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“Midway in the journey of our life I came to myself in a dark wood, for the straight

way was lost. Ah, how hard it is to tell the nature of that wood, savage, dense and

harsh – the very thought of it renews my fear!”

Dante Alighieri



UNIVERSITY OF LIVERPOOL

Abstract
Faculty of Science and Engineering

Department of Computer Science

Doctor of Philosophy

by Thomas Nickson

This thesis defines the Broadcasting Automata model as an intuitive and complete

method of distributed pattern formation, partitioning and distributed geometric

computation. The system is examined within the context of Swarm Robotics

whereby large numbers of minimally complex robots may be deployed in a variety

of circumstances and settings with goals as diverse as from toxic spill containment

to geological survey. Accomplishing these tasks with such simplistic machines is

complex and has been deconstructed in to sub-problems considered to be signif-

icant because, when composed, they are able to solve much more complex tasks.

Sub-problems have been identified, and studied as pattern formation, leader elec-

tion, aggregation, chain formation, hole avoidance, foraging, path formation, etc.

The Broadcasting Automata draws inspiration from a variety of sources such as

Ad-Hoc radio networks, cellular automata, neighbourhood sequences and nature,

employing many of the same pattern forming methods that can be seen in the

superposition of waves and resonance.

To this end the thesis gives an in depth analysis of the primitive tools of the

Broadcasting Automata model, nodal patterns, where waves from a variety of

transmitters can in linear time construct partitions and patterns with results per-

taining to the numbers of different patterns and partitions, along with the number

of those that differ, are given. Using these primitives of the model a variety of

algorithms are given including leader election, through the location of the centre

of a discrete disc, and a solution to the Firing Squad Synchronisation problem.

These problems are solved linearly.
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An exploration of the ability to vary the broadcasting radius of each node leads

to results of categorisations of digital discs, their form, composition, encodings

and generation. Results pertaining to the nodal patterns generated by arbitrary

transmission radii on the plane are explored with a connection to broadcasting

sequences and approximation of discrete metrics of which results are given for the

approximation of astroids, a previously unachievable concave metric, through a

novel application of the aggregation of waves via a number of explored functions.

Broadcasting Automata aims to place itself as a robust and complete linear time

and large scale system for the construction of patterns, partitions and geometric

computation. Algorithms and methodologies are given for the solution of problems

within Swarm Robotics and an extension to neighbourhood sequences. It is also

hoped that it opens up a new area of research that can expand many older and

more mature works.
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Chapter 1

Introduction

1.1 Background and Motivation

In many cases it is deemed that large numbers of simple robots can achieve certain

tasks with greater efficiency than a single complex robot. Without the reliance

on a single automaton there is an increase in robustness, the ability of the system

to function with partial failures or abnormal conditions; flexibility, the capability

of the system to adapt to changes in the environment; scalability, being able to

expand the size of the system without a significant impact on performance [1, 2].

This leads to the question of how to co-ordinate these robots in their task whilst

retaining their simplicity of design, function and the robustness that is inherent

to distributed systems. Such robots may only have local information or minimal

sensor range, small finite memory, minimal communication and restricted common

knowledge such as coordinates, orientation and synchronicity [3, 4]. The body of

work concerned with the design and analysis of systems with these properties and

goals is commonly referred to as Swarm Robotics or more broadly distributive

computations.

A variety of models have been suggested for this task including those from areas

such as Multi Agent Systems, Engineering and Robotics, Cellular Automata (CA)

and Distributed Algorithmics [5]. Problems currently being worked on are common

1



Chapter 1. Introduction 2

subdivisions of more complicated and pragmatic tasks which are found to tackle

a large set of problems simply through the coordinated use of such sub problems.

These are often, but not restricted to, pattern formation [6], leader election [7],

aggregation [8], chain formation [9], self assembly [10], coordinated movement [11],

hole avoidance [12], foraging [13], path formation [14], etc.

