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Abstract

We consider the problem of sampling almost uniformly
from the set of contingency tables with given row and
column sums, when the number of rows is a constant.
Cryan and Dyer [3] have recently given a fully polyno-
mial randomized approximation scheme (fpras) for the re-
lated counting problem, which only employs Markov chain
methods indirectly. But they leave open the question as
to whether a natural Markov chain on such tables mixes
rapidly. Here we answer this question in the affirmative,
and hence provide a very different proof of the main re-
sult of [3]. We show that the “ ����� heat-bath” Markov
chain is rapidly mixing. We prove this by considering first
a heat-bath chain operating on a larger window. Using
techniques developed by Morris and Sinclair [20] (see also
Morris [19]) for the multidimensional knapsack problem,
we show that this chain mixes rapidly. We then apply the
comparison method of Diaconis and Saloff-Coste [8] to
show that the ����� chain is rapidly mixing. As part of our
analysis, we give the first proof that the �	�
� chain mixes
in time polynomial in the input size when both the number
of rows and the number of columns is constant.

1 Introduction

Given two lists of positive integers, �
�����������������������
and ��������� �����������"!#� , an $��&% matrix ' ()' *+�-,/.0. of non-1
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negative integers is a contingency table with row sums �
and column sums � if 6 !7�8 � (�' *9�:,/.;�<��= for every row *
and 6 �= 8 � (�' *+�-,/.>�?� 7 for every column , . We write @BA�C D
to denote the set of all contingency tables with row sums �
and column sums � . We assume that 6 �= 8 � ��=;� 6 !7�8 � � 7
(since otherwise @BAEC DF�HG ) and denote by I the common
total, called the table sum.

In this paper, we consider the problem of sampling con-
tingency tables almost uniformly at random. Unfortunately,
no general technique currently exists for polynomial time
sampling of general contingency tables with arbitrary row
and column sums. Here we consider a particular restriction,
the case where the number of rows is a constant. We give
an fully-polynomial almost-uniform sampler (fpaus) for this
restriction. An fpaus is defined to be an algorithm which
accepts an instance of the contingency tables problem to-
gether with a maximum error probability J�KL��MN��OP� , and
outputs a random element of @QAEC D subject to the following
two conditions: (i) the output distribution of the fpaus must
lie within total variation distance J of the uniform distribu-
tion; (ii) the running time of the fpaus must be bounded by a
polynomial in the size of the input (in this case % and R0S/TUI )
and in RVSWTUJ�X � .

We first review recent work on approximate counting of
contingency tables, and discuss the connection between ap-
proximate counting and almost-uniform sampling for con-
tingency tables. Cryan and Dyer [3] recently gave a fully
polynomial randomized approximation scheme (fpras) for
counting contingency tables when the number of rows is
constant. It was previously shown by Dyer et al. [12] that
the problem of exact counting is #P-Complete, even when
there are only two rows (Barvinok [1] gave a polynomial-
time algorithm to exactly count contingency tables when the
number of rows and the number of columns is constant). It
is well-known that for all self-reducible problems, finding
an fpras for approximate counting is equivalent to finding an
fpaus for almost-uniform sampling (see Jerrum et al. [17]).
However, the contingency tables problem is not known to



be self-reducible. The existence of an fpaus for almost-
uniform sampling of contingency tables does imply an fpras
for approximately counting contingency tables (see for ex-
ample Dyer and Greenhill [11]), but the other direction is
not known to hold. Therefore the algorithm in [3] does not
necessarily imply an fpaus for almost-uniform sampling,
though it does imply a sampling algorithm that depends onJ X � rather than RVSWTUJ X � . Moreover, the algorithm in [3] is a
mixture of dynamic programming and volume estimation,
and uses Markov chain methods only indirectly. So [3]
leaves open the question as to whether the Markov chain
Monte Carlo (MCMC) method can be applied directly to
this problem. In addition to its intrinsic interest, this ques-
tion has importance for two reasons. Firstly, previous re-
search in this area has routinely adopted the MCMC ap-
proach. Secondly, the MCMC method is more convenient,
and has been more widely applied, for practical applications
of sampling.

In this paper we will give the first proof of rapid mixing
for a natural Markov chain when the number of rows $ is
a constant. We first review previous work on the MCMC
method for sampling contingency tables.

Contingency tables are important in applied statistics,
where they are used to summarize the results of tests and
surveys. The conditional volume test of Diaconis and
Efron [6] is perhaps the most soundly based method for per-
forming tests of significance in such tables. The Diaconis-
Efron test provides strong motivation for the problem of ef-
ficiently choosing a contingency table with given row and
column sums uniformly at random. Other applications of
counting and sampling contingency tables are discussed by
Diaconis and Gangolli [7]. See also Mount [21] for addi-
tional information, and De Loera and Sturmfels [5] for the
current limits of exact counting methods.

With the exception of [1] and [3], most previous work on
sampling contingency tables applies the MCMC method, as
described in the survey of Jerrum and Sinclair [16]. This
method, which has been used to solve many different sam-
pling problems, is based on a very simple idea. Suppose that
we have a Markov chain on a finite set of discrete structuresY

, defined by the transition matrix Z . If the Markov chain
is ergodic, then it will converge to a unique stationary dis-
tribution [ on

Y
, regardless of the initial state. This gives a

nice method for sampling from the distribution [ : starting
in any state, we run the Markov chain for some “sufficiently
long” number of steps. Then the final state is taken as a sam-
ple from [ . The key issue with using the MCMC method
is determining how long the chain takes to converge to its
stationary distribution.

The first explicit definition of Markov chains for uni-
formly sampling contingency tables apparently occurs in
the papers of Diaconis and Gangolli [7] and Diaconis and
Saloff-Coste [9], although it is mentioned in [7] that this

chain had already been used by practitioners. A single step
of the chain is generated as follows: an ordered pair of
rows *E� �E*]\ are chosen uniformly at random from all rows
of the table, and an ordered pair of columns ,/� �-,�\ are cho-
sen uniformly at random from all columns, giving a �^�_�
submatrix. The entries of the �`�a� submatrix are modified
as follows:

(cbd' * � �-, � .e�
()' * � �:, � .gfhO (
b-' * � �-, \ .i�
(�' * � �-, \ .kjlO(cbd' * \ �-, � .e�
()' * \ �:, � .kjlO (
b-' * \ �-, \ .i�
(�' * \ �-, \ .gfhO
If modifying the matrix results in a negative value for any( b ' *+�-,/. , the move is not carried out. Diaconis and Gangolli
proved that this Markov chain is ergodic, and the stationary
distribution of the chain is uniform on @QA�C D . They did not
attempt to bound the mixing time of the chain, but it is clear
that the mixing time can never be better than pseudopoly-
nomial in the input.

