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Abstract. Interactions between agents are usually designed from a global view-
point. However, the implementation of a multi-agent interaction is distributed.
This difference can introduce problems. For instance, it is possible to specify
protocols from a global viewpoint that cannot be implemented as a collection of
individual agents. This leads naturally to the question of whether a given (global)
protocol is enactable. We consider this question in a powerful setting (trace ex-
pressions), considering a range of message ordering interpretations (specifying
what it means to say that an interaction step occurs before another), and a range
of possible constraints on the semantics of message delivery, corresponding to
different properties of the underlying communication middleware.
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1 Introduction

In order to organise her stay in Montreal, Alice books an apartment from Bob via the
online platform AIPbnb. AIPbnb policy states that owners cannot interact with each
other, users can interact with owners only via the platform, and if a user finds a better
solution for her accommodation, she must cancel the previous one before she makes a
new reservation for the same dates, otherwise she will be charged for one night there.
When Alice discovers that Carol rents a cheaper and larger apartment, she decides to
cancel the reservation of Bob’s apartment and book Carol’s one. This situation can
be represented by the global Agent Interaction Protocol modifyRes = Alice

Canc
=⇒

Bob · Alice Res
=⇒ Carol where a1 M

=⇒ a2 models the interaction between a1 and a2
to exchange message M , “·” models interaction concatenation, and Canc and Res are
sent to the recipients by using the AIPbnb platform as required. Alice believes that the
above protocol correctly meets AIPbnb policy, but she is charged for one night in Bob’s
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apartment by AIPbnb: Carol received Alice’s request before Bob received the cancel-
lation, and this violates the policy. What went wrong is the interpretation of “before”.
To Alice, it meant that she should send Canc before she sent Res, while for AIPbnb it
(also) meant that Bob should receive Canc before Carol received Res. This ambiguity
would have had no impact on Alice if the physical communication model underlying
AIPbnb guaranteed that between the sending and receiving stages of an interaction,
nothing could happen. However, if the communication model provides weaker or no
guarantees, it may happen that a message sent before another, is delivered after.

This simple example shows that enacting the intent of a global protocol without
clear semantics of the meaning of “before”, without guarantees from the platform im-
plementation on message delivery order, and without hidden communications between
the participants (“covert channels”), may not be possible. Many real situations are sim-
ilar to this one: for example, a citizen must wait for the bank to have received (and
processed) the request to add some money to a new empty account, before sending a
request to move that money to another account, otherwise he can go into overdraft.

This kind of issue is not new in the field and various authors use different terms for
global protocols that can be enforced by distributed participants: conformant [18], en-
forceable [11, 4], enactable [12], implementable [21], projectable [8, 16], realizable [22,
19]. The concept behind these names is however the same: by executing the localised
versions of the protocol implemented by each participant, the global protocol behaviour
is obtained, with no additional communication. We will use the term enactability to de-
note this property. However, despite the large amount of work on enactability, there
is no existing work that considers both the intended message ordering and the com-
munication model of the infrastructure in which the agents will be implemented, that
recognises the need to use a decision structure to enforce consistent choices, and that
provides an implementation for checking protocol enactability. Together, these are the
innovative and original features of our contribution (a detailed discussion of related
work is in Section 4).

Although it might be argued that it is desirable to have robust protocol specifications
that are independent of the underlying platform implementation, we observe that robust-
ness can make the protocol more complex, and hence harder to maintain. For example,
considering again the protocol modifyRes = Alice

Canc
=⇒ Bob · Alice Res

=⇒ Carol, we
observe that, depending on which interpretation we choose, we can have different con-
clusions on what to expect from the protocol implementation. This can be avoided if we
add additional acknowledgement messages, which gives a more message-intensive pro-
tocol such as modifyRes = Alice

Canc
=⇒ Bob · Bob Ack=⇒ Alice · Alice Res

=⇒ Carol, in
which Alice would not be charged erroneously. However, adding additional acknowl-
edgement messages increases the complexity of the protocol and reduces opportunities
for concurrency. We therefore prefer to take into account what the underlying imple-
mentation guarantees wth respect to communication, so that we can relax our speci-
fications, and use as simple a protocol as possible. Additionally, a protocol that is not
enactable in some platform may be enactable in some other platform. Our work is there-
fore relevant to both platform designers and protocol designers.
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2 Background

Trace Expressions. Trace expressions [3] are a compact and expressive formalism in-
spired by global types [1] and then extended and exploited in different application do-
mains [14, 2, 13]. Initially devised for runtime verification of multiagent systems, trace
expressions are expressive, and can define context-sensitive languages.

A trace expression τ denotes a set of possibly infinite event traces, and is defined
on top of the following operators:5

– ε (empty trace), denoting the singleton set {〈〉} containing the empty event trace 〈〉.
– M (event), denoting a singleton set {〈M〉} containing the event trace 〈M〉.
– τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating the

traces of τ1 with those of τ2.
– τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.
– τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.
– τ1|τ2 (shuffle), denoting the union of the sets obtained by shuffling each trace of τ1

with each trace of τ2 (see [7] for a more precise definition).

Trace expressions are cyclic terms, thus they can support recursion without intro-
ducing an explicit construct.

