
REPRODUCER CLASSIFICATION USING

THE THEORY OF AFFORDANCES:

MODELS AND EXAMPLES

Matt WEBSTER, Grant MALCOLM

Department of Computer Science,

University of Liverpool, Liverpool, UK

E-mail: {matt,grant}@csc.liv.ac.uk

Abstract

We present a novel classification of reproducers based on Gibson’s the-

ory of affordances. Using affordances we are able to describe reproducer

behaviour and determine how much the reproducer relies on external

agency during its reproductive process. We give an informal overview

of four main reproducer types, along with illustrative examples, and in-

troduce the notions of active, passive and biactive reproducers for further

subclassification. A formal definition of reproduction models is given,

and we give three worked examples to show the application of this for-

malism to the classification of both artificial and natural reproducers. We

introduce a modified version of the Type I conjecture from our earlier

work, and conjecture that all reproducers can be categorised as “trivial”

(Type IV) reproducers with the introduction of a “deity” into the model.

We give a detailed overview of future work, with details on a potential

application to computer virus detection.

Keywords: reproducers, classification, reproduction, affordances, artifi-

cial life, computer virology

1 Introduction

The classification of life, both natural and artificial, is relevant to several

fields, including biology, artificial life and computer virology. In order to de-

velop a classification of life forms, one must first determine what constitutes

the class of living things. Defining the boundary between animate and inan-

imate often gives false positives and negatives. Reproduction, on the other

hand, is comparatively simple to define, and is an essential characteristic in

most definitions of what it means to be alive (see, e.g., [23, 18]).

Reproducers are entities which engage in reproduction, where reproduc-

tion is the act of producing an offspring. Similar terms to reproduction exist in

the literature, including “production”, “self-production”, “self-reproduction”,

“replication” and “self-replication”. Some of these terms are used to distin-

guish between unaided and aided reproduction, however, we take “reproducer”

to mean any entity which is reproduced, regardless of its level of involvement

in the reproductive process.

In the literature there are clear and paradigmatic examples of reproduc-

ers: biological organisms and the genes that control them [6], von Neumann’s

reproducing automaton [21], computer viruses [4] and other forms of repro-

ducing malware [7], and so forth. However, there are other examples that

stretch intuitive definitions of reproduction: photocopies [13], gliders in cellu-

lar automata [9], seeding crystals, fixed points of functions, or even a pen on a

desk which, in being a static object, “reproduces” from one instant to the next

thanks to the physical laws of the Universe.

One distinction between the paradigmatic and the trivial reproducers is

that the members of the former group seem more independent and structured,

whereas the latter group seem to reproduce almost accidentally, since the bulk

of their reproductive processes is enabled by some external agency. One might

try to construct a definition of reproduction that rules out such rogue examples;

an alternative approach would be to classify different kinds of reproducers:

i.e., to structure the space of reproducers in such a way that trivial and rogue

examples of reproducers inhabit a clearly defined region that is separated from

the region containing the paradigmatic examples. This is the approach taken

in the present paper, where we give a classification of reproducers based on

Gibson’s Theory of Affordances [10]. By classifying and structuring the space

of reproducers, we hope to gain insight into the similarities and differences

between various reproductive processes, and hence, if only indirectly, gain

insight into what constitutes life.

The class of reproducers has been subdivided many times, according to

various criteria (see, e.g., [16, 19]); a comprehensive overview of several of

these classifications is given by Freitas & Merkle (ch. 5, [8]). Our approach

seems to be novel in using a theory of affordances to develop an ecological

approach to modelling reproduction. In Section 2, we set out our classifica-

tion, which is based on a division between self-description on the one hand,

and the machinery of reproduction on the other. Any specific example of a

reproductive process will involve a number of agents (or entities), which will

include the reproducer itself. The classification is based on analysing which

actions in the reproductive process are under the control of the reproducer it-

self, and which actions are made possible, i.e., afforded to the reproducer, by

other entities.

Section 2 also gives types for each class of reproducer, e.g., von Neu-

mann’s reproducing automaton, bacteriophage viruses, various kinds of com-

puter viruses, and — in the trivial corner — photocopied documents. The ap-

proach in this section is very much a pragmatic realist one that discusses “real

world” examples; Section 3 gives a more formalist approach to our classifica-

tion, in which the focus is on classifying models of reproductive processes. We

give a formal definition of such models, in which we can state precisely what

is meant by an affordance. We also give worked examples of a computer virus,

a bacteriophage virus and Langton’s loop. Although the presentation of the

model of the computer virus is merely sketched, it is based on a very precise

formal model presented as an equational theory of the semantics of assembly

language [26, 24]. The two other formal reproduction models are constructed

differently, based on an abstraction of the actions of the reproductive processes

given by the empirical analysis of the behaviour of these reproducers.

This formal approach to modelling reproduction allows us to formulate re-

lationships between models, which means that our classification is much more

like a structured space of reproducers. This lets us develop formal statements

of properties of the structure of this space, such as those given in Section 3.5.

This paper follows on from earlier work [27] on reproducer classification,

in which we first laid out the means for reproducer classification using af-

fordances. This paper gives more information and worked examples, and in

Section 3.5 we introduce “self sets” as a means of modelling reproducers that

evolve. In the same subsection we give new and modified conjectures on the

structure of the reproducer space, and a potential application to computer vi-

rology. In the concluding section we give further directions for future research

on this topic.

2 Classification Using Affordances

One of the earliest formal analyses of reproduction was given by von Neu-

mann [21]. One of the aims of his work was to prove by construction the exis-

tence of a formalised automaton capable of reproduction. Von Neumann split

his automaton into two separate parts: a self-description stored on a tape (anal-

ogous to a Turing machine tape), which was passed as input to a constructor

capable of fabricating any configuration of cells within the cellular automaton

in which the reproducing automaton existed. This constructor was therefore

a universal constructor; “universal” having an analagous meaning to “univer-

sal” Turing machines. Von Neumann’s reproducing automaton was based on

a complex cellular automaton, but even the subsequent, and much more sim-

ple reproducers such as Langton’s [15] still retained an architecture based on a

self-description and reproductive mechanism.

Our ontology and classification are based upon this division of an act of

reproduction into self-description and reproductive mechanism phases. As

well as von Neumann’s reproducing automaton and Langton’s loop, this ab-

stract architecture is used by biological organisms, in the form of the genetic

code (self-description) and the complex biological machinery which translates

this code into offspring (reproductive mechanism). Biological viruses also use

this architecture, although a significant part of their reproductive mechanism is

given by an external entity: whichever organism the virus infects enables the

reproduction of the virus, since viruses typically lack a sufficient reproductive

machinery in order to complete their reproductive process. Other well-known

reproducers such as Tierran organisms [17] generate a self-description by self-

analysis. Their self-descriptions are not encoded as is the case with a genome,

however the organisms still provide the description to themselves by their re-

productive behaviour. The organisms copy their self-description one byte at

a time to create an offspring, which constitutes the organism’s reproductive

mechanism. Computer viruses and other forms of reproducing malware can

generate a self-description in a similar way to the Tierran organisms (i.e., by

self-analysis), or they can carry an encoded self-description within their own

bytecode [26]. The reproductive mechanism is then the algorithm which cre-

ates a copy (offspring) of the virus based on the self-description. More “trivial”

reproducers such as photocopies still employ a self-description and reproduc-

tive mechanism in their reproductive processes, although they are given by

an external entity (the photocopier). Cellular automaton gliders such as those

seen in Conway’s Game of Life [9] can also be seen to have a self-description

and reproductive mechanism, although it is given to the reproducing gliders by

an external agent: the self-description is contained in the state of the cellular

automaton, and the reproductive mechanism is the state transition rule which

creates the offspring (to be contained in the successive state). The reproductive

architecture of self-description and reproductive mechanism can also be seen

in other reproducers, but space limitations do not permit their inclusion.