Later Diaconis and Saloff-Coste [9] considered the case
when the numbers of rows and columns are both constant
and proved that, in this case, their chain converges in time
quadratic in the table sum. Hernek [15] considered the case
when the table has two rows and proved that the same chain
mixes in time polynomial in the number of columns and the
table sum. Chung et al. [2] showed that a slightly modified
version of the Diaconis and Saloff-Coste chain converges in
time polynomial in the table sum, the number of rows and
the number of columns, provided that all row and column
sums are sufficiently large.

The first truly polynomial-time algorithm for sam-
pling contingency tables was given by Dyer, Kannan and
Mount [12]. They took a different approach to the sam-
pling problem, considering @QA�C D as the set of integer points
within a convex polytope. They used an existing algorithm
for sampling continuously from a convex polytope, com-
bined with a rounding procedure, to sample integer points
from inside the polytope. For any input with row sums of
size

Y ��% \ $m� and column sums of size
Y ��%i$ \ � , their algo-

rithm converges to the uniform distribution on @ A�C D in time
polynomial in the number of rows, the number of columns,
and the logarithm of the table sum. Their result was later re-
fined by Morris [18], who showed that the result also holds
when the row sums are

Y ��%on9p \ $qRVSWTr$a� and the column
sums are

Y ��$mn+p \ %�R0S/Tr%o� .
Using different techniques, Dyer and Greenhill [11] con-

sidered the problem of sampling contingency tables when
the table has only two rows. They considered a natural �s���
“heat-bath” chain. In the two-row case, a single step of the
Dyer-Greenhill chain at contingency table ( is performed
as follows: two columns ,�� �:,�\ are chosen uniformly at ran-
dom from all columns, giving a �`�
� submatrix (since the
table only has two rows) with column sums � 7ut ��� 7]v and a
pair of induced row sums w � �+w \ . A �`��� submatrix is then
chosen uniformly at random from the set of all tables with



the induced row sums �dw � �9w \ � and column sums ��� 7 t �9� 7 v � .
The , � th and , \ th columns of ( are replaced by this new
subtable. Dyer and Greenhill showed that for two-rowed
tables, their chain converges to the uniform distribution on@ AEC D in time that is polynomial in the number of columns
and the logarithm of the table sum.

For tables with more than two rows, a single step of
the Dyer-Greenhill chain is performed as follows: two
rows * � �E* \ are chosen uniformly at random from all rows,
and two columns , � �:, \ are chosen uniformly at random
from all columns. This gives a a �x�y� submatrix with a pair
of induced row sums w � �+w \ and a pair of induced column
sums z � �9z \ . A �m�&� submatrix is then chosen uniformly
at random from the set of all tables with the induced row
sums �dw � �9w \ � and induced column sums �dz � �+z \ � , and the�`��� submatrix is replaced by this new subtable. We refer
to this chain as {|\P}#\ .

Our main result is that {<\ }g\ is rapidly mixing when the
number of rows is constant, and therefore we extend Dyer
and Greenhill’s results to any constant number of rows.
However, in Section 3, we first analyse a chain which ran-
domly modifies a $��h�d��~���f?OP� subtable, where ~�� is
a constant we will describe later. For each $ we will de-
fine a constant ~ � which depends only on $ . A step of the
chain, starting from a contingency table, ( , is as follows.
First, �-��~ � f?OP� columns , � ���������-, \+�+�>��� are chosen uni-
formly at random from the columns of ( . Then the induced
row sums w � ���������9w � are calculated and the chosen columns
of ( are replaced with a subtable selected uniformly at ran-
dom from all tables with row sums w � ���������9w � and column
sums � 7 t �������"�9� 7 v:� �U� t . We will refer to this chain as {<�e� .
The fact that a step of the chain can be carried out in poly-
nomial time follows from Pak[22].

In Section 3 we prove that { �e� is rapidly mixing. We
use the multicommodity flow technique of Sinclair [24] to
analyse the mixing time of this $����d��~��HfLOP� “heat-
bath” chain. Using techniques developed by Morris and
Sinclair [20] (see also Morris [19]), we are able to show
that this chain mixes in time polynomial in the number of
columns and the logarithm of the table sum. In Section 4 we
compare this chain to the Dyer-Greenhill chain { \ }g\ and
hence show that { \P}#\ is also rapidly mixing. It may be
observed that no proof was previously known that the Dyer-
Greenhill (or any other) chain converges in polynomial time
even when the number of columns, as well as the number of
rows, is constant. Establishing this fact is one step of our
proof. (See Pak [22] for an approach to this problem not
using MCMC.)

Theorem 6 proves that { �e� is rapidly mixing. The-
orem 7 bounds the mixing time of {�\P}#\ in terms of the
mixing time of { �e� . Combining the two theorems gives
the main result. We note that our results provide a very dif-
ferent fpras for this problem to that of Cryan and Dyer[3].

A full version of this paper (with proofs included) is
available online [4].

2 Technical Background

In this section we summarize the techniques that we will
use to bound the mixing time of our heat-bath chain. Our
analysis is carried out using the multicommodity flow ap-
proach of Sinclair [24] for bounding the mixing time of a
Markov chain. Sinclair’s result builds on some earlier work
due to Diaconis and Stroock [10].

In this section, and throughout the rest of the paper, we
will use ' %e. to denote the set ��O/����������%�� , when % is a positive
integer. We will use � = to denote the * th component of a
multidimensional weight vector � .

The setting for the multicommodity approach is as fol-
lows: we have a finite set

Y
of discrete structures, and a

transition matrix Z on the state space
Y

. It is assumed that
the Markov chain defined by Z is ergodic, that is, it sat-
isfies the properties of irreducibility and aperiodicity (see
Grimmett and Stirzaker [13]). Then the Markov chain has
a unique stationary distribution [ , that is, a unique distri-
bution [ on

Y
satisfying [	Z���[ . Sinclair also assumes

that the Markov chain is reversible with respect to its sta-
tionary distribution, that is, [c�����EZ������E�#�^��[
���g�EZ����e�E�e�
for all �o���	K Y

.
For any start state � , we define the variation distance

between the stationary distribution and a walk of length �
by � ��[��9Z������������ �uOP�/�/�i�� �/�¡  [
���#��j_Z������o�E�#�   �
For any M`¢lJQ¢£O and any start state � , let ¤�¥k��J�� be defined
as ¤ ¥ ��J��¦� §`¨0©ª���U« � ��[��9Z � �������B¬­J����
The mixing time of the chain is given by the function ¤ª�dJ+� ,
defined as ¤ª�dJ+�s�
§�® ¯���¤ ¥ ��J��°«���K Y � .