As customary, the operational semantics of trace expressions, defined in [3], is spec-
ified by a transition relation δ ⊆ T × E × T , where T and E denote the sets of trace
expressions and of events, respectively. We do not present all the transition rules for
space constraints. They are standard ones (see e.g. [3]) that state, for example, that
δ(ev · τ, ev, τ) (the protocol whose state is modelled by ev · τ can move to state τ if ev
occurs), and that δ(τ1∨ τ2, ev, τ) if δ(τ1, ev, τ) (if the protocol whose state is modelled
by τ1 can move to state τ if ev occurs, then also the protocol whose state is modelled
by τ1 ∨ τ2 can). The denotational semantics is defined as follows, Where t1 ./ t2 is the
set of all interleavings of t1 and t2, and ◦ is concatenation over sequences:

JεK = {〈〉}
JMK = {〈M〉}

Jτ1 · τ2K = {t1 ◦ t2 | t1 ∈ Jτ1K ∧ t2 ∈ Jτ2K}
Jτ1 ∧ τ2K = Jτ1K ∩ Jτ2K
Jτ1 ∨ τ2K = Jτ1K ∪ Jτ2K

Jτ1|τ2K = {z | t1 ∈ Jτ1K ∧ t2 ∈ Jτ2K ∧ z ∈ t1 ./ t2}

Events can be, in principle, of any kind. In this paper, we will limit ourselves to
consider interaction and message events.

An interaction has the form a
M
=⇒ b and gives information on the protocol from the

global perspective, collapsing sending and receiving into a single event. We say that τ

5 Binary operators associate from left, and are listed in decreasing order of precedence; that
is, the first operator has the highest precedence. The operators “∨” and “∧” are the standard
notation for trace expressions.



4 A. Ferrando et al.

is an interaction protocol if all the events therein are interactions. Interaction protocols
take other names in other communities, such as Interaction Oriented Choreography
[18] in the service-oriented computing community, and global type in the community
working on process calculi and types [9].

Message events have the form aM ! (a sends M ) and bM? (b receives M ). They
model actions that one agent can execute, hence taking a local perspective. A trace
expression where all events are messages will be named a message protocol throughout
the paper. Message protocols have different names in different communities, such as
Process Oriented Choreography [18] and “local type” or “session type” in the global
types community [15, 24].

Communication Models. Given that in our proposal we explicitly take the communica-
tion model supported by the MAS infrastructure into account, we provide a summary
of communication models based on [10]. We use CM0 to CM6 to identify them in a
compact way.
CM0: Synchronous Communication. Sending and receiving are synchronised: the
sender cannot send if the receiver is not ready to receive.
CM1: Realisable with Synchronous Communication (RSC). After a communication
transition consisting of a send event of a message, the only possible communication
transition is the receive event of this message. This asynchronous model is the closest
one to synchronous communication and can be implemented with a 1-slot unique buffer
shared by all agents.
CM2: FIFO n-n communication. Messages are globally ordered and are delivered in
their emission order: if sending of M1 takes place before sending of M2, then reception
of M1 must take place before reception of M2. This model can be implemented by
means of a shared centralised object, such as unique queue.
CM3: FIFO 1-n communication. Messages from the same sender are delivered in the
order in which they were sent. It can be implemented by giving each agent a unique
queue where it puts its outgoing messages, with peers fetching messages from this
queue.
CM4: FIFO n-1 communication. A send event is implicitly and globally ordered with
regard to all other sending actions toward the same agent. This means that if agent b
receives M1 (sent by agent a) and later it receives M2 (sent by agent c), b knows that
the sending of M1 occurred before the sending of M2 in the global execution order,
even if there is no causal path between the two sending actions. The implementation of
this model can, similarly to FIFO 1-n, be done by providing each agent with a queue:
messages are sent by putting them into the queue of the recipient agent.
CM5: Causal. Messages are delivered according to the causality of their emissions
[17]: if a message M1 is causally sent before a message M2 then an agent cannot get
M2 before M1. Implementing this model requires sharing the causality relation.
CM6: Fully Asynchronous. No order on message delivery is imposed. Messages can
overtake others or be arbitrarily delayed. The implementation can be modelled by a bag.

Message Ordering. The statement “one interaction comes before another” is ambigu-
ous, as exemplified in Section 1. This ambiguity has been recognised by some authors
who suggested how to interpret message ordering when moving from the interaction
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(global) level to the message (local) level. In this section we summarise and compare
the proposals by Lanese et al. [18] and Desai and Singh [12].

To identify the interpretations, we will use the acronyms used in [12] when avail-
able, and our own acronyms otherwise. The starting point for interpreting message or-
dering is the interaction protocol τ = a

M1=⇒ b·c M2=⇒ d. For the sake of clarity, we
denote aM1! with s1, bM1? with r1, cM2! with s2, and dM2? with r2; we characterise
the message ordering interpretations by the traces of message events that respect them.
RS: Under this message ordering interpretation the meaning of “interaction event M1