The first step in classification involves identifying the parts of the reproduc-

tive process which correspond to the self-description and reproductive mecha-

nism. Next we must determine which entities assist in the acts of self-descrip-

tion and reproductive mechanism. As we shall see in the forthcoming descrip-

tions, definitions and worked examples, if the reproducer is not assisted in

its reproductive process, i.e., if it is not afforded its self-description and re-

productive mechanism by an external entity, then we classify it as “Type I”.

A reproducer which is afforded either its reproductive mechanism or its self-

description is either “Type II” or “Type III” respectively. A reproducer which

is afforded both the self-description and reproductive mechanism by an exter-

nal entity is “Type IV”.

Therefore, these types are the four corners of a reproducer classification

space, and reproducers (such as biological organisms, artificial organisms, and

computer viruses) occupy different points within this space depending on their

reproductive reliance on themselves and the external agents in their environ-

ment.

2.1 Affordance Theory

Gibson’s theory of affordances describes the functional relationships be-

tween an animal and its environment [10]. For an animal, an affordance is

an “opportunity for action.” For example, a piece of food affords an animal

nourishment, a tree affords it the ability to climb to safety, and a cave affords

shelter. We use affordances to form a classification of reproducers based on the

functionality that they afford to themselves and the functionality that their en-

vironment affords them, with respect to reproduction. Gibson also describes a

niche in an environment, into which an organism fits, as a “set of affordances.”

Therefore, in this paper we categorise different reproducers according to the

sets of affordances corresponding to their reproductive niches.

Here we use “affordance” metaphorically; we apply it to reproducers rather

than animals, replacing “animal” with “reproducer” in Gibson’s original def-

inition. If we allow this slight expansion of the definition of the word, this

affordance-based ontology can afford us an intuitive and novel way of ap-

proaching the classification of reproducers.

For historical reasons “affordance” has come to mean “perceived affor-

dance” in the domain of human–computer interaction [20]. It is important

to note that apart from the slight expansion of the definition that we mention

above, we take “affordance” to mean “opportunity for action”, as in the origi-

nal definition given by Gibson.

2.2 Type I Reproducers

John von Neumann’s reproducing automaton was the first mathematical

model of a reproductive process. Von Neumann identified that reproduction

is possible when the reproducer has a self-contained self-description, and a re-

productive machinery that interprets the self-description as a set of instructions

for producing an offspring [21]. From an abstract point of view, this is the

same process that biological organisms undergo during reproduction, where

the genome (qua self-description) is interpreted by the reproductive machinery

within the organism to produce an offspring. We will call this mode of repro-

duction Type I. The von Neumann reproducer is completely self-reliant with

respect to reproduction, as its reproductive mechanism and self-description

are completely self-contained. The self-description consists of a tape that is

attached to the automaton. The reproductive mechanism of the automaton con-

sists of the method by which the tape is read and translated into a sequence of

instructions, which are fed to the constructing arm in order to construct the

offspring.

2.2.1 Example: Langton’s Loop

Langton’s reproducing loops consist of an outer sheath which encapsu-

lates a sequence of cells with various states (a data signal), which effectively

correspond to instructions to the construction arm for building an offspring

loop [15]. The self-description here is the data signal within the sheath, and

the reproduction mechanism is the means by which the instruction in the self-

description are “interpreted” by the constructing arm. Both the self-description

and reproductive mechanism are self-contained, and therefore this particular

case of reproduction belongs in Type I.

2.3 Type II Reproducers

Biology, as well as artificial life and computer virology, presents us with

examples of reproduction that do not fit into Type I. For example, biologi-

cal viruses such as the T4 bacteriophage (Fig. 1) have a self-contained self-

description, but lack a completely self-contained reproductive machinery to

interpret the self-description and produce an offspring. Instead, these viruses

inject their viral self-description into a host cell (e.g., a bacterium, in the case

of T4) where it essentially hijacks the reproductive mechanism of the cell so

that the cell no longer creates copies of itself, but rather copies of the virus.

A Type II reproducer differs from Type I in that it lacks a completely self-

afforded reproductive mechanism. There is a self-afforded self-description

Figure 1. The T4 bacteriophage virus [14]. The legs of the T4 attach themselves to the

cell wall of a bacterium. Then, using the base plate and tail as an injection mechanism,

the genetic material in the head is transferred to the interior of the host cell, where it

hijacks the reproductive mechanism of the cell in order to reproduce.

mechanism, but the reproductive mechanism is afforded (at least in part) by

an external agent to the Type II reproducer.

2.3.1 Example: Automaton With Self-Description

An example of a Type II reproducer would be an automaton similar to the

von Neumann reproducing automaton. This automaton does not need to be a

universal constructor, or have any construction abilities at all. It must, how-

ever, contain a self-description such that when it is interpreted by an external

agent with constructing abilities (i.e., an external reproductive mechanism) the

resulting construction is an offspring of the reproducer. The Type II repro-

ducer then reproduces by the agency of an external constructor that takes the

self-description within the reproducer and creates an offspring based on it.

2.3.2 Example: T4 Bacteriophage

The T4 bacteriophage affords itself a sufficient self-description in the form

of its genome, encoded as DNA or RNA (see Fig. 1). The first stage in the

reproductive process (the injection of the genetic material into the host bac-

terium) is performed by the T4 itself, and therefore part of the reproductive

mechanism is self-contained. However, since all of the subsequent stages of

the reproduction are afforded by the bacterium, we can say the mode of repro-

duction for the T4 bacteriophage is Type II.

2.4 Type III Reproducers

So far we have described two reproductive types corresponding to the

case where a self-description and a reproductive mechanism are afforded com-

pletely by a reproducer to itself (Type I), and the case where a self-description

is afforded by the reproducer to itself but the reproductive mechanism is (at

least partially) afforded by some other agent (Type II). Let us consider a repro-

ducer that does not afford itself a self-description completely, but does afford

itself a complete reproductive mechanism. Therefore, in order to complete its

reproductive cycle it must obtain a complete self-description. We call this Type

III reproduction.

Type III reproducers differ from Type I reproducers in that they lack a

completely self-afforded self-description, but they do have a complete and suf-

ficient self-afforded reproductive mechanism. In terms of the von Neumann

reproducing automaton, we can visualise a Type III reproducer as being a

von Neumann reproducing automaton without the input tape providing a self-

description. The reproductive cycle can then only be completed by the action

of an external agent that provides a self-description suitable for interpretation

by the reproductive machinery of the reproducing automaton.

