. We say that anACL standard isverifiable if
it enjoys this property.FIPA — currently the main standardisation body for agent
communication languages — recognises that “demonstratingin an unambiguous way
that a given agent implementation is correct with respect to[the semantics] is not
a problem which has been solved” [10], and identify it as an area of future work.
(Checking that an implementation respects thesyntaxof anACL such as that proposed
by FIPA is, of course, trivial.) If an agent communication languagesuch asFIPA’s
is ever to be widely used — particularly for such sensitive applications as electronic
commerce — then such compliance testing (verification) is important. However, the
problem of compliance testing is not actually given a concrete definition byFIPA, and
no indication is given of how it might be done.

In [41], the verification problem for agent communication languages was formally
defined for the first time. It was shown that verifying compliance to some agent com-
munication language reduced to a verification problem in exactly the sense that the
term in used in theoretical computer science. To see what is meant by this, consider
the semantics ofFIPA’s inform performative [10, p25]:
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〈i , inform(j , ϕ)〉
FP: Biϕ ∧ ¬Bi(Bifjϕ ∨ Ujϕ)
RE: Bjϕ

(1)

Here〈i , inform(j , ϕ)〉 is aFIPA message: the message type (performative) isinform ,
the content of the message isϕ, and the message is being sent fromi to j . The intuition
is that agenti is attempting to convince (inform) agentj of the truth ofϕ. TheFP and
RE components define the semantics of the message:FP is thefeasibility pre-condition,
which states the conditions that must hold in order for the sender of the message to be
considered as sincere;RE is therational effectof the message, which defines what a
sender of the message is attempting to achieve. TheBi is a modal logic connective
for referring to the beliefs of agents (see e.g., [14]);Bif is a modal logic connective
that allows us to express whether an agent has a definite opinion one way or the other
about the truth or falsity of its parameter; andU is a modal connective that allows us
to represent the fact that an agent is “uncertain” about its parameter. Thus, an agenti

sending aninform message with contentϕ to agentj will be respecting the semantics
of the FIPA ACL if it believesϕ, and it it not the case that it believes ofj either thatj
believes whetherϕ is true or false, or thatj is uncertain of the truth or falsity ofϕ.

It was noted in [41] that theFP acts in effect as aspecificationor contractthat the
sender of the message must satisfy if it is to be considered asrespecting the semantics
of the message: an agent respects the semantics of theACL if, when it sends the mes-
sage, it satisfies the specification. Although this idea has been understood in principle
for some time, no serious attempts have been made until now toadopt this idea for
ACL compliance testing.

Note that a number of other approaches toACL compliance testing have been pro-
posed in the literature. Although it is not the purpose of this paper to contribute to
this debate, we mention some of the key alternatives. Pitt and Mamdani defined a
protocol-based semanticsfor ACLs [26]: the idea here is that the semantics of anACL

are defined in terms of the way that they may be used in the context of larger structures,
i.e., protocols. Singh championed the idea ofsocialsemantics: the idea here being that
anACL semantics should be understood in terms of the observable, verifiable changes
in social state (the relationships between agents) that useof a performative causes [34].

We begin with a running example that we will use in the following sections to illustrate
the approach. The example employs the “inform ” performative, which is one of the
two key performatives in theFIPA framework [11]. (The other is “request ”, which
can be dealt with using the same techniques.) TheMABLE code for this example is given
in Figures 2 and 3. Two agents have several beliefs and they simply send messages
among themselves communicating these beliefs. The selection of the message to be
sent is carried out non-deterministically, via thechoose construct. The insertion of
these beliefs in agents’ mental state is done through theassert statements.
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int selection-agent1;
int selection-agent2;
agent agent1 {

int inform-agent2;
inform-agent2 = 0;
selection-agent1 = 0;
assert((believe agent1 (a == 10)));
assert((believe agent1 (b == 2)));
assert((believe agent1 (c == 5)));
choose(selection-agent1, 1, 2, 3);
if (selection-agent1 == 1) {

print("agent1 -> a = 10 \n ");
send(inform agent2 of (a == 10));

