Model Checking for Multiagent Systems:
ThewmasLE Language and its Applications

Michael Wooldridgé Marc-Philippe Huget
Michael Fishef Simon Parsoris

* Department of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom

mjw | mdf@csc.liv.ac.uk

* University of Savoie, ESIA-LISTIC
B.P. 806, 74016 Annecy CEDEX, France

Marc-Philippe.Huget@univ-savoie.fr

I Department of Computer & Information Science
Brooklyn College, City University of New York
2900 Bedford Avenue, Brooklyn NY 11210, USA

parsons@sci.brooklyn.cuny.edu

August 4, 2005

Abstract

We presentiaBLE, a fully implemented programming language for multiagent
systems, which is intended to support the automatic vetibicaf such systems
via model checking. In addition to the conventional corwswf imperative pro-
gramming languagesjasLE provides a number of agent-oriented development
features. First, agents masLE are endowed with aDi-like mental state they
have data structures corresponding to beliefs, desiresindentions, and these
mental states may be arbitrarily nested. Second, agemssirE communicate
via AcL-like performatives: however, neither the performatives their seman-
tics are hardwired into the language. It is possible to ddfirgerformatives and
the semantics of these performatives independently ofytsiei in which they
are used. Using this feature, a developer can explore thgndspace ofacL
performatives and semantics without changing the targgesy. FinallymaBLE
supports automatic verification via model checking. Cla#bsut the behaviour
of amABLE system can be expressed in a linear-tisme-like logic, and the truth,

1

or otherwise, of these claims can be automatically detexchir-ollowing a de-
scription of thewasLE language and the languagevefsLE claims, we present two
case studies to illustrate the language and its use in tlifecagion of multiagent
systems. We then describe the key ideas underpinning thentimplementation
of masLE. Finally, we survey related work, and discuss some averureiitfure
research.

1 Introduction

We presentvasLe, a fully implemented programming language for multiageyd-s
tems [45], which is intended to support the automatic vextion of such systems via
model checking [4]masLE is hovel in three key respects:

e Agents inmaBLe have amental stateonsisting of beliefs, desires and intentions;
mental states may be nested, so that (for example), one &gahte to have
beliefs about another agent’s intentions.

e Agents inmaBLE COMmMunicate using asynchronous message passing, in the sty
of theFIPA [11] andkQML [22] agent communication languages [7]. However,
in maBLE, neither the agent communication language performathvesiselves,
nor their semantics, are hardwired into the language. &dstéis possible for a
developer to define both the performatives and the semanfttbese performa-
tivesindependentlyf the system in which they are used. In this way, a devel-
oper can explore the design spacenct. performatives and semantics without
changing the target system itself.

e MABLE Supports automatic verification via model checking [4]. rRal claims
about the behaviour ofmeLe system can be expressed in a linear-tBpe-like
logic, and the truth or otherwise of these claims can be aatioally verified.
Thus, in contrast to most logic-based agent programminguiages, which per-
form reasoning atun timeg reasoning about the correctness ehaLe system is
carried out atlesign timgwe comment in more detail about the relationship of
MABLE to other agent programming languages in section 5).

We emphasise that thexsLe language, as described in this paper, has been fully im-
plemented. The implementation makes ussmi\ [16, 17], a freely available model
checking tool for Linear Temporal LogiaxL). The masLe compiler takes, as in-
put, amaeLE System together with associated claims about this systepnggsed in a
BDI-like logic), and generates, as output, both a representafithemasLe system in
PROMELA (the model specification language usedd®yN), and a translation of the
BDI logic claims into tha.TL logic used bysPIN. SPINis then invoked, either to auto-
matically verify the truth (or otherwise) of the claims, dseto simulate the execution
of themasLE system, using theROMELA interpreter provided as part PIN.

The remainder of this paper is structured as follows. Werbbgiintroducing the
MABLE language, describe how claims can be made abut programs using abl
logic called MOR.A, and show how these claims can be automatically verifiecqusin
masLE. We then present two detailed case studies, which illiestia use ofasLE in
the verification of multiagent systems. In the first case \stwee demonstrate how
MABLE can be applied to the problem of verifying that multiagergteyns conform to
the semantics of a particular agent communication langu&yhile this is a well-
known problem in the multiagent systems literature [41,22,34], our work is, to
the best of our knowledge, the first to apply model chechiggrigues in this area.
In the second case study, we present an implementation afelieknown Contract
Net task allocation protocol [36, 35], and show how progsrtf this protocol can be
verified usingvasLe. We proceed to describe the operation of the.e compiler, and
outline the key techniques used in its implementation. btise 5, we describe the
relationship ofwasLe to other research on agent programming languages and model
checking for multiagent systems. Finally, we present soorelusions, and some
pointers to future research.

Throughout the paper, we assume some familiarity with mgént systems [45],
model checking [4], and a basic understanding of conveatipmgramming language
design.

2 ThewmasLE Programming L anguage

MABLE IS intended to be used as a language in which programmerspagss and ver-
ify designs for multiagent systems. As such, one of the aiimse.e is to provide a
collection of constructs which closely resemble those usexbnventional program-
ming languages. However, a design requirememtsefe was that it should be possi-
ble to automatically verify properties of systems using elathecking: this require-
ment imposes some significant constraints on the faciléieslable to programmers
in maBLE. For example, at an early stagevabLe’s development, the possibility of pro-
viding a JAVA-like object-oriented programming model was investigatéetbwever,
to provide such features would have necessitated the ingpigation of an object-
oriented interpreter (similar to thrvA virtual machine) in the modelling language of
the target model checker, resulting in a dramatic blow-uthensize and complexity
of models. The resulting state space explosion would alwersainly make the ver-
ification of systems impossible. For this reason, it wasaktinstead to provide a
c-like imperative language, enriched by a number of key ageehted constructs. In
particular, the key agent oriented features providead®ye over and above the basic
system modelling facilities available in model checkingteyns such aspPIN[16, 17],
SMV [24], andMOCHA [1] are as follows:

e Agents inmaBLe have amental stateonsisting of beliefs, desires and intentions.

e Agents inmaBLE cOmmunicate usingcL performatives, and it is possible for a
developer to define both the performatives and the semanfttbese performa-
tives independently of the system in which they are used.

In addition,maBLE provides “syntactic sugar” for many programming languagires
that are not provided as standard in most model checkermsysi@delling languages
(which tend to be rather low-level guarded command langsjade particularmasLe
provides the full range of iteration, sequence, and seleaiperations familiar from
languages such @asandJAvA, c-like structure type declarations, and several high level
synchronisation constructs. Note that we comment on tiagioekhip ofvasLe to other
agent programming languages in section 5.

Over the past two decades, many logics and related formslisae been pro-
posed for representing and reasoning about multiagenersgstof which Rao and
Georgeff’sBDI logics are perhaps the best known [29, 44]. Ideally, thenywvald
like to take aBDI logic such asCOR.A (described in [44]) off the shelf, and develop
verification tools that would allow us to determine whethenot systems implement
specifications expressed in this logic. However, it is vkelbwn that the link between
such logics and implemented systems is informal at besttelisgin general, no sys-
tematic way of associating models for such logics with immated systems: this is
known as the problem afomputational grounding40, 43]. So, what we have done
instead is to develop a slightly simplified and cut-down warof LOR A, known as
MORA, in which claims about systems can be expressed. We haveldwetoped
a mapping from thisbDI-like logic to the Linear Temporal Logic used by tseIN
model checker; in this way, we can leverage existing modetkimg tools — and in
particular,SPIN[16, 17] — to verify properties afiasLE Systems.

In summary, then, aasLe system consists of:

e a number of agent definitions and associated type and varddilarations,
where each agent is programmed usingvk® e agent programming language;

e explicit semantics for the performatives used in the system

e a number of formal claims about the system.

In the subsections that follow, we briefly describe thesedl@ements. We begin with
a survey of the agent programming language; we then dedtr@eay in which the
semantics of communication language performatives mayefieat!, and the use of
claims inmaBLE Systems.

