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Abstract. We empirically investigate agent software repositories using
commonly used software metrics, which are used in software engineering
literature to quantify meaningful characteristics of software based on its
source code. We contrast the measurements with those of software in
other categories. Analyzing hundreds of software projects, we find that
agent software is clearly and significantly different from other types of
software of comparable size.

1 Introduction
For many years, significant research efforts have been spent on investigating
methodologies, tools, models and technologies for engineering autonomous agents
software. Research into agent architectures and their structure, programming
languages specialized for building agents, formal models and their implementa-
tion, development methodologies, middle-ware software, have been discussed in
the literature, encompassing multiple communities of researchers, with at least
partial overlaps in interests and approaches.

The most important underlying assumption of these research efforts is that
such specialization is needed, because autonomous agent software poses engineer-
ing requirements that may not be easily met by more general (and more famil-
iar) software engineering and programming paradigms. Specialized tools, models,
programming languages, code architectures and abstractions make sense, if the
software engineering problem is specialized.

A broad overview of the literature reveals that for the most part, the truth
of this assumption has been supported by qualitative arguments and anecdotal
evidence. Agent-oriented programming [36] is by now a familiar and accepted
programming paradigm, and countless discussions of its merits and its distinc-
tiveness with respect to other programming paradigms (e.g., object-oriented
programming, aspect-oriented programming) are commonly found on the in-
ternet. Agent architectures are commercially available as development platforms
and are incorporated into products. Indeed, agent-oriented software development
methodologies are taught and utilized in and out of academic [5, 16,21,31].

However, there is a disturbing lack of quantitative, empirical evidence for
the distinctiveness of autonomous agent software. Lacking such evidence, agent
software engineers rely on intuition, experience, and philosophical arguments
when they evaluate or advocate specialized methods.
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This paper provides the first empirical evidence for the distinctiveness of
autonomous agent software, compared to other software categories. We quanti-
tatively analyze over 500 software projects: 140 autonomous agent and robotics
projects (from RoboCup, the Agent Negotiations Competitions, Chess, and other
sources), together with close to 400 automatically selected software projects from
github, of various types. With each, we utilize general source code metrics, such
as Cyclomatic Complexity, Cohesion, Coupling, and others used by general soft-
ware engineering researchers to quantify meaningful characteristics of software
(over 250 measures—see Section 2).

We conducted both statistical and machine-learning analysis, to determine
(1) whether agents emerge as a distinguishable sub-group within the pool, and
(2) whether there are clear distinguishing measures. We find that agent software
is clearly and significantly different from other types of software of comparable
size. This result appears both when using manual statistical analysis, as well
as machine learning methods. Specifically, autonomous agents software is sig-
nificantly more complex (in the sense of control flow complexity) than other
software categories. We discuss potential implications of these results.

2 Background
There is vast literature reporting on software engineering of autonomous agents.
We cannot do justice to these efforts for lack of space. For brevity, we use the
term agent-oriented software engineering (AOSE) to refer to the combined re-
search area, With due apologies to all the different threads of work whose unique
contributions are blurred by our choice.

AOSE is a thriving area of research [25,31, 33, 35, 38, 41]. For the most part,
the arguments for the study of AOSE as distinct from general software engi-
neering are well argued philosophically, and qualitatively pointing out inherent
conceptual differences between the software engineering of agents. To the best
of our knowledge, little quantitative empirical evidence—certainly not at the
scale detailed below—has been offered to support these important conceptual
arguments.

Closely related, pioneering works into software engineering in robotics
(e.g., [6–9,20,34,40] similarly likewise argue qualitatively for distinguishing soft-
ware engineering in robotics. Some emphasize specific middleware frameworks
(e.g., [11,17,20,39]), while others focus on critical capabilities [10,14,30]). The un-
derlying implicit assumption is similar to those in AOSE: that robotics software
is sufficiently different from general software, that it merits distinct methodolo-
gies and tools to ease software development. Indeed, we report below that robot
code is similar in some aspects to autonomous agents code, but is not as easily
distinguished from general software.

The rarity of quantitative investigations in AOSE (see also below) is not for
lack of quantitative methods in general software engineering. Beginning with
the 1970s pioneering research on Cyclomatic Complexity [28] and Halstead mea-
sures [22] there have been many investigations both proposing quantitative met-
rics of software constructs, and relating the measurements to software qual-
ity, development effort, software type, and other attributes of interest [1, 4, 26].
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For example, metrics such as Cyclomatic Complexity, Coupling, and Cohesion—
generated from analysis of the software source code and the program control
flow graph— have been shown to correlate with defects [12,23,28]. Maintaining
their values within specific ranges (or below some thresholds) tends to lower
the expected defect creation rate, and improve other measures of software qual-
ity. Development and exploration of software metrics continues today, e.g., for
paradigms such as aspect-oriented programming [32]. See [18] for a comprehen-
sive survey.

