Rafael H. Bordini, Louise A. Dennis and Yves Lespérance (eds)

Pre-proceedings of the 7th International Workshop on Engineering Multi-Agent Systems (EMAS 2019)
13th-14th May 2019, Montreal, Canada
cgi.csc.liv.ac.uk/~lad/emas2019/accepted/EMAS2019_paper_21.pdf

JS-son - A Minimal JavaScript BDI Agent Library

Timotheus Kampik and
Juan Carlos Nieves

Umead University, 901 87, Umea, Sweden
{tkampik, jcnieves}@cs.umu.se

Abstract. There is a multitude of agent-oriented software engineering frame-
works available, most of them produced by the academic multi-agent systems
community. However, these frameworks often impose programming paradigms
on their users that are hard to learn for engineers who are used to modern high-
level programming languages such as JavaScript and Python. To show how the
adoption of agent-oriented programming by the software engineering mainstream
can be facilitated, we provide an early, simplistic JavaScript library prototype for
implementing belief-desire-intention (BDI) agents. The library focuses on the
core BDI concepts and refrains from imposing further restrictions on the pro-
gramming approach. To illustrate its usefulness, we demonstrate how the library
can be used for multi-agent systems simulations on the web, as well as embedded
in Python-based data science tools.

Keywords: Reactive Agents - Belief-Desire-Intention - Multi-agent Systems.

1 Motivation

A multitude of multi-agent system (MAS) frameworks has been developed [2]] by the
scientific community. However, these frameworks are rarely applied outside of academia,
likely because they require the adoption of design paradigms that are fundamentally
different from industry practices and do not integrate well with modern software engi-
neering toolchains. A recent expert report on the status quo and future of engineering
multi-agent systemaﬂ concludes that “[m]any frameworks that are frequently used by
the MAS community—for example Jason and JaCaMo-have not widely been adopted in
practice and are dependent on technologies that are losing traction in the industry” [4].
Another comprehensive assessment of the current state of agent-oriented software engi-
neering and its implications on future research directions is provided in Logan’s Agent
Programming Manifesto [3]]. Both the Manifesto and the EMAS report recommend de-
veloping agent programming languages that are easier to use (as one of several ways
to facilitate the impact of multi-agent systems research). The EMAS report highlights,
in particular, the need to provide libraries that better integrate with technologies and
programming paradigms that are relevant in the industry and points to the success this
approach has in the machine learning community.

In this demonstration, we take a first step towards addressing the aforementioned
recommendations. We follow a pragmatic and minimalistic approach: instead of creat-
ing a comprehensive multi-agent systems framework, we create JS-son, a light-weight

! The report was assembled as a result of the EMAS 2018 workshop.


louisedennis
Placed Image


2 T. Kampik and J.C. Nieves

library that can be applied in the context of existing industry technology stacks and
toolchains and requires little additional, MAS-specific knowledge.

Design Approach

Programming languages like Lisp and Haskell are rarely used in practice but have in-
fluenced the adoption of (functional) features in mainstream languages like JavaScript
and C#. It is not uncommon that an intermediate adoption step is enabled by external
libraries. For example, before JavaScript’s array.prototype.includes functor
was adopted as part of the ECMA Script standar(ﬂ a similar functor (contains and
its aliases include / includes) could already be imported with the external library
underscor Analogously, JS-son takes the belief-desire-intention (BDI) [5] archi-
tecture as popularized in the MAS community by frameworks like Jason [1] (as the
name JS-son reflects) and provides an abstraction of the BDI architecture as a plug and
play dependency for a widely adopted programming language.

2 Library Description

The library provides object types for creating agent and environment objects, as well as
functions for generating agent beliefs, desires, intentions, and plans El
The agent realizes the BDI concepts as follows:

Beliefs: A belief can be any JSON object or JSON data type (string, number, array,
boolean, or null).

Desires: Desires are generated dynamically by agent-specific desire functions that have
a desire identifier assigned to them and determine the value of the desire based on
the agent’s current beliefs.

Intentions: A preference function filters desires and returns intentions - an array
of JSON objects.

Plans: The plan’s head specifies which intention needs to be active for the plan to be
pursued. The body specifies how the plan should update the agent’s beliefs and
determines the actions the agent should issue to the environment.

Also, each agent has a next () function to run the following process:

[y

It applies the belief update as provided by the environment (see below).

2. It applies the agent’s preference function that dynamically updates the intentions
based on the new beliefs; i.e., the agent is open-minded.

3. It runs the plans that are active according to the updated intentions, while also

updating the agent beliefs (if specified in the plans).

2 https://www.ecma-international.org/ecma-262/7.0/#sec—array.
prototype.includes

“lhttps://underscorejs.org/#contains

* The library—including detailed documentation, examples, and tests—is available at https :
//github.com/TimKam/JS—son.


https://www.ecma-international.org/ecma-262/7.0/#sec-array.prototype.includes
https://www.ecma-international.org/ecma-262/7.0/#sec-array.prototype.includes
https://underscorejs.org/#contains
https://github.com/TimKam/JS-son
https://github.com/TimKam/JS-son

JS-son - A Minimal JavaScript BDI Agent Library 3

4. Ttissues action requests that result from the plans to the environment.

Alternatively, it is possible to implement simpler belief-plan agents; i.e., as a plan’s
head, one can define a function that determines—based on the agent’s current beliefs—if
a plan should be executed.

The environment contains the agents, as well as a definition of its own state. It executes
the following instructions in a loop:

1. It runs each agent’s next () function.

2. Once the agent’s action request has been received, the environment processes the
request. To determine which update requests should, in fact, be applied to the envi-
ronment state, the environment runs the request through a filter function.

