B.1. PISA Analysis and Design.

Documentation for the PISA Application
This appendix presents the design documentation upon which the Java implementation of the PISA Application is based. A discussion of the analysis and design steps for this application is given in Section 1. Section 2 explains the steps required, on the behalf of the user, to generate dialogues using the given application.
1. PISA Analysis and Design

This section provides some insight to the analysis step upon which the PISA Application was based. In particular, the JAVA classes that are required to encode this application are given. These classes embody the basic operation of the PISA application – allowing any number of participants to take part in “Arguing from Experience”. Of note here, the empirical analysis of Chapter 8 was undertaken using another application, comprising the basic PISA classes, but does not implement any user interface; thus saving on the input time. Figure 1 presents a primitive class diagram showing the main classes that are needed for implementing PISA. The given design assigns the operation of the system to the Chairperson class, which comprises of three units (components), each acting as a server for a number of tasks that would form one logical unit. The design promoted here structures the chairperson into three units:

· Dialogue Management Unit (DMU): Manages and maintains the flow of PISA dialogues.
· Participants Management Unit (PMU): Maintains a list of all the participants in a PISA dialogue game. PMU also updates this list throughout the dialogue and keeps track of the activities of each participant. Additionally, this unit discards the participants who failed to contribute for a predefined number of rounds.
· Argumentation Tree Management Unit (TMU): Examines the moves received from PMU, and decides which of these moves can be added to the Argumentation Tree and which should be discarded as illegal moves. TMU then adds the legitimate moves to the tree and adjust its colouring.

A few classes in this diagram are identical to ones given in Figure 1. These classes concern the operation of mining adequate ARs from a given dataset.

[image: image24.png]

Figure 1. Primitive class diagram for PISA.

The above class diagram is extended to provide details with respect to the attributes and operations embodied in each class. However, due to the complex nature of the promoted PISA Application a separate description is given for each of the chairperson and the three basic units – GMU, DMU and TMU. Figure 2 illustrate the class diagrams of the chairperson agent. The classes described were implemented using Java, as intended, to operate PISA as outlined in Chapter 6 and 7. This implementation was tested thoroughly to ensure it is bug-free. The given classes provide the basic operation of PISA, on the assumption that all the input parameters are given.

[image: image2]
Figure 2. Detailed class diagram for the chairperson and the associated classes.

Chapter 6 presented a special GUI interface intended to provide means to facilitate this input process, on the behalf of the user. The given interface aims at providing the user with a variety of output, thus the operation of PISA could be assessed and investigated thoroughly. The diagram in Figure 3 exemplifies the incorporation of the GUI interface within the PISA Application. Note that in this diagram, all the classes from the above UML diagram are omitted for reasons of space, only the Chairperson class remains in this diagram; as the GUI operation is intended to provide this class with sufficient input to start the dialogue. Additionally, the chairperson will provide the given GUI classes with sufficient information to produce the required output.

[image: image3]
Figure 3. Class design of the PISA Application.

A.1. Simple User Manual for the PISA Application

An example is now provided to demonstrate the operation of the PISA Framework and the style of dialogues produced. In this example, PISA is applied to a variation of the RPHA scenario reinterpreted so that the number of classes was increased from two classes; entitled or not entitled: to four; entitled, entitled with priority, partially entitled and not entitled. The conditions for each of the four classes to apply were defined as follows:

· (Fully) Entitled: Candidates entitle to full housing benefit allowance if they satisfy all the RPHA five conditions.

· Entitled with Priority: Candidates entitle to housing benefit allowance with priority if they satisfy the entitling conditions and also satisfy one of the following: (i) they have paid contributions in four out of the last five years and either have less capital than the original limit (this is interpreted as £1000 less than the original limit) or have has less income than the original limit (by 5%), or (ii) they are member of the armed forces and have paid contributions in five out of the last five years.

· Partially Entitled: Candidates entitle to a lower rate of benefit if they satisfy the age condition, and they either: (i) have slightly more capital than the original limit (+£1000 more than the original limit), but have paid contributions in 4 (or 5) years out of the last five, (ii) have slightly more available income (+5%) than the original limit, but have paid contributions in 4 (5) years out of the last five, (iii) are employed in the Merchant Navy and have paid contributions in five out of the last five years.