The multicommodity flow approach is defined in terms
of a graph ± � defined by the Markov chain. The vertices
of ± � are the elements of

Y
, and the graph contains an

edge ��²´³¶µg� for every pair of states such that Z���²·�Eµg�°¸)M .
For any ���E�)K Y

, a unit flow from � to � is a set ¹ ¥ C �
of simple directed paths of ± � from � to � , such that (i)
each path º£K
¹ ¥ C � has a positive weight »o¼ , and (ii) the
sum of the » ¼ over º)K�¹Q¥ C � is O . A multicommodity flow
is a family of unit flows ½¾�¿��¹Q¥ C � «ª�o���ÀK Y � contain-
ing a unit flow for every pair of states from

Y
. The impor-

tant properties of a multicommodity flow are the maximum
flow passing through any edge and the maximum length of
a path in the flow. We define the length ÁÂ��½�� of the multi-
commodity flow ½ byÁÃ��½��¦� §�® ¯¥ C � §�® ¯��   º   «�ºaK	¹Q¥ C � ���



where   º   denotes the length of º . For any edge Ä of ± � , we
define ½´�dÄ � to be the sum of the »o¼ weights over all º such
that ÄÅKyº and ºaK	¹Q¥ C � for some ���E�ÆK Y

.
The following theorem is an amalgamation of the results

of Sinclair [24]:

Theorem 1 (Sinclair [24]) Let Z be the transition matrix
of an ergodic, reversible Markov chain on

Y
whose station-

ary distribution is the uniform distribution. Let ½ be a mul-
ticommodity flow on the graph ± � . Then the mixing time of
the chain is bounded above by

¤ª��J��B¬
�   Y   X � ÁÃ��½���§�® ¯ÇÉÈ°Ê Ç]ËÌ Ê ÇuË ��R0S/T   Y   f&R0S/TUJ X � � (1)

Two key ingredients of our analysis of the large heat-bath
chain in Section 3 are the “balanced almost-uniform permu-
tations” and the “strongly balanced permutations” used by
Morris and Sinclair [20, 19] for the analysis of the multi-
dimensional knapsack problem. These balanced permuta-
tions were devised by Morris and Sinclair [20, 19] for ar-
ranging multidimensional weights. A balanced permutation
of a list of multidimensional weights is any arrangement of
the weights so that the total of every prefix of length Í is
“close” to Í�Î , where Î is the multidimensional mean of the
weights. The particular types of balanced permutations that
we will use are defined below.

Definition 2 (Morris [19] Definition 3.1)
Let � � ���������E� ! KÐÏ �

be any ~ -dimensional weights
with the ~ -dimensional mean Î . A permutation Ñ of ' %e. isÒ
-balanced if

 
Ó�7�8 � � =Ô Ê 7 Ë j�Í�Î =   ¬ Ò�Õ =

for all *rK&' ~/. , Í^K&' %e. , where
Õ =o�h§�® ¯ �+Ö 7 Ö�!   � =7 j_Î =   .

Definition 3 (Morris [19] Definition 3.3)
Let �;���������"�E�Q!×KÐÏ � be any ~ -dimensional weights
with the ~ -dimensional mean Î . A permutation Ñ of ' %e.
is strongly

Ò
-balanced if for all Í�KL' %e. and all *aK�' ~/. ,

there exists a set Ø¶ÙÚ' %e. with   Ø­ÛÜ' Í�.   ¢ Ò
such that� 6 Ó7�8 � � =Ô Ê 7 Ë jÝÍ�Î = � and � 6 7 �WÞ � =Ô Ê 7 Ë jÝÍ�Î = � have

opposite signs (or either is M ).

The concept of a balanced permutation is closely related
to the concept of a strongly balanced permutation, but the
strongly balanced permutation has an extra property: to
change the sign of 6 Ó7�8 � � =Ô Ê 7 Ërj�ÍgÎ = , we can achieve this
by adding and deleting a constant number of weights. How-
ever, for

Ò
-balanced permutations (not necessarily strongly

balanced permutations) Morris and Sinclair [20] (see also
Morris [19]) were able to construct random permutations
which are

Ò
-balanced and which are also closely related to

uniform random permutations. Their construction of “bal-
anced almost-uniform permutations” is as follows.

Theorem 4 (Morris [19] Theorem 3.2) For every positive
integer ~ , there exists a constant ß � and a polynomial func-
tion ºe� such that for any set of weights ��� 7 � !7�8 � in Ï � ,
there exists a ß�� -balanced, ºe�W��%o� -uniform permutation.

The key points to keep in mind are (1) the distribu-
tion of the ß � -balanced permutation Ñ is closely related to
the uniform distribution (the prefix probabilities for everyÑ·�WOW�������"�9Íe� are not too large) (2) the permutations satisfy
the balance property of Definition 2. Morris and Sinclair
[20, 19] also adapted a result of Steinitz [25] (see also Grin-
berg and Sevast’yanov [14]) to show that

Theorem 5 (Morris [19] Lemma 3.4) For any se-
quence ��� 7 � !7�8 � in Ï � , there exists a strongly O�àW~ \ -
balanced permutation.

We will use an interleaving of a balanced almost-uniform
permutation and a strongly balanced permutation to spread
flow between each pair of states �o����KÜ@QA�C D . The inter-
leaving will allow us to construct a permutation á which is
strongly balanced and which also has some of the random
properties of the º � -uniform permutation of Theorem 5.

The multidimensional weights that we consider will cor-
respond to the columns of a contingency table, where the
multiple dimensions come from having multiple rows.

The main idea is this: Given � and � we will use the per-
mutation á of the columns of the table to define a path of
contingency tables from � to � . We will route flow from �
to � along this path. The amount of flow routed along the
path corresponding to á will be proportional to the proba-
bility with which á is generated. We will use the follow-
ing notation. If á is a permutation of the % columns of a
contingency table, ár�V,�� will denote the original column (in'âOW�������"��%e. ) which is the , th column to be altered on the path
from � to � . When column , is altered on the path from �
to � , we will roughly think of column , of the current table
as being replaced by its value in � . This is not as straight-
forward as it might appear, and more details are given in
Section 3. The expression á��WOW�������"�+Í�� will denote the firstÍ columns to be altered on the path from � to � .