2.4.1 Example: Compiler

A compiler (in reproducing automata terms) is a constructor of programs,

which takes as its input a sequence of symbols in some programming lan-

guage (i.e., source code). A compiler can be given its own source code (self-

description) as input, and as a result it will create a copy of itself based on these

instructions. Therefore, a compiler has a completely self-afforded reproductive

mechanism, but the self-description is afforded by external agency. Therefore

a compiler is a Type III reproducer.

2.4.2 Example: Damaged Bacterium

It is difficult to think of a biological example approximating Type III re-

production. However, we might imagine a bacterium that has been damaged

so that it no longer contains any genetic material. At this point there will be

no self-description but there will be a completely self-afforded reproductive

mechanism, and reproduction will only be possible through the action of an

external agent that affords a sufficient self-description.

2.5 Type IV Reproducers

Let us now consider a reproducer that does not afford itself completely

either a self-description or a reproductive mechanism. If reproduction is to

take place it follows that some agent external to the reproducer must provide

the necessary self-description and reproductive mechanism. We call this Type

IV reproduction.

2.5.1 Example: Game of Life Gliders

Cellular automaton (CA) gliders in Conway’s Game of Life [9] are able to

reproduce trivially thanks to the transition rule of the CA. Here, the state of

the CA at a particular instant stores the glider’s description, and therefore acts

as a self-description for the glider. The reproductive mechanism is provided

by the transition rule which maps one state of the CA to the next, and causes

the glider to reproduce to a new point on the CA grid. Therefore a glider is a

Type IV reproducer, as it does not afford itself completely either a reproductive

mechanism or a self-description.

2.5.2 Example: The Photocopy

The information stored in writing on a piece of paper is able to reproduce

trivially in an environment with a photocopier. A piece of paper is fed into the

photocopier, at which point it is scanned and a representation (digital or oth-

erwise) which captures the appearance of the piece of paper is created. This

representation is a self-description for the piece of paper. This representation

is then fed to the printer within the photocopier, which creates a facsimile of

the original piece of paper in the form of a photocopy. This printing process is

the reproductive mechanism for the writing on the paper. The photocopy there-

fore does not afford itself completely either a self-description or reproductive

mechanism, making it a Type IV reproducer.

2.6 Active, Passive and Biactive Reproducers

Reproducers outside Type I necessarily lack some essential part(s) of their

reproduction mechanism: either the self-description, the reproductive mech-

anism, or both. These lacking parts must be provided by an external entity.

However, some reproducers outside Type I may afford themselves an action

which assists in the acquisition of a self-description and/or a reproductive

mechanism in order to complete their reproductive process. For example, the

rm ∈

Aff (r, r)
Type III Type I

rm ∈

Aff (r̂, r)
Type IV Type II

sd ∈ Aff (r̂, r) sd ∈ Aff (r, r)

Figure 2. The four reproducer types, where r is a reproducer, r̂ is some entity other

than r, sd and rm are the abstract actions corresponding to the self-description and

reproductive mechanism respectively, and Aff (r, r) is the set of actions that r affords

itself. Note that affordance sets are not disjoint, so that (for example) if sd ∈ Aff (r̂, r)

then sd ∈ Aff (r, r) also, if needed.

T4 bacteriophage given in Section 2.3.2 has an injection mechanism for insert-

ing its genetic code into a host cell. Reproducers like this are called active.

Some reproducers, like the photocopy, do not afford themselves any such ac-

tion obtaining a self-description or reproductive mechanism, and are therefore

called passive. If a reproducer lacks both a self-description and a reproductive

mechanism, but affords itself action(s) which enable its acquisition of both,

then it is called biactive. Therefore, Type II and III reproducers can either be

active or passive. Type IV reproducers can be either passive, biactive, or active

with respect to the either the self-description or the reproductive mechanism.

3 A Formal Approach to Modelling Affordances

The preceding discussion has focused on the distinguishing characteristics

of the different types and sub-types of reproduction. These characteristics were

described in terms of the actions afforded by entities to other entities. The iden-

tification of the entities and actions involved in a process, and the allocation

of affordances among these entities, depends upon the level of abstraction at

which the process is viewed: in other words, what we are characterising is not

so much processes themselves, as models of processes. A long-term goal of

our research is not just to classify models of reproductive processes, but to be

able to compare and relate different models. This might allow us, for example,

to identify strategies for reproduction, such as the various ways of “hijacking”

the reproductive machinery of other reproducers: bacteriophage viruses and

computer viruses rely on another, general-purpose reproductive mechanism

— proteins that will copy any DNA or RNA sequence; universal construc-

tors or compilers that will work on any input sequence of instructions, and so

forth. A deep understanding of such strategies would be useful, for example, in

computer virology, in designing security protocols for mobile processes. We

believe that such advances are most likely to be achieved by providing for-

mal notions of model and relationships between models, along the lines of the

relationships between algebraic theories of formal ontologies (see, e.g., [2]).

In this section, we give a more formal approach to modelling reproduc-

tion and affordances. We begin by defining what we mean by a model of a

reproductive process, and what an affordance is in such models. We then give

worked examples of a copier computer virus (Section 3.2), a bacteriophage

virus (Section 3.4) and Langton’s loop (Section 3.3). Finally, Section 3.5 gives

a discussion of how the space of reproduction models is structured by the in-

troduction of two conjectures, and we introduce “self sets” as a means of mod-

elling evolution within our ontology.

3.1 Models and Affordances

We assume that any model of a reproductive process identifies the states

of affairs within which the process plays itself out. In more formal processes,

such as the von Neumann reproducing automaton or computer viruses, these

states of affairs may be very clearly and precisely defined: e.g., the states of the

grid of cellular automata, or the states of a computer that contains a virus, in-

cluding the files stored on disk, the contents of working memory, and so forth.

The example we present in Section 3.2 below uses a very formal description of

such computer states based on previous work in modelling computer viruses

through an algebraic theory that captures the semantics of a computer assem-

bly language [24, 26]. In more “real life” examples, such as the bacteriophage

virus (3.4), these states may be more abstractly presented: e.g., some aque-

ous solution containing cells and viruses, with perhaps some virus attached to

some cell membrane, or some cell having been injected with viral DNA, and

so forth.

Two key elements of the states of a model are the entities that partake in

the various states, and the actions that allow one state to evolve into another

state. For example, we might consider some aqueous solution containing bac-

teria and bacteriophages, and we might identify a particular state in which a

particular bacterium and a particular bacteriophage are present, and close to

each other. If the bacteriophage attaches to the bacterium, this action takes

us to a new state in which both the bacterium and bacteriophage are present,

but now rather than merely being in the bacterium’s neighbourhood, the bac-

teriophage is latched on to the cell’s outer membrane. In general, we assume

that a model identifies the key entities or agents that take part in the process

being modelled, and has some way of identifying whether a particular entity

occurs in a particular state of affairs (e.g., once an infected bacterium’s cell

membrane has ruptured, that bacterium will presumably no longer be present

in any further states). We also assume that a model identifies those actions that

are relevant to the process being modelled, and describes which actions may

occur to allow one state of affairs to be succeeded by another. In computer

science, we call such a structure describing states, actions, and a relation of

succession, a “labelled transition system”; as far as modelling is concerned,

a key property is that these need not be deterministic: there might be several

states that succeed another state as the result of some particular action.