occurs beforeM2” is thatM1 is received beforeM2 is sent. The set of traces that respect
this model is {〈s1, r1, s2, r2〉}. This interpretation is named RS (receive before send)
in [12] and disjoint semantics in [18].
SS: M1 is sent before M2, and there are no constraints on the delivery order. The set of
traces that respect this model is {〈s1, r1, s2, r2〉, 〈s1, s2, r1, r2〉, 〈s1, s2, r2, r1〉}. This
interpretation is named SS (send before send) in [12] and sender semantics in [18].
RR: M1 is received before M2, and there are no constraints on the sending order. The
set of traces that respect this model is {〈s1, r1, s2, r2〉, 〈s1, s2, r1, r2〉, 〈s2, s1, r1, r2〉}.
This interpretation is named RR (receive before receive) in [12] and receiver semantics
in [18].
RR & SS: this combines the requirements of RR and of SS: M1 is sent before M2 is
sent and also M1 is received before M2 is received. The set of traces that respect this
model is {〈s1, r1, s2, r2〉, 〈s1, s2, r1, r2〉}: both s1 comes before s2 (“coming before”
according to the senders), and r1 comes before r2 (“coming before” according to the
receivers). This interpretation is named sender-receiver semantics in [18].
SR: M1 is sent before M2 is received. The set of traces that respect this model is
{〈s1, r1, s2, r2〉, 〈s1, s2, r1, r2〉, 〈s1, s2, r2, r1〉, 〈s2, s1, r1, r2〉, 〈s2, s1, r2, r1〉}. This
interpretation is named SR (send before receive) in [12]

It is easy to see that the following inclusions among asynchronous models hold:
RS ⊂ RR & SS ⊂ SS ⊂ SR and RS ⊂ RR & SS ⊂ RR ⊂ SR. The SS and RR
interpretations are not comparable. In the remainder of this paper we consider only the
four interpretations defined by Desai & Singh, i.e. we do not consider “RR & SS”.

3 Defining Enactability using a Semantic Approach

Basic Notation. In the following, let ComModel = {CM1, CM2, CM3, CM4, CM5,
CM6} be the set of possible (asynchronous) communication models, and MOISet =
{SS, SR, RS, RR } the set of possible message order interpretations that can be imposed.
We also define A = {a, b, c, d, a1, a2, . . . , an} to be the set of agents involved in the
interaction protocol.

Recall that we consider both interaction and message protocols. When we say that
τ is an interaction protocol, we mean that the protocol represents sequences of inter-
action events. The set of traces recognized is obtained following the semantics defined
in Section 2, and for an interaction protocol τ we define6 I(τ) to be the set of inter-
actions involved in the interaction protocol: I(τ) = {i | ∃I : I ∈ JτK ∧ i ∈ I}.

6 We use “∈” to also denote membership of an item in a sequence.
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We define I to be the set of all possible interaction events. Similarly, when τ is a
message protocol, it represents sequences of send and receive events of the form aM !
(send event) and bM? (receive event), and given a particular set of possible interactions
I, we define EI to be the corresponding set of events: EI = {aM ! | ∃b∈A . a

M
=⇒

b ∈ I} ∪ {bM? | ∃a∈A . a
M
=⇒ b ∈ I}. In a message protocol τ we have that

E ∈ JτK =⇒ ∀e∈E . e ∈ EI(τ). Given a message protocol τ we also define E(τ)
to be the set of message events that occur in the protocol.

Next, we define the language of traces (i.e. of sequences of events) for interaction
protocols and message protocols. For interaction protocols, the set of all possible traces
is defined to be7: LI = I∗∪Iω . For message protocols the definition is somewhat more
complex, since there is a relationship between a send and a receive event. Specifically,
the set of all possible traces of events is constrained so that a message being received
must be preceded by that message having been sent. We also constrain the set so that
each message can be sent at most once, and received at most once (i.e. message names
are unique). The assumption is made by most authors, see [10] for example, and is
considered harmless, since we can integrate many elements to the notion of “message
name”, such as content, protocol ID and conversation ID, to discriminate between mes-
sages at design time. Formally (where dom(E) is standard notation for the domain of a
function, here viewing a sequence as a function from numbers to elements):

LEI = {E ∈ E∗I ∪ EωI |
(∀i,j∈dom(E) . E[i] = aM ! ∧ E[j] = aM ! =⇒ i = j) ∧
(∀i,j∈dom(E) . E[i] = bM? ∧ E[j] = bM? =⇒ i = j) ∧
(∀i∈dom(E) . E[i] = bM? =⇒ (∃j∈dom(E) . E[j] = aM ! ∧ j < i))

Message Order Interpretation (MOI). As discussed earlier, we follow prior work in
considering four message ordering interpretations (SS, SR, RS, and RR). We formalise
this by defining a variant semantics that takes an interaction protocol τ and returns its
semantics in terms of events rather than interactions. The possible sequences of events
are constrained: given a situation where τ specifies that M1 must occur before M2,
we constrain the possible sequence of events with the appropriate constraint on events
corresponding to the selected MOI.

Definition 1 (Order on interactions in a trace). Let I ∈ LI be a trace of interaction
events, E ∈ LEI be a trace of send and receive events, moi ∈ MOISet a message or-

dering interpretation, and a M1=⇒ b ∈ I, c M2=⇒ d ∈ I two interactions. Abbreviating
a

M1=⇒ b as I1 and c M2=⇒ d as I2, we define the message ordering interpretation con-
straint, denoted I1 ≺Emoi I2, as follows:

I1 ≺ESS I2 iff aM1! ≺E cM2! I1 ≺ESR I2 iff aM1! ≺E dM2?

I1 ≺ERS I2 iff bM1? ≺E cM2! I1 ≺ERR I2 iff bM1? ≺E dM2?

where e1 ≺E e2 iff ∃i,j∈dom(E) . E[i] = e1 ∧ E[j] = e2 ∧ i < j is the constraint that
in event trace E the event e1 occurs before e2.