}
if (selection-agent1 == 2) {

print("agent1 -> b = 2 \n ");
send(inform agent2 of (b == 2));

}
if (selection-agent1 == 3) {

print("agent1 -> c = 5 \n ");
send(inform agent2 of (c == 5));

}
receive(inform agent2 of inform-agent2);
print("agent1 receives %d \n ", inform-agent2);

}

Figure 2: The base example (agent 1).

agent agent2 {
int inform-agent1;
inform-agent1 = 0;
selection-agent2 = 0;
assert((believe agent2 (d == 3)));
assert((believe agent2 (e == 1)));
assert((believe agent2 (f == 7)));
choose(selection-agent2, 1, 2, 3);
if (selection-agent2 == 1) {

print("agent2 -> d = 3 \n ");
send(inform agent1 of (d == 3));

}
if (selection-agent2 == 2) {

print("agent2 -> e = 1 \n ");
send(inform agent1 of (e == 1));

}
if (selection-agent2 == 3) {

print("agent2 -> f = 7 \n ");
send(inform agent1 of (f == 7));

}
receive(inform agent1 of inform-agent1);
print("agent2 receives %d \n", inform-agent1);

}

Figure 3: The base example (agent 2).

Verifying Performative Pre-Conditions

Verifying pre-conditions means verifying that agents satisfy the pre-condition part
of an ACL performative’s semantics whenever they send the corresponding message.

15



There are essentially two possibilities with respect to pre-conditions: either agents are
sincere(they only ever send aninform message if they believe its content), or else
they are not (in which case they can send a message without checking to see whether
they believe it). We can useMABLE’s ACL semantics to define these two types of agents.
Consider first the followingmable.sem definition.

i:inform(j,phi)
(believe i phi)
(believe j (intend i (believe j phi)))

This says that the pre-condition for aninform performative is that the agent believes
the contentphi of the message. By defining the semantics in this way, an agentwill
only send the message if it believes it. (If the senderneverbelieves the content, then
its execution is indefinitely postponed.)

By way of contrast, consider the followingmable.sem definition of theinform
performative.

i:inform(j,phi)
1
(believe j (intend i (believe j phi)))

Here, the guard to thesend statement is1, which, as in languages such asC, is inter-
preted as a logical constant for truth. Hence, the pre-condition test willalwayssucceed,
and the message send statement will always be enabled, irrespective of whether or not
the agent actually believes the message content. Notice that this second case is actually
the more general one, which we would expect to find in most applications.

The next stage is to consider the process of actually checking whether or not agents
respect the semantics of the language; of course, if we enforce compliance by way
of the mable.sem file, then we would hope that our agents will always satisfy the
semantics. But it is also possible that an agent will respectthe semantics even though
they are not enforced by the definition inmable.sem . (Again, this is in fact the most
general case.)

For FIPA-style inform performatives, the property we want is that, whenever
agenti sends aninform message to agentj with contentϕ, theni believesϕ. Now,
given the enriched form ofMABLE claims that we described above, we can directly en-
code this formula inMORA, as follows:

claim
[]

(
(happens agent1

send(inform agent2 of (a == 10));)
->
(believe agent1 (a == 10))

);
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This claim will hold of a system if, whenever the program statement

send(inform agent2 of (a == 10));

is executed byagent1 , then in the system state from which thesend statement is
executed,agent1 believes thata == 10 .

We can insert this claim into the system given in Figures 2 and3, and useMABLE

to check whether it is valid. If we do this, then we find that theclaim is indeed valid;
inspection of the code suggests that this is what we expect.