Not only are there many different problems that need to be tackled in order to

develop swarms of robots that are capable, in real world terms, but there are many

ways of solving such problems, each of which may need different computational

powers, and concepts, to solve them. In a survey of mathematical models of swarm

robotics [15] four main areas were identified,

• probabilistic models, mostly used for foraging, chain formation, stick

pulling, aggregation, cooperation-transportation, clustering, sorting, nest

building and flocking;

• automata theory (which covers the use of cellular automata), mostly used

for collaborative mapping, unknown exploration, lattice formation, pattern

formation and stick pulling;

• differential and partial differential equations, mostly used for mod-

elling pheromone, trophallaxis, stigmergic studies, collective foraging, clus-

tering, flocking, schooling and attraction, alignment and repulsion systems;

• dynamical systems are largely used for cohesion and stability analysis,

beacon and odour localisation, bifurcation models, attraction, alignment and

repulsion systems, aggregation and population dynamics in swarms.

The survey paper [15] does not consider the use of models used primarily for

distributed systems transferred over to use in swarm robotics. Such a method is

employed in [16] where the authors propose a model, known as Parallel Mobile

Robot (PMR), and are interested in models and algorithms for computational

swarms, which describe in a step-by-step fashion how a collection of mobots can

work together to solve specific computational problems. This model is proposed
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as an alternative to models which attempt to express swarm behaviours as shown

by ants, bees and other swarms of insects. Mobots are relatively powerful with

enough memory to store individual identities of the other mobots and knows their

own position in the environment which is modelled as a two dimensional grid.

Foundational problems in this model are tackled such as assigning identities to

robots based on location, coordinated motion and parallel sorting. It is also noted

that such a model may simulate a mesh and, as such, mesh algorithms are also

applicable. The model allows a good notion of complexity with all algorithms

analysed accordingly and it is also noted that there are other similar models, all

with complexity analysis, that have been used to solve problems such as dispersal,

separation, freeze tag problem, involving waking up a collection of robots and

aggregation.

The Broadcasting Automata model takes a similar direction to the models that

take their cues from distributed systems. It is hoped that this model may be

used to construct deterministic algorithms with measurable complexity that are

able to construct a wide variety of geometric algorithms for swarm robotics. For

example, the algorithm design for the pattern formation problem in swarm robotics

can often be complex and, sometimes, even impossible when the problem must be

solved from any arbitrary configuration in a swarm where no information about the

initial configuration and topology is available. The emphasis of preceding works,

when tackling problems in pattern formation, have mainly been with heuristic

algorithms while rigorous proofs of the correctness of the algorithms have not

always been given [17].

Pattern formation may be defined as the coordination of a group of robots to get

into and maintain a formation with a certain shape, such as a wedge or a chain.

Current application areas of pattern formation include search and rescue opera-

tions, landmine removal, remote terrain and space exploration, control of arrays

of satellites and unmanned aerial vehicles (UAVs). Previous methods of tackling

the problem of pattern formation in swarm robotics can initially be divided in to

two areas, that of centralised control and that of decentralised control [18]. As the
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notion of swarm robotics adapted for this thesis lies on the side of decentralised

this will form the focus of the overview of previous literature.

There are many differing models used within the pattern formation literature al-

though not all follow the same lines as the philosophy adopted here. In [19] pattern

formation is achieved via a series of algorithms for squares, circles, polygons, but

all robots are required to know the global positions of all the other robots and

the algorithm used only permits analysis via simulation. In [20, 21] a method

employing a notion gleaned from nature in the form of crystallisation of molecules

is used. The process is similar to molecular covalent bonding and robots are af-

forded several bond sites, each with a particular marking, whereby varying the

markings and the locations of such markings causes the generation of a variety

of shapes. A similar process is suggested in [22] but in this case springs are used

with the parameters of the virtual physics, which are noted to be difficult to dis-

cover, generate the distinct patterns on the plane. Graph theoretic approaches

have been suggested in [23, 24] where they were used to construct control graphs

which describes the control strategy (or behaviour) used by each robot, and the

dependence of its trajectory on that of one or more of its neighbours. Pattern

formation is determined by the construction of such control graphs and possible

constructions for the graphs are given.