This basic framework allows us to talk about reproductive processes: we

can say that reproduction means that there is some entity r (the reproducer),

some state s (the initial state of the reproductive process) with r present in state

s (denoted “r ε s” — see Definition 1 in this section) and some sequence w =

a1, . . . , an of actions, such that w leads, through a succession of intermediate

states, to a state s′ with r ε s′. This, of course, allows for trivial reproductive

processes, in which the entity r simply persists through the successive states

from s to s′, but also allows for more interesting cases where r is, e.g., a von

Neumann reproducing automaton, and the succession of states represents all

the intermediate states involved in the construction of its copy. We assume that

the relation r ε s can be made abstract enough to accommodate an appropriate

laxity in the notion of entity: i.e., we should gloss r ε s as stating that the entity

r, or a copy of r, or even a possible progeny of r, is present in the state s. In

computer virology, such an abstraction was explicit in the pioneering work of

Cohen [4], where a virus was identified with the set of forms that the virus

could take. This approach is useful for so-called metamorphic viruses that, in

an attempt to avoid detection, may mutate their source code. Cohen’s sets of

possible forms are referred to as “viral sets”; we might say that our approach

identifies entities modulo “self sets.” A more in-depth discussion of self sets is

given in Section 3.5.3.

In the previous section, we saw that it was possible to characterise various

types of reproductive systems, including trivial systems, by means of affor-

dances. In the more formal approach of this section, we can say that affor-

dances are ways of carving up possible actions among the entities of the sys-

tem. Actions may be afforded by one entity to another. We write Aff (e, e′) for

the actions that entity e affords to entity e′. The idea is that these are actions

that are available to e′ only in states where e is present. Thus, we require that

a model carves up these actions in a coherent way: formally, for any state s

where e′ is present, the action a is possible (i.e., a leads to at least one state

that succeeds s) only if e is also present in s.

These assumptions on models are captured in the following

Definition 1 A reproduction model consists of:

• a labelled transition system (S , A, 7−→), where S is a set of states, A

is a set of actions (labels), and 7−→ is a ternary relation for labelled

transitions between states, s.t. if s
a
7−→ s′, the action a occurring in the

state s leads to the new state s′;

• a set Ent of entities and a relation _ ε _ between entities and states,

where for e ∈ Ent and s ∈ S , e ε s indicates that e is present in the state

s;

• a function Aff that assigns to two entities e and e′, a set Aff (e, e′) of

possible actions, in such a way that if a ∈ Aff (e, e′), then for all states s

with e′ ε s, a is possible in s (i.e., s
a
7−→ s′ for some state s′) only if e ε s.

Notionally, Aff (e, e′) is the set of affordances that e gives to e′;

• two sets of actions Asd and Arm which correspond to the actions involved

in the reproducer’s self-description and reproductive mechanism respec-

tively, such that Asd, Arm ⊆ A.

This basic framework allows us to characterise reproductive systems, and clas-

sify them according to the types given in the previous section. For example, we

could first specify that there is some reproducer r whose reproductive process

can be described using a labelled transition system s1

a1
7−→ s2

a2
7−→ . . .

an
7−→ sn. In

order to show that r is a Type I reproducer, we must specify that all actions are

only afforded by the reproducer to itself, i.e., for each action ai (1 ≤ i ≤ n),

we have ai ∈ Aff (r, r). Therefore, every action in the reproductive process is

only afforded by r to itself, and this includes the actions that correspond to

the abstract actions sd and rm (i.e., the actions in Asd and Arm respectively).

Therefore, sd, rm ∈ Aff (r, r) and therefore r is Type I.

Type II classification would be as follows. We need to establish which

actions correspond to the self-description and reproductive mechanism, and

construct sets Asd and Arm respectively. Then, if all actions corresponding to

the self-description are afforded only by the reproducer to itself, i.e., for all

a ∈ Asd, a ∈ Aff (r, r), then we know that the reproducer is either Type I or II

(see Fig. 2). If we also know that there is at least one action that is afforded by

an external entity, e which is different from r, then we know that the reproducer

r is Type II. Formally we say that there must exist some a ∈ Arm and e ∈ Ent

such that a ∈ Aff (e, r), and therefore {r, e} ⊆ Ent. Type III classification is

similar to Type II classification, except that sd and rm are swapped.

Type IV classification can be achieved by showing that there are actions

in the reproductive process that are afforded by some external entity e to the

reproducer r. Formally we say that there must exist some a ∈ Arm, a′ ∈ Asd

and e, e′ ∈ Ent such that a ∈ Aff (e, r) and a′ ∈ Aff (e′, r), where e and e′ are

different from r.

3.2 Worked Example: Copier Computer Virus

In order to illustrate a concrete example of reproducer classification, we

present the copier computer virus (Fig. 3). The virus shown here is written in

SPL, an ad hoc programming language designed specifically for the purpose of

modelling computer viruses [24]. The syntax and semantics of SPL are defined

formally using OBJ, a formal notation for algebraic specification [11].

The copier virus exists in an environment consisting of a file system and

an operating system that can manipulate the file system. Programs written in

SPL can manipulate the file system using operating system function calls.

The behaviour of the computer virus is as follows. In line 1 the vari-

able fh1 is assigned the returning value of the function getFileHandle,

which returns an arbitrary file handle from the file list. In line 2 the function

getSelfName is called in order to return the file handle of the file currently

running (i.e., the file handle of “self”) and it is assigned to variable myName.

In line 3 the variable nfh is set to the value of a new file handle, that is, a file

handle that is not currently being used by any other file. This is so that a tem-

porary file can be created and written to during the infection process. In lines

4–5 two variables that are needed for the forthcoming do {_} while (_)

loop are initialised.

In line 6 we encounter the loop. In the first iteration of the loop, the 0th

statement (i.e., the first line) of the file named myName (which is the file cur-

rently running and therefore the file containing the virus) is read in by the

function getLine(_,_) and assigned to the variable line. Next, this state-

ment is written to the temporary file called nfh using the writeToFile(_,_)

function. In line 9 the variable counter is incremented, so that on the next

iteration of the loop the following line will be read in and written to the file

nfh, and so on.

The net effect of this loop is that a copy of the virus is placed in a tempo-

rary file (nfh). The loop stops when the statement that has just been copied

(line) is equal to the value of variable lastLine, which is set to label end.

label end is the last executable line of the virus program (line 12) and sep-

arates the virus from the rest of the infected executable. Clearly, in this case

the virus exists in a file alone, but the purpose of the guard is to make sure

1 fh1 := getFileHandle ;

2 myName := getSelfName ;

3 nfh := newFileHandle ;

4 counter := 0 ;

5 lastLine := label end ;

6 do {

7 line := getLine(myName,counter) ;

8 writeToFile(line,nfh) ;

9 counter := s(counter)

} while (not(line == lastLine)) ;

10 prepend(nfh,fh1) ;

11 deleteFile(nfh) ;

12 label end

Figure 3. Copier computer virus programmed in SPL.

that in future generations only the virus is copied and not the rest of the host

executable.