3. When an agent’s actions are processed, the environment updates its own state and
the beliefs of all agents accordingly. Another filter function determines how a spe-
cific agent should “perceive” the environment’s state.

3 Potential Use Cases

We suggest that JS-son can be applied in the following use cases:

Data science. With the increasing relevance of large-scale and semi-automated statis-
tical analysis (“data science”) in industry and academia, a new set of technologies
has emerged that focuses on pragmatic and flexible usage and treats traditional pro-
gramming paradigms as second-class citizens. JS-son integrates well with Python-
and Jupyter notebookﬂ-based data science tools, as shown in

Web development. Web front ends implement functionality of growing complexity;
often, large parts of the application are implemented by (browser-based) clients.
As shown in[Demonstration 2} JS-son allows embedding BDI agents in single-page
web applications, using the tools and paradigms of web development.

Education. Programming courses are increasingly relevant for educating students who
lack a computer science background. Such courses are typically taught in high-
level languages that enable students to write working code without knowing all
underlying concepts. In this context, JS-son can be used as a tool for teaching MAS
programming.

Internet-of-Things (IoT) Frameworks like Node.jsE] enable the rapid development of
IoT applications, as a large ecosystem of libraries leaves the application developer
largely in the role of a system integrator. JS-son is available as a Node.js package.

4 Demonstrations

We provide two demonstrations that show how JS-son can be applied.

Shttps://jupyter.org/|
® https://nodejs.org/


https://jupyter.org/

4 T. Kampik and J.C. Nieves

JS-son meets Jupyter. The first demonstration shows how JS-son can be integrated
with data science tools, i.e., Python libraries and Jupyter notebookﬂ As a simple proof-
of-concept example, we simulate opinion spread in an agent society and run an interac-
tive data visualization.

JS-son on the Web The second demonstration presents a JS-son port of Conway'’s
Game of Life. It illustrates how JS-son can be used as part of a web frontencﬂ The
demonstration makes use of JS-son’s simplified belief-plan approach.

5 Limitations and Future Work

This demonstration paper presents an early stage library prototype that provides min-
imalistic abstractions for implementing BDI agents. We concede that the prototype
provides—so far—merely minimally viable abstractions to instantiate agents. To increase
the library’s relevance for researchers, teachers, and practitioners alike, we propose the
following work:

Extend library interface. It makes sense to enable JS-son agents and environments to
act in distributed systems and communicate with agents of other types, without re-
quiring extensive customization by the library user. A possible way to achieve this
is supporting the open standard agent communication language FIPA ACLﬂ How-
ever, as highlighted in a previous publication, FIPA ACL does not support commu-
nication approaches that have emerged as best practices for real-time distributed
systems like publish-subscribe. To facilitate JS-son’s reasoning abilities, interfaces
to machine learning tools and best practices for developing learning JS-son agents
can be developed.

Move towards real-world usage. In this demonstration paper, we provide two proof-
of-concept examples of JS-son agents. To demonstrate the feasibility of JS-son, it
is necessary to apply the library in advanced scenarios. Considering the relatively
small technical overhead JS-son agents imply, the entry hurdle for a development
team to adopt JS-son is low, which might facilitate early real-world adoption.

Implement a Python port. While JS-son can be integrated with the Python ecosys-
tems, for example via Jupyter notebooks, doing so implies technical overhead and
requires knowledge of two programming languages. To facilitate the use of BDI
agents in a data science and machine learning context, we propose the implemen-
tation of Py_son, a Python port of JS-son.

Acknowledgements This work was partially supported by the Wallenberg Al, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice Wal-
lenberg Foundation.

7 The Jupyter notebook is available on GitHub at|http://s.cs.umu.se/1mfd69 and on
a Jupyter notebook service platform at http://s.cs.umu.se/girizrl

8 The simulation is available at http://s.cs.umu.se/chfbk2,

http://www.fipa.org/specs/fipa00061/index.html


http://s.cs.umu.se/lmfd69
http://s.cs.umu.se/girizr
http://s.cs.umu.se/chfbk2
http://www.fipa.org/specs/fipa00061/index.html

JS-son - A Minimal JavaScript BDI Agent Library 5

References

. Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak Using Jason (Wiley Series in Agent Technology). John Wiley & Sons, Inc., USA (2007)
. Kravari, K., Bassiliades, N.: A survey of agent platforms. Journal of Artificial Societies and
Social Simulation 18(1), 11 (2015)

. Logan, B.: An agent programming manifesto. International Journal of Agent-Oriented Soft-
ware Engineering 6(2), 187-210 (2018)

. Mascardi, V., Weyns, D., Ricci, A., Earle, C.B., Casals, A., Challenger, M., Chopra, A.,
Ciortea, A., Dennis, L.A., Diaz, A.F., Fallah-Seghrouchni, A.E., Ferrando, A., Fredlund, LA,
Giunchiglia, E., Guessoum, Z., Giinay, A., Hindriks, K., Iglesias, C.A., Logan, B., Kampik,
T., Kardas, G., Koeman, V.J., Larsen, J.B., Mayer, S., Méndez, T., Méndez, T., Nieves, J.C.,
Seidita, V., Tezel, B.T., Varga, L.Z., Winikoff, M.: Engineering Multi-Agent Systems: State
of Affairs and the Road Ahead. SIGSOFT Engineering Notes (SEN) (January 2019)

. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J.,
Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning. pp. 473-484. Morgan Kaufmann publishers
Inc.: San Mateo, CA, USA (1991)



	JS-son - A Minimal JavaScript BDI Agent Library