7 The superscripts ∗ and ω are standard notations for (respectively) all finite (all infinite) se-
quences built from a given set.
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Formalising the MOI is not as simple as it might seem. An obvious approach that
does not work is to compute the semantics of the interaction protocol τ , and then map
each sequence I ∈ JτK to a set of message event traces. This does not work because
the trace is linear, and therefore a total order, whereas a protocol can specify a partial
order8 (and indeed, in the case of the SR MOI, the ordering may not even be partial,
since SR is not transitive). Instead, we define a variant semantics, denoted JτKmoi, which
is compositional. The semantics follow the standard semantics (Section 2) with a few
exceptions. Firstly, the semantics of an interaction I is given as the sequence of sending
the message, followed by receiving it (denoted s(I) and r(I), respectively). Secondly,
the semantics for a sequence τ1 ·τ2 is given in terms of the semantics of τ1 and τ2. These
are then combined by interleaving them (rather than simply concatenating them), but
with the constraint that the result must satisfy the appropriate MOI constraint (I1 ≺Emoi
I2) for all possible final messages of τ1 (I1) and all possible initial messages of τ2 (I2).
Determining initial and final messages is itself somewhat complex, and is done using
partially ordered sets.

A partially ordered set (poset) is a pair (E,<) where E is the set of elements (in
this case interactions) and < is a transitive binary relation on E. We define the union
operator to act piecewise on posets, and to take the transitive closure of the resulting
relation, i.e. (E1, <1) ∪ (E2, <2) = (E1 ∪ E2, (<1 ∪ <2)

∗). The sets of minimal and
maximal elements of a poset P are denoted min(P ) and max(P ), respectively.

We can then define the poset of an interaction protocol as follows:

poset(ε) = (∅,∅)

poset(I) = ({I},∅)

poset(τ1 ∧ τ2) = poset(τ1) ∪ poset(τ2)

poset(τ1 | τ2) = poset(τ1) ∪ poset(τ2)

poset(τ1 ∨ τ2) = poset(τ1) ∪ poset(τ2)

poset(τ1 · τ2) = poset(τ1) · poset(τ2)
(E1, <1) · (E2, <2) = (E1 ∪ E2, <1 ∪ <2 ∪ E1×E2)

where we define a sequence of two posets (E1, <1) · (E2, <2) by collecting the order-
ings of each of E1 and E2, and adding additional ordering constraints between every
element of E1 and every element of E2. We can now proceed to define the variant
compositional semantics JτKmoi.

8 An illustrative example is τ = (M1 · M2) | M3. This simple protocol has
three sequences of interactions: {〈M1,M2,M3〉, 〈M1,M3,M2〉, 〈M3,M1,M2〉}. Assum-
ing an RS message ordering interpretation, then each of the message sequences cor-
responds to exactly one sequence of events, giving (where we abbreviate sending
and receiving M as respectively M ! and M?): {〈M1!,M1?,M2!,M2?,M3!,M3?〉,
〈M1!,M1?,M3!,M3?,M2!,M2?〉, 〈M3!,M3?,M1!,M1?,M2!,M2?〉}. However, the pro-
tocol does not specify any constraint on M3, so should also allow other interpretations where
the occurrences of M3! and M3! are not constrained relative to the other events, for example
〈M1!,M1!,M3!,M2!,M2?,M3?〉.
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JεKmoi = {ε}
JIKmoi = {〈s(I), r(I)〉}

Jτ1 ∨ τ2Kmoi = Jτ1Kmoi ∪ Jτ1Kmoi

Jτ1 ∧ τ2Kmoi = Jτ1Kmoi ∩ Jτ1Kmoi

Jτ1 · τ2Kmoi = {t | t1 ∈ Jτ1Kmoi ∧ t2 ∈ Jτ2Kmoi ∧ t ∈ t1 ./ t2 ∧
∀I1 ∈ max(poset(τ1)),∀I2 ∈ min(poset(τ2)) . I1 ≺tmoi I2}

Jτ1|τ2Kmoi = {z | t1 ∈ Jτ1Kmoi ∧ t2 ∈ Jτ2Kmoi ∧ z ∈ t1 ./ t2}

Where t1 ./ t2 is the set of all interleavings of t1 and t2.

Communication Model Semantics. We formalise the defined communication model
semantics by defining for each communication model CMi a corresponding language
of event traces that incorporates the appropriate restriction, ruling out event sequences
that violate the communication model. For example, for CM1 the constraint is that
immediately after each sending event in u we have its corresponding receiving event,
with nothing in the middle; etc. Note that each LEICMi takes as a parameter the set of
message events EI .