2.1 TheAgent Programming L anguage

For a programmer, the core componentaéLe is of course the agent programming
language. As noted above, this language is in esseiackka imperative language,
enriched by agent-oriented features. The concrete symtive @onventional program

4

constructs invaBLe is based on that of/iava, and so we will not give a detailed
description here. Instead, we will give an overview of thenrlanguage features,
focussing on those that are uniquevieLE.

Agent declarations and initialisation

Agents are declared via ttegent keyword, followed by the agent’s name (which
must be unique), and the body of the agent. At startup, ageetsnvoked in the
order in which they are declared; an agent terminates whexadhes the end of its
code body. (Agents are not functions, and therefore doetatn values; however,
there is aunction facility in masLe, described below.) There is at present no way
of invoking multiple copies of the same agentmmsLe, or of passing initialisation
parameters to agents. However, it is possible for programmmoeedeclare an explicit
init section, which can be used for initialisation of system peaters. Thenit
section is executed before any agent is invoked.

Beliefs, desires, and intentions

Perhaps the most obvious way in whigkeLe differs from conventional programming
languages is that the processes — agents —imsee system have explicitly repre-
sented data structures corresponding to beliefs, deamesntentions [29, 44]. These
mental states can be nested, so that (for example) an agehtiea beliefs about an-
other agents intentions. Intuitively, an agent’s belietsthe information it has about
the environment; these beliefs may be incorrect. An agelg&res and intentions
come into play primarily when the agent is involved in comication.

In maBLE an agent’s mental states are attitudes to the variablesisytsiem. So,
for example, agentne might have the belief that agetwo intends that variabl&
has value greater than 10. Programmers can directly reéer &gent’s mental state by
means ofmodal expression®r modalities The intended meaning of the modalfty.
ag c¢) is that agentg has attituden (wherem is believe , desire , orintend)
towards the condition (predicate) The identifierag must be the name of an agent
in the system, and must be avasLe condition. The following is thus a legal modal
expression iMmABLE.

(believe agentl (a == 10))

Suppose this expression is evaluatecagent?2 . Then it will “true” if agent2 be-
lieves thatagentl believesthad == 10. Mental states are implementedwvneLe
as nested sets of facts (in the style of [18]): to evaluate ¢xipressionagent2
will check in its belief set, and inside this set will look ftire set of facts represent-
ing agentl ’s beliefs. If it finds thata == 10 in this set (i.e., the set representing
agent2 ’sbeliefs abouagentl s beliefs), then the expression will evaluate to “true”.
As modalities are themselves conditions, they may be arilitrmested. For ex-
ample, the following is also a legal modal expressionAsLE:

5

(intend agentl (believe agent2 (a == 10)))

Again, suppose this expression is evaluatecbggntl : it will evaluate to “true” if
agent2 believes thaagentl intends thatgent2 believesthad == 10.

In order to directly manipulate beliefs, desires, and ititars, masLE provides
assert andretract statements. These statements take a single argument — a con-
dition — and behave rather like tirROLOG assert andretract predicates [5].
Thus, for example, consider the followingsLe statement.

assert((intend agent2 x == 10))

The effect of this statement is to make the agent executsupsequently believes that
agent2 intends that variablg has the value 10.

An agent’s mental state can also be modified in two other waiyst, an agent’s be-
liefs can be changed by assignment abderve statements, as described in the fol-
lowing section. Second, communication actions may changegant’s mental state,
as defined by in the performative semantics; we shall seeiewvbrks in section 2.2.

Types, variables, expressions, and assignments

MABLE Supportsc-style structure and array declarations, which may be caegban
terms of integer and boolean data types. Variablesine may belocal, shared or
global. A local variable is private to an individual agent. A shavediable is declared
outside an agent, and is visible to all agents in the systéinagants implicitly have
access to shared variables, and moreover all agents cantavehared variables.

Like shared variables, global variables are also declautside the scope of an
agent. However, there is an important difference betweebajland shared variables.
All agents implicitly know the value of shared variables| ajents have complete,
correct, up-to-datbeliefsabout the value of shared variables. With global variables,
however, the situation is slightly different. While all ae may still access global
variables,they must explicitly request access in order to discoveir tredue. They
do this by executing aseLe observe statement. Thebserve construct can thus
be viewed as aensing actionWhen an agent executes abserve instruction, its
beliefs about the value of the variable it observes are spmised with the true value
of this variable. However, if the value of the variable is seguently changed, then the
agent will not necessarily be aware of this — its beliefs albloe value of the variable
may thus become “out of date”. If an agent modifies the valua global variable,
then its beliefs about the value of this variable are sinyilgynchronised. Once again,
however, its beliefs may become out of date if the value & ¥ariable is changed by
some other agent.

The syntax of variable declarations is broadly the san@&sA. Expressions and
assignment statements vasLe also follow the conventions af/JAvA; all the arith-
metic operators that one would expect to find in an imperadirnguage are present.

Conditional expressions

Conditional (boolean) expressionsnmasLe may be constructed from expressions via
the usual relational operators,(>, ==, ...). HoweverpasLe also permits conditions
to contain modalities, as described above: in particulelieh desire, and intention
modalities.

Selection

MABLE contains the selection statements that one would expeutdroimperative pro-
gramming language - ...else and multi-way selection viawitch statements.
However, as noted earlier, the conditions in these cortstroay contain belief, desire,
and intention modalities. For example, suppose that aaperitl was executing the
following statement.

if (intend agent2 (a == 10)) XYZ,

Then, in this caseagentl would execute statemeRtYZif it believed thatagent2
intended thaar == 10.

L oops

maBLE provides all the loop constructs found @JavA (i.e., for , while , anddo),
and the syntax follows the conventions of these languadest€lis an additional loop-
like construct, which is not found in languages li&BAvA: await . This construct
implements an idle (non-busy) wait construct: it takes glgiparameter, a condition,
and the effect is that the agent executingdlait is suspended until it believes the
condition is satisfied.

Communication

MABLE provides two built-in communication primitivesend andreceive . Their
syntax is as follows:

send(p ag of c¢);
receive(p ag of ¢);

wherep is the performativeqg is the name of an agent (the recipient of the message,
in the case ofend , the sender in the case mceive), andc is the message con-
tent, which must be aasLe conditional expression. For example, the following is a
syntactically acceptabkend statement.

send(inform agent2 of (x == 10));

(Note thatof is just syntactic sugar, which play no other role.) The foilrg is also
alegalsend statement.

send(inform agent2 of (intend agent3 x == 10));

The effect of communication is to change the mental statbefécipient of the mes-
sage. However, the actual effect that a message has is noededithin the program.
It is defined externally, in the semantic definition file, asa®ed below.

Note that message delivery is guaranteed, but is asynchsoneceive state-
ments block until a message is available to be receivedywiiisend statements do
not block. Broadcast message passing is not currently stguzpo

Synchronisation

In order to allow agents to synchronise their activitiessLe provides facilities for
enforcing mutual exclusion over critical sections of co8leuasLe System can contain
an arbitrary number dbcks each of which is identified by a unique name. Sections
of code can be wrapped inack statement, associated with a particular named lock.
Only one agent can access a lock at any given time. When an ege®s across a
locked section of code, it suspends until the associatddifofree, at which point it
obtains the lock in an atomic operation, and enters thecaliiection; when it exits
the code, the lock is released.

In addition,maBLE €nables an agent to obtain exclusive access to a sharetllgaria
via theread construct. As long as an agent usesned construct, it is impossible
for other agents to access the variable locked with thistoacts The lock is released
when the agent exits thread block.

Functions

MABLE provides functions as a structuring mechanism for programsthe syntax used
for defining and invoking functions is again based on that.ofFunctions may take
arbitrary parameters, although at present may cetiyrn integer (nt) values. All

functions have global scope, and can be invoked either hytage by other functions.

/0

MABLE iS intended primarily as a framework for model checking amsl such, there
are critical limitations on the/o facilities available in the language. Contemporary
model checking techniques are focussed ardimie stateand hencelosedsystems.
Thus it is not possible for aasLE system to obtain input at run time from the outside
environment. Where this is desired, a solution is to modelahvironment as an
agent that provides appropriate input to other agents. Mexvaprint statement is
provided as a means to display output framsLe.