· Not Entitled: The candidate fails to satisfy any of the above.

Assume that there are four different offices providing RPHA services in four different regions, each has a dataset of 6,000 benefit records. Each dataset was assigned to a PISA Player Agent. Thus a total of four Players Agents would engage in dialogues regarding the classification of RPHA applicants, each player defending one of the four possible classifications described above. Support and confidence thresholds of 1% and 50%, respectively, were used when mining ARs. PISA was then applied to the case of a male applicant, aged around 55 years, who was a UK resident whose capital (less than £3000) and income falls in the right range (less than 15%), and who has paid contributions in three out of the last five years. According to the conditions listed above this applicant should not be awarded any benefit, since he fails on the age condition. Figures 4(a) and 4(b) show how the example dialogue produced by the PISA reaches this conclusion. This example shows how the PISA can be used to construct meaningful dialogues explaining the reason behind assigning a classification to each input case. Just like in the PADUA application, no intervention, on the behalf of the user, is necessary beyond the input activities. After the dialogue game has finished, the user can inspect the resulting dialogue, and decide whether another run of the application using different input parameters (changing the support/confidence values) is necessary. To help users assess the quality of the dialogues produced, the GUI provides plenty of easy-to-access output data, in addition to the actual dialogue, including: a graphical representation of the Argumentation Tree at the end of each dialogue (Figure 5), and a textual description of the moves stored in the History Log. A partial view of this representation is given in Figure 6. These additional pieces of information were targeted at users interested in closely examining the structure of the PISA Framework, and the quality of the dialogue produced.

[image: image4]
Figure 4(a) . The Housing Benefit dialogue.

[image: image5]
Figure 4(b) . The Housing Benefit dialogue (continued).

[image: image6]
Figure 5. The Argumentation Tree of the Housing Benefits example.

[image: image7]
Figure 6. The History Log of the Housing Benefits example.

The above example was intended to provide an insight to the dialogues produced using PISA. Given below in Figures 7 – 10 is a description of how to operate the given application, from starting it to producing dialogues. These figures are intended to explain the steps that were taken to produce the dialogue shown in Figures 4, 5 and 6. These figures are intended to illustrate the essential steps required for the successful usage of the PISA Application. The first step is to upload an adequate game dictionary file (Figure 7). Once this file is uploaded the user has to create a number of groups equal to the number of classifications given in the game dictionary file, for each group the user is free to add as many individual player as she wishes (Figure 8, 9 and 10). The user then can insert an input case and start the dialogue game, and then examine the resulting dialogue. The promoted application provides the user with additional output illustrating the Argumentation Tree (Figure 5) and the History Log (Figure 6) data structures.

[image: image8]
Figure 7. Introductory screen to PISA.

[image: image9]
Figure 8. Create a new group.

[image: image10]
Figure 9. Add a new player (in PISA).

[image: image11]
Figure 10. The group information display at the formation level.

Having described the basic operation of PISA, the additional features of this application can now be discussed: Figure 11 exemplifies the strategy selection process, by which the optional strategy parameters are and how the user may change the game setting parameters.

[image: image12]
Figure 11. Advanced Strategy Options.

i
ii
iii

[image: image1][image: image13.png]Wmanmnounoemaniini| [Focummant] [Timaracs [aTetioss
AT o wdends
baspar
o wtents | compossd o
s part tend: posed of ComprassedArgTraehiods
PRk X .
0
o por| Chatperon o gt Cedesnipunit
mumatace| s ot maintaine !
i
T
extends] Y HistoryLogNode e
pr— o GroupPlayer Stiategy.
P itonog [ompria
sintains compize gy 1 11 apmids
- hetvecraumLint
e Rk
T 1 1
el Rutewiningunt]| | [ovetoge
PTreeNode 1
* [retmeorouptemae | nolude T
has ke Gontine
1 _1
FamaT e Tor P e b1
e Ruteods
° . ambaties
extends A
or 4 .
TTreeNode TTree assocRuleMining |#42% [RuleList has
e wten]

[image: image14.png]Gamessttings

U TUinterace

maxTressizs s int
maxGroups - int
maxounds : int
cunentplayers : int
maxiips int

rqTres - ArgTres [fosusingLevel int

<<orate>> GamaSetingats intg :intr int int): Games:
DesreaseCunentPiayersivalue - in) : void

etings|

s daRoundMovesmoves Move [Liound £ in): boslean | gutends |<<oreste>> TMUIntatzoet: ArgTres.flevel inh - THUIntertace.