LEICM1 = {E ∈ LEI |∀aM1=⇒b∈I
.∀k∈dom(E) . aM1! = E[k − 1] =⇒ bM1? = E[k]}

LEICM2 = {E ∈ LEI |∀aM1=⇒b∈I
.∀
c
M2=⇒d∈I

.∀i,j,k,l∈dom(E) . (bM1? = E[i] ∧

dM2? = E[j] ∧ aM1! = E[k] ∧ cM2! = E[l] ∧ k < l) =⇒ i < j}
LEICM3 = {E ∈ LEI |∀aM1=⇒b∈I

.∀
a
M2=⇒d∈I

.∀i,j,k,l∈dom(E) . (bM1? = E[i] ∧

dM2? = E[j] ∧ aM1! = E[k] ∧ aM2! = E[l] ∧ k < l) =⇒ i < j}
LEICM4 = {E ∈ LEI |∀aM1=⇒b∈I

.∀
c
M2=⇒b∈I

.∀i,j,k,l∈dom(E) . (bM1? = E[i] ∧

bM2? = E[j] ∧ aM1! = E[k] ∧ cM2! = E[l] ∧ k < l) =⇒ i < j}
LEICM5 = {E ∈ LEI |∀aM1=⇒b∈I

.∀
a
M2=⇒b∈I

.∀i,j,k,l∈dom(E) . (bM1? = E[i] ∧

bM2? = E[j] ∧ aM1! ≺ECausal aM2!) =⇒ i < j}
where aM1! ≺uCausal bM2! ⇐⇒

((a = b ∨M1 =M2) ∧
∃i,j∈dom(u).(u[i] = aM1! ∧ bM2! = u[j] ∧ i < j))

∨ (∃ev∈E .aM1! ≺uCausal ev ∧ ev ≺uCausal bM2!)

LEICM6 = LEI
We can then apply a particular communication model to an interaction protocol

τi using JτiKCM
moi, and to a message protocol τm using JτmKCM, which are defined as

follows9.
9 Note that in the first line we have an interaction protocol τi, and so the set of message events

is given by determining the set of interaction events I(τ), and then determining the set of
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JτiKCM
moi = JτiKmoi ∩ L

EI(τ)

CM

JτmKCM = JτmK ∩ LE(τ)CM

Projection. Projection is defined, intuitively, as focusing on the aspects of the protocol
that are relevant for a given role. It is defined as follows, where we write τA to denote
projecting trace τ for role A.

(ε)A = ε

(a
M
=⇒ b)A =


aM !, if a = A

bM?, if b = A

ε, otherwise

(aM !)A =

{
aM !, if a = A

ε, otherwise

(aM?)A =

{
aM?, if a = A

ε, otherwise

(τ1 ⊗ τ2)A = (τ1)
A ⊗ (τ2)

A (where ⊗ is any operator)

We then define the distribution of τ , denoted pτq, where τ involves roles a1 . . . an as10:

pτq = τa1‖ · · · ‖τan

To give an example, let us consider again the scenario proposed in Section 1. Alice
decided to book Carol’s apartment and now Carol needs some information from Alice
in order to complete the reservation. This information can be wrong or incomplete, in
which case Carol gives Alice an opportunity to amend the information, and in either
case the interaction then concludes with Carol confirming the booking. This can be
represented as the following specification:

reqInfo = Alice
Info
=⇒ Carol ·

(Carol
Wrong
=⇒ Alice · Alice Info

′

=⇒ Carol ∨ ε) ·

Carol
Booked
=⇒ Alice

Let us consider main as the sequential combination of the two protocols: main =
modifyRes · reqInfo. Then the projection of main on each single agent gives the
following distribution.

message events EI(τ). By contrast, in the second line, τm is a message protocol, so we just
determine the set of message events directly (E(τ)).

10 We use ‖ to distinguish between parallel composition of different agents, and parallel compo-
sition within a protocol. This distinction is used later in this section.
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pmainq = mainAlice ‖ mainBob ‖ mainCarol

mainAlice = modifyResAlice · reqInfoAlice

modifyResAlice = AliceCanc! · AliceRes!
reqInfoAlice = AliceInfo! · (AliceWrong? · AliceInfo′! ∨ ε) ·

AliceBooked?

mainBob = modifyResBob · reqInfoBob = BobCanc? · ε
mainCarol = modifyResCarol · reqInfoCarol

modifyResCarol = CarolRes?

reqInfoCarol = CarolInfo? · (CarolWrong! · CarolInfo′? ∨ ε) ·
CarolBooked!

In order to define the semantics of a projected protocol we need to first define what
we term a decision structure. This is needed in the semantics in order to deal correctly
with projected protocols. Specifically, the intuition for enactability (see Section 3) is that
an interaction protocol τ involving, say, three roles a, b and c is enactable iff there exist
three protocols τa, τ b and τ c such that their concurrent interleaving results in the same
behaviour as the original protocol. However, when a protocol contains choices (∨) we
need to ensure that the occurrences of∨ in each of τa, τ b and τ c arising from the same∨
in τ are treated consistently. For example, consider the protocol τ = a

M1=⇒ b∨a M2=⇒ c.
This protocol is simple: it specifies that agent a can either send a message (M1) to b, or
it can send a different message (“M2”) to agent c. When we distribute the protocol by
projecting it (see Section 3) and forming τa‖τ b‖τ c we obtain the distributed protocol
(aM1! ∨ aM2!)‖(bM1? ∨ ε)‖(ε ∨ cM2?). However, if we interpret each ∨ indepen-
dently (as the semantics would naturally do) then we can have inconsistent choices. For
example, we could have (aM1!)‖(ε)‖(ε) where the message is sent by a, but b does not
elect to receive it. So what we need to do is ensure that each of the three occurrences of
“∨” represent the same choice, and that the choice should be made consistently.

The heart of the issue is that the trace expression notation offers a choice operator
(∨), which is adequate for global protocols. However, for local protocols it is important
to be able to distinguish between a choice that represents a free (local) choice, and a
choice that is forced by earlier choices. In this example, a can freely choose whether to
send M1 or M2. However, the choice of b whether to receive M1 or not is not a free
choice, but is forced by a’s earlier choice.