Verifying pre-conditions also implies that we ensure agents do not inform other
agents about facts that they do not believe. In our running example, we simply have to
remove the line

assert((believe agent1 (a == 10)));

and then set the pre-condition of theinform to 1 (i.e., true) in themable.sem
file, and check the previous claim. The claim is now not valid,asagent1 informs
agent2 about something it does not believe.

Verifying Performative Rational Effects

We consider an agent to be respecting the semantics of anACL if it satisfies the spec-
ification defined by the pre-condition part of a message whenever it sends the mes-
sage [41]. The rational effect part of a performative’s semantics defines what the
sender of the message wants to achieve by sending it; but thisdoes not imply that
sending the message is sufficient to ensure that the rationaleffect is achieved. This is
because the agents that receive messages are assumed to be autonomous, exhibiting
control over their own mental state. Nevertheless, it is useful to be able to determine,
in principle, whether an agent respects the rational effectpart of anACL semantics or
not, and this is the issue we discuss in this section.

We will consider two cases:credulousagents andscepticalagents. Credulous
agents correspond to agents that always believe the information sent by other agents.
We can directly define credulous agents via the followingmable.sem file.

i:inform(j, phi)
(believe i phi)
(believe j phi)

This says that the recipientj of an inform message will always come to believe the
contents of aninform message.

Sceptical agents are those that believe that the sender intends that they believe
the information, but do not necessarily come to directly believe the contents of the
message.
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i:inform(j, phi)
(believe i phi)
(believe j (intend i (believe j phi)))

We can directly define aMORA claim to determine whether or not an agent that is
sent a message eventually comes to believe it.

claim []
(

(happens agent1
send(inform agent2 of (a == 10));)

->
<>(believe agent2 (a == 10))

);

This claim is clearly valid for credulous agents, as defined in themable.sem file
given above; runningMABLE with the example system immediately confirms this.

Of course, the claim may also be true for sceptical agents, depending on how their
program is defined. We can directly check whether or not a particular sceptical agent
comes to believe the message it has been sent, with the following claim:

claim
[]
((believe agent2

(intend agent1
(believe agent2 (a == 10))))

->
<>(believe agent2 (a == 10))

);

3.2 The Contract Net Protocol

In the section, we will show how the well-known Contract Net protocol can be imple-
mented usingMABLE [36, 35], and then demonstrate how properties of this implemen-
tation may be verified usingMABLE claims.

The Contract Net Protocol was proposed by Smith [36, 35] as a mechanism for task
allocation in distributed problem solving systems. The idea of this protocol is that one
agent (the initiator of the interaction) has a task to carry out, but requires cooperation
for this task — either because the task requires resources that are unavailable to the
initiator, or else because a cooperative solution will be preferred to a non-cooperative
one. The initiator takes the role oftask managerand broadcasts an announcement of
the task to other agents. In general, the task announcement specifies the properties of
the task — quality of service parameters, and any other information that a potential
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bidder may require to determine whether or not to submit a bidto carry out the task.
In our implementation, the task announcement defines the skills required to solve the
task (its “weight”).

Agents receiving a task announcement have several choices.They can either sub-
mit a bid for the task (e.g., specifying a price for carrying the task out), or else they
can choose not to bid. When the task manager has the answers ofthe bidders, it can
choose a bidder, to whom it awards the task.

The implementation of the Contract Net protocol inMABLE represents about 250
lines of code. It contains three agents: the task manager andtwo bidding agents.
Additionally two functions are declared.

/* use for the loop to set type skills and reward for each bidde r */
int i, value;
// used in the “decision” function
int a;
/* used in function select */
int max-value;
int accepted;
int index;
int index-reward;
int ca-bidder[2]; int value-bidder[2];
int number-accepted;
int accept-bidder[2];
int rank;

/* structures containing the maximum type possible
and the minimum expected reward for a task for each bidder */
struct capability {

int max-type;
int min-reward;

};
struct capability capabilities[2];
/* structure of a task */
struct task {

int id;
int type;
int reward;

};
/* since it is not possible to send structures in messages,
the task is declared globally*/
struct task one-task;

Figure 4: Contract Net Protocol Declarations.