PrunPiayerplayerinds ind - void greenConfidence) : double
equestLest) : ArgTrestlode [] areencontPlayeings0 int
initiatise(ourentPlayersto - intmaxTreesize - int) void equestCompressedLeati): CompressedaraTrestiode
createintertace(iocusingLevel - void): TMUInterase hassreentiode: boolean

o

ounds int

initatise0 void

rsetRound void ol

increaseRouncen : vid

applas
ool

haspart

oy

otveGroups ActiveGroupLit
history HistoyLog

[<<oraate>> OMUmaPlayers £ in): MU
ddnewroup(goa s shorplayers : GroupPlayer [1): boolean
deletesroup(index: ind : boolean

intialise) : void

tatGame0: void

fistoundo : Move

nextRound) : Move [

deleteldleGroups0): boolean

dominantslueg - int

FoousingUnit

Chalrperson [tongastpstiong - ArgTrestiode (1

foousedstingetPositiond - ArgTreeNads (]
4dRoundBestiove(moves : Move [1): boolean

cunentCase s short]
etatus : int
foousingLevel int
c1ascications : short (1

<<oreate>> Chaimpemanttoousinalavel - int): Chaiparsan
set0ameP arametentsatings - GameSetins) : void
danewsroup(aroup - Group):void

initisliseGameoase : hort [1.6lasses - short (1 void WinneranounsementUnit
[tatGame0: void

playGameo: void

getiinneriee ArgTres): GroupPlayer

[—"Sfuinningliodesties - AraTres) - CompressedargTreatiode
has JwinnersLitiree : ArgTres): GroupPlayer]

OMuInetase

[eciodeToMova(nods - CompressedaraTrestlode): Move
eatsTomtovest - Move [1
<<oreate>> OMUIntertace(h : historyLog.aroups : ActiveGroupLish: GMUlntartace

extends

[image: image15.png]GameDictionary
1

exdends

o

uses
Y PISAGUIView
Chairperson ounentCase :shot (1| 1 1.4 [spingutiies
applies
1
1 uses
uses ! Cintetace>>
Crealizess | <Cintertace>> |,
1 tionListener K]~

DynamicCaseDialog

o

Ay

ealize>>

PISAFilter

stteayGptorsbialog |

AddtiewsroupDiatog | [AddNenPlayeriatos |

extends

extends
Ava

Jbialog

‘extends

[image: image16.jpg]Seta

New Game| Play Game Options
Load Game Dictionary _ Ctrl+D
Focusing Level »
Set New Groups Ctil-6
Change Game Options Ctrl-O
Bt culsQ

Help

Game Dictionary has been LOADED!
Focusing Level = UNFOCUSED!

|azalogue outpuc: empty - no game has been plaved yet

“What should we

G RealPlayer: Va Tehne.

PRAGUApplication

[image: image17.jpg]4| Add New Group.

Insert the Groups Goal

|GROUPS DETAIL:

[add another Group

Dore_|

[image: image18.jpg]‘Add New Player
entitied

Insert Player's Data File [InsertData Fle.

minimum support o1

you have not dhosen any dataset fie yet

Player's Strategy

Swegy Atsckwhenposbe v

Inference Mode i

[image: image19.jpg]2] Add New Group

Insert the Groups Goal

fority entited
GROUES DETAILS:

adding player to group : not entitled
dataFile: C:\HBGroups\Group1\G1_P1.num
minimm support: 0.1

Strategy Type: attack whenever possible
stracegy Mode: Destroy

Smarcness Level: Blind

dataFile: C:\HBGroups\Groupl\G1_P2.num
minimom support: 0.1

Strategy Type: actack when needed
strategy Mode: Build

Smarcness Level: Tree Oriented

Add another Group

Done

[image: image20.png]Game Mode
Player's Profie | Agreeable

ARM Options

Minimum Confidence (55
Distinguish Threshold |20

Maximum Tree Level |10

[image: image21.png]

[image: image22.png]

[image: image23.png]