Pre-processing

Before processing source code, tireLe compiler runs the standaxpre-processor
over files. This makes it possible to use all the pre-progadisectives available irc:

e macro definitions, via th&define directive;
e textual file inclusion, via thétinclude directive;

e conditional compilation, via th&if ...#endif directive.

2.2 Communication in MABLE

A key component of the current versionydsLe is that programmers can define their
ownsemantics for performatives, separately from a programhiichvthese performa-
tives are used. The formalism we use for defining semantiassisRIPSsStyle pre-
/post-condition model, in the way pioneered for the senaarttf speech acts by Cohen
and Perrault [6], and subsequently applied to the semanitibe KQML [19] andFIPA
languages [11]. Thus, to give a semantics to performativesaiLe, a user must define,
for every such communicative act, a pre-condition and a-postlition. Formally, the
semantics for a communicative a€¥ is defined as a paifCA,,., CA,.s), where
CA, is a condition (avasLe predicate), and'4,,; iS a condition to be asserted. The
basic idea is that, when an agent executssrad statement with performativé'A,
this message will not be sent unfid,,. is true. When an agent executeseaeive
statement with performativé’A, then when the message is received, the assertion
CA,,s Will be made true.

By default, themasLe compiler looks for performative semantics in a file that is
namedmable.sem . A mable.sem file contains a number of performative defini-
tions, where each performative definition has the followstrgcture:

i: CA(j, phi)
pre-condition
post-condition

wherei , j andphi are bound to the sender, recipient, and content of the messag
respectively, an€CAis the name of the performative. The following two lines defin
the pre-condition and post-condition associated with tmaraunicative acCA

The way in which pre-conditions are used is as follows. Ssp@am agerdgentl
executes the following statement

send(P agent2 of C)

where the semantics of the performati¥are defined as follows.

i P(j, phi)
pre
post

Then the ageragentl will suspendi.e., enter a non-busy wait state) until the con-
dition pre is believed to be true bggentl , at which point it will send the message.
Notice that it is possible to define the pre-condition of &qmnative simply as 1”,
i.e., a logical constant for truth. In this case, the ageetakng thesend will never

be suspended — the message will be sent immediately.

With respect to the post-condition, the idea is that once asage is received,
the corresponding post-condition will be made true. Notiwg post-conditions in a
mable.sem file do notcorrespond to the “rational effect” parts of messagesma
semantics [9]; we elaborate on the distinction below.

Here is a concrete example ofrable.sem performative semantic definition:

izinform(j,phi)
1
(believe j (intend i (believe j phi)))

This says that the sender of a message will always send@m message directly;
it will not wait to check whether any condition is true. It alsays that when an agent
receives amnform message, it will subsequently believe that the senderdistérat
the receiver believes the content.

By disconnecting the semantics of a communicative act frpnogram that carries
out such an act, we can experiment to see the effect thatehtf&inds of semantics
can have on the same agent.

2.3 Claims

Another key component efasLE is that agents may be augmented with formlaims
about their behaviour. Claims are expressedMiPR.A, a subset of th€ OR.A BDI
logic introduced in [44]. These claims cand&gomaticallychecked, by making use of
the underlyingspIN model checker. If the claim is disproved, then a counter gtam
is provided, illustrating why the claim is false.

A claim is introduced outside the scope of an agent, with tamord claim
followed by aM OR.A formula, and terminated by a semi-colon. The formal synfax o
MORA claims is given in Figure 1. The language of claims is thus dfhguantified
linear temporaBDI logic, with the dynamic logic stylefappens ” operator, similar
in intent and role to that It OR.A [44]. The operators oM OR.A have the following
intuitive meaning. First, any validasLe condition is an acceptabl&OR.A formula,
and thus it is possible to express conditions over all shanetiglobal variables of a
systemuwasLE also supports therL operators oEPIN, as follows. First[]] (“always”)
is thealways in the futur@perator: thus a formul@P asserts tha® will be true now

10

(formula) ::=

forall IDEN: (domain) (formula) /* universal quantification */
| exists (IDEN): (domain) (formula) [* existential quantification */
| any primitive MABLE condition [* primitive conditions */
| ((formula)) [* parentheses */
| (happens (Ag) (stmt)) /* statement is executed by agent *
| (believe (Ag) (formula)) * agent believes formula */
| (desire (Ag) (formula)) /* agent desires formula */
| (intend (Ag) (formula)) /* agent intends formula */
| 0 (formula) /* always in the future */
| <> (formula) /* sometime in the future */
| (formula) U (formula) [* until */
| ! formula * negation */
| (formula) && (formula) * conjunction */
| (formula) || (formula) /* disjunction */
| (formula) -> (formula) /* implication */
(domain) ::=

agent /* set of all agents */
| (NUMERIC).. (NUMERIC) /* number range */
| { (IDEN),..., (IDEN) } /* a set of names */

Figure 1: The syntax dMORA claims.

(i.e., in the present state) and forever (i.e., in all futstaes). The>P (“sometimes
P") construct means “eventualll,will be true”. In other wordsP will either be true in
the present state, or at some future state. @heonstruct does not assert theique
existenceof such a state: it may be thRtis several times in the future, or even that
P is always true.) Th& (“until”) operator is a binary operator, and a formiaU Q
asserts tha® is true now, and will remain true unis true.

MORA supports quantification over finite domains, and in parécubver the
following sets:

e agents (e.g., “every agent believgy;
o finite sets of objects (e.g., enumeration types); and

e integer number ranges.

The believe , desire , andintend operators make it possible to make claims
about agents’ mental states. These constructs have thars@npeetation inMORA
claims as in conditionals, as described above.

To better understand how these constructs may be combimadke claims, con-
sider the following informal examples.

First, suppose we want to express the fact that, whenevert agdelieves the
reactor failed, them; intends that, believes the reactor failed (i.ew, wants to com-
municate this taz).

We can express such a property directly as the followi@ R A claim.

claim

11

[l ((believe al reactorFailed)
-> (intend al (believe a2 reactorFailed)));

The outer[] is the temporal “always” operator, and ensures that thiggmny
is checked in every possible state that the system entersre, Hee variable
reactorFailed is assumed to be boolean.

Next, suppose we want to say that if some agent wants agéatbelieve that the
reactor has failed, then eventualty,will believe it has failed.

This translates directly into the followinyt OR.A claim.

claim

forall i : agent

[J((intend i (believe a2 reactorFailed))
-> <>(believe a2 reactorFailed));

Next, we describe thelappens ” construct. Recall that the syntax of this construct
is as follows:

(happens ag stmj

whereag is the name of an agent antint is amasLe program statement. This predicate
will be true in a state whenever the next statement that agewill perform is stmit.
Consider the following concrete example.

claim
[]((happens al x = 10’)
-> <>(believe al x==10));

This claim says that, whenever the next statement to be seatby agenal is the as-
signmenix=10; , then eventuallyal believes that variable has the value 10. Notice
that the semi-colon is part of the assignment program s&tgnand must therefore
be included in thdnappens construct. Also recall that a single equals sigmaaLe
is an assignment, while a double equals sign is the equaktyigate. As we will see
below, thehappens construct plays a key role in our approachatoL compliance
verification.

Finally, let us consider exactly how claims are checked k@wkeLe compiler.
Suppose that a system contains a single claimand that the programmer invokes
the masLe compiler signalling that this claim should be checkedhenwmasLe will
systematically generate, (by means of #reN system), every possible computation
¢ = $,8,%,... of the system. Each computatiencorresponds to anodelfor
MORA, and the claimp will either be true or false when interpreted in this model.
So, for every computation, masLe will check whether this computation satisfiggsif

1The default behaviour of theABLE compiler is to ignore claims; a user indicates to the compile
that claims should be checked by means of a command line amgim

12

MABLE ever encounters a computatiersuch thatc = ¢, thenmasLe halts, and reports
¢ as a counterexample to the claim If no such computation is found, themsLe
(or more accuratelysPIN!) will continue until it has exhaustively examined the eati
space of possible computations.