The variable declarations for the system are shown in Figure4. Theinit section
for the system is shown in Figure 5. In this section, we first define the task, then
we define bidders’ parameters: the maximum size of task they can perform, and their
expected reward for a task. These values are set non-deterministically, through the
choose construct.

The implementation of the task manager is given in Figure 6. The task manager
first informs the two bidders that a task has to be performed, and then waits for an
answer. In our model, bidders are obliged to answer either with an acceptance or a
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init {
/*set the task*/
one-task.id = 1;
one-task.type = 10;
one-task.reward = 5;
/*set bidders’ competences, type and price are set at random */
i = 0;
while (i < 2) {

choose(value, 8, 10, 15);
capabilities[i].max-type = value;
choose(value, 2, 5, 7, 8, 10);
capabilities[i].min-reward = value;
i = i + 1;

}
}

Figure 5: Initialisation for the Contract Net.

rejection. As soon as the task manager has received all answers, it selects at most one
bidder to process the task. TheTaskManager uses theselect function to choose
which agent to award the task to. Finally, the task manager sends a message to the
successful bidder.

The implementation of bidding agents is shown in Figure 7. The first action of the
bidders is to wait for the task announcement. Then, they callthedecision function
to determine if they are able to do the task. The decision is made on the basis of the
task type and the reward.

We have two functions in the Contract Net implementation: theselect function,
used by the task manager to select a bidder to perform the task; and thedecision
function, used by bidders to ascertain if they are able to perform the task. The im-
plementation of theselect function is shown in Figure 8, while thedecision
function is shown in Figure 9.

Thedecision function is used by the bidders to know if they are able to perform
the task. This decision is determined by the task type and thereward. If the task type is
within their capabilities, and if the reward is greater or equal to their request, then they
accept the task. If the task type is beyond their capabilities, they refuse the task. If the
reward is less than the one expected, they accept the task butonly for their requested
reward.

Running the example

After writing the MABLE code, designers can execute the system: the following out-
put was generated byMABLE when it was invoked with the Contract Net example in
simulation mode2.

Bidder 0 launched!
TaskManager launched!

2Note that this is just one possible run among several.
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/*definition of the task manager agent, it is responsible to advertise
the task, to select a bid and to request the task to be performe d*/
agent TaskManager {

/*return of the function accept, if the value is 0, there is no
clear accept, else the value corresponds to the id of the
bidder, 1 for Bidder 1, etc.*/
int result;
/*these values store the message content of bidders’ answer */
int value1, value2;
/*TaskManager needs to use these variables since it does not
know in advance what messages will be sent: accept or refuse * /
int ca-Bidder1, ca-Bidder2;
print("TaskManager launched!");
/*task advertisement*/
send(inform Bidder1 of one-task.id);
send(inform Bidder2 of one-task.id);
/*collecting the answers from bidders; ca-BidderX contain s
either accept or refuse, that is to say 1 or 2*/
value1 = 0; value2 = 0;
receive(ca-Bidder1 Bidder1 of value1);
receive(ca-Bidder2 Bidder2 of value2);
/*TaskManager has to select a bidder*/
ca-bidder[0] = ca-Bidder1; value-bidder[0] = value1;
ca-bidder[1] = ca-Bidder2; value-bidder[1] = value2;
result = select();
switch(result) {

case 0: send(request Bidder1 of one-task.id);
case 1: send(request Bidder2 of one-task.id);

}
}

Figure 6: The Task Manager Definition.

Bidder 1 launched!
Bidder 1 refuses the task, too heavy!
Bidder 0 accepts the task but with a different reward
quitting...
quitting...
Bidder 0: I do the task
quitting..
7 processes created

Model Checking the Contract Net Protocol

Having implemented the Contract Net inMABLE, it is natural to then useMABLE’s verifi-
cation capabilities to check the implementation. We will just give two properties that
may be checked:

1. when the task is advertised, eventually it will be awardedto some agent;

2. when the task is advertised, eventually it will be performed at a different reward.