Software metrics have been used to classify software, or cluster together soft-
ware based on measured characteristics, as we do in this paper [27]. For example,
De Souza et al. defined software metric thresholds based on context [15]. Sto-
jkovski [37] showed this approach is applicable for Android projects. Another
example can be found in Meirelles at al. [29], who found linkage between the
size and complexity of open source projects, to attractiveness of the project for
contributors.

3 Software Project Data Collection and Curation
We begin with an overview of the data collection and curation process. The data
collected will be used in the analysis processes described in Sections 4–5.

3.1 Data Sources

RoboCup. RoboCup is one of the oldest and largest annual global robotics com-
petition events in the world—taking place since 1997. The event is organized in
several different divisions.Within each division, there are multiple leagues, with
their own rules. For example, within the soccer division, there were over the years
up to three different simulation-based leagues (2D, 3D, and coach), and several
physical robot competitions (standard platform, small-size, mid-size, and two
humanoid leagues). The competitions themselves are between completely au-
tonomous agents/robots; no human in the loop. In most cases, the agents run in
completely distributed fashion, without a centralized controller.

The bulk of the code in the various leagues is written by graduate students
and researchers in robotics and artificial intelligence, some from top universities
in these fields. The simulation leagues follow an internal rule, which requires all
teams to release a binary version of their code within a year following the com-
petition. Source code release is not required, but strongly encouraged. Indeed,
we use the source code from many 2D simulation league teams, downloaded from
their repository server. In addition, we used source code from other RoboCup
soccer leagues, gathered from the internet.

Automated Negotiating Agent Competition (ANAC). The annual International
Automated Negotiating Agents Competition (ANAC) is used by the automated
negotiation research community to benchmark and evaluate its work and to chal-
lenge itself. The benchmark problems and evaluation results and the protocols
and strategies developed are available to the wider research community. ANAC
has similar properties to the RoboCup in the sense of emphasizing autonomous
agents. It is a popular competition for software agent researchers, maintains a
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requirement that all the sources of the agents participating in the competition
are made available for research. We collected ANAC software agent projects from
the competition web site.

GitHub. GitHub has more than 24 million users and more than 67 million code
repositories. It is the largest repository of open source projects in the world.
GitHub exposes robust API for finding repositories using extensive query lan-
guage, which we used to find relevant project for analysis. Repositories in GitHub
are categorized by users using tags, which we used to categorize software projects.

Additional data. We additionally found open source robotics projects from the
DARPA Grand and Urban challenges, and from industrial projects where our
lab was involved in research.

3.2 Automatic Data Harvesting
From the sources above, we first collected agent and robot software projects—all
we could find and use: 2D RoboCup teams for which source code is available, the
ANAC agent projects, robotics software from RoboCup and the other sources
described above. To counter bias from competition sources, we also used github
projects tagged chess as agents software.

The process of collecting and filtering of repositories from GitHub was au-
tomatic. The primary constraint in selecting software projects is comparability.
The source code collected for agents uses C, C++, and Java, and so we restricted
ourselves to projects in these languages, to prevent language-specific bias in the
metrics. Similarly, we restricted ourselves to software size (measured in lines of
code—LOC) in comparable ranges, and belonging to software categories other
than agents or AI:

– Programming languages : C , C++ , Java
– high Level of maturity
– Distinct classification in github (for github projects)
– Size > 900 lines of code (LOC)

Table 1 shows a breakdown of the number and categories of the harvested
software projects in the dataset (almost a terabyte). In total, there were 118
projects generally classified as autonomous agents for software or virtual envi-
ronments, 20 projects classified as autonomous robots, and 377 projects in other
categories. Table 2 lists the mininum, maximum and median project size in each
domain, measured in LOC.