3 Two Case Studies

This section presents two detailed case studies. The fgststady demonstrates how
MABLE can be used to verify that agents correctly implement theas#ios of an agent
communication language [41]. In the second case study, w& Blow masLe can be
used to implement the Contract Net protocol [36, 36], and aevshow properties of
this protocol can be established via model checking.

3.1 Verifying Compliance with respect to ACL Semantics

In this section, we will show how conformance to the pre-a¢bod and rational effect
parts ofAcL semantics can be verified withsLe. We also show how, by varying the
semantics of performatives, we achieve different resoltsife same agent programs.
We begin with a brief introduction to thecL verification problem.

The need for agents to be able to inter-operate has led tetledapment of several
standardiseégent communication languagéscLs) [22, 10]. However, in order to
gain acceptance, particularly for sensitive applicatismsh as electronic commerce,
it must be possible to determine whether or not any systemncthans toconform
to anAcL standard actually does so. We say thataan standard isverifiable if
it enjoys this property. FIPA — currently the main standardisation body for agent
communication languages — recognises that “demonstratiag unambiguous way
that a given agent implementation is correct with respedthe semantics] is not
a problem which has been solved” [10], and identify it as amnavf future work.
(Checking that an implementation respectsdjetaxof anAcL such as that proposed
by FIPA is, of course, trivial.) If an agent communication languageh asriPA’'s
is ever to be widely used — particularly for such sensitivpl@ations as electronic
commerce — then such compliance testiagrification is important. However, the
problem of compliance testing is not actually given a cotecdefinition byrFipPA, and
no indication is given of how it might be done.

In [41], the verification problem for agent communicationdaages was formally
defined for the first time. It was shown that verifying comptia to some agent com-
munication language reduced to a verification problem ircéxdahe sense that the
term in used in theoretical computer science. To see whaeanirby this, consider
the semantics afiPA’s inform performative [10, p25]:

13

(i, inform(j,)

FP: Bip A ~Bi(Bifie V U;p) (1)

RE: Bjp
Here(i, inform(j, ¢)) is aFiPA message: the message type (performativiefesm
the content of the messagezdsand the message is being sent frota ;. The intuition
is that agent is attempting to convince (inform) agenof the truth ofp. TherFpand
RE components define the semantics of the mesgags:thefeasibility pre-condition
which states the conditions that must hold in order for threlse of the message to be
considered as sincerrg is therational effectof the message, which defines what a
sender of the message is attempting to achieve. A;he a modal logic connective
for referring to the beliefs of agents (see e.g., [14)f is a modal logic connective
that allows us to express whether an agent has a definiteoopame way or the other
about the truth or falsity of its parameter; afdis a modal connective that allows us
to represent the fact that an agent is “uncertain” aboutatampeter. Thus, an ageit
sending annform message with contentto agentj will be respecting the semantics
of the FIPA ACL if it believesy, and it it not the case that it believes péither that;
believes whethep is true or false, or that is uncertain of the truth or falsity @#.

It was noted in [41] that theP acts in effect as apecificatioror contractthat the
sender of the message must satisfy if it is to be consideregsagcting the semantics
of the message: an agent respects the semantics atth#, when it sends the mes-
sage, it satisfies the specification. Although this idea le@s lunderstood in principle
for some time, no serious attempts have been made until n@aadpt this idea for
ACL compliance testing.

Note that a number of other approachesda compliance testing have been pro-
posed in the literature. Although it is not the purpose o$ fh@per to contribute to
this debate, we mention some of the key alternatives. PdtMamdani defined a
protocol-based semantiésr ACLs [26]: the idea here is that the semantics ohan
are defined in terms of the way that they may be used in thexdooftearger structures,
i.e., protocols. Singh championed the idesactialsemantics: the idea here being that
anAcL semantics should be understood in terms of the observadi@iable changes
in social state (the relationships between agents) thaifusperformative causes [34].

We begin with a running example that we will use in the follog/sections to illustrate
the approach. The example employs thdrm " performative, which is one of the
two key performatives in theipA framework [11]. (The other isréquest ”, which
can be dealt with using the same techniques.)Mdses code for this example is given
in Figures 2 and 3. Two agents have several beliefs and thgylysisend messages
among themselves communicating these beliefs. The smbectithe message to be
sent is carried out non-deterministically, via ttigose construct. The insertion of
these beliefs in agents’ mental state is done througlskert statements.

14

int selection-agentl,;

int selection-agent2;

agent agentl {
int inform-agent2;
inform-agent2 = 0;
selection-agentl = O;
assert((believe agentl (a == 10)));
assert((believe agentl (b == 2)));

assert((believe agentl (c == 5)));
choose(selection-agentl, 1, 2, 3);
if (selection-agentl == 1) {

print("agentl -> a = 10 \n ");
send(inform agent2 of (a == 10));
}
if (selection-agentl == 2) {
print("fagentl -> b = 2 \n ");
send(inform agent2 of (b == 2));

if (selection-agentl == 3) {
print(*agentl -> ¢ = 5 \n ");

send(inform agent2 of (c == 5));
}
receive(inform agent2 of inform-agent2);
print("agentl receives %d \n ", inform-agent2);

Figure 2: The base example (agent 1).

agent agent2 {

int inform-agent1,;

inform-agentl = 0;

selection-agent2 = 0;

assert((believe agent2 (d == 3)));

assert((believe agent2 (e == 1)));

assert((believe agent2 (f == 7)));

choose(selection-agent2, 1, 2, 3);

if (selection-agent2 == 1) {
print("agent2 -> d = 3 \n ");
send(inform agentl of (d == 3));

}

if (selection-agent2 == 2) {
print("fagent2 -> e = 1 \n ");
send(inform agentl of (e == 1));

if (selection-agent2 == 3) {

print("agent2 -> f = 7 \n ");

send(inform agentl of (f == 7));
}
receive(inform agentl of inform-agentl);
print("agent2 receives %d \n", inform-agentl);

Figure 3: The base example (agent 2).

Verifying Performative Pre-Conditions

Verifying pre-conditions means verifying that agents sgtithe pre-condition part
of an AcL performative’s semantics whenever they send the correlspgmessage.

15

There are essentially two possibilities with respect togeditions: either agents are
sincere(they only ever send amform message if they believe its content), or else
they are not (in which case they can send a message withockinlggo see whether
they believe it). We can usesLE’S ACL semantics to define these two types of agents.
Consider first the followingnable.sem definition.

izinform(j,phi)
(believe 1 phi)
(believe j (intend i (believe j phi)))

This says that the pre-condition for arform performative is that the agent believes
the contenphi of the message. By defining the semantics in this way, an agént
only send the message if it believes it. (If the senumrerbelieves the content, then
its execution is indefinitely postponed.)

By way of contrast, consider the followimgable.sem definition of theinform
performative.

izinform(j,phi)
1
(believe j (intend i (believe j phi)))

Here, the guard to theend statement id, which, as in languages such@gs inter-
preted as a logical constant for truth. Hence, the pre-¢mmdiest willalwayssucceed,
and the message send statement will always be enablegactese of whether or not
the agent actually believes the message content. Notitthiegdecond case is actually
the more general one, which we would expect to find in mostiegbns.

The next stage is to consider the process of actually chgekirether or not agents
respect the semantics of the language; of course, if we @nfoompliance by way
of themable.sem file, then we would hope that our agents will always satisfy th
semantics. But it is also possible that an agent will respgrecsemantics even though
they are not enforced by the definitionnmable.sem . (Again, this is in fact the most
general case.)

For FIPA-style inform performatives, the property we want is that, whenever
agent; sends amnform message to agentwith contenty, then: believesy. Now,
given the enriched form ofaeLe claims that we described above, we can directly en-
code this formula ITMOR A, as follows:

claim

[

(
(happens agentl

send(inform agent2 of (a == 10));)
->
(believe agentl (a == 10))
)i

16

This claim will hold of a system if, whenever the program staént
send(inform agent2 of (a == 10));

is executed byagentl , then in the system state from which thend statement is
executedagentl believesthatd == 10.