Next comes a call to the function prepend(nfh,fh1), which causes the

statements corresponding to nfh to be added to the start of the file fh1, in the

order they appeared in nfh. This is the most crucial stage of viral infection,

where the virus attaches itself to the host. In line 11 the temporary file nfh is

deleted from the file system.

The overall effect of running the above virus program is that the virus

searches for another executable file in the file system, which it infects by

prepending its own code to that of the executable.

3.2.1 Classifying the Copier Virus

We shall show how the copier virus can be classified using two different

models (M and N) for the reproductive system. In model M the entities in the

environment are the copier virus (cv) and the file store (fs), which contains a

list of executable files together with their file handles. The functions provided

by the operating system are taken for granted as the “laws of the universe”

in which the copier computer virus resides, and are not considered as actions

explicitly afforded by the OS in the same way that the laws of thermodynamics

are not usually considered to be actions afforded by the Universe on biological

reproducers.

In the second model N the entities are the copier virus (cv) and the operat-

ing system (os), which encapsulates the file store from Model M, as well as a

number of operating system (OS) functions which are used to modify the file

store. The model differs from the first model in that the OS is no longer taken

for granted as a part of the physical laws of the universe, but rather is viewed as

an external agent which affords the computer virus help in the form of actions

performed by its function calls.

Some statements in the programΨ are afforded by the copier virus to itself.

However, certain other statements could not execute without external agency,

and these statements are therefore afforded by either the file store (model M)

or the operating system (model N).

Let Ψ = ψ1, ψ2; . . . ;ψn represent the statement list corresponding to the

copier virus algorithm written in SPL. Let the set of states of the environment

S be the set of states of the computer system, which includes a file store.

(Therefore, if the file store is updated, the state of computer system changes.)

Then, the ternary relation of state succession 7−→ is defined as follows: ∀ψx ∈

Ψ : s
ψx

7−→ s′. (The precise semantics of these statements is defined formally

using OBJ [24].) SinceΨ is a list of statements, and each one modifies the state

of the machine executing the instructions, it is important to note that ∀ψx ∈ Ψ :

s
ψx

7−→ s′ iff [[ψx]](s) = s′ where [[ψx]](s) is the effect of ψx on store s, which is

to say that a state transition from s to s′ under action ψx is only possible if the

effect of ψx on state s is s′. The set of actions A consists only of the statements

used by the copier virus algorithm, and therefore A = {ψ1, ψ2, . . . , ψn}. We can

now assign different actions to different affordance sets for models M and N.

3.2.2 Classifying the Copier Virus Using Model M

Model M has two entities: the copier virus and the file store. Therefore,

EntM = {cv, fs}. Numbering the twelve statements from ψ1 to ψ12 we can calcu-

late the dependence on the operating system using set analysis. So, Asd = {ψ2}

since this is the statement used to obtain a file handle for acquisition of the

self-description (i.e., SPL code) and Arm = {ψ8, ψ10, ψ11}, since these are the

statements which take the self-description and create an offspring within one

of the executable files within the file store. We define the statements aided by

the file store as those which access the file store, i.e., Aff (fs, cv) = {ψ1, ψ2, ψ3}.

Now we can calculate Arm ∩ Aff (fs, cv) and Asd ∩ Aff (fs, cv) in order to specify

the reliance on external agency (i.e., in this case, the file store) by the copier

virus. So, Arm ∩ Aff (fs, cv) = ∅ and Asd ∩ Aff (fs, cv) = {ψ2}. Therefore the

copier virus is a Type III reproducer within Model M, since the defining char-

acteristics of Type III are that the reproductive mechanism is not afforded by

any external entity and at least some part of the self-description is afforded by

an external entity.

3.2.3 Classifying the Copier Virus Using Model N

Model N has two entities: the copier virus and the operating system. There-

fore EntN = {cv, os}. Numbering the statements from ψ1 to ψ12 as before we

can calculate the dependence on the operating system using set analysis. So,

Asd = {ψ2} and Arm = {ψ8, ψ10, ψ11}, for the same reasons as for Model M. We

define the statements (actions) afforded by the operating system as those which

use operating system functions, i.e., Aff (os, cv) = {ψ1, ψ2, ψ3, ψ7, ψ8, ψ10, ψ11}.

Now we can calculate Arm∩Aff (os, cv) and Asd∩Aff (os, cv) in order to specify

the reliance on external agency (i.e., in this case, the operating system) by the

copier virus. So, Arm ∩ Aff (fs, cv) = {ψ8, ψ10, ψ11} and Asd ∩ Aff (fs, cv) = {ψ2}.

Therefore the copier virus is a Type IV reproducer within Model N, since the

defining characteristics of Type IV are that the reproductive mechanism and

self-description are afforded (at least partially) by external agency.

3.2.4 Comparing Models M and N

We found that for Models M and N we can categorise the copier computer

virus within Types III and IV respectively.

Therefore, by changing our model for the reproductive system, we can see

that the actions afforded by the external agents vary, which in turn can modify

the classification we give to reproducers. In the case of the copier computer

virus, using the operating system as an external agent instead of the file store

changed the categorisation from Type III (non-trivial) to IV (trivial). It seems

inconsistent to categorise a reproducer like the copier computer virus in the

same class as a photocopy or a glider, but this apparent paradox is a result of

the choice of model, rather than a problem with the affordance-based approach

to reproducer classification. Indeed, it may be useful to shift the line between

trivial and non-trivial reproduction depending on the application, e.g., some

computer viruses may be so reliant on external help that they are minimally

autonomous and therefore are easily detected at run-time — it would be natural

therefore to classify these reproducers as trivial.

A potential practical application of model selection is in the field of com-

puter anti-virus scanning technology, where it may be possible only to scan

certain interactions between running programs and the computer system that

they run on. For instance, if we were to monitor hardware interrupts only (e.g.,

disk input/output routines), we would be in a situation analogous to Model M,

where the actions afforded by the file store (cf. hard drive) are the only poten-

tial sources of information on viral activity at run-time. If we were to monitor

both the hardware interrupts and the OS function calls, then we are in a situa-

tion analogous to Model N where all OS function use (including calls to read

from or write to the file store) is afforded by external agents to the copier virus,

and consequently more actions are available for the purposes of scanning for

viral behaviour at run-time. This increase in dependence on external agency is

reflected in the categorisation for the copier computer virus: Type III in Model

M, and Type IV in Model N.

3.3 Worked Example: Langton’s Loop

Langton’s loop [15] reproduces on a two-dimensional cellular automaton

grid. It consists of a outer “sheath” which contains the self-description: a se-

ries of symbols encoded in the states of the sheathed cells. The self-description

causes an “arm” to be extended from one corner of the loop, which then turns

perpendicularly, before repeating the process until a child loop has been con-

structed completely.

There are a number of ways in which the reproductive process of the loop

could be modelled. For example, we could model the reproductive process so

that S would be the set of states of the cellular automaton during the reproduc-

tive process. However, it is clearer and more succinct to use the more abstract

model which follows.