3 Analysis of the generalized chain

Let �ã�ä��� � ���������E� � � be a list of row sums and �l���� � ���������9� ! � a list of column sums. Let the state space
Y

be@°A�C D . Recall that I is the table sum 6 �= 8 � ��= .
Let ß/� be the constant of Theorem 4 for balanced

almost-uniform permutations for dimension $ . Let ~g�H�� $���å�ß/�æfçO��QfÜOÅf�å�è/$ \ . Let { �e� be the heat-bath
Markov-chain with window-size $ç�´�d��~g�
f�O�� which was
introduced at the end of Section 1. Let Z ��� be the transition
matrix of this chain. In this section, we prove the following
theorem.



Theorem 6 The mixing time ¤�é°ê of {¿�e� is bounded from
above by a polynomial in % , R0S/TUI and RVSWTUJ X � .

In order to prove Theorem 6, we will show how to define
a multicommodity flow ½ such that the total flow along any
transition �ìëx�uë b b � is at most �/í�% \+�+����� Z��e�U�ìëx�Eë b b � , whereí is an expression that is at most îkSWRVïª��%o�   Y   . We will en-
sure that ÁÃ��½�� is bounded from above by a polynomial in % .
Theorem 6 will then follow from (1). First, we will define
a multicommodity flow ½	ð in which the total flow through
any state ë is at most í . We will construct ½ by modifying½�ð . The construction of ½^ð uses the method of Morris and
Sinclair [20, 19].

Let Í be the index of the largest column sum � Ó . Let (
and ñ be contingency tables in

Y
. Let ( 7 denote the , th

column of ( . We will show how to route a unit of flow
from ( to ñ .

The rough idea is as follows. We first define the notion
of a column constrained table, which is a set of % columns
which have the correct column sums for @QA�C D , but may vi-
olate the row sum constraints. We will choose a permuta-
tion á from an appropriate distribution. á will be a permu-
tation of most of the columns of the table. The permutationá will define a path (ò��órô/�������"��ó !�õ (for some % b ¢Ü% )
of column constrained tables, where each table ósö contains
the column ñ 7 for ,^K´á���O/���������9÷ª� and ( 7 for all other , (so
at each point, we swap another column of ( for the same
column of ñ ). In Step 1 we show that the balance properties
of á ensure that for any ó ö , we can bring all the row sums
of ó ö below � = by deleting a constant number of columns.
Then in Step 2, we show how to use this fact to define a path(ø��ó bô ���������+ó b! õ ��� �æñ where each ó bö is in

Y
and there

is a transition in {<��� from each ó bö to ó bö �·� . The amount
of flow that we route along this path will be proportional to
the probability with which á is chosen.

Let ù�ú= be the set of indices for the å�ß � fÜO largest
entries of row * of ( . Let ù¡û= be the set of indices for
the å�ß � fmO largest entries of row * of ñ . Let ù be the union
of all the ù�ú= and ùüû= sets together with the index Í . The
cardinality of ù is at most � $���å�ß � f­O��if
O . The columns
in ù are “reserved” columns that we identify before per-
muting the columns. We will not permute these columns
— we need them for something else. For every row * ,Õ = �ã§F¨0©i��§`®�¯k��(�' *9�:,/.ª«�,mýK�ùy���E§�® ¯k��ñ^' *+�-,/.�«�,�ýKaùy�/� .
Define þ = �ä�+,ç«;,�ýKLùF�E()' *+�-,/.a¸ Õ = �Åÿ
��,Ü«;,�ýKùy�9ñ^' *9�:,/.	¸ Õ = � . þ�� ÿ �= 8 � þ = . Ø��ò' %e.>j ��þ­ÿÀùü� .
For every column ,&K�' %e.ªjlù , define the $ -dimensional
weight � 7 � ñ 7 j ( 7 . Let Î be the $ -dimensional
vector representing the mean of the � 7 � � !�� X�� . Note thatÎ = ��� 6 7 � � (�' *+�-,/.#j 6 7 � � ñ^' *9�:,/.ì�9�g��%´j   ù   � .Let ái� be a strongly O�à�$ \ -balanced permutation on the
set of weights ��� 7 � 7 ��� . Let ák\ be a ß/� -balanced º��y�   Ø   � -uniform permutation on ��� 7 � 7 �WÞ . á \ is a random variable.
Interlacing á � and á \ in the same way as Morris [19], we

get a permutation á on ��� 7 � 7 � � !�� X�� satisfying inequali-
ties (3.8) and (3.9) of Morris on page 35. That is, for ev-
ery prefix ÷ ( ÷ is the index of a column), every dimen-
sion * ( * is the index of a row), we have sets of column
indices � =�C ö and 	 =�C ö such that � =�C ö differs from �WO/���������9÷ª�
by at most O�
 $ \ indices and 	 =�C ö differs from �WO/���������9÷ª�
by at most O�
 $ \ indices and

�7 ����
�� � � =� Ê 7 Ë ¬q�-÷�jlO��]Î = fÀå�ß/� Õ = (2)

�7 ����
�� � � =� Ê 7 Ë�� �-÷�jlO��]Î = j_å�ß/� Õ = (3)

Let % b � %æj   ù   . We define the path of tables( � ó�ôW�+ó � ���0�0�V��ó !�õ as follows. For every ÷ , óUö con-
tains the columns ( 7 for ,
Kæù�ÿ_á��P÷mf�OW�������"��% b � and
columns ñ 7 for ,aK_á��WOW�������"�9÷ª� . ó !�õ differs from ñ by at
most � $���å�ß � fhO��ofhO columns.ó ô ���������+ór!�õ may not be contingency tables in @ A�C D since
they may not satisfy the row constraints. Thus, we cannot
use this path as the path from ( to ñ . Nevertheless, we can
base our path on these tables. In particular, we introduce the
notation ���r��(c�"���r��ñF�E� to denote a set containing columns
from ( and from ñ : for any �r��(c�cÙÝ' %e. and �r��ñy�cÙ' %e. , ���r��(c�"���r��ñF�E� contains ( 7 for every ,ÆK��r��(_� and ñ 7
for ,
K��>�dñy� . Let ��ök��(c�^�|ù£ÿ_á�� ÷Æf�O/���������E% b � and��ök��ñy�x�æá��WOW�������"�9÷ª� . Therefore óUö is the set of columns����ök��(_������öN�dñy�E� . For any set of columns ���>��(c�����r��ñy��� , we
represent the “row sum” for row * by ���P� = ���>��(c�����r��ñy��� ,
which has the value 6 7 �! Ê ú Ë (�' *+�-,/.�f 6 7 �! Ê û Ë ñ^' *+�-,/. .
Note that óUö satisfies all the column sums for @BA�C D (though
some rows * may have ���P� = ���r��(_�����r�dñy�E�`ý����= ), so óUö is
a column constrained table.