Our semantics handles this by defining a decision structure which is used to enforce
consistent choices. Formally, given a protocol τ we define d(τ) as a set of decision
structures (formal definition below). A decision structure is a syntactic structure that
mirrors the structure of τ , except that each ∨ is annotated with a decision (e.g. L or
R). We define three operations on a decision structure: to get the sub-decision structure
corresponding to the left part (denoted d.L), to get the right part (d.R) and to get the
decision (L or R) associated with the current ∨ node (denoted d.D). We define d(τ)
to create a set of decision structures, each of which corresponds to the structure of τ ,
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but where all possible assignments of decisions are made. Observe that If τ contains N
occurrences of ∨ then the set d(τ) contains 2N elements.

For example, given τ = a
M1=⇒ b∨ a M2=⇒ b we have that d(τ) = {

L
∨ ,

R
∨ } where

we use to indicate an irrelevant part of a decision structure, and
L
∨ to denote a node

tagged with a decision L.
In addition to decisions of L and R, the definition of d(τ1 ∨ τ2) has a second case

(. . . ∪ {t1
LR
∨ t2 | . . .}). The reason is that it is only possible to enforce consistent

choice if the choice is made by a single agent. If this is not the case, then we annotate
with “LR” to indicate that a mixed choice is possible. For example, given τ = b

M1=⇒
a ∨ a M2=⇒ b we have that d(τ) = {

LR
∨ } because the agents associated with the set of

possible initial messages in each branch are different (ag(τ1) = {b} 6= ag(τ2) = {a}).

d(ε) = {ε}
d(I) = {I}

d(τ1 ∨ τ2) = {t1
x
∨ t2 | t1 ∈ d(τ1) ∧ t2 ∈ d(τ2)
∧ x ∈ {R,L} ∧ ag(τ1) = ag(τ2) ∧ |ag(τ1)| = 1}

∪ {t1
LR
∨ t2 | t1 ∈ d(τ1) ∧ t2 ∈ d(τ2)

∧ ((ag(τ1) 6= ag(τ2)) ∨ (|ag(τ1)| 6= 1))}

where ag(τ) = {p | p M
=⇒ r ∈ min(poset(τ))}

d(τ1 ⊕ τ2) = {t1 ⊕ t2 | t1 ∈ d(τ1) ∧ t2 ∈ d(τ2)}

(τL ⊗ τR).L = τL (τL ⊗ τR).R = τR (τL
X
∨ τR).D = X

Where ⊗ is any operator, and ⊕ is any operator other than ∨.
We now specify the semantics of a distributed protocol, denoted JτKdist. The se-

mantics is defined in terms of a union over possible decision structures (first line). The
remaining equations for the semantics carry along the decision structure, and follow it
in recursive calls, and for the semantics of ∨ it enacts the decision specified in the struc-
ture, rather than considering both sub-protocols. Note that projection is defined using ‖
rather than the usual |. The difference in the semantics below is that ‖ passes the same
decision structure to both arguments. This ensures consistency between agents, but not
within agents.

JτKdist =
⋃

dt∈d(τ)

Jτa1‖ . . . ‖τanKdt

JMKdt = {〈M〉}
JεKdt = {〈〉}

Jτ1 · τ2Kdt = {t1 ◦ t2 | t1 ∈ Jτ1Kdt.L ∧ t2 ∈ Jτ2Kdt.R}
Jτ1 ∧ τ2Kdt = Jτ1Kdt.L ∩ Jτ2Kdt.R

Jτ1 ∨ τ2Kdt = if dt.D = R then Jτ2Kdt.R else if dt.D = L then Jτ1Kdt.L

else Jτ2Kdt.R ∪ Jτ1Kdt.L
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Jτ1|τ2Kdt = {z | t1 ∈ Jτ1Kdt.L ∧ t2 ∈ Jτ2Kdt.R ∧ z ∈ t1 ./ t2}
Jτ1‖τ2Kdt = {z | t1 ∈ Jτ1Kdt ∧ t2 ∈ Jτ2Kdt ∧ z ∈ t1 ./ t2}

where t1 ./ t2 is the set of all interleavings of t1 and t2, and ◦ is concatenation over
sequences. Note that if τ does not contain any occurrences of ∨ then the semantics
above reduce to the standard semantics.

Finally, we define JτiKCM
dist, which computes the semantics of an interaction protocol

τi by distributing it, and also applies a particular communication model CM.

JτiKCM
dist = JτiKdist ∩ L

EI(τ)

CM

Enactability. We are now finally in a position to define enactability. The intuition is
that an interaction protocol τ is enactable iff the semantics of τ , with respect to a se-
lected message ordering interpretation and communication model, can be realised by a
distributed version of the protocol. In other words, if there exists for each role r a corre-
sponding message protocol τr such that the combination of these protocols realises the
same behaviour as τ . However, instead of considering whether there exists some τr, we
let τr = τ r, i.e. we take for each role the projected protocol as its protocol.