Let S , A and 7−→ be defined so that s1
sd
7−→ s1 and s1

rm
7−→ s2. This follows

from the definition of the loop, which has a self-description (sd) in the initial

state, and therefore this step of the reproductive process is achieved in s1, with-

out a state transition. The reproductive mechanism, the means by which the

self-description is used as instructions to create an offspring, is achieved over

a period from s1 to s2. This transition corresponds to the states of the cellular

automaton during the loop’s reproductive process. Let Ent = {L}where L is the

Langton’s loop, and Aff (L, L) = {sd, rm}. Therefore, L is a Type I reproducer.

An alternative classification is possible if we consider the transition rule of

the cellular automaton to be an external entity which affords all state transitions

to any other entity, including the loop. Therefore, both the self-description

and reproductive mechanism actions are afforded by the transition rule, i.e.,

sd, rm ∈ Aff (tr, L) where tr is the transition rule of the CA. Since all reproduc-

tive actions of the loop are now afforded by another entity (tr), we know that

in this model the loop is a Type IV reproducer.

3.4 Worked Example: Bacteriophage Viruses

Bacteriophage viruses [22] infect bacteria in order to reproduce. The life

cycle is highly complex, and to model it at the chemical level would be im-

practical. However, the cycle can be described abstractly as follows. Before

reproduction, the bacteriophage virus and bacteria are immersed in an aqueous

solution. When the virus encounters a bacterium the virus attaches itself to the

bacterium. Penetration of the cell by the virus then occurs. This process intro-

duces the virus’s self-description (encoded in DNA or RNA) to the host cell.

Next, the virus will hijack the host cell’s reproductive mechanism through the

infected self-description. Copies of components of the virus are then synthe-

sised by the bacterium’s own reproductive mechanism. These components are

then assembled during a process called maturation, and finally, the viruses are

released in process known as lysis. Lysis results in the death of the host cell.

Therefore we can identify a six-action reproductive process:

s1
a
7−→ s2

p
7−→ s3

i
7−→ s4

s
7−→ s5

m
7−→ s6

r
7−→ s7

where a, p, i, s, m and r correspond to attachment, penetration, introduction

(of the self-description), synthesis, maturation and release respectively. The

action sd corresponds to the self-description, which is built-in Therefore, S v,

Av and 7−→v are defined implicitly. It would seem natural, from the viewpoint

of the field of virology, that there should be two entities v and h corresponding

to the virus and host cell respectively, and therefore Entv = {v, h}. We can

determine the composition of the affordance sets by the analyses given in the

literature (see, e.g., [22, 12]). The attachment phase is afforded by the virus,

and in some cases, the host cell which may have receptors onto which the virus

may attach itself. Therefore a ∈ Aff (h, v) and a ∈ Aff (v, v). The penetration

and introduction of viral DNA/RNA actions are performed by the virus alone;

the host cell does not assist, and therefore p, i ∈ Aff (v, v). The synthesis and

maturation actions are afforded by the host cell to the virus, since it is the host

cell’s biosynthetic machinery that enables these actions, and so s,m ∈ Aff (h, v).

The release stage is afforded to the virus by the virus and the host cell, since

lysis is caused by proteins produced by the cell but which are coded for in the

viral DNA/RNA. Therefore r ∈ Aff (h, v) and r ∈ Aff (v, v). Since the virus

is reproducing it must be present in each stage of its reproductive cycle, and

therefore ∀s ∈ S : v ε s. Additionally, since the host cell assists in actions a, s,

m and r then we know that ∀s ∈ {s1, s4, s5, s6} : h ε s. So, in order to classify

the bacteriophage virus we must determine which of the actions corresponds

to the self-description and reproductive mechanism (abstract actions sd and rm

respectively).

The virus contains its self-description in the form of its DNA/RNA. This

genome reaches the necessary point for the reproductive mechanism by the

process of penetration and introduction. Therefore p and i correspond to sd.

The reproductive mechanism of the virus is the means by which the self-

description can be interpreted as a set of instructions in order to complete the

reproductive process. Since the actions {a, s,m, r} are vital to this goal, they

must correspond to the reproductive mechanism rm. Since p, i ∈ Aff (v, v) and

p, i < Aff (h, v), we know that the bacteriophage virus is either Type II or Type

I. However, since r ∈ Aff (h, v), which corresponds to part of the reproductive

mechanism, we know that the virus must therefore be Type II.

3.5 Refinements of Reproduction Modelling

3.5.1 The Modified Type I Conjecture

Reproducers that lie outside Type I necessarily lack a completely self-

afforded self-description or reproductive mechanism. However, in order to

complete the reproductive process they must obtain, via external agency, the

reproductive mechanism and self-description which they lack. Therefore, it

follows that at some point during the reproductive process, any reproducer

outside Type I must form a complex which is Type I with respect to the repro-

ducer. In previous work [27] this was referred to as the Type I conjecture.

For example, when the T4 bacteriophage injects its viral DNA into the host

bacterium, the resulting T4–bacterium complex is Type I with respect to the

T4 bacteriophage, in that the self-description and reproductive mechanism are

completely afforded by the complex to itself. For the worked example in 3.2,

the copier virus forms a Type I reproducer when it uses the file store or operat-

ing system to obtain a sufficient reproductive mechanism and self-description.

Gliders in Conway’s Game of Life [9] become Type I when the cellular au-

tomaton transition rule, which is a reproductive mechanism, is combined with

the instant state of the CA, which serves as a self-description. The modified

von Neumann reproducing automata in Types II or III (see 2.3, 2.4) must form

a complex by external agency which is of Type I, in order to complete their

reproductive processes.

It would be difficult to prove this phrasing of the Type I conjecture, since

it would involve analysis of all reproducers outside Type I. However, our for-

mal definition of reproduction models lets us phrase conjectures that would be

proveable, and to this end we present another version of the Type I conjec-

ture: “For all reproduction models outside Type I, there exists another model

that represents the same reproductive process, but in which the entities and

resulting affordances are modifed so that the reproducer is Type I.”

The modified Type I conjecture is restricted to models of reproduction

models, but given that reproduction models are adequate representations of

the reality of reproductive systems, no generality is lost. Despite the differ-

ences in phraseology, the meanings of the two conjectures are similar. For

example, in the case of a T4 bacteriophage that forms a Type I complex after

infection of a host cell, we might built a “natural” model that places the T4

in Type II. However, we can construct a model in which T4 is Type I, if we

aggrandise the T4 and host cell entities so that they become a single entity,

T4′, and therefore every action afforded by the host cell to T4 is now afforded

by T4’ to itself. Since the host cell was the only external agent, which forced

T4 to become categorised as Type II, in the new model there are no external

agents, and every reproductive action is afforded by T4′ to itself. Therefore

T4′ is Type I in this new model.

This aggrandisement process is analogous to the process by which T4 be-

comes a Type I complex in the original conjecture, except that now this Type

I conversion takes place by construction of a new model, rather than as a side-

effect of the reproductive process itself. Details of the proof of this conjecture

will appear in [25].