It is within all of these papers that some patterns emerge as to the limitations

of such techniques. It is very complex to construct new shapes or describe the

total set of all shapes that are generatable in these models. The models have

unpredictable or convergent results which are shown through simulation. They

require either complex reasoning and as such strong computational complexity for

the robots, for example in the case of the spring simulation, or a complex set of

sensors or both.

It was the intention of this body of work to develop new techniques towards a

more deterministic approach to the field of swarm robotics allowing stricter guar-

antees on solutions with accompanying proofs of such guarantees by applying an
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alternative approach for pattern formation. The problem of pattern formation can

be solved in to two stages:

1. to apply heuristic algorithms for forming a regular grid

2. to design deterministic algorithms on a swarm with a regular topology and

local, non-oriented interaction

The proposal put forward in this work is to introduce a specific Broadcasting

Automata model which makes use of I/O Automata arranged in a square lattice

topology where communication is defined by broadcast to all automata within a

certain radius. The choice of model was initially motivated by previous algorithms

for the generation of triangular, square and hexagonal lattices by a swarm of

autonomous mobile robots with limited sensor ranges which were studied in [6,

17, 25]. By extending the work within the swarm robotics idiom the validity of

the Broadcasting Automata model becomes immediately apparent as augmenting

already possible arrangements with partitioning and pattern forming abilities.

Arranging robots into a regular grid structure has a number of benefits in terms

of self organisation and efficient communication. The choice of a lattice network

topology and broadcasting within a certain range allows for simplistic and efficient

communication compared to random topologies [26] that can be seen employed in

other models for swarm computations [2].

There are three standard regular grids on the plane: triangular, square and hexag-

onal. This thesis will only consider the case in which the elements form a square

grid, however, similar questions may be interesting to study in the triangular and

hexagonal grid as an alternative to the square grid. The specific choice of square

lattice for the model used in this thesis along with the use of networks of Moore

machines compares strongly to the well known physical modelling tool, Cellular

Automata (CA), a two (or more) dimensional mesh of finite state machines which

are locally interconnected [27]. In CA cells are able to synchronously change states

depending on the states of their neighbours depending on some local update rule.
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The Broadcasting Automata model is homogeneous in each cells use of the same

update rules mapping the states of its neighbours to a new internal state which

is again available to its neighbours. The homogeneity of the update rules, the

massive parallelism and local interactions also give a clear analogy to physical

laws that govern the natural world, again, parallelling the system of broadcasting

waves that is proposed by this thesis. The translations of the CA algorithms, in

this case the Firing Squad Synchronisation Problem, in to the Broadcasting Au-

tomata model were not only for showing the links between the subject, but for the

design of a specific algorithm to solve a geometrical problem in the Broadcasting

Automata model. However, the fact that such a translation is possible illustrates

that there is a close connection between the CA and BA models.

Cellular automata are notably employed as, powerful distributed computational

engines, discrete dynamical system simulators, conceptual vehicles for studying

pattern formation and complexity as well as original models of physics [28]. Cellu-

lar automata all for efficient parallel implementations of lattice models in nature

and so are ideal for the analysis of many concurrent dynamical processes in na-

ture. They also are ideal for modelling the global dynamic behaviour of local

rule interactions. They have been employed in the simulation of any number of

natural phenomena such as dendritic crystal growth, spatial patterns formed by

reaction diffusion equations, self organisation in neural networks, turbulence in

hydrodynamical systems as well as many others. They are also treated as abstract

dynamical systems that can be used to study the complexity of the whole class of

continuous and discrete systems and the quantification of complexity as a system

property. Cellular automata can also be used to generate original models of fun-

damental physics based on local and digital processes which are computationally

universal.