As stated in section 2.3, properties have to be expressed as claims to be checked. The
first property gives the following claim:
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agent Bidder1 {
/*this variable contains the id of the task*/
int task-advertised;
/* the result whether the bidder accepts the bid or

not given the constraints
1 corresponds to a clear accept, 2 to a rejection, > 2 the
new proposed reward */
int result;
print("Bidder 0 launched!");
/*waiting for the task advertisement*/
receive(inform TaskManager of task-advertised);
/*the bidder decides if it is able to do the task*/
result = decision(0);
if (result == 1) {

send(accept TaskManager of task-advertised);
}
if (result == 2) {

send(refuse TaskManager of task-advertised);
}
if (result > 2) {

send(accept TaskManager of result);
}
/*waiting for a possible answer from TaskManager*/
if (result == 1 || result > 2) {

receive(request TaskManager of task-advertised);
/*if the bidder receives a message, it means it has

to perform the task */
print("Bidder 0: I do the task");

}
}

Figure 7: The Bidder Definition.

claim
[]((happens TaskManager

send(inform Bidder1 of one_task.id);)
->
<> exists ag : agent
(happens ag

receive(request TaskManager
of task_advertised);));

The second property corresponds to the following claim.

claim
[]((happens TaskManager

send(inform Bidder1 of one_task.id);)
-> <>(one_task.reward < max_value));

It took about six minutes on aPC with an Intel Pentium III 500MHz processor and
256MbRAM to verify each of these results.
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function int select() {
accepted = 0;
max-value = 65535;
index = 0;
index-reward = 0;
number-accepted = 0;
rank = 0;
while (index < 2) {

if (a-bidder[index]==1 && value-bidder[index]==one-tas k.id) {
/*this is a clear accept*/
accept-bidder[number-accepted] = index;
number-accepted = number-accepted + 1;
accepted = 1;
index = index + 1;

}
else {

if (!accepted && ca-bidder[index] == 1 &&
value-bidder[index] != one-task.id) {

if (max-value > value-bidder[index]) {
max-value = value-bidder[index];
index-reward = index;
}
index = index + 1;

}
else {

if (ca-bidder[index] == 2) {
index = index + 1;

}
}

}
}
/*clear accept */
if (accepted) {

if (number-accepted == 1) {
rank = accept-bidder[0];
return rank;

}
if (number-accepted == 2) {

choose(rank, 0, 1);
rank = accept-bidder[rank];
return rank;

}
}
else {

if (max-value != 65535) {
return index-reward;

}
else {

return -1;
}

}
}

Figure 8: The Select Function.
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/*function that decides if bidders are able to do the task*/
function int decision(bidder) {

/*we need to store the field of the structure since
they are not available in conditions*/
a = capabilities[bidder].max-type;
/*first, we test if the type is much more than accepted for thi s
bidder*/
/*in this ’if’, bidders accept or accept with a greater rewar d*/
if (a >= one-task.type) {

/*then, we test if the reward is greater than the one expected */
a = capabilities[bidder].min-reward;
if (a <= one-task.reward) {

print("Bidder %d accepts the task", bidder);
return 1;

}
else {
/*the reward is less than the one expected, the bidder propos es

a new reward to the TaskManager*/
print("Bidder %d accepts the task with different reward", b idder);
return a;

}
}
/*in this case, bidders refuse the task, too heavy*/
else {

print("Bidder %d refuses the task, too heavy!", bidder);
return 2;

}
}

Figure 9: The Decision Function.

4 The MABLE Compiler

In this section, we give a brief overview of the way in which theMABLE compiler works.
The compiler translatesMABLE systems into a form that can be processed by theSPIN

model checker [16, 17]. The way in which theMABLE compiler interacts withSPIN is
illustrated in Figure 10.