3.3 The Measurement Pipeline
The essence of the process is the measurement, i.e., the generation of measure-
ments from applying code metrics to the software. We focus on source code
metrics in this paper. The source code of each project was processed to extract
two different data structures: a control flow graph, and a code statistics database.
These, in turn, are used to calculate several different metrics. Additionally we
save information on the context of the repository (name , location, category)
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Classification Source Software Domain Size Maturity Indicator

Autonomous
Agents

RoboCup 2D simulation Virtual Robots 64 Qualification for RoboCup
ANAC Negotiating Agents 26 Qualification for ANAC
GitHub Chess-Playing Engines 28 > 5 GitHub stars

General GitHub

Audio 54

> 5 GitHub stars

Education 50
Finance 26
Games 34
Graphics 60
IDE 53
Mobile Applications 42
Security 58

Robots
DARPA Challenges Autonomous Car 2 Qualification for Challenge
RoboCup competition Soccer Physical Robots 15
Applied R&D Projects Robots 3

Table 1. Software project data breakdown.

and other information like source code language, competition results, the year
in which the code was deployed, etc.

We used two different tools, independently, to allow validation of the results:
CCCC1 and Analizo2. The two tools were run on two 24-core XEON servers,
each with 76GB of ram. Total CPU time is more than a month.

The measurement tools provide the following general software metrics, for
different level of analysis (see [18] for detailed descriptions). As with the restric-
tion on choice of language, we are restricted to using general metrics as they
allow for measuring non-agent code. Otherwise, we’d be able to use code metrics
specific to AOSE [2,3,13,19], and specialized languages (e.g., 2/3APL, JASON).

Summary & Project Level Metrics: Total Lines of Code (total loc), Total Num-
ber of Modules (total modules), Total Number of Methods (total nom).

Module Level Metrics: Afferent Connections per Class (ACC), Average Cyclo-
matic Complexity per Method (ACCM), Average Method Lines of Code (AM-
LOC), Average Number of Parameters (ANPM), Coupling Between Objects
(CBO), Coupling Factor (COF), Depth of Inheritance Tree (DIT), Lack of Cohe-
sion of Methods (LCOM4), Lines of Code (LOC), Number of Attributes (NOA),
Number of Children (NOC), Number of Methods (NOM), Number of Public At-
tributes (NPA), Number of Public Methods (NPM), Response for Class (RFC),
Structural Complexity (SC).

We collected not only the raw metrics above, but also their aggregation in
various ways, so as to minimize the inherent loss of information. Thus for each
metric, we also computed its mean, mode, minimum value, maximum value,
quantiles (lower, max, median, min, ninety five, upper), standard deviation,

1 http://cccc.sourceforge.net/
2 http://www.analizo.org/
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Software Domain Min, Max, Median Size in LOC

Virtual Robots 1010, 153661, 23495
Negotiating Agents 1031, 102816, 1352
Chess-Playing Engines 1084, 59108, 5311
Audio 1065, 1912860, 17010
Education 1026, 393360, 6933
Finance 1136, 450524, 10455
34 1393, 185784, 5064
Graphics 1168, 385036, 18769
IDE 1457, 401897, 32486
Mobile Applications 1210, 129366, 4658
Security 1214, 164228, 10341
Autonomous Car 117848, 117848, 117848
Soccer Physical Robots 15335, 793966, 54895
Robots 3131, 64028, 10588

Table 2. Software projects min, max, and median LOC.

variance, skewness, and kurtosis. All in all, each software project was represented
by more than 250 measurements.

4 Statistical Analysis

We conducted two separate analysis efforts which had common general goal.
This section details the results of a statistical analysis, while the next section
presents the use of machine-learning analysis. The focus in both is to reveal
differences, if they occur, between the different software categories, as expressed
in the measurements of different metrics.

Every project is represented by approximately 250 different metrics. As such,
it is difficult to attempt to find differentiating metric by hand. We therefore
used a heuristic procedure to assist in finding promising features. Algorithm 1
describes the procedure. We emphasize that this is a heuristic procedure, to draw
human attention to features of interest, not for statistical inference.

The idea is to iterate over the software domains. For each domain r, we sep-
arate it out from the others, and then use a two-tailed t-test to contrast the
distribution of the metric values in the domain and in all others. A lower p value
from the t-test is used as a heuristic, indicating that potentially a good differ-
entiating feature has been detected. We collect all the domains differentiated by
the metric f into a common set indexed by f . We then look for sets larger than
two. We use a threshold to avoid distractions from a metric that may distinguish
a specific domain from all others, by chance.