Such a model fits well with the criteria that is wished to be expressed in the

Broadcasting Automata model. Cellular automata are able to concisely formulate

distributed, parallel problems and simulations of physical phenomena and it has

a well defined notion of complexity which has been deeply studied as an abstract
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formulation of the complexity of dynamical systems [27] and is notable in the com-

putation of patterns and their analysis. However, such systems can be difficult to

construct from simplistic rules due to the nature of cellular automata to be highly

complex, like most dynamical systems, largely exhibiting patterns or trajectories

that appear to be effectively random, or show signs of complicated structure in the

form of long-range correlations, and in the sense that the ensemble of allowed pat-

terns may be very hard to describe. Such elements of cellular automata go against

the notions that are developed in the Broadcasting Automata model whereby a

simple set of rules distributed to all automata are able to generate stable patterns

which have a simple and well defined nature that naturally affords the construc-

tion of algorithms through the repeated application of pattern forming procedures.

The complexity is easily calculated and, for all algorithms presented here, linear

in time. This makes Broadcasting Automata a much more attractive proposal for

the control of swarms of robots and indeed the construction of discrete geometric

algorithms than Cellular Automata.

In the Broadcasting Automata model local communication is based on non-oriented

broadcasting of messages to all of the automata in range, of the broadcast, is a

key component of the model. Such ‘blind’ broadcasting (non-oriented) reduces

the complexity of the model. This reduction in complexity is due to the fact that

the network topology does not need to be kept track of through some complicated

distributed system in order to promote robustness. Topology of the network is

relegated to the physical transmission systems and placement of the transmitters

that would be used in the physical realisation of the system that is suggested in this

thesis. The very placement of the transmitters in the physical world constructs a

network topology that is efficient. This notion closely resembles the field of ad-hoc

networks [29] where they allow decentralised, self organising networks without the

need for any fixed infrastructure broadcasting using wireless transmissions and

routing handled in a node to node basis.

The proposed model, Broadcasting Automata (BA), is aimed at designing new

mechanisms for pattern formation on a variety of lattices using basic transmission

and computational primitives. Further, the BA is able to analyse the result of
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dissemination of information using a variety of broadcasting radii over a variety of

lattices. An algorithm to elect the centre of a discrete disc is given to illustrate the

power of Broadcasting Automata, and how they may be used to construct useful

and novel algorithms, and solve a key problem in distributed systems known as

leader election. The solution is also given in a very minimal setting with regards

to the non-oriented broadcasting that is used in Broadcasting Automata. Other

problems and areas such as discrete geometry, image processing and pattern for-

mation shall also be augmented along the way.

The construction of Broadcasting Automata allows many parallels to be drawn

with other areas of both mathematics, which shall be presented in the following

paragraphs, and computer science, as has already been seen with its connections

to distributed algorithms and cellular automata. Such disciplines have been more

rigorously studied in the construction of algorithms and methodology than the

ad-hoc methodology used in engineering and robotics papers and as such leads

some of the way to realising the initial concept of the system to enhance swarm

robotics with this rigour. The following section will hope to elucidate some of

these parallels that are formed with the use of more rigid structures of other areas

of mathematics which have been drawn as inspiration and providing background

and motivation for the work on Broadcasting Automata.

The Broadcasting Automata model draws inspiration from natural phenomena

from the following sources; waves, superposition, nodal patterns, normal modes,

resonance, cymatics and moiré patterns. Many of these physical effects and phe-

nomena are visible in the patterns of Chladni plates, see Figure. 1.1, such as reso-

nance, nodal patterns, waves, superposition and normal modes. As such Chladni

plates are a good starting place at expositing through visibility the these phe-

nomena through modes of vibration on a rigid surface [30] and, in the original

experiments, sand. The Chladni experiments were initially conducted by simply

bowing a glass surface with sand on it. The vibrations generated by the bow would

cause the surface, at resonance, to divide in to regions vibrating in opposing direc-

tions, positive motion in one region would be contrasted with negative motion in

another. Such motion is divided by regions where there is none, with these points
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known as nodal lines. With sand, or flour as was originally used, sprinkled on the

plate it groups in those areas where there is an absence of motion between the

areas of vibration making them visible. It was thought that such a technique could

be employed, simulated with automata transmissions across a structured topol-

ogy to simulate the resonance that occurs in the rigid body, to solve a number of

the common problems that occur in the construction of algorithms for swarms of

robots such as leader election or the partitioning problem.