There are four key components to theMABLE compiler: the way in which individual
agents and their control constructs (e.g., loops) are translated toPROMELA; the way
in which belief-desire-intention states are implemented;the way in whichMORA
claims are dealt with; and the way in which performative semantics are dealt with.

Agents and Basic Control Structures

Dealing with the basicMABLE control constructs is straightforward. Although
PROMELA is a relatively low-level language, it is straightforward to mapMABLE’s con-
trol constructs into those provided byPROMELA. Agents inMABLE are implemented
as processes (proctype s) in PROMELA; additionalPROMELA initialisation code is
generated to (automatically) start agents simultaneously.
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Figure 10: Operation of theMABLE system.
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Mental States

More interesting is the way that mental states are dealt with. The idea is to model these
as finitely nested data structures (in the style of [18, 2]). Predicates are represented by
propositional abstraction: where a predicate appears in the context of a modality, a
new proposition symbol is introduced to represent this predicate. This new proposition
is then used in theBDI data structures. A key disadvantage of this approach is thatit
causes a blow-up in the size of the state space. For this reason, nested mental states
are only generated on an “as needed” basis.

Claims

To implement claims, we need to mapMORA formulae into theLTL form accepted
by SPIN. In this mapping, we need to deal with a number of features that are not
supported directly byLTL :

• Quantifiers are removed byexpansion. Quantification is over finite domains,
and so any quantified formula can be rewritten into a quantifier-free formula by
expanding universal quantification into a conjunction, andexistential quantifica-
tion into a disjunction.

• BDI modalities are removed by replacing them with predicates about the corre-
sponding data structures in the implemented system.

• Predicates are removed by propositional abstraction: eachpredicate is replaced
by proposition, the truth of which is bound to the predicate it replaces.

• To deal withhappens operators, we insert new code into the program itself,
flagging the occurrence of statements that occur inhappens operators. These
flags can then be referred to in theLTL formulae generated byMABLE. Suppose we
have an operator(happens ag s) occurring in a claim. First,MABLE replaces
this operator in the claim with a new proposition, sayp. The MABLE compiler
then passes over the parse tree of theMABLE program for agentag , looking for the
statements in the program code. Whenever it findss in the parse tree, it inserts a
new statement into the program immediately befores , setting the corresponding
new propositionp to true; and following the statements , another new program
statement is inserted, setting the propositionp to false. The toggling of the
propositionp is wrapped withinPROMELA atomic constructs, to ensure that
the toggling process itself does not alter the control flow ofthe generated system.
In this way, the truth of the propositionp indicates that the next statement to be
executed byag is s .

The end result is a propositionalLTL formula, suitable for input to theSPIN model
checker, together with a list of predicates and the names of the propositions with which
they were replaced. Together with the generatedPROMELA code, these can be fed
directly intoSPIN for checking.
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Performative Semantics

Recall that it is possible to define the semantics of performatives separately from the
MABLE system itself, using themable.sem file. TheMABLE compiler looks for such a
file containing a number of performative definitions, where each performative defini-
tion has the following structure:

i: CA(j, phi)
pre-condition
post-condition

wherei , j andphi are the sender, recipient, and content of the message respectively,
andCA is the name of the performative. These semantic definitions are dealt with as
follows.

With respect to the pre-condition, suppose that a particular agent contained a
send statement with the performativeCA. Then thissend would be translated into a
PROMELA guarded commandwith the following structure.

pre-condition -> send the message

The “-> ” is PROMELA’s guarded command structure: to the left of-> is a condition,
and to the right is a program statement (an action). The semantics of this construct
are that the process executing this statement willsuspend(in effect, go to sleep) until
the condition on the left hand side is true. When (more accurately, if) the condition
becomes true, then the right hand side is “enabled”: that is,it is ready to be executed,
and assuming a fair process scheduler, will indeed be executed.