Step 1: We show we can modify ósö by “deleting” at most~ � columns (including all of the ( 7 columns for ,^Kaù ) to
bring the row sum for every row * below �P=��EOÂj
O �P%o� . We
also show a dual result - if we “add” at most ~ � columns
to órö this brings the row sum for every row * above �P=9�uOBfOP� %o� . Let �k=�C ö and 	c=�C ö be defined as for (2) and (3).

Let "Ã=�C öÅ�ãù)ÿ_��á��WO/�������"�9÷ª�°Û&á����N=�C ö#�P� .
Let # =�C ö �
ùlÿc��á��WOW�������"�9÷ª�°ÛÀá���	 =�C ö �P� .
Finally, define$ ö � � Ç�% �dÿ�=&"Â=�C öW�oÿc�-ÿ�=&#°=�C ö��

Consider óUö with all of the columns in
$ ö “deleted”. This

is the table

ó ðö ��� Ç�% ��� ö ��(c��j $ ö ��� ö ��ñF��j $ ö �
In the full version we show that ���P� = ����öN��(c��j$ ö#����öN�dñÅ��j $ öW�°¬l��=9�uOQjlOP� %o� for all * . Also define'ó ðö � � Ç(% ����ök��(_�ªÿ $ ö#����ök��ñF�ªÿ $ öW�



In the full version we show that ���P� = ����ök��(c��ÿ $ öN����ök��ñF��ÿ$ öW� � ��=��EO°fhOP�P%o� for all * .
Note that   $ ö   �æ~�� ����$_�då ß/�­fqO���fqOQf)å�è/$ \ (as

defined previously). Also
$ ö contains all of ù , including

the index Í .

Step 2: Now we show how to convert ósö into a element
of

Y
. We focus on the “deleted” columns

$ ö , and show
that by changing only the entries of the columns in

$ ö , we
can obtain a contingency table ó bö KÜ@°A�C D . We will also
show a dual result: that if we define

'óUö to be the set of
columns which contains ( 7 for every ñ 7 column in óUö and
contains ñ 7 for every ( 7 column in ó ö , we can show the
same result for

'ó ö (we can construct a
'ó bö in @ AEC D by chang-

ing ~W� columns).
First let )� = �
���P� = ��� ö ��(c��j $ ö ��� ö �dñy��j $ ö � , the par-

tial row sum for row * of ó ö with the
$ ö columns removed.

Define w = ��� = j*) � = for all * , the sum for row * of the sub-
table that was removed from ósö . Let Iyö_� 6 �= 8 � w�=Ã�6 7 ��+,� � 7 , by construction. We have two cases.

First suppose I ö ¢ �#��$m~��Ã� \ . It is well-known that
whenever the total of the row sums equals the total of the
column sums, there is at least one contingency table satis-
fying these row and column sums (see Diaconis and Gan-
golli [7]). For this case we choose any set of modified val-
ues ó bö ' *9�:,/. for ,lK $ ö such that 6 �= 8 � ó bö ' *+�-,/.Q��� 7 for
all ,�K $ ö and 6 7 ��+,� ó bö ' *+�-,/.x�Hw�= for all Oa¬Ü*y¬ $ .
Note that because I ö ¢
�#��$´~���� \ we have w = ¢
�#��$´~��Ã� \
for all * and therefore � = ¢
� %r��$´~���� \ for all * .

Alternatively, assume that I ö � �#��$m~��Ã� \ . As above,
we are guaranteed that there is some set of ó bö ' *+�:,�. values
for ,aK $ ö that satisfy the row and column sums. But, for
this case, we will need something stronger – we show we
can modify the values of ósöN' *+�-,/. for the ,ÀK $ ö columns
in a structured way to obtain a subtable ó bö satisfying the
induced row sums wP= and the column sums � 7 .

We already know that Í is the index of the largest � 7
for ,mK $ ö . Let

Ò
be the index of the biggest wP= value. For

every *xý� Ò
and every ,�K $ ö·j^� Í�� , we define -g=�C 7 in terms

of the overall row sums and the column sums.-�=�C 7 � � Ç(%/. §`¨0©i����=E�9� 7 � � %r��~ � � \�0
Since ó ö ' *9�:,/. is either (�' *9�:,/. or ñ^' *+�-,/. , we knowó ö ' *+�-,/.o¬l§`¨V©i��� = ��� 7 � . Therefore we can write

óUö#' *9�:,/.e�21^' *+�-,/.]�3-�=�C 7 fhO��ªf�ù`' *+�-,/.
for 1^' *+�-,/.:��ù`' *9�:,/. non-negative integers, 1^' *+�-,/.°¢q%r�d~���� \
and M^¬hù`' *9�:,/.�¬4- =�C 7 (unique), for every *�ý� Ò

and every,
K $ ö j£�PÍ�� . We will show that by changing only the
values of the 1^' *+�-,/. to new values 1 b ' *9�:,/. , we can obtain a
subtable ó bö satisfying the row sums w and the column sums.

Our analysis in the full version will use the fact that only
the 1�' *9�:,/. values are changed to derive an upper bound

on the number of tables óUö correspond to a particular ó bö .
This will be necessary to bound the congestion in our multi-
commodity flow.

It is well-known (see Dyer et al. [12]) that the row and
column sums are satisfied by any integer matrix ó bö which
has ó bö ' *9�:,/. � M for all * and also satisfies the following
inequalities:

� =�5876 ó;bö ' *+�-,/.ò¬ � 7 for ,�K $ ö j)�PÍ�� (4)

�7 ��+8� X:9 Ó�; ó;bö ' *+�-,/.ò¬ w = for *xý� Ò
(5)

� =<5876 �7 ��+8� X:9 Ó�; ó bö ' *+�-,/. � I ö j&w 6 j_� Ó (6)

Now define the 1 b ' *+�-,/. in terms of the induced row sums
and the original column sums:1üb-' *+�:,�.�� � Ç(% . w�=�� 7 ��Iyök�3-�= 7 f
OP� 0
for all *�ý� Ò

and all ,¿K $ ö jÜ� Í�� . Let ó bö ' *9�:,/._�1 b ' *+�-,/.]�3-�=�C 7 f
OP�/fÆùF' *+�-,/. . Note that 1 b ' *9�:,/. � M for all *+�-, .
In the full version, we prove that equalities (4), (5) and (6)
are satisfied.