We can insert this claim into the system given in Figures 2 3naind useuasLE
to check whether it is valid. If we do this, then we find that them is indeed valid;
inspection of the code suggests that this is what we expect.

Verifying pre-conditions also implies that we ensure ageid not inform other
agents about facts that they do not believe. In our runniagge, we simply have to
remove the line

assert((believe agentl (a == 10)));

and then set the pre-condition of thform to 1 (i.e., true) in themable.sem
file, and check the previous claim. The claim is now not vatisiagentl informs
agent2 about something it does not believe.

Verifying Performative Rational Effects

We consider an agent to be respecting the semantics afaiif it satisfies the spec-
ification defined by the pre-condition part of a message wyamie sends the mes-
sage [41]. The rational effect part of a performative’s setica defines what the
sender of the message wants to achieve by sending it; butdeis not imply that
sending the message is sufficient to ensure that the raedfieal is achieved. This is
because the agents that receive messages are assumed tortmemaws, exhibiting
control over their own mental state. Nevertheless, it isulde be able to determine,
in principle, whether an agent respects the rational effadt of anAcL semantics or
not, and this is the issue we discuss in this section.

We will consider two casescredulousagents andcepticalagents. Credulous
agents correspond to agents that always believe the infanmsent by other agents.
We can directly define credulous agents via the followmaple.sem file.

izinform(j, phi)
(believe i phi)
(believe j phi)

This says that the recipieptof aninform message will always come to believe the
contents of ainform message.

Sceptical agents are those that believe that the sendeddmtbat they believe
the information, but do not necessarily come to directlyidwe the contents of the
message.

17

izinform(j, phi)
(believe i phi)
(believe j (intend i (believe j phi)))

We can directly define a1OR.A claim to determine whether or not an agent that is
sent a message eventually comes to believe it.

claim []
(
(happens agentl
send(inform agent2 of (a == 10));)
->
<>(believe agent2 (a == 10))
);

This claim is clearly valid for credulous agents, as definethe mable.sem file
given above; runningasLe with the example system immediately confirms this.

Of course, the claim may also be true for sceptical agenferi#ing on how their
program is defined. We can directly check whether or not aquéat sceptical agent
comes to believe the message it has been sent, with the fofaaim:

claim
I
((believe agent2
(intend agentl

(believe agent2 (a == 10))))
>
<>(believe agent2 (a == 10))
);

3.2 TheContract Net Protocol

In the section, we will show how the well-known Contract Nattpcol can be imple-
mented usingiaeLe [36, 35], and then demonstrate how properties of this implem
tation may be verified usingasLe claims.

The Contract Net Protocol was proposed by Smith [36, 35] aschanism for task
allocation in distributed problem solving systems. Theaidéthis protocol is that one
agent (the initiator of the interaction) has a task to carry but requires cooperation
for this task — either because the task requires resoure¢sth unavailable to the
initiator, or else because a cooperative solution will kefgrred to a non-cooperative
one. The initiator takes the role tdsk manageand broadcasts an announcement of
the task to other agents. In general, the task announcempecifiss the properties of
the task — quality of service parameters, and any othernmition that a potential

18

bidder may require to determine whether or not to submit adoichrry out the task.
In our implementation, the task announcement defines tlie skquired to solve the
task (its “weight”).

Agents receiving a task announcement have several chdibey.can either sub-
mit a bid for the task (e.g., specifying a price for carryihg task out), or else they
can choose not to bid. When the task manager has the answies lmfiders, it can
choose a bidder, to whom it awards the task.

The implementation of the Contract Net protocolvreLe represents about 250
lines of code. It contains three agents: the task managetvemdidding agents.
Additionally two functions are declared.

/* use for the loop to set type skills and reward for each bidde r*
int i, value;

/I used in the “decision” function
int a;

/* used in function select */

int max-value;

int accepted;

int index;

int index-reward,;

int ca-bidder[2]; int value-bidder[2];
int number-accepted;

int accept-bidder[2];

int rank;

[* structures containing the maximum type possible
and the minimum expected reward for a task for each bidder */
struct capability {
int max-type;
int min-reward;
h
struct capability capabilities[2];
[* structure of a task */
struct task {
int id;
int type;
int reward;
h
/* since it is not possible to send structures in messages,
the task is declared globally*/
struct task one-task;

Figure 4: Contract Net Protocol Declarations.

The variable declarations for the system are shown in Figufigheinit section
for the system is shown in Figure 5. In this section, we firdtngethe task, then
we define bidders’ parameters: the maximum size of task taeyperform, and their
expected reward for a task. These values are set non-datstigally, through the
choose construct.

The implementation of the task manager is given in Figure I6e Task manager
first informs the two bidders that a task has to be performad,then waits for an
answer. In our model, bidders are obliged to answer eith#r an acceptance or a

19

init {

/*set the task*/

one-task.id = 1;

one-task.type = 10;

one-task.reward = 5;

/*set bidders’ competences, type and price are set at random */

i =0;

while (i < 2) {
choose(value, 8, 10, 15);
capabilities[i].max-type = value;
choose(value, 2, 5, 7, 8, 10);
capabilities[i].min-reward = value;
=i+ 1

Figure 5: Initialisation for the Contract Net.

rejection. As soon as the task manager has received all as\stv&elects at most one
bidder to process the task. ThiaskManager uses theselect function to choose
which agent to award the task to. Finally, the task managaissa message to the
successful bidder.

The implementation of bidding agents is shown in Figure 7 fittst action of the
bidders is to wait for the task announcement. Then, theytlvatlecision function
to determine if they are able to do the task. The decision dentwan the basis of the
task type and the reward.

We have two functions in the Contract Net implementatioe:séslect function,
used by the task manager to select a bidder to perform theaaskthedecision
function, used by bidders to ascertain if they are able téop@rthe task. The im-
plementation of theselect function is shown in Figure 8, while theecision
function is shown in Figure 9.

Thedecision function is used by the bidders to know if they are able togrenf
the task. This decision is determined by the task type anckthard. If the task type is
within their capabilities, and if the reward is greater oua&lqo their request, then they
accept the task. If the task type is beyond their capals|itieey refuse the task. If the
reward is less than the one expected, they accept the tasiklyufior their requested
reward.

Running the example

After writing the masLE code, designers can execute the system: the following out-
put was generated byasLe when it was invoked with the Contract Net example in
simulation modé

Bidder 0 launched!
TaskManager launched!

°Note that this is just one possible run among several.

20

/*definition of the task manager agent, it is responsible to
the task, to select a bid and to request the task to be performe
agent TaskManager {
[*return of the function accept, if the value is 0, there is no
clear accept, else the value corresponds to the id of the
bidder, 1 for Bidder 1, etc.*/
int result;
/*these values store the message content of bidders’ answer
int valuel, value2;
/*TaskManager needs to use these variables since it does not

int ca-Bidderl, ca-Bidder2;
print("TaskManager launched!");
/*task advertisement*/
send(inform Bidderl of one-task.id);
send(inform Bidder2 of one-task.id);
[*collecting the answers from bidders; ca-BidderX contain
either accept or refuse, that is to say 1 or 2*
valuel = 0; value2 = 0;
receive(ca-Bidderl Bidderl of valuel);
receive(ca-Bidder2 Bidder2 of value2);
[*TaskManager has to select a bidder*/
ca-bidder[0] = ca-Bidderl; value-bidder[0]
ca-bidder[1] = ca-Bidder2; value-bidder[1]
result = select();
switch(result) {
case 0: send(request Bidderl of one-task.id);
case 1: send(request Bidder2 of one-task.id);

valuel;
value2;

know in advance what messages will be sent: accept or refuse *

advertise
d*/

*

Figure 6: The Task Manager Definition.

Bidder 1 launched!

Bidder 1 refuses the task, too heavy!

Bidder 0 accepts the task but with a different reward
quitting...

quitting...

Bidder 0: | do the task

quitting..