With respect to the post-condition, suppose an agent contained areceive state-
ment with the performativeCA. Then thisreceive statement would be translated
into PROMELA code with the following structure.

receive message;
make post-condition true

Thus once a message is received, the post-condition will be asserted.

5 Related Work

In recent years, a number of logic-oriented multi-agent programming languages have
been developed, which attempt to bring logics of rational agency somewhat closer to
programming languages. In this section, we will briefly consider the relationship of
MABLE to this work.

Perhaps the best-known multiagent language isAGENT0 [33]. Developed by
Shoham in the late 1980s, this was the first language to be explicitly referred to as
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an “agent-oriented programming” language; additionally,Shoham was keen to link
AGENT0 to a multimodal logic of rational agency [39]. The logic wasclearly intended
to provide a logical semantics for the language, although the precise details were never
made formal. The programming model forAGENT0 was that of rule-based systems:
one programmed an agent in terms of a set of commitment rules,which defined how
an agent formed and discharged commitments to action. Agents communicated with
one-another using three performatives:request , unrequest , andinform . The
semantics of these performatives was not really hardwired into the language: a pro-
grammer defined their effects by writing rules to handle them.

A number of later languages were developed in theAGENT0 mould. ThePLACA

language, adopting a rule-based programming model very similar to that ofAGENT0,
was intended to overcome a number of deficiencies ofAGENT0, such as the ability of
agents to explicitly plan how to meet their commitments [38].

Rao’s AGENTSPEAK was another influential agent-oriented programming lan-
guage [28]. Agents inAGENTSPEAKare programmed by defining a set of plans (some-
what like Shoham’s commitment rules), which are executed both reactively (plans are
invoked in response to events in the environment), and pro-actively (plans can be ex-
plicitly invoked by other plans). This programming model isessentially a distillation
of Georgeff and Lansky’s Procedural Reasoning System (PRS) [13], a reactive planning
framework developed in the mid-1980s that subsequently formed the basis of several
other agent-oriented programming systems, notablyDMARS [8]. Rao and Georgeff
developed a number ofBDI logics, which, like Shoham’s logics, were ultimately in-
tended to provide a semantics toAGENTSPEAK and thePRS [29]. However, as with
Shoham’s language, while there was plenty of intuition about how the logics related to
the programming language [30], the precise relationship between language and logic
was never made formal. As a consequence, one could never really claim that a for-
mula of the logic expressed a property of a system; and as a consequence, one could
never verify whether the formula represented a property that was true or false of a
given system. It is worth noting that Rao and Georgeff developed preliminary model
checking techniques forBDI logics [31], although because the relationship between
the logic and thePRS/AGENTSPEAK was never made precise, these model checking
techniques could not be deployed to verifyPRS/AGENTSPEAK systems [40, 43]. (It is
worth noting that at the time of writing, work is underway to develop techniques for
model checkingAGENTSPEAK systems [3].) Note that Hindriks’ 3APL language was
a direct descendant ofAGENSPEAK [15]. In 3APL, agents are also programmed using
a rule-like model; the semantics and proof theory of 3APL were developed in some
detail.

GOLOG [21, 32] and its multiagent siblingCONGOLOG [20] represent another rich
seam of work on logic-oriented approaches to programming rational agents. Essen-
tially, GOLOG is a framework for executing a fragment of the situation calculus; the
situation calculus is a well known logical framework for reasoning about action [23].
Put crudely, writing aGOLOG program involves expressing a logical theory of what
action an agent should perform, using the situation calculus; this theory, together with
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some background axioms, represents a logical expression ofwhat it means for the
agent to do the right action. Executing such a program reduces to constructively solv-
ing a deductive proof problem, broadly along the lines of showing that there is a se-
quence of actions representing an acceptable computation according to the theory [32,
p.121]; the witness to this proof will be a sequence of actions, which can then be
executed.