Therefore, in parallel with our path of col-
umn constrained tables, we have a path ( �ó bô �+ó b� �������"��ó bö �������"�+ó b!�õ such that ó bö differs from óUö
in only ~ � columns and ó bô ��ó b� ������� are true contingency
tables. We can add another step to change ó b! õ (using
one step of the Markov chain) into ñ . The amount of
flow from ( to ñ that is routed along this path will be
proportional to the probability that á is chosen.

Analysis of flow: In the full version, we show that the flow
through any state ó b K Y

is at most î�S/R0ïª��%o�   Y   . In the
application of Morris and Sinclair [20, 19] this is already
sufficient to prove polynomial time mixing, since the termZ���Ä � in the denominator of (1) is only polynomially small.
However, for our heat-bath chain Z �e� , it may be exponen-
tially small, and further argument is required to establish
rapid mixing.

To this end, let ÄÅ� �ìëx�Eë b � ( ëx�Eë b K Y \ � be a (directed)
transition of our heat-bath chain, with transition probabilityZo�e�U�dÄ � . Suppose that í Ç units of flow are shipped along Ä in
the multi-commodity flow defined above. We will disperse
the flow through Ä by sending it from ë to ë b via a “random
destination” ë b b .

Let " be the set of columns on which ë and ë b disagree
and let 	 be the set of all size $£�¡�d�/~ � fÆO�� heat-bath win-
dows which include " . Let

Y b b be the set of all contingency
tables ë b b such that

1. There is a =�K>	 which contains all the columns on
which ë and ë b b differ, and



2. There is a = b K?	 which contains all the columns on
which ë b and ë b b differ.

For each ë b b K Y b b , we will route í Ç �   Y b b   flow from ë
to ë b via ë b b . Note that this construction doubles the length
of our flow paths, but no more.

In the full version, we show that the total flow in the new
multicommodity flow along transition �ìëx�Eë b b � is at most�/í�% \+�+����� Z ��� ��ëx�uë b b � . This is now sufficient for the right
hand side of (1) to be polynomially bounded, since the
(possibly small) Z �e� ��Ä � term cancels. This completes the
proof of Theorem 6.

4 Mixing of the @BAC@ chain

Theorem 6 shows that the Markov chain {|�e� is rapidly
mixing. In this section we use the comparison method
of Diaconis and Saloff-Coste [8] (see also Randall and
Tetali [23], Vigoda [26]) to show that the �x�Å� chain { \P}#\
is also rapidly mixing.

4.1 Setting up the comparison

We briefly describe the comparison method of Diaco-
nis and Saloff-Coste. Suppose that we have two ergodic
reversible Markov chains { and { b , both of which con-
verge to the uniform distribution on the same state spaceY

. The comparison method is used whenever we already
have an upper bound for the mixing time ¤ED of the chain{ , and we would like to bound the mixing time ¤ D_õ of{ b . We will take the same approach as Vigoda [26], and
we will use a multicommodity flow approach to bound ¤ D õ
in terms of ¤ D . Let Z D denote the transition matrix of the
chain { and Z D_õ denote the transition matrix of the chain{ b . Let F^��Z D � be the kernel of the Markov chain { , that
is, F^�dZ D �Å�|�����o���#�`«·Z D ���o���g�^¸çMg� . Let F	��Z Dcõ � be
the kernel of { b . Let ± Dcõ be the graph whose nodes are
the elements of

Y
, and whose edges are the pairs ���o���#� such

that ���o���g�QKGF^�dZHDcõ-� .
Now suppose we define a unit flow í/¥ C � on the graph±ID õ , for every pair of states ���o�E�#�ÂK/F^�dZHD­� . That is, for

every ���o���#��KJF^��ZHD­� , we construct a set K�¥ C � of simple
paths from � to � in the graph ±LD õ . For every MhKNK�¥ C � ,
we assign some value í ¥ C � �OMi�°K&' M#��O�. , so that

�P��RQ!S � T í ¥ C � ��Mª�r��O/� (7)

For the comparison method, the important quantities are the
quantities UWV�C V õ , defined for every �3Xk�YX b �°KZF^�dZ D_õ � by

U[V�C V õ � �
Ê ¥ C �"Ë:��\ Ê Ì�] Ë �P��RQ!S � T such

that Ê V�C V õ Ë:�RP  
M   í ¥ C � ��Mª� Z D ���o���g�ZHD_õE�3Xk�YX b � �

where   M   denotes the length of the path M .
Then the comparison theorem of Diaconis and Saloff-

Coste [8] (see also Vigoda [26]), states that the mixing time¤�D õ ��J�� of the chain { b is^ ��¤�Dq�dJ+�gRVSWTk�   Y   � §�® ¯Ê V�C V õ Ë:��\ Ê Ì ] õ Ë U V�C V õ ��� (8)

We will apply this theorem with { �e� as the Markov
chain whose mixing time is known (see Section 3) and{ \P}#\ as the Markov chain whose mixing time we want
to bound. For us the state space

Y
is @QA�C D . Recall that

the transition matrix of {<��� is denoted by Z·�e� and that
the transition matrix of { \P}#\ is denoted by Z \P}#\ . Since
we represent contingency tables by ( and ñ , we will use��(��9ñÅ� to denote elements of F^�dZ��e��� , and �:óQ��ó b � to de-
note elements of F^�dZ \ }g\ � . We denote the mixing time of{¿�e� by ¤�ésê and the mixing time of { \P}#\ by ¤ \ }g\ .

In our construction of the flow, we will ensure that the
length of each path MÜKCK ú C û is bounded by a constant.
Thus, the upper bound (8) of the theorem of Diaconis and
Saloff-Coste tells us that to establish rapid mixing, we only
need to concentrate on bounding UI_kC _ õ for every �:óQ��ó b �°KF^��Z \ }g\ � (since R0S/T   Y   �|R0S/T   @°A�C D   K ^ ��%r��R0S/T°I
�E� and¤�é°ê is bounded). Therefore we need only define í ú C û for
every ��(
��ñy�;K`F	��Z��e��� such that Equation (7) is satisfied
and such that, for all �-óx�+ó b �yK?F^�dZ \ }g\ � , the following is
satisfied:

�
Ê ú C û Ë:��\ Ê Ì�aRb Ë �P��RQ�c � dÊ _kC _ õ Ë:�RP

í ú C û �OMi� Ì aRb Ê ú C û ËÌ vfePv Ê _kC _ õ Ë ¬)î�S/R0ïª��%o�"� (9)

It helps us to re-work Equation (9) before defining the
flows. For ��(���ñF��K4F^�dZ����·� , let gÜ��(��9ñy� be the set of
all $��h�d�/~ � f?O�� “windows” such that ( and ñ agree
outside of 	 , where a “window” is just a set of $ rows and��~��)fhO columns. Note that

Z��e�U��(
��ñÅ�r� ��Æ��h Ê ú C û Ë
Oi !\9� � ���Yj O

  Y ú �k	æ�   �
where

Y ú �k	æ� is the set of all contingency tables that
agree with ( outside of 	 . We may view Z·�e�U��(��9ñÅ� as
an average of the quantities OP�   Y ú �&	æ�   over all windows	 K/gÜ��(��9ñÅ� . Therefore, we can pick some 	Ü��(���ñÅ�xKgÜ��(��9ñÅ� such that

Zo�e�U��(���ñF�°¬ O
  Y ú �k	Ü��(
��ñy���   � (10)

The essential idea to keep in mind in what follows is that
routing the unit flow í ú C û from ( to ñ is done using paths
of contingency tables that differ from one another solely on
(a part of) the chosen window 	Ü��(��9ñy� satisfying (10).