7 processes created

Model Checking the Contract Net Protocol

Having implemented the Contract NetnmsLE, it is natural to then useasLe’s verifi-
cation capabilities to check the implementation. We widltjgive two properties that

may be checked:

1. when the task is advertised, eventually it will be awaresbme agent;
2. when the task is advertised, eventually it will be perfednat a different reward.

As stated in section 2.3, properties have to be expressddiasdo be checked. The

first property gives the following claim:

21

agent Bidderl {

[*this variable contains the id of the task*/

int task-advertised;

/* the result whether the bidder accepts the bid or
not given the constraints

1 corresponds to a clear accept, 2 to a rejection, > 2 the

new proposed reward */

int result;

print("Bidder 0 launched!");

/*waiting for the task advertisement*/

receive(inform TaskManager of task-advertised);

/*the bidder decides if it is able to do the task*/

result = decision(0);

if (result == 1) {
send(accept TaskManager of task-advertised);

}

if (result == 2) {
send(refuse TaskManager of task-advertised);

if (result > 2) {
send(accept TaskManager of result);

}
[*waiting for a possible answer from TaskManager*/
if (result == 1 || result > 2) {

receive(request TaskManager of task-advertised);

/*if the bidder receives a message, it means it has
to perform the task */

print("Bidder 0: | do the task");
}

Figure 7: The Bidder Definition.

claim
[l((happens TaskManager
send(inform Bidderl of one_task.id);)
>
<> exists ag : agent
(happens ag
receive(request TaskManager
of task_advertised);));

The second property corresponds to the following claim.
claim
[1((happens TaskManager
send(inform Bidderl of one_task.id);)

-> <>(one_task.reward < max_value));

It took about six minutes on ac with an Intel Pentium [Il 500MHz processor and
256MbRAM to verify each of these results.

22

function int select() {
accepted = 0;
max-value = 65535;
index = 0;
index-reward = O;
number-accepted = O;
rank = 0;
while (index < 2) {
if (a-bidder[index]==1 && value-bidder[index]==one-tas
[*this is a clear accept*/
accept-bidder[number-accepted] = index;
number-accepted = number-accepted + 1;
accepted = 1;
index = index + 1;
}
else {
if (laccepted && ca-bidder[index] == 1 &&
value-bidder[index] != one-task.id) {
if (max-value > value-bidder[index]) {
max-value = value-bidder[index];
index-reward = index;
}

index = index + 1;

else {
if (ca-bidder[index] == 2) {
index = index + 1;
}

}

[*clear accept */
if (accepted) {
if (number-accepted == 1) {
rank = accept-bidder[0];
return rank;

if (number-accepted == 2) {
choose(rank, 0, 1);
rank = accept-bidder[rank];
return rank;

}
}
else {
if (max-value != 65535) {
return index-reward;
}
else {
return -1;
}
}

kid) {

Figure 8: The Select Function.

23

[*function that decides if bidders are able to do the task*/
function int decision(bidder) {
I*we need to store the field of the structure since
they are not available in conditions*/
a = capabilities[bidder].max-type;
[*first, we test if the type is much more than accepted for thi S
bidder*/
/*in this 'if', bidders accept or accept with a greater rewar da*/
if (@ >= one-task.type) {
/*then, we test if the reward is greater than the one expected */
a = capabilities[bidder].min-reward;
if (& <= one-task.reward) {
print("Bidder %d accepts the task", bidder);

return 1;
}
else {
/*the reward is less than the one expected, the bidder propos es
a new reward to the TaskManager*/
print("Bidder %d accepts the task with different reward", b idder);
return a;
}
}
/*in this case, bidders refuse the task, too heavy*/
else {
print("Bidder %d refuses the task, too heavy!", bidder);
return 2;
}

Figure 9: The Decision Function.

4 ThewmasLe Compiler

In this section, we give a brief overview of the way in whick thasLe compiler works.
The compiler translategasLe systems into a form that can be processed bysthel
model checker [16, 17]. The way in which thesLe compiler interacts witlsPIN is
illustrated in Figure 10.

There are four key components to thesLe compiler: the way in which individual
agents and their control constructs (e.g., loops) are latatstoPROMELA; the way
in which belief-desire-intention states are implementée; way in which MOR.A
claims are dealt with; and the way in which performative setica are dealt with.

Agents and Basic Control Structures

Dealing with the basicvasLe control constructs is straightforward. Although
PROMELA is a relatively low-level language, it is straightforwaodrhapmasLe’s con-
trol constructs into those provided IPROMELA. Agents inmaBLE are implemented
as processepfoctype S) in PROMELA; additionalPROMELA initialisation code is
generated to (automatically) start agents simultaneously

24

SPINLTL claim

MABLE
program

preprocessor

J

MABLE
compiler

SPIN

system simulation

"yes the claims are valid”

performative
semantics

program

C compiler

l

executable
verifier

"no, claims are not valid
here is a counter exampl

Figure 10: Operation of theasLe system.

Mental States

More interesting is the way that mental states are dealt Witke idea is to model these
as finitely nested data structures (in the style of [18, 2j¢dizates are represented by
propositional abstractionwhere a predicate appears in the context of a modality, a
new proposition symbol is introduced to represent thisipedd. This new proposition

is then used in theDI data structures. A key disadvantage of this approach istthat
causes a blow-up in the size of the state space. For thisrreassted mental states
are only generated on an “as needed” basis.

Claims

To implement claims, we need to mag OR.A formulae into the.TL form accepted
by sPIN. In this mapping, we need to deal with a number of featuret aha not
supported directly byTL:

e Quantifiers are removed bgxpansion Quantification is over finite domains,
and so any quantified formula can be rewritten into a quanfifee formula by
expanding universal quantification into a conjunction, exidtential quantifica-
tion into a disjunction.

e BDI modalities are removed by replacing them with predicatesiathe corre-
sponding data structures in the implemented system.

e Predicates are removed by propositional abstraction: peedicate is replaced
by proposition, the truth of which is bound to the predicateplaces.

e To deal withhappens operators, we insert new code into the program itself,
flagging the occurrence of statements that occurappens operators. These
flags can then be referred to in ttie. formulae generated byasLe. Suppose we
have an operatghappens ag s) occurringin aclaim. FirstyasLe replaces
this operator in the claim with a new proposition, say The masLe compiler
then passes over the parse tree ofitkeee program for agerag, looking for the
statemens in the program code. Whenever it finglén the parse tree, itinserts a
new statement into the program immediately be&yreetting the corresponding
new propositiorp to true; and following the statemesf another new program
statement is inserted, setting the proposigpto false. The toggling of the
propositionp is wrapped withinrrROMELA atomic constructs, to ensure that
the toggling process itself does not alter the control flothefgenerated system.
In this way, the truth of the propositignindicates that the next statement to be
executed byag iss.

The end result is a propositionatL formula, suitable for input to thepiN model
checker, together with a list of predicates and the namédgegitopositions with which
they were replaced. Together with the gener&tedMELA code, these can be fed
directly intosPIN for checking.

26

Perfor mative Semantics

Recall that it is possible to define the semantics of perftinas separately from the
MABLE System itself, using thmable.sem file. ThemasLe compiler looks for such a
file containing a number of performative definitions, wheaereperformative defini-
tion has the following structure:

i CA(j, phi)
pre-condition
post-condition

wherei ,j andphi are the sender, recipient, and content of the message teshec
andCAis the name of the performative. These semantic definitiomsl@alt with as
follows.

With respect to the pre-condition, suppose that a particadgent contained a
send statement with the performativ@A Then thissend would be translated into a
PROMELA guarded commandith the following structure.

pre-condition -> send the message

The “>"is PROMELA’'s guarded command structure: to the leftof is a condition,
and to the right is a program statement (an action). The seéesaof this construct
are that the process executing this statementsugipendin effect, go to sleep) until
the condition on the left hand side is true. When (more adelyaf) the condition
becomes true, then the right hand side is “enabled”: thitisyeady to be executed,
and assuming a fair process scheduler, will indeed be exgcut

With respect to the post-condition, suppose an agent ceadareceive state-
ment with the performativ€A Then thisreceive statement would be translated
into PROMELA code with the following structure.

receive message,;
make post-condition true

Thus once a message is received, the post-condition wikkbereed.