Table 3 shows the output of the algorithm for each individual metric, when
listed in increasing order of probability (i.e., in order of decreasing indication
of separation power). The top four metrics are the ACCM mean and its upper
and median quantiles, and the Coupling Factor (CoF) metric, which measures
coupling between modules. These four metrics clearly distinguish between the
agent domains (RoboCup 2D Simulation, Chess, ANAC agents).
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Algorithm 1 Common differentiator algorithm

1: for all r ∈ Domains do
2: others← (Domains− {r})
3: for all f ∈ metrics do
4: if statistic2sampletest(rf , othersf ) < 0.05 then
5: CommonSetf ← CommonSetf

⋃
r

6: for all f ∈ metrics do
7: if |CommonSetf | >= 3 then . 3 or more clustered together?
8: selectedf ← CommonSetf

return all selectedf

We use the p value in Table 3 as a heuristic indicator for the human analyst.
It gives an indication of the strength of the clustering, independent of the content
of the cluster. Even if the agent domains could be distinguished from the others,
we could easily expect other software domains to be so clustered. However, the
fact is that the strongest distinguishing metrics put autonomous agents together,
apart from other domains.

Metric Repositories p value

accm mean [RoboC-2D, Chess, ANAC] 1.18E-04
accm quantile upper [RoboC-2D, Chess, ANAC] 8.78E-04
accm quantile median [RoboC-2D, Chess, ANAC] 1.17E-03
total cof [RoboC-2D, Chess, ANAC] 1.19E-03
noa skewness [RoboC-2D, IDE, Graphics] 2.59E-03
nom quantile upper [RoboC-2D, ANAC, Audio] 6.27E-03
amloc quantile upper [RoboC-2D, Chess, ANAC, ...] 7.99E-03
nom mean [RoboC-2D, ANAC, Graphics, Audio] 1.07E-02
anpm quantile upper [RoboC-2D, ANAC, Graphics] 1.14E-02
noa kurtosis [RoboC-2D, Ide, Games, Graphics] 1.28E-02

Table 3. Top distinguishing features in descending order, and the software domains
they cluster.

We then moved to examining the results visually, using box-plots to display
the distribution of specific metrics of each software domain. We seek features
which, as clearly as possible, distinguish the three classes of domains.

Indeed some metrics clearly are different between domains. For example, Fig-
ure 1 show the box-plot distribution of the Lack-of-Cohesion (LCOM4) metric,
which received generally low rank by the heuristic procedure (i.e., a relative high
p value). Here, we clearly see that the RoboCup-Other-Leagues group stands out,
compared to the other software domains. However, it is the only domain in the
cluster, and does not distinguish the agents or robots domains from others.

Other metrics may sometimes cluster together more than one domain, but
are not able to distinguish agents from non-agents code. For example, Figure 2
show the distribution of the Structural Complexity metric. We can see that the
inner-quantile range and median are similar between RoboCup 2D and Other
RoboCup Leagues, suggesting some commonality in behavior of the structure of
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Fig. 1. Box plot distribution of LCOM4 mean.

classes and objects. However, it reveals no commonality between the different
domains of the same class (Agents, Robots, or General Software).

In contrast, metrics that were ranked high by Alg. 1 visually show much
more promise. For example, Table 3 suggests the mean ACCM is promising,
in terms of its ability to distinguish between agents and non-agent software.
Figure 3 shows the box plot distributions for this metric. Visually, the box-plots
for the Agents class (RoboCup 2D, ANAC, Chess) are clearly prominent relative
to other software domains.

5 Machine Learning Analysis
A second approach for our investigation uses machine learning techniques, to
complement the manual analysis. Humans detect patterns in visualizations that
computers may miss, yet may also fall prey to misconceptions. Thus an auto-
mated analysis can complement the manual process.

We attempted to use several different machine learning classifiers to distin-
guish agent and non-agent software domains, with the goal of analyzing success-
ful classification schemes, to reveal the metrics, or metric combinations, which
prove meaningful in the classification.

Pre-processing the data. We filtered outliers at the top and bottom 3% of the
data (i.e., within the 3–97 percentiles). Aggregated features (total, median, etc.)
were removed to minimize the effect of project size on the model, and to reduce
the number of features (standing originally at around 250). The data was divided
into a training (85%) and testing (15%) sets.

Classification procedure. We choose one vs many classification strategy, similarly
to the manual analysis above. Iterating over all software classes, we trained a
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Fig. 2. Box plot distribution of the Structural Complexity metric for software domains.
RoboCup 2D simulation and RoboCup-Other-Leagues have larger variance and higher
values than all other software domains.
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binary classifier to differentiate between samples of one software domain (ex. Au-
dio) to all other software classes. This creates an inherent imbalance in the num-
ber of examples presented, which we alleviated by using random over-sampling
of the minority class.