Figure 1.1: Showing a variety of modes present when varying the frequency
of the source through a rigid body

The key features of the proposed algorithms, related to the simulation of informa-

tion transmission through a network of automata, in the BA model are very similar

to the techniques used in wave algorithms [31]. Such algorithms are so called be-

cause of the close resemblance to natural waves by analogy. One could imagine

watching the formations generated by dropping a pebble in a square container of

water and observing the waves generated spread through the medium and easily

think of a simulation of this in wave in the virtual space of a square lattice network

topology. Such algorithms are designed to solve very general problems found as

subtasks in distributed algorithms; broadcasting of information such as start or

terminate messages, synchronisation, initiating global events and computing func-

tion whereby each node holds some of the input. All such tasks are achieved by

passing a finite number of message via some network topology dependent scheme
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such that all nodes participate in the message passing. Though such subtasks may

seem simplistic they are able to solve complex problems such as leader election,

termination detection and mutual exclusion and are used as subroutines to solve

more involved algorithms.

Wave algorithms do not wholly encompass the Broadcasting Automata model that

shall be presented here, in this thesis. Indeed, Broadcasting Automata are more

general and the wave algorithms can be seen as a specific case of a Broadcasting

Automata configuration, though naturally not all of BA can be explained by wave

algorithms. The following notions are applicable to wave algorithms:

• Algorithms of this type may be centralised or decentralised depending on

whether or not the algorithm is started by a single distinct node, known as

a process, or can be started in all processes simultaneously.

• They may be designed for many prescribed topologies and may make use

of initial knowledge in terms of a unique process identifier, access to its

neighbours unique identifier and a sense of direction; none of which are

present in broadcast automata.

• Each process makes at most a single decision after completion and the com-

plexity may be measured in terms of the number of exchanged messages or

bits for the computation.

Whilst the ideas represented here, in the above bullet points, as wave algorithms

are well known and studied in the context of distributed computation the ideas

presented in this thesis, under the name of Broadcasting Automata, which draw

on the composition of successive waves, constructing nodal patterns, and indeed

taking the analogy further than that presented in the classical notion, are novel and

have not appeared previously in the literature. Whilst distributed computing has

been used to model swarm computing it has not been so direct as to utilise wave

algorithms and indeed wave algorithms have not been used to implement pattern

formation or in the construction of wave inspired geometrical constructions.
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The model for BA, which shall be presented in detail later in the chapter ad-

dressing the model, also draws from sources such as Ad-Hoc Networks [29] which

is originally a model used for wireless cellular communication networks. Ad-Hoc

networks are generally formed in situations in which a particular fixed infrastruc-

ture is not available. They are decentralised, self organising and capable of forming

communication networks that do not rely on previously fixed structures. In this

model nodes, elements within the network, are able to send and receive messages

which are routed, in a decentralised fashion, through elements of the network from

the node that generated the information to its recipient. Messages can be gen-

erated for any node in the network by any node in the network which allows a

message to be generated in one node to be passed to any node in the network

realising complete connectivity for every node. Such network design is a response

to the increasing ubiquity of mobile computing and has many advantages over

standard networking practice in that it increases mobility and flexibility, elimi-

nates the need for a fixed infrastructure, increases robustness and reduces power

consumption.

Ad-Hoc networks are a large and varied field of research with many differing models

contained within its umbrella. Here, only those models which are deemed relevant

to the thesis will be described. To this end pathloss geometric random graph mod-

els will be considered although it is noted that there are many other such models

available such as random graphs, regular lattice graphs and scale free graphs. Ge-

ometric random graphs are considered to be more realistic when compared to the

aforementioned models as they take in to account the geometric distance between

nodes and many factors associated with the physical act of wireless transmission

rather than associating connections between any two randomly chosen nodes. This

model of transmission is based on a combination of empirical data collected on

the characteristics of radio propagation and distilled in to an approximation of the

workings of a radio channel commonly used for message passing in such networks

through analytical methods. The assumption, for a message passed via radio sig-

nal to have been correctly received, is that it must be over a certain threshold

value, P . Those nodes that are able to receive messages from a transmitter are all



Chapter 1. Introduction 12

nodes within the range R = r0( cP
1
η ), where r0 is a reference distance determined

through empirical measurements (for example for low-gain antennas around 1-2

GHz is chosen to be 1m indoor and 100 - 1000 meters in an outdoor environment),

η is the pathloss exponent which indicates the rate of the decay of the signal over

distance and c represents the initial power of the transmission [32].