3.5.2 Deities and the Type IV Conjecture

As we saw in the classification of Langton’s loop, it is possible to introduce

an entity into a reproduction model that effectively assumes responsibility for

every action that takes place in the model. Therefore, every action is then af-

forded by this new “god-like” entity, and the reproducer becomes categorised

as Type IV. Typically, the formation of such an entity happens when we take

some implicit functionality (such as the transition rule for Langton’s loop, or

the laws of nature for a T4 bacteriophage virus, or the processor of compu-

tation for a computer virus) and give it to an entity which previously did not

exist due to the ontological decisions made in construction of the reproduc-

tion model. The ultimate expression of such an entity would be some “deity”,

without whom no actions can happen, and therefore whose presence implies

that all reproducers in reproduction models which incorporate the deity as an

entity must be Type IV. The possibility of categorisation of any non-Type IV

reproducer as Type IV by introduction of a deity therefore becomes the Type

IV conjecture.

3.5.3 Dealing With Evolution: Self-Sets

So far we have formalised reproduction using a reproduction model in the

form of a tuple, one member being some r ∈ Ent which represents the entity

which reproduces. For some reproductive process s1 7−→ s′
1
7−→ . . . 7−→ s2 it is

intuitive to assume that r ε s1 and r ε s2, that is, the reproducer is present in

both the start and end states. This is a direct result of our assertion that r is a

reproducer. What happens, however, when the offspring of r is different from

r? In this case, we might say that the new r (which we shall call r′) is present

at the end of the process, i.e., r′ ε s2. However, r′ is a reproducer, and when

it comes to reproduce the offspring of r′ (which we shall call r′′) might differ

from both r and r′. Here, r, r′ and r′′ are all entities, but only r appears in the

reproduction model.

In order to avoid being forced to enumerate all the possible offspring of

some reproducer r within the set of entities Ent, it seems reasonable to assert

that r ∈ Ent is some abstraction of the reproducer r, and that any of a number

of versions (descendants) of the reproducer correspond to r. We will express

this notion using self sets.

A self set is defined with respect to a given reproducer, under the condition

that every element in the set is produced by some other element in the set by

an act of reproduction. A self set therefore contains all possible descendants

(and ascendants) of a reproducer, as well as the reproducer itself. Self sets are

similar to Cohen’s viral sets [5], which are constructed with the condition that

a viral set contains only computer viruses that are generated by another virus

in the set as a result of computation. Therefore, self sets can be seen as a gen-

eralisation of viral sets to the class of reproducers. We replace “computation”

in Cohen’s definition by “reproduction”, which can itself be a computational

process, but this is not a strict requirement.

4 Conclusion

We have shown that the “classic” examples of reproduction (including bi-

ological organisms and von Neumann reproducing automata) can be classified

within Type I. We have defined two further Types (II and III) of reproducers

that lack some critical part of their reproductive machinery, and a fourth Type

(IV) which has no completely self-afforded reproductive machinery, but repro-

duces trivially thanks to external agency (e.g., cellular automaton gliders and

the photocopy). This provides a means of separating trivial reproducers (i.e.,

those in Type IV) from non-trivial reproducers using the theory of affordances

to show the dependence on external agency. The problem of separating triv-

ial reproducers from non-trivial reproducers was highlighted by Langton [15],

and the work here suggests that the reproducers intuitively thought of as being

trivial are those found in Type IV. Langton says that for non-trivial reproduc-

ers,

“. . . responsibility for the production of the offspring should reside

primarily within the sequences of actions undertaken by the parent

structure. Note that we want to require that responsibility reside

primarily with the parent structure itself, but not totally.” [15]

By using the affordance-based theory of reproduction models (see, e.g., 3)

we have begun to state, qualitatively and quantitatively, in what ways the “re-

sponsibility” for the production of offspring is divided between the parent (re-

producer) and the environment (other entities), and what the difference is be-

tween “primarily” (e.g., non-trivial reproducers outside Type I) and “totally”

(Type I).

We gave an example of how a computer virus can be analysed to discover

its reproductive reliance on external agents such as the file store or operating

system, in terms of acquisition of a self-description and its reproductive mech-

anism. Such analyses of computer viruses could be a practical application in

computer virology and anti-virus software engineering, as the less help a virus

needs to reproduce, the more autonomous it is, and the less it relies on external

agents (e.g., the operating system), thus making it more difficult to detect at

run-time. For more information, see Section 4.2.3.

4.1 Comparison with Other Approaches

Reproducer classification based on reliance of a reproducer on the envi-

ronment can also be found in the works of Freitas and Merkle (ch. 5, [8]),

Taylor [19] and Luksha [16]. Freitas and Merkle give categories for the loca-

tion of replication information (i.e., self-description) and replicator parasiticity

(i.e., reliance on external agency for the reproductive machinery). Taylor di-

vides the reproducer space into two: reproduction occurs either with or without

reliance on external agency (auto- and assisted-reproduction respectively). Our

approach differs from the aforementioned in that it allows a variety of possi-

bilities between full reliance and non-reliance on external agencies for the re-

productive mechanism and self-description (see 2.6). For example, within our

framework it is possible that the set of actions corresponding to the reproduc-

tive machinery and/or the self-description of a reproducer is afforded partly by

an external agent, and partly by the reproducer itself. A more finely-grained

categorisation of reproducers along either axis is therefore possible.

Luksha offers a categorisation of reproducers based on the relative com-

plexities of the reproducer and its environment. In our approach categorisation

is based on the amount of reliance on external agency for the self-description

and reproductive machinery, which we identify as two crucial criteria for re-

producer classification.

4.2 Future Work

4.2.1 Metrics for Reliance on External Agency

In 2.6 we described how reproducers outside Type I can be subclassified

according to whether they afford themselves part of their reproductive mecha-

nism and/or self-description (i.e., active) or not (i.e., passive). However there

may be further opportunities to sub-classify based on other factors. For exam-

ple, if we see the act of reproduction as a computational process of a certain

minimal complexity, then if the actions that a reproducer affords itself together

are the complexity of the whole reproductive process, then there must nec-

essarily be some other (external) entity that compensates for this. Therefore,

when comparing two reproducers in a similar environment (e.g., two computer

viruses) that are both of a certain type outside Type I, then we can compare

their reproductive reliance on external agency by comparing the complexity of

those reproductive actions that the reproducer affords itself. The more com-

plex the reproducer’s self-afforded actions, the less the reliance on external

agency. Of course, this presupposes the existence of some level of abstrac-

tion at which we can compare the complexity of actions, but in several cases,

such as computer viruses, Tierran organisms, cellular automaton reproducers,

etc., such a comparison would seem possible. Different methods of complexity

could be used, e.g., space/time complexity, or the Kolmogorov complexity of

the reproducer itself.

There is empirical evidence of differing degrees of reliance on external

agency with respect to biological viruses. It is known that, “[viruses] with

large genomes depend less on host functions depend less on host functions

than those with small genomes” [12]. In terms of our ontology, this states

that the information content in the self-description (genome) is related to the

reliance on external agency (the host cell). Another possible extension of this

work would be use the methods described above to formalise this statement

within our ontology.

4.2.2 Strategies for Reproduction

In December 2000, a relatively unprolific virus on the Windows 32-bit plat-

form was able to infect executable files containing prolific network worms [3].

The destructive payload of the virus combined with the infectiousness of the

worms created dangerous hybrids that were not predicted by the vendors of

anti-malware software. These hybrids were an emergent property of a com-

plex “ecology” of reproducers.