For classification, we used the following classification algorithms: Support
Vector Machines, Logistics Regression, and Gradient-Boosted Decision Trees.
The implementations are open-source packages (scikit-learn3 and XGBoost4).
The performance of classifiers was carried out using two scoring functions, famil-
iar to machine learning practitioners: F1 and AUC (area under the ROC curve).
In both, a greater value indicates better performance. Each of the tables below
(Tables 4–6) shows the top classifers built using the classification algorithms. In
each, we list the top classification results of a single domain versus all others.
Our interest, however, is not so much on being able to classify a specific domain,
but instead in the metrics used as features when classifying Agent software. The
last column of each table lists the most informative 3–4 features (metrics) used
by the classifier. Frequent recurrence may hint at important metrics.

Table 4 shows the top results from the SVM classifiers, in decreasing or-
der of performance. SVM classification output is only ”Hard decision” without
probability distribution of the different classes and thus the AUC score is not
available for it. We used the default SVM parameters in the implementation.
The F1 scores in the table are far from indicating great success, yet we note
the presence of the mean ACCM metric in the list of features important for
classification for the repositories belongs to the ”Agent” class.

agent type class 1 auc f1 score feature rank

0 agent Robocup-2D - 0.67 [accm quantile median, accm quantile upper, noc mean]
1 agent Anac - 0.62 [accm quantile lower, noa quantile lower, noc mean]
2 non-agent Ide - 0.33 [acc quantile lower, dit mean, noc quantile upper]
3 non-agent Mobile - 0.32 [acc quantile lower, acc quantile median, accm quantile lower]
4 non-agent Graphics - 0.20 [accm quantile lower, dit quantile lower, dit quantile median]

Table 4. SVM top five scoring software domain classifiers.

We next used classifiers built using Logistic Regression (LR). We used L2
regularization, and stopping criteria of 100 iterations. The top LR classifiers are
reported in Table 5. In general their scores are lower than the SVM classifiers
reported above.

Finally, we used Gradient-Boosted Decision Tree classifiers. The idea in this
technique is to use an ensemble of decision trees based on subsets of the samples
and features, to lower the risk of over-fitting while maintaining high accuracy.
The classifiers were built using the XGBoost package, using the default parame-
ters. The results are shown in Table 6. Overall, the results are much better than

3 https://scikit-learn.org/
4 https://github.com/dmlc/xgboost
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agent type class 1 auc f1 score feature rank

0 agent Anac 0.99 0.80 [accm quantile upper, noa quantile lower, rfc quantile lower]
1 agent Robocup-2D 0.97 0.70 [amloc quantile upper, noc mean, npa mean]
2 Robot Robcup-Other-Leagues 0.87 0.50 [amloc quantile lower, cbo mean, nom mean]
3 non-agent Ide 0.77 0.44 [amloc quantile median, anpm mean, npa mean]
4 non-agent Graphics 0.76 0.24 [anpm mean, lcom4 mean, mmloc mean]

Table 5. Logistic Regression top scoring software classes.

the other two classification attempts. Some individual domain classifiers achieve
high scores.

Most importantly, however, we note that the top performing classifiers (1)
are those that are able to distinguish agent software from other types of soft-
ware, and (2) utilize the mean ACCM and AMLOC metrics in their classification
decisions. These results concur with the conclusions. of the manual analysis de-
scribed earlier. We also observe that software from physical robots participating
in RoboCup (domain: Robocup-Other-Leagues) has also been classified success-
fully, using the AMLOC metric (among other metrics).

Agent/General Class (Domain) AUC F1

0 Agent Robocup-2D 0.97 0.85
1 Agent ANAC 0.98 0.67
2 Agent Chess 0.84 0.44
3 Robot Robcup-Other-Leagues 0.89 0.40
4 General Graphics 0.65 0.31
5 General Security 0.76 0.27
6 General Mobile 0.80 0.22
7 General Games 0.49 0.00
8 General Audio 0.56 0.00
9 General Robot-Simulation 0.66 0.00
10 General Education 0.66 0.00
11 General Finance 0.73 0.00
12 General IDE 0.75 0.00
13 Robot Robo-Projects 0.86 0.00

Table 6. Gradient Boosted Decision Trees top scoring software classes. Mean ACCM
is a recurring important feature.