Using the above method, and varying R, the graph that represents the network

can be dense or sparse, connected or disconnected. The area of transmission of

any node in the network is exactly the circle that is defined by such a radius, R,

and the probability of there being a connection between two nodes is exactly the

probability of another node being within this circle of influence.

As introduced by Ad-Hoc networks in the geometric random graph model mes-

sages may be passed, under certain circumstances, to all nodes up to a certain

range, R. Such repeated transmission to nodes, within certain radii, applied to

a certain network topology, or physical layout of nodes, in this case a number of

geometric lattices, has been studied under the name, neighbourhood sequences

(NS). Originally introduced in [33] under the notion of distance functions on digi-

tal pictures the aims were to produce algorithms that would define digital distance

measures based on repeated applications of Moore and Von Neumann neighbour-

hoods, where each point within either neighbourhood is at distance one from the

centre, which could be done in parallel using only local operations on every ele-

ment (pixel) that composed a digitisation of a picture and its neighbour. Such

algorithms could be used to solve problems such as, cluster detection, elongated

part detection and regularity detection. The pictures were considered to be arrays

(representing pixels for a display), which can be considered a square lattice struc-

ture underpinning the placement of wireless nodes, and the neighbourhoods were

restricted to the Von Neumann and Moore neighbourhoods, which are equivalent

to the digitisation of the circles of radii, 1 and
√

2, respectively, which naturally

extends to the notion of R.

Neighbourhood sequences were further explored in many more papers which again
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has found its main use in areas of indexing and segmenting images [34]. Exten-

sions to the initial work include finding those distances which best approximate

the euclidean distance [35–38] using both periodic and non-periodic sequences of

the initial two neighbourhoods, Moore and Von Neumann, and their analogous

extension to 3-dimensions [39–41]. From the exploration of such neighbourhoods

the natural question of which of these form distance functions which adhere to

the properties given to all metrics [42–44] has also been asked. Previous works

have been extended to consider a variety of grids that extend the standard integer

grid such as triangular [45, 46] and hexagonal grids [47–50]. In the analysis of

the shapes that represent all of the possible digital discs (discretised discs that

compose only integer points), an extension of the natural form of the neighbour-

hoods that made up the original NS’s, they naturally form convex sets and as

such may be combined using the Minkowski sum. In this way convex bodies and

the Minkowski sum [51] are core parts of the analysis of Broadcasting Automata,

as they give a method for composing convex sets in to new sets which are also

convex, and as such derive the shapes of new Neighbourhood Sequences.

Much of the information derived from neighbourhood sequences is from observa-

tion of the geometric shapes, such as how close an approximation to the euclidean

distance the sequence is, that can be generated by the iteration or repeated trans-

mission of the sequences. This is analogous to the Minkowski sum of the sequences

constituent discrete discs. Naturally this makes the Minkowski sum very useful in

exploring the results of the combinations of digital discs with varying radii when

generalising Neighbourhood Sequences. The analysis of such discrete discs also

makes use of a method of digitising the hulls of such objects known as chain cod-

ing [52]. Chain codes for discrete discs can be constructed in a simple and efficient

manor and, as will be proved, can make use of the notion of the Minkowski sum

in their combination and manipulation to further the analysis of this extension to

Neighbourhood Sequences.

Since the concept of composition has a number of limitations, most obviously no-

ticeable is that of the resulting persistent convexity where all components are also

convex, Broadcasting Automata afford new techniques derived from the discrete
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superposition of the waves, modelled as non-oriented transmissions of symbols. As

such the concepts and formalisms addressed in the analysis of moiré phenomenon

which concerns itself with the analysis of overlaid gratings and the resultant pat-

terns that form from the alteration of the various parameters of both the gratings

and the ways in which they are overlaid become increasingly useful in the analysis

of the patterns resultant from Broadcasting Automata.