We also consider a notion of weak enactability. This applies in a situation where
the distributed enactment is able to avoid violating the behaviour specified by τ , but is
not able to recreate all of the behaviours that τ specifies. In other words, if a protocol
is weakly enactable, the interleaving of the corresponding local protocols generates a
subset of its traces (with a fixed moi and communication model). This means that a
distributed implementation of the protocol can be sound (generates only valid traces),
but cannot be complete (not all the traces are generated). This situation can arise with
weaker message ordering interpretations (see below for examples). Weak enactability
can also arise in situations where two ordered messages have two overlapping roles
(e.g. τ = a

M1=⇒ b · b M2=⇒ a). In this situation the projection operator is too strict: it has
τ b = r(M1) · s(M2), but if we adopt an SR message ordering interpretation, then we
do not need to ensure that M2 is sent after M1 is received, only that M1 is sent before
M2 is received, which role a can ensure on its own.

Definition 2 (Strongly/Weakly Enactable). Let τ be an interaction protocol, {a1, a2,
..., an} the set of agents involved in τ , moi ∈ MOISet a message order interpretation
and CM ∈ ComModel a communication model. We say that, τ is strongly (weakly)
enactable, for moi semantics in CM model iff the decomposition of τ through projection
on its agents {a1, a2, ..., an} recognizes the same (a subset of) traces recognized by τ .
Formally:

enact(τ)CM
moi iff JτKCM

dist = JτKCM
moi

weak enact(τ)CM
moi iff JτKCM

dist ⊆ JτKCM
moi

Figure 1 show the results of applying this definition to a number of cases, with
different message ordering interpretation, and different communication models. These
tables were all generated by the Haskell implementation of the definitions in this paper,
in which 4and (4) denote strongly and weakly enactable, respectively. The prototype



On Enactability of Agent Interaction Protocols: Towards a Unified Approach 13

a
M1=⇒ b · b

M5=⇒ c
CM RS RR SS SR
CM1 4 4 4 4
CM2 4 (4) (4) (4)
CM3 4 (4) (4) (4)
CM4 4 (4) (4) (4)
CM5 4 (4) (4) (4)
CM6 4 (4) (4) (4)

a
M1=⇒ b · a

M2=⇒ c
CM RS RR SS SR
CM1 4 4 4 4
CM2 8 4 4 (4)
CM3 8 4 4 (4)
CM4 8 8 4 (4)
CM5 8 8 4 (4)
CM6 8 8 4 (4)

a
M1=⇒ b · c

M6=⇒ b
CM RS RR SS SR
CM1 4 4 4 4
CM2 8 4 4 (4)
CM3 8 4 8 (4)
CM4 8 4 4 (4)
CM5 8 4 8 (4)
CM6 8 4 8 (4)

a
M1=⇒ b · c

M4=⇒ a
CM RS RR SS SR
CM1 4 4 4 4
CM2 8 8 8 4
CM3 8 8 8 4
CM4 8 8 8 4
CM5 8 8 8 4
CM6 8 8 8 4

a
M1=⇒ b · a

M2=⇒ b
CM RS RR SS SR
CM1 4 4 4 4
CM2 8 4 4 (4)
CM3 8 4 4 (4)
CM4 8 4 4 (4)
CM5 8 4 4 (4)
CM6 8 (4) (4) (4)

a
M1=⇒ b · b

M3=⇒ a
CM RS RR SS SR
CM1 4 4 4 4
CM2 4 (4) (4) (4)
CM3 4 (4) (4) (4)
CM4 4 (4) (4) (4)
CM5 4 (4) (4) (4)
CM6 4 (4) (4) (4)

a
M1=⇒ b ∨ a

M2=⇒ c
CM RS RR SS SR
CM1 4 4 4 4
CM2 4 4 4 4
CM3 4 4 4 4
CM4 4 4 4 4
CM5 4 4 4 4
CM6 4 4 4 4

a
M1=⇒ b ∨ b

M3=⇒ a
CM RS RR SS SR
CM1 4 4 4 4
CM2 8 8 8 8
CM3 8 8 8 8
CM4 8 8 8 8
CM5 8 8 8 8
CM6 8 8 8 8

Fig. 1. Automatically generated analyses of enactability

counts ˜300 LOC. It implements the trace expression standard semantics, message order
interpretation, communication model semantics and enactability check11.

Looking at the tables in Figure 1, we make the following observations.
Firstly, CM1 is quite strict: all the cases considered are enactable under CM1, re-

gardless of the selected message ordering interpretation. This is expected: we know that
CM1 is quite strong.

Secondly, for many examples there is not a difference in enactability with the differ-
ent communication models (other than CM1). The exception is where the communica-
tion model corresponds to the combination of MOI and the pattern in the protocol. For
example, in the top row, second table from the right, the simple protocol is enactable
given the SS message ordering interpretation only with CM2 and CM4 (and, of course,
CM1). This is because, for this protocol, both messages are received by the same agent
but sent by different agents, and, given an RR MOI, the desired constraint that agent
B receives the first message before the second, can only be enforced using a commu-
nication model that guarantees delivery of messages to the same recipient in the order
in which messages were sent. Both CM2 and CM4 provide this guarantee (in fact CM4
provides exactly this, and CM2 is stronger).

Thirdly, RS appears to be a good choice for message ordering interpretation, since
it is the only MOI where protocols are never weakly enactable. For the other message
ordering interpretations, there are protocols that are only weakly enactable (for com-
munication models other than CM1). A protocol being weakly enactable indicates that
the desired behaviour specified by the MOI is too loose: it permits behaviours that the
distributed realisation cannot realise. On the other hand, in the case of the left-most
table on the bottom row (protocol a M1=⇒ b · a M2=⇒ b), the protocol is not enactable
under RS (except for CM1), but is enactable under SS and under RR. Turning to SR, we
observe that it seems to be too weak: almost all the protocols in the figure are enactable
(although in most cases only weakly enactable).