6 Discussion

Ultimately, our goal in this investigation is not only finding out if there is a
difference between agent or robot software, and other software domains, but
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Fig. 4. Top 10 features with highest importance for XGBoost classification in projects
in the agent repositories

also to uncover the nature of this difference. This section discusses the results
presented above, and attempts to draw conclusions, lessons, and hypotheses for
future investigations.

ACCM and Control Complexity of Agents. First, it is clear that the ACCM
measure is a recurring metric in successful classification schemes distinguishing
agent software from other software. This is true both in the manual analysis, as
well as in classifiers generated by machine learning algorithms. In general, Agent
software seems to have high ACCM measurements, compared to other software
domains. Robot software does have higher ACCM (on average) than non-agent
software, but the difference is much less pronounced than between Agent and
general software. It is therefore immediately interesting to better understand
what the ACCM actually measures.

ACCM—Average Cyclomatic Complexity per Method—is a more modern
variant of the Cyclomatic Complexity (CC) metric introduced by McCabe in
1976 [28]. Briefly, the cyclomatic complexity of software is a measure of the
number of possible execution paths through its control flow graph. The more
branching points, conditional loops, and decision points in the software, the
greater its CC. The ACCM measures the CC value at the method level, for all
methods within a module. It then computes the mean of these measurements
to introduce a single value which represents the complexity of the module as a
whole.

Cyclomatic Complexity has been generally shown to be inversely correlated
to code quality and defect frequency. Greater CC is correlated with a greater
number of defects in the software, persistent bugs, and other indications of poor
design and code quality. Indeed, the correlation is sufficiently accepted, that there
exists recommended practices for the maintenance of CC values of new software
within accepted safe range, below the ACCM measurements we generally see
here.

Is Agent Software Inherently More Complex? (In short: YES!) There are alter-
native explanations for the higher ACCM values we observe in agent software:
(1) that agent software is just inherently more complex, because the tasks tackled
by the software requires greater complexity in the control flow of the software.
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Or, (2) that the agent code is just more buggy, or written by programmers who
are not as well-trained, e.g., too academic?

We offer evidence that the first explanation is the correct one, i.e., that
agent software is inherently more complex. One benefit of using competition
software in this study is that alongside the software metrics, we also have clear
quality metrics in terms of the success of the software. Specifically, we show below
(Figure 5) a plot of the ACCM measure from a subset of RoboCup software
agent, vs the code effectiveness as measured by the mean goal difference of
the agents in competitions. We see a clear inverse relation between the two:
higher ACCM is associated with poor performance, just as it is in other software
domains. However, the ACCM of winning agents is still higher than standard
practice in software.

Fig. 5. ACCM (Average Cyclomatic Complexity per Module, vertical axis) vs Effec-
tiveness (here, measured by mean goal difference per game—horizontal axis, larger
is better).The goal difference was extracted automatically from log files of individual
games.

What about other measures? A critical look at the results of this study raises the
issue of other measures. It is true that ACCM is a clear distinguishing charac-
teristic of agent vs non-agent code. However, it is not so clear that the machine
learning classifiers can use it, ignoring other metrics. Indeed, some very successful
classifiers do not use ACCM at all. Indeed, we saw also that the AMLOC mea-
sure is also a potentially good metric from this respect, as well as the MMLOC
measure.

While we do not refute the possibility that other metrics may be as good
as ACCM or complement it, we point out that many metrics are known to be
correlated in practice (see, e.g., [24]), and thus it may be that a machine learning
classifier using a particular metric could have also worked as well with a different
one, that is highly correlated. In particular, in our own study here, we found that
the Pearson correlation between AMLOC and ACCM is 0.84, and the correlation
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between MMLOC and ACCM is 0.90. So a preference for one metric over another
does not necessarily mean that the other metric was not as useful.

7 The Big Picture

This papers offers the first empirical evidence that agent software is indeed
inherently different from other types of software, intended for other domains. The
empirical evidence was collected by analyzing hundreds of software projects of
comparable sizes, using two different types of analysis. In particular, we find that
agent software has greater control flow complexity in general, which conjecture
to be inherent to the types of tasks agents are deployed to solve—tasks that
require autonomy in decision-making, and thus careful deliberation over many
possibilities.

Given this conclusion, it becomes clear that agent-oriented software engineer-
ing can increase their impact by providing tools, methodologies, and frameworks
that directly tackle the issue of complexity. For instance, agent architectures may
be so successful because they assist in breaking down the inherent complexity of
tasks. We leave this question for future work.
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