5 Related Work

In recent years, a number of logic-oriented multi-agengpoming languages have
been developed, which attempt to bring logics of ration&nmy somewhat closer to
programming languages. In this section, we will briefly adasthe relationship of
mABLE to this work.

Perhaps the best-known multiagent languag@a&NTO [33]. Developed by
Shoham in the late 1980s, this was the first language to becgkpteferred to as

27

an “agent-oriented programming” language; additionadlgpham was keen to link
AGENTO to a multimodal logic of rational agency [39]. The logic vedsarly intended
to provide a logical semantics for the language, althouglpticise details were never
made formal. The programming model f@6ENTO was that of rule-based systems:
one programmed an agent in terms of a set of commitment nwlgish defined how
an agent formed and discharged commitments to action. Agemhmunicated with
one-another using three performativesquest , unrequest , andinform . The
semantics of these performatives was not really hardwmealthe language: a pro-
grammer defined their effects by writing rules to handle them

A number of later languages were developed inAb&NTO mould. ThePLACA
language, adopting a rule-based programming model venjasito that of AGENTO,
was intended to overcome a number of deficienciesa®#NTO, such as the ability of
agents to explicitly plan how to meet their commitments [38]

Rao’s AGENTSPEAK was another influential agent-oriented programming lan-
guage [28]. Agents InGENTSPEAK are programmed by defining a set of plans (some-
what like Shoham’s commitment rules), which are executdt beactively (plans are
invoked in response to events in the environment), and ptigedy (plans can be ex-
plicitly invoked by other plans). This programming modeéssentially a distillation
of Georgeff and Lansky’s Procedural Reasoning Systemd)([13], a reactive planning
framework developed in the mid-1980s that subsequentimdédrthe basis of several
other agent-oriented programming systems, notaibipRrs [8]. Rao and Georgeff
developed a number @bl logics, which, like Shoham’s logics, were ultimately in-
tended to provide a semanticSAGENTSPEAK and thePRsS[29]. However, as with
Shoham’s language, while there was plenty of intuition alhaw the logics related to
the programming language [30], the precise relationshipvdéen language and logic
was never made formal. As a consequence, one could nevlr ckai that a for-
mula of the logic expressed a property of a system; and asseqaence, one could
never verify whether the formula represented a property e true or false of a
given system. It is worth noting that Rao and Georgeff dgvetdbopreliminary model
checking techniques faDI logics [31], although because the relationship between
the logic and theeRIAGENTSPEAK was never made precise, these model checking
techniques could not be deployed to veigJAGENTSPEAK systems [40, 43]. (Itis
worth noting that at the time of writing, work is underway tevélop techniques for
model checkinghAGENTSPEAK systems [3].) Note that Hindriks’A°L language was
a direct descendant eiGENSPEAK [15]. In 3APL, agents are also programmed using
a rule-like model; the semantics and proof theory aPB were developed in some
detail.

GOLOG[21, 32] and its multiagent siblingoNGOLOG [20] represent another rich
seam of work on logic-oriented approaches to programmitignal agents. Essen-
tially, coLoG is a framework for executing a fragment of the situation wlis; the
situation calculus is a well known logical framework for seaing about action [23].
Put crudely, writing asoLOG program involves expressing a logical theory of what
action an agent should perform, using the situation cas;uhis theory, together with

28

some background axioms, represents a logical expressiovhaf it means for the
agent to do the right action. Executing such a program resitaceonstructively solv-
ing a deductive proof problem, broadly along the lines ofvghg that there is a se-
guence of actions representing an acceptable computatoonding to the theory [32,
p.121]; the witness to this proof will be a sequence of astjomhich can then be
executed.

A closely related approach is that of tkeeTATEM paradigm [12]. INMETATEM,
an agent is programmed by giving it a temporal logic speciboaof the behaviour it
should exhibit, where this specification is a conjunctiorpa$t=- futurerules. The
process of executing the specification corresponds to dooanstructive proof of the
satisfiability of the program formula, where the model beaogstructed is built in
part by the agent, and part by the environment. Another sdratevelated language
is theIMPACT framework of Subrahmanian et al. [37MPACT is a rich framework
for programming agents, which draws upon and consideraidynes some ideas from
logic programming. Agents iMPACT are programmed by using rules that incorporate
deontic modalities (permitted, forbidden, obliged [29]hese rules can be interpreted
to determine the actions that an agent should perform atigey ghoment [37, p.171].

A common feature of all the languages mentioned in this seds that the rea-
soning used to determine the action to perform takes placenatime Moreover,
as we are in all cases essentially executing a logical fantbk issue of verification
does not really arise — for example, we can be assured thagxagution trace of a
METATEM program is a model of the program formula. Indeed, this isafrtbe key
arguments in favour of using an executable logic framewadkcan be assured that a
logical program will execute according to its semantics.

There are, however, several disadvantages to deciding actian to perform by
reasoning at run time. The most obvious of these is that n#agds generally compu-
tationally costly: see, for example, the complexity resal$ésociated with algorithms
for theIMPACT framework [37, pp.399-460]. A more subtle problem is thgureng
a programmer to express a program in the language of logiit @eation calculus,
temporal logic, or deontic logic) is often not desirableedtly, we want to be able
to let the programmer use their most preferred programnontst and then verify
their work, rather than imposing a programming regime omthén this sense, we
believe masLE is closer to the reality of everyday programming. It pro@denstructs
corresponding to those that programmers everywhere arnédamith, enriched with
agent-oriented constructs. As verification is done at aetsinge, the issue of run-time
reasoning (and all the potential difficulties it entailspdaot arise. The disadvantage
of themaeLE approach is of course that we lose the elegant logical secsassociated
with directly executing logical formulae; but we argue thatwe can directly verify
MABLE Systems, this is not a major issue.

29

6 Conclusions

In this paper, we have described thesLe language for multiagent systems. This
fully-implemented language supports the development ehtsgin an imperative pro-
gramming language, enriched by some features from the -agemted programming
paradigm. However, the most important (and novel) featdireseLe is that it sup-
ports the automatic verification ekeLe systems via model checking. A designer can
formally express the requirements wfsLe systems as formulae of linear-tine®|
logic, andwvasLE is capable of automatically verifying whether or not thetesgsdoes

or does not satisfy these requirements. Another novelffeasithat although the key
communication mechanism mmeLE is asynchronous message passing in the style of
FIPA andkQML, maeLE does not dictate a semantics for the performatives usecin co
munication. Instead, a designer can explicitly define theaggics of performatives
separately from a system and, in this way, can explore thavwetr of the same sys-
tem for a range of performative semantics. Combining thaguiee with the model
checking capabilities ofiasLE, it becomes possible to automatically verify compliance
to agent communication language performatives — a probliesome interest to the
agent communication language community.

There are a number of obvious avenues for future researcst, Wie hope to fur-
ther extend the language and its model checking facilities. example, it would be
useful to add features such as true unification to the largyuagl other similar reason-
ing features. However, the addition of such features wévitably lead to a (further)
blow-up in the state space of the generated system. Foreis®n, we intend to study
the possibility ofautomatic abstractionf vasLe systems: essentially, strippimgsLe
systems down to their leanest possible representation.th&ndassue we are pursu-
ing is that of automatically generatirigvAa code frommasLe systems. For example,
suppose we havenasLe system that we have verified complies with the semantics of
theFIPA language. Then automatically generatiaga code that implements thepPa
performatives via theaADE implementation of th&IPA language [27], we can plausi-
bly (if not entirely accurately) claim that the resultalmvA system respects tiepPA
semantics.

References

[1] R. Alur, L. de Alfaro, T. A. Henzinger, S. C. Krishnan, F. €. Mang, S. Qadeer,
S. K. Rajamani, and S. TasiramOCHA user manual. University of Berkeley
Report, 2000.

[2] M. Benerecetti, F. Giunchiglia, and L. Serafini. A modakcking algorithm for
multiagent systems. In J. P. Muller, M. P. Singh, and A. S.,Rddors Intelligent
Agents V (LNAI Volume 15553pringer-Verlag: Berlin, Germany, 1999.