11 The code is available (anonymously) on the web at: http://enactability.
altervista.org/
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Returning to the example from the introduction:

modifyRes = Alice
Canc
=⇒ Bob · Alice Res

=⇒ Carol

this corresponds to the second table from the left in the top row of Figure 1. This shows
that, if one desires an RR MOI, then the underlying message communication must be
CM1, CM2 or CM3, in order for the protocol to be enactable.

4 Discussion

Despite the large amount of work on enactability, very few approaches consider how
message ordering and decision structures affect its definition, very few come with an
implemented prototype, and none considers the issues raised by the communication
model.

Taking all these features into account in a unified semantic-driven way, and demon-
strating the potential of the approach on a highly expressive protocol language, are the
innovative and original features of this contribution.

Desai and Singh [12] limit their investigation to the RS message ordering interpre-
tation, which they consider the standard of correctness. Hence, despite the introduction
they provide to other message orderings and to the problems they might raise, the defi-
nition of enactability they provide is not parametric in the MOI.

Lanese et al. [18] move a step further, but the generality of their approach is still lim-
ited. They define three different notions of enactability, which they name conformance:
sender conformance, receiver conformance, and disjoint conformance. That approach
is more flexible than the one by Desai and Singh, but less general than ours, where
the definition of enactability is parametric in the MOI and does not require different
cases. Also, they only consider how sequence and choice are affected by MOIs, leav-
ing the study of other operators for the future. Moreover, when discussing interaction
protocols whose most external operator is a choice, they put a very strong constraint for
enactability, namely that the agents involved in the two branches of the choice (exclud-
ing the agents involved in the choice itself) are the same. We added decision structures
to overcome this restriction, and provide a notion of enactability that can succeed even
when that constraint is not met.

Neither Desai and Singh, nor Lanese et al., use formalisms for protocol represen-
tation as expressive as trace expressions, and neither of them present experiments ob-
tained from a working prototype, as we do.

With respect to the introduction of decision structures to remove unnecessary re-
strictions on enactability of protocols when choice is involved, our proposal is similar
to that by Qiu et al., [21]. However, as for the other works we have discussed in this
section, we implemented our enactability checker, whereas their work only provides
definitions. Additionally, our approach is simpler in that we do not need to label the
choice operator with agents as they do, and, finally, they do not consider as general a
setting (with a range of message ordering interpretations and communication seman-
tics).
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In the future, we will address both theoretical and practical issues. On the theoretical
side, we will carry out a systematic analysis of the relationships between the commu-
nication model and the message ordering interpretation, to identify those combinations
that provide some guarantees by design. We will also explore the relationship between
enactability and distributed monitorability [14], since the two notions are related.

On the practical side, we plan to improve our working prototype to provide a tool
to assess protocols for enactability. Apart from providing a user-friendly interface, a
key issue to address will be to provide a way to isolate the part of a non-enactable
protocol that makes it non-enactable. Also, trace expressions are interpreted in a coin-
ductive way [23] to represent infinite traces of events. Since Haskell does not support
coinduction, the existing prototype can be only used on acyclic message and interaction
protocols. Haskell has been chosen because the implementation mimics the semantics,
which makes it easy to check that the Haskell implementation correctly implements
the formal definitions. In order to fully implement the proposed features we are plan-
ning to develop the enactability check using SWI-Prolog12, which natively supports
coinduction. We also will explore alternative approaches to dealing with cyclic trace
expressions, including the possibility of translating them to (e.g.) Büchi automata. Ad-
ditionally, to stress-test the prototype and assess its performance from a qualitative and
quantitative viewpoint we plan to create a library of interaction protocols known to be
“problematic” with respect to enactability, and perform systematic experiments.

Finally, this work highlighted the need to characterise existing agent infrastructures
such as JADE [5], Jason [6] and Jadex [20] in terms of the communication models
they support. We asked the developers of the three frameworks, and all agreed that they
support the CM4 model, which was the answer we expected. Nevertheless, this answer
was far from being trivial to identify for the developers themselves. As an example,
Lars Braubach pointed out that Jadex uses service interaction on top of messages, i.e.
communication is fully asynchronous but based on interfaces and method calls from a
user perspective, which makes answering the question more subtle than it might seem.
Both Jomi Fred Hübner (Jason) and Agostino Poggi (JADE) recognized that they had to
spend some time on the issue, also because the classification CM0-CM6 based on [10]
requires time to be read and understood. This suggests two further directions of work.
On the one hand, we might run experiments on the three platforms above, to confirm
their CM and try to check if other models are (unexpectedly) supported. On the other,
the EMAS community might devise a standard taxonomy for CMs, such as the as one in
[10], and provide each platform with a set of agreed upon “platform standard metadata”
(how many agents can run concurrently without experiencing problems; learning curve
for different types of professionals; known practical applications; etc). These metadata
should include CM as well. This piece of information, along with the approach we have
proposed in this paper, would allow the developers to determine whether a protocol is
enactable on a given infrastructure.

12 http://www.swi-prolog.org
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