A useful extension of this work would be to be able to analyse ecologies

of reproducers, i.e., systems where more than one reproducer is present. Such

ecologies coud be constructed using affordances common between entities,

for example, a bacterium might afford a site of infection for a bacteriophage

virus, without necessarily specifying which virus might infect the bacterium.

The labelled transition systems of the different reproductive processes could

be combined using techniques such as those developed in process algebra [1].

In real-life ecologies, reproducers are capable of interesting behaviours such

as crossing a species gap (e.g, biological viruses), or spontaneous virus–worm

hybridisation (see above). In being able to build models of ecologies of repro-

ducers by combining their models in a formal way, we could begin to analyse

and predict interesting emergent properties of multi-reproducer systems.

4.2.3 Computer Virology: Anti-Virus Applications

In computer virology, computer viruses and network worms spread within

computer systems whilst anti-virus software scans for suspect behaviours typ-

ical of reproducing malware in a process known as dynamic analysis [7]. As

discussed in Section 3.5, it is possible to categorise reproducers in a number of

ways, from Type I, through Types II and III, to Type IV, depending on how we

model the entities and affordances in those models. A practical application of

this flexibility of classification is in prioritisation of dynamic analysis on sys-

tems where resources are limited, e.g., on PDAs, smartphones, PCs, or other

pervasive computing applications. Dynamic analysis depends on the ability of

anti-virus software to intercept communications between reproducing malware

and external entities such as the operating system, daemons/services, the file-

store, network protocols, etc. Malware typically must enlist the help of these

other entities in its reproductive process. Antivirus software is able to anal-

yse this behaviour and flag it as suspicious in order to detect files infected by

malware. In order to apply our ontology, we can say that the act of dynamic

analysis by the antivirus software places constraints on the reproduction model

that we construct. For example, if the antivirus software is able to intercept

calls by a computer virus to the file store (during disk input/output operations,

for example), then it is logical to classify the virus and the file store as separate

entities. If the anti-virus software cannot intercept calls to the operating sys-

tem, then effectively it cannot “distinguish” between the virus and the OS, and

within the reproduction model we should treat them as one entity. So, when

malware is afforded an action by an external entity, and the anti-virus software

is able to detect this, the anti-virus scanner has a better chance of detecting the

malware than if it could not detect this behaviour.

By classifying malware according to this schema, we will know that the

most difficult malware to detect at run-time will be that classified as Type I,

because the anti-virus software cannot detect the behaviour of these viruses

and worms, because it cannot intercept the calls made by the virus to exter-

nal entities. The viruses in Types II, III and IV will have behaviours that are

detectable by the anti-virus software. So, on a system where resources are lim-

ited, the anti-virus analysis scanner can focus its static analysis attentions on

the malware in Type I, because this cannot be detected at run-time, and should

therefore be high priority.

References

[1] Baeten. J., 2005, A Brief History of Process Algebra, Theoretical Com-

puter Science, Vol.335, pp.131-146.

[2] Bench-Capon T., Malcolm. G., 1999, Formalising ontologies and their

relations, in Bench-Capon T., Soda G., Toa A. M. (Eds.), Proceedings

of the 16th International Conference on Database and Expert Systems

Applications (DEXA ’99), Springer Lecture Notes in Computer Science,

Vol.1677, pp.250-259. Springer, Berlin.

[3] Symantec Press Centre, 2000, Symantec warns computer users

of destructive Christmas Day virus/worm mutation, http:

//www.symantec.com/region/reg_ap/press/my_001219b.html

(accessed 2007-05-19).

[4] Cohen F., 1987, Computer viruses — theory and experiments, Comput-

ers and Security, Vol.6, No.1, pp.22-35.

[5] Cohen F., 1989, Computational aspects of computer viruses, Computers

and Security, Vol.8, pp.325-344.

[6] Dawkins R., 1990, The Selfish Gene, Oxford University Press, USA,

1990, Ch.11, pp.189–201, first published 1976.

[7] Filiol E., 2005, Computer Viruses: from Theory to Applications,

Springer, pp.151-163.

[8] Freitas R. A. Jr., Merkle R. C., 2004, Kinematic Self-Replicating Ma-

chines, Landes Bioscience.

[9] Gardner M., 1970, Mathematical games: The fantastic combinations of

John Conway’s new solitaire game ‘life’, Scientific American, Vol.223,

pp.120-123.

[10] Gibson J. J., 1977, The theory of affordances, Perceiving, Acting and

Knowing: Toward an Ecological Psychology, pp.67-82.

[11] Goguen J. A., Malcolm G., 1996, Algebraic Semantics of Imperative

Programs, Massachusetts Institute of Technology.

[12] Granoff A., Webster R. G. (Eds.), 1999, Encyclopedia of Virology, Aca-

demic Press, Vol.3, pp.1414-15.

[13] Hofstadter D. R., 2000, Gödel, Escher, Bach: an Eternal Golden Braid,

Penguin, Ch.16, p.499.

[14] Jones M. D., Tevenphage.png, http://en.wikipedia.org/wiki/

Image:Tevenphage.png (accessed 2006-10-28).

[15] Langton C. G., 1984, Self-reproduction in cellular automata, Physica D:

Nonlinear Phenomena, Vol.10, pp.135-144.

[16] Luksha P. O., 2003, The firm as a self-reproducing system, Proceedings

of 47th International System Science Society Conference.

[17] Ray T., 1994, Evolution, complexity, entropy, and artificial reality, Phys-

ica D, Vol.75, pp.239-263.

[18] Schrödinger E., What is Life?, Cambridge University Press, 1944.

[19] Taylor T. J., 1999, From Artificial Evolution to Artificial Life, PhD thesis,

University of Edinburgh.

[20] Torenvliet G., 2003, We can’t afford it!: the devaluation of a usability

term, Interactions, Vol.10, No.4, pp.12-17.

[21] von Neumann J., 1966, Theory of Self-Reproducing Automata, Univer-

sity of Illinois Press.

[22] Voyles B. A., 2002, The Biology of Viruses, McGraw Hill.

[23] Weaver N., Paxson V., Staniford S., Cunningham R., Spring 2006, Life,

in E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy http:

//plato.stanford.edu/archives/spr2006/entries/life/ (ac-

cessed 2007-05-19).

[24] Webster M., 2005, Algebraic specification of computer viruses and their

environments, in Mosses P., Power J., Seisenberger M. (Eds.), Selected

Papers from the First Conference on Algebra and Coalgebra in Computer

Science Young Researchers Workshop (CALCO-jnr 2005), University of

Wales Swansea Computer Science Report Series CSR 18-2005, pp.99-

113.

[25] Webster M., Malcolm G., Classifying and relating models of reproducers

using the theory of affordances, in preparation.

[26] Webster M., Malcolm G., 2006, Detection of metamorphic computer

viruses using algebraic specification, Journal in Computer Virology,

Vol.2, No.3, pp.149-161. DOI: 10.1007/s11416-006-0023-z.

[27] Webster M., Malcolm G., 2007, Reproducer classification using the the-

ory of affordances, Proceedings of the 2007 IEEE Symposium on Artifi-

cial Life (CI-ALife 2007), pp.115-122. IEEE Press.