For each $ �H�-��~ � f¶O�� window 	 , let F � �����(
��ñÅ�^KhZo�e�   	Ü��(��9ñy�y�l	?� . Later, when we de-
fine our flows, we do the following for every fixed win-
dow 	 : For every ��(���ñF�FKJF � , we define a flow í ú C û
such that Equation (7) is satisfied. We also ensure that for
all �:óQ��ó b �BKmF^��Z·\P}#\�� , the following is satisfied:

�
Ê ú C û Ë:��\:n �PW�RQ!c � dÊ _kC _ õ Ë:�RP

í ú C û �OMi� ÌRaRb Ê ú C û ËÌ vfePv Ê _kC _ õ Ë ¬)î�S/R0ïª��%o�"� (11)

Since there are only polynomially-many windows 	 , equa-
tion (11) implies equation (9), and ensures rapid mixing.

For each window 	 , Section 4.2 shows how to define a
flow íªðú C û for every ��(
��ñy�°KZF � such that

�P��RQ c � d í ðú C û ��Mª�r�æO
and the total flow through any contingency table óÜK)@xA�C D
is in

^ �   Y ú �&	æ�   � . We define í ú C û by modifying íªðú C û .
Let íªðú C û �-óÂ� denote the amount of flow passing through
the contingency table ó in the flow í�ðú C û . Let íªð/�-óÂ�m�6 Ê ú C û Ë:��\:n íªðú C û �-óÂ� . Similarly, let í ú C û �-óx�+ó b � denote
the amount of flow passing through the transition �-óx�+ó b � in
the flow í ú C û . Let í��:óQ��ó b ��� 6 Ê ú C û Ë:��\:n í ú C û �-óx�+ó b � .
Our construction of í ú C û from íªðú C û ensures that for every�-óx�+ó b �°KmF^��Z·\ }g\P� , we have

í��:óQ��ó b �°¬­�Wí ð �:ó;�EZ�\ }g\��-óx�+ó b �po % �rq o $ �,q � (12)

Thus, the left-hand-side of (11) is equal to% Ê _kC _ õ ËÌ vfePv Ê _kC _ õ Ë Z��e�U��(
��ñÅ�
¬ % Ê _kC _ õ ËÌ vfePv Ê _kC _ õ Ë �s � c Ê �`Ë s
¬ \ %�t Ê _ Ë �3u v �"� � v �s �vc Ê �`Ë s¬ î�S/R0ïª��%o�"�

where the first inequality comes from Equation (10), the
second comes from Equation (12) which we establish in
the full version, and the third comes from the fact thatí ð �-óÂ�BK ^ �   Y ú �k	æ�   � , which is established in Section 4.2.
We will then have shown that Equation (11) is satisfied, as
required, so the ���
� heat bath chain is rapidly mixing on@ AEC D .

By considering all $L�m�d�/~��&f&OP� sized windows which
contain the two columns on which ó and ó b differ, we can
see that for each �:óQ��ó b �BKGF	��Z·\P}#\�� , we have

U _kC _ õ ¬J# o % � q o %mj&��/~ � j)O q
where the constant # accounts for the maximum length of
any ��(��9ñÅ� path for ��(
��ñy�ÆKwF^��Z·���·� , and the constant

factors arising in the bound for the flow í�ð/�-óÂ� over a sin-
gle $Ý�h�-��~ � f?O�� window 	 . Therefore, we have the
following theorem:

Theorem 7 The mixing time ¤ \P}#\ �dJ+� of the Markov chain{ \P}#\ is ^ ��¤�é°ê���J���R0S/T��   @°AEC D   �]% \+�+�>��� �"�
Therefore by Theorem 6, the mixing time of { \ }g\ is
bounded by a polynomial in % , R0S/TUI and R0S/TsJ X � .
4.2 Defining í ð ��(
��ñÅ�

In this section we outline a method for defining a flow for
every ��(���ñÅ�ÃKxF � such that 6 P��RQ c � d íªðú C û �OMi�x�ÜO and
the total flow through any contingency table ó , due to pairs
in F � , is in

^ �   Y ú �k	æ�   � . The full details are shown in the
full paper, but are omitted here due to space considerations.

Throughout the entire section, we focus on some fixed$L�c�d��~��Àf)O�� sized window 	 of the larger $��^% table.
Without loss of generality (and to make our notation simpler
in what follows), we assume that 	 includes the first �/~��FfO columns of the table. This window 	 has induced row
sums y = (for *
K<' $	. ) and induced column sums z 7 (for,�K�' �/~ � f
O�. ). For convenience we also set {��q��~ � f
O .

Let yÀ�ø�Oy � ���������Yy � � , z��¶�kz � ���������|z~}�� be the lists of
induced row and column sums. Let @���C � denote the set of$q��{ contingency tables with row sums y and column sumsz , and let I � denote the table sum. Let �y�~� KÀ@���C � . We
show how to route a unit of flow between � and � using
a path of contingency tables that differ by �^��� heat bath
moves. This flow lifts in the obvious fashion to transitions��(��9ñÅ�QK`F^��Z �e� � , giving us the flow íoðú C û required in the
previous section. In other words, we simply use the exact
same sequence of �o�s� transitions on the window 	Ü��(���ñF� ,
keeping everything outside this window fixed (where ( andñ agree anyway).

If I � ¢£�d� $m{�� \ then   @���C �   K ^ �EO�� , so it doesn’t really
matter how we route flow between � and � . For example,
it suffices to fix each square in the contingency table in lexi-
cographic order. Each path in the resulting flow is of length^ �uOP� and there are

^ �EO�� pairs �<�y�f��� of contingency ta-
bles, so the desired bound is easily established. Thus, from
now on we assume I � � �d� $m{�� \ and we show how to
construct a flow between � and � in @���C � .