Moiré patterns [53] are the result of repetitive structures (gratings, screens, grids)

with differing sizes or angles being superposed on top of each other. Originally

the term moiré was derived from the common observation of the pattern in rip-

pling water and its appearance in silk, which is itself essentially two orthogonal

interlocking grids with varying and disparate distances between each strand. The

patterns are as a result of the distribution of areas that are light or dark, analogous

to the those areas that let light through or don’t in binary patterns created by

a grating. For example, in a monochromatic pattern, which is overlaid on top of

itself, the interactions introduce a new pattern where one such structure may have

removed a section that may have been translucent in the other and vice versa.

Moiré phenomena has found use in a vast number of applications in a variety

of different fields. In strain analysis moirés are used for the detection of slight

deflections or object deformations where as metrology finds use for them in the

measurement of small angles, displacements or movements. Other fields of use

include optical alignment, crystallography and document counterfeiting as well as

simply the appreciation of the variety of shapes that can emerge for fun or art.

Not only can moiré patterns be employed to help certain fields, for a variety of

reasons but also they are, in many cases, a hindrance. In this case efforts are

directed towards the elimination of the resultant interference which is beneficial

to the printing industries where dot-screens can be severely corrupted by moiré

patterns. Much work has been done in this area with regards to the patterns

formed on the continuous plane with results formed through the use of the Fourier

transform and the geometry of numbers as well as many other techniques, however,

there is little in the way of results for the discrete plane. Many of the continuous

results, if not the techniques, are still valid in the discrete plane and so many of the
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conclusions may be carried over. Analysis of moiré lines looks at differing models

of superposition both of which employ some form of functional composition for

example either multiplicative or additive, where intensity of the light source is

modelled by sine functions, and it is within this method that the model presented

here is taken further than in the realms of physics.

Broadcast Automata allows an increasingly flexible way of generating composi-

tions, indeed the only limit is the number of compositions that are possible given

a finite set and even that restriction is self imposed. The two basic functional

compositions are given a treatment here but also other forms of composition are

as well. As every discrete disc is a convex polygon which is composed of edges

that are all straight lines with rational gradients only the basic moiré lines formed

by such discrete objects need be considered but, as will be shown, this is a very

powerful tool that can be used to relax many of the constraints on Neighbourhood

Sequences.

1.2 An Overview of the Thesis

Here is presented a brief overview of the contents of the thesis.

In chapter 2 the model of Broadcasting Automata is introduced and the features

and specifics are explored such as how and to whom messages shall be passed

as well as an introduction to abstractions that concern such message passing.

This chapter will prepare the ground work for the rest of the thesis presenting

definitions of all the notions and notation present including a rigorous treatment

of the connection to Neighbourhood Sequences as they are expanded to fit in with

the work presented here and relabelled as Broadcasting Sequences. The main

result in this section is the construction and definition of the model.

The third chapter covers an in depth look at the concept of nodal patterns, where

waves, in a discrete sense, here modelled as words, may combine to form patterns

which in turn generate partitions and, with the partitions, the generation of lines.
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This chapter is the underpinning of all that follows it, giving an insight and eluci-

dating what it is possible to accomplish with the model and how algorithms may

be constructed. The results here are given as an exposition of what can be achieved

with even the most basic components of the Broadcasting Automata model, the

von Neumann and Moore neighbourhoods. There are a complete set of results

on counting the number of distinct nodal patterns that result on the plane for

2-transmitter configurations and where waves are modelled as words.

Chapter 4 illustrates the power of the primitives further by showcasing a number

of algorithms which can be performed in this model. Some of these algorithms

are equivalents of algorithms found in a variety of other models such as Cellular

Automata and distributed computing which here are the Firing Squad Synchro-

nisation Problem, from the Cellular Automata problem set, and an algorithm for

the election of centre of a circle which can be dually posed as a leader election

algorithm, one of the most basic of problems from distributed algorithms as well