A closely related approach is that of theMETATEM paradigm [12]. InMETATEM,
an agent is programmed by giving it a temporal logic specification of the behaviour it
should exhibit, where this specification is a conjunction ofpast⇒ future rules. The
process of executing the specification corresponds to doinga constructive proof of the
satisfiability of the program formula, where the model beingconstructed is built in
part by the agent, and part by the environment. Another somewhat related language
is the IMPACT framework of Subrahmanian et al. [37].IMPACT is a rich framework
for programming agents, which draws upon and considerably extends some ideas from
logic programming. Agents inIMPACT are programmed by using rules that incorporate
deontic modalities (permitted, forbidden, obliged [25]).These rules can be interpreted
to determine the actions that an agent should perform at any given moment [37, p.171].

A common feature of all the languages mentioned in this section is that the rea-
soning used to determine the action to perform takes place atrun time. Moreover,
as we are in all cases essentially executing a logical formula, the issue of verification
does not really arise — for example, we can be assured that anyexecution trace of a
METATEM program is a model of the program formula. Indeed, this is oneof the key
arguments in favour of using an executable logic framework:we can be assured that a
logical program will execute according to its semantics.

There are, however, several disadvantages to deciding whataction to perform by
reasoning at run time. The most obvious of these is that reasoning is generally compu-
tationally costly: see, for example, the complexity results associated with algorithms
for the IMPACT framework [37, pp.399–460]. A more subtle problem is that requiring
a programmer to express a program in the language of logic (beit situation calculus,
temporal logic, or deontic logic) is often not desirable. Ideally, we want to be able
to let the programmer use their most preferred programming tools, and then verify
their work, rather than imposing a programming regime on them. In this sense, we
believe,MABLE is closer to the reality of everyday programming. It provides constructs
corresponding to those that programmers everywhere are familiar with, enriched with
agent-oriented constructs. As verification is done at design time, the issue of run-time
reasoning (and all the potential difficulties it entails) does not arise. The disadvantage
of theMABLE approach is of course that we lose the elegant logical semantics associated
with directly executing logical formulae; but we argue thatas we can directly verify
MABLE systems, this is not a major issue.
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6 Conclusions

In this paper, we have described theMABLE language for multiagent systems. This
fully-implemented language supports the development of agents in an imperative pro-
gramming language, enriched by some features from the agent-oriented programming
paradigm. However, the most important (and novel) feature of MABLE is that it sup-
ports the automatic verification ofMABLE systems via model checking. A designer can
formally express the requirements ofMABLE systems as formulae of linear-timeBDI

logic, andMABLE is capable of automatically verifying whether or not the system does
or does not satisfy these requirements. Another novel feature is that although the key
communication mechanism inMABLE is asynchronous message passing in the style of
FIPA andKQML , MABLE does not dictate a semantics for the performatives used in com-
munication. Instead, a designer can explicitly define the semantics of performatives
separately from a system and, in this way, can explore the behaviour of the same sys-
tem for a range of performative semantics. Combining this feature with the model
checking capabilities ofMABLE, it becomes possible to automatically verify compliance
to agent communication language performatives — a problem of some interest to the
agent communication language community.

There are a number of obvious avenues for future research. First, we hope to fur-
ther extend the language and its model checking facilities.For example, it would be
useful to add features such as true unification to the language, and other similar reason-
ing features. However, the addition of such features will inevitably lead to a (further)
blow-up in the state space of the generated system. For this reason, we intend to study
the possibility ofautomatic abstractionof MABLE systems: essentially, strippingMABLE

systems down to their leanest possible representation. Another issue we are pursu-
ing is that of automatically generatingJAVA code fromMABLE systems. For example,
suppose we have aMABLE system that we have verified complies with the semantics of
theFIPA language. Then automatically generatingJAVA code that implements theFIPA

performatives via theJADE implementation of theFIPA language [27], we can plausi-
bly (if not entirely accurately) claim that the resultantJAVA system respects theFIPA

semantics.
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