Without loss of generality we may assume that the row
totals are sorted into non-descending order and that the col-
umn totals are also sorted into non-descending order. There-
fore y�� is the largest row sum and z } is the largest column
sum.

As we did in section 3, we view the space @ ��C � of con-
tingency tables as the ��$?j&OP�"�k{Bj_OP� -dimensional space of
integer matrices � that satisfy �Ã' *+�:,�. � M for all *rK&' $hjÆO�.



and all ,�K�' {ÅjãO�. and also satisfy inequalities analogous
to (4), (5) and (6) (see the full version for details). Let

»�=�C 7 � � §F¨0©i�Ey�=E�|z 7 �$ \ { \ � (13)

for all *UK�' $�jlO". , ,^K_' {;j­O�. .
For any contingency table �hKa@���C � , and any *sK_' $ÀjFO". ,,�K�' {ÃjlO". , we can write�Ã' *+�:,�.i�21�' *+�-,/.]��»·=�C 7 f
OP�ªfÀù`' *+�-,/.-�

for a unique integer ù`' *9�:,/. satisfying M�¬�ùF' *+�-,/.Â¬�» =�C 7 ,
and a unique integer 1�' *+�:,�. .

Let

1 ð ' *+�:,�.Ú� � y�=&z 7I � �d»�=�C 7 f
OP� � (14)

for all *UK�' $�jlO". , ,^K_' {;j­O�. .
If � is a contingency table such that 1�' *9�:,/.Q�l1Fð�' *+�-,/.

for every *sK_' $�j`O�. , ,^K&' {�j`O". , then we say that � belongs
to the inner domain of @ ��C � .

The following lemma is crucial in our method of defining
the flow, because it tells us that for any original contingency
table �ãK�@ ��C � , there is a contingency table �;ð in the inner
domain which has the same set of remainders §`S����d» =�C 7 fO�� as � .

Lemma 8 Let �xð�' *+�-,/. be defined by �Qð/' *9�:,/. �1Åð ' *+�-,/.:�d» =�C 7 f�OP�Æf¶ù`' *9�:,/. , for any non-negative in-
tegers ù`' *+�:,�.�¬l»·=�C 7 , for all *sKÀ' $HjlO�. , ,^KÀ' {;j­O�. . Then�QðÃKa@���C � .
Consider �y�~�æK
@���C � . We will route flow from � to � via
two points in the inner domain.

For every *yK£' $<jãO�. , ,&K�' {ÅjãO�. , let ù��Q' *+�:,�. be the
unique integer such that �F' *+�-,/.#§`S��a��»�=�C 7 fhOP�°�æùW�Q' *+�-,/.
and M­¬¿ùW�Q' *+�-,/.Å¬¿»�=�C 7 . Let � ð be the point in the in-
ner domain with the remainders ù��Q' *9�:,/. ; that is, �üð/' *+�-,/.e�1Åð ' *+�-,/.:�d»�=�C 7 fFOP�9füùW�B' *9�:,/. for every *rK&' $_jÅO". , ,�K&' {#j¡O". .
By Lemma 8, � ð K�@���C � .

For every *yK£' $<jãO�. , ,&K�' {ÅjãO�. , let ù��Q' *+�:,�. be the
unique integer such that �F' *+�-,/.#§`S��a��»�=�C 7 fhOP�°�æùW�Q' *+�-,/.
and M­¬¿ùW�Q' *+�-,/.Å¬¿»�=�C 7 . Let �üð be the point in the in-
ner domain with the remainders ù��Q' *9�:,/. ; that is, �üð/' *+�-,/.e�1Åð ' *+�-,/.:�d» =�C 7 fFOP�9füù � ' *9�:,/. for every *rK&' $_jÅO". , ,�K&' {#j¡O". .
By Lemma 8, �¡ðÂK�@ ��C � .

The routing from � to � proceeds in two stages. In the
first phase of the routing, we route flow from � to �Åð . We
do this routing from � to �¡ð by changing only four of the1�' *+�:,�. values by �yO (on some �´�&� subwindow) at each
step. In the full version we show that we can construct a
short path from � to �¡ð using these moves. Note that in the
first phase we never change the remainders ù��;' *+�-,/. .

By defining a similar path between � and �Åð and then
reversing all the edges, we can route flow from � and �Åð in
a similar way.

The length of the path between � and �Åð (and hence
between �üð and � ) in phase one is shown to be at most�#��$ \ { \ � � } . Also, the amount of flow passing through any
contingency table �hK�@ ��C � due to “phase 1” flow is at most

  @���C �   ��$ \ { \ � \�� } .
In the second phase of the routing we route flow from�üð to �üð by changing the ù��x' *+�:,�. to the ùW�Q' *+�-,/. val-

ues. These remainders are “fixed” in order, i.e. we con-
struct a series of new tables by first changing ù��;'âOW��O". to
the value ù��Q'âOW��O�. . Then, from that resulting table we
change the value ù��Q'VO/�+�P. to ùW�Q'VO/�+�P. . In general, we con-
sider the lexicographic ordering �uOW��OP�����EO/�+�/���������"���EO/�Y{ÆjO��"���d�#��OP���������"����$ j?O/��O����������"����$ j OW�Y{Æj O�� . We “fix”
the remainders, one at a time, in this order to define a path
between �üð and �üð . This defines a path of length at most��$ÀjFO����3{kjyOP� for the second phase of the routing. Lemma 8
guarantees that each state in the path is in @ ��C � . The flow
through any contingency table � due to “phase 2” flow is
shown to be bounded above by   @���C �   ��$m{��"��$ \ { \ � \�� } .

Now we combine phases 1 and 2, and lift it back to the
set of $ø�a% contingency tables @BA�C D . Recall that we need
only consider each $��h�d�/~ � f?O�� sized window 	 in-
dividually, where y and z represent the induced row and
column sums, respectively, of this window. The length
of any path between (��9ñòKç@BAEC D that differ only on 	
is at most è���$m{�� \9� } fæ$G{ . Also, the flow through any
table ó¦K @ A�C D , due to the window 	 , is bounded by

  @ ��C �   �-�#��$G{���� � } fÀ$G{g��$ \ { \ � \�� } � .
This establishes the criteria for the length of paths be-

tween ( and ñ and for the flow í ðú C û we required in sec-
tion 4.1. We then modify íoðú C û , as was outlined in that sec-
tion, to give the new flow í ú C û that satisfies Theorem 7.
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