30

[3] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridgé&lodel checking
agentspeak. IrfProceedings of the Second International Conference on Au-
tonomous Agents and Multiagent Systems (AAMASQ©Gumbia University,
NY, USA, July 2003.

[4] E. M. Clarke, O. Grumberg, and D. A. Pelebllodel Checking The MIT Press:
Cambridge, MA, 2000.

[5] W. F. Clocksin and C. S. Mellish.Programming in Prolog Springer-Verlag:
Berlin, Germany, 1981.

[6] P. R. Cohen and C. R. Perrault. Elements of a plan basetlod speech acts.
Cognitive Scienge8:177-212, 1979.

[7] F. Dignum and M. Greaves, editorkssues in Agent Communication (LNAI Vol-
ume 1916) Springer-Verlag: Berlin, Germany, 2000.

[8] M. d’'Inverno, D. Kinny, M. Luck, and M. Wooldridge. A for@al specification
of dAMARS. In M. P. Singh, A. Rao, and M. J. Wooldridge, editdrdelligent
Agents IV (LNAI Volume 1365pages 155-176. Springer-Verlag: Berlin, Ger-
many, 1997.

[9] FIPA. Specification part 2 — Agent communication langea$997. The text
refers to the specification dated 23 October 1997.

[10] FIPA. Specification part 2 — Agent communication langeal999. The text
refers to the specification dated 16 April 1999.

[11] FIPA. The foundation for intelligent physical agent2001. See
http://www.fipa.org/

[12] M. Fisher. A survey of Concurrent rATEM — the language and its applica-
tions. In D. M. Gabbay and H. J. Ohlbach, editafemporal Logic — Proceed-
ings of the First International Conference (LNAI Volume B3¥ages 480-505.
Springer-Verlag: Berlin, Germany, July 1994.

[13] M. P. Georgeff and A. L. Lansky. Reactive reasoning alashping. InProceed-
ings of the Sixth National Conference on Atrtificial Intedlice (AAAI-87)pages
677-682, Seattle, WA, 1987.

[14] J. Y. Halpern and Y. Moses. A guide to completeness amapdexity for modal
logics of knowledge and beliefrtificial Intelligence 54:319-379, 1992.

[15] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Gteyer. Agent
programming in SAPLAutonomous Agents and Multi-Agent Syste2(4):357—
402, 1999.

31

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

G. Holzmann. Design and Validation of Computer Protocoldrentice Hall
International: Hemel Hempstead, England, 1991.

G. Holzmann. The Spin model checkdEEE Transactions on Software Engi-
neering 23(5):279-295, May 1997.

K. Konolige. A Deduction Model of Belief Pitman Publishing: London and
Morgan Kaufmann: San Mateo, CA, 1986.

Y. Labrou and T. Finin. Semantics and conversationsaafoegent communica-
tion language. IfProceedings of the Fifteenth International Joint Confeeon
Artificial Intelligence (IJCAI-97)pages 584-591, Nagoya, Japan, 1997.

Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Re#@d R. B. Scherl.
Foundations of a logical approach to agent programming. InAMoldridge,

J. P. Muller, and M. Tambe, editorbytelligent Agents Il (LNAI Volume 1037)
pages 331-346. Springer-Verlag: Berlin, Germany, 1996.

H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R.e8chGolog: A logic
programming language for dynamic domainkurnal of Logic Programming
31:59-84, 1996.

J. Mayfield, Y. Labrou, and T. Finin. Evaluating KQML as agent communica-
tion language. In M. Wooldridge, J. P. Muller, and M. Tamlshtas, Intelligent
Agents Il (LNAI Volume 1037pages 347-360. Springer-Verlag: Berlin, Ger-
many, 1996.

J. McCarthy and P. J. Hayes. Some philosophical probleom the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, edigyMachine Intelligence
4, pages 463-502. Edinburgh University Press, 1969.

K. L. McMillan. Symbolic Model Checkindluwer Academic Publishers: Dor-
drecht, The Netherlands, 1993.

J.-J. Ch. Meyer and R. J. Wieringa, editoBeontic Logic in Computer Science
— Normative System Specificatigdmhn Wiley & Sons, 1993.

J. Pitt and E. H. Mamdani. A protocol-based semanticafbagent communica-
tion language. IProceedings of the Sixteenth International Joint Confegson
Artificial Intelligence (IJCAI-99) Stockholm, Sweden, August 1999.

Agostino Poggi and Giovanni Rimassa. Adding exters#lyinchronization capa-
bilities to the agent model of a FIPA-compliant agent platfo In P. Ciancarini
and M. Wooldridge, editorsAgent-Oriented Software Engineering — Proceed-
ings of the First International Workshop AOSE-2000 (LNClhivie 1957)pages
307-322. Springer-Verlag: Berlin, Germany, 2001.

32

[28] A. S. Rao. AgentSpeak(L): BDI agents speak out in a laigiomputable lan-
guage. In W. Van de Velde and J. W. Perram, editAggnts Breaking Away: Pro-
ceedings of the Seventh European Workshop on ModellinghAoitous Agents
in a Multi-Agent World, (LNAI Volume 1038pages 42-55. Springer-Verlag:
Berlin, Germany, 1996.

[29] A.S. Rao and M. Georgeff. Decision procedures for B@jits. Journal of Logic
and Computation8(3):293-344, 1998.

[30] A. S. Rao and M. P. Georgeff. An abstract architecturerédional agents. In
C. Rich, W. Swartout, and B. Nebel, editoRrpceedings of Knowledge Repre-
sentation and Reasoning (KR&R-9ppges 439-449, 1992.

[31] A. S. Rao and M. P. Georgeff. A model-theoretic approtxkhe verification
of situated reasoning systems. Pmoceedings of the Thirteenth International
Joint Conference on Artificial Intelligence (IJCAI-93)ages 318-324, Cham-
béry, France, 1993.

[32] R. Reiter.Knowledge in ActionThe MIT Press: Cambridge, MA, 2001.

[33] Y. Shoham. Agent-oriented programmingrtificial Intelligence 60(1):51-92,
1993.

[34] M. Singh. Agent communication languages: Rethinking principles. IEEE
Computer pages 40-49, December 1998.

[35] R. G. Smith. The contract net protocdEEE Transactions on Computer§-
29(12), 1980.

[36] R. G. Smith. A Framework for Distributed Problem SolvingUMI Research
Press, 1980.

[37] V. S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kgala Ozcan, and R. Ross.
Heterogeneous Agent Systermibe MIT Press: Cambridge, MA, 2000.

[38] S.R. Thomas. The PLACA agent programming language. .IlMgoldridge and
N. R. Jennings, editordntelligent Agents: Theories, Architectures, and Lan-
guages (LNAI Volume 890pages 355-369. Springer-Verlag: Berlin, Germany,
January 1995.

[39] S. R. Thomas, Y. Shoham, A. Schwartz, and S. Kraus. Rnediry thoughts
on an agent description languageternational Journal of Intelligent Systems
6:497-508, 1991.

[40] M. Wooldridge. Agent-based software engineeriii= Proceedings on Software
Engineering 144(1):26-37, February 1997.

33

[41] M. Wooldridge. Verifiable semantics for agent commuaion languages. IRro-
ceedings of the Third International Conference on MulteAgSystems (ICMAS-
98), pages 349-365, Paris, France, 1998.

[42] M. Wooldridge. Verifying that agents implement a conmuation language.
In Proceedings of the Sixteenth National Conference on Adiiflatelligence
(AAAI-99) pages 52-57, Orlando, FL, July 1999.

[43] M. Wooldridge. Computationally grounded theories géacy. InProceedings
of the Fourth International Conference on Multi-Agent 8ys$ (ICMAS-2000)
pages 13-20, Boston, MA, 2000.

[44] M. Wooldridge. Reasoning about Rational AgeniBhe MIT Press: Cambridge,
MA, 2000.

[45] M. Wooldridge. An Introduction to Multiagent Systemgohn Wiley & Sons,
2002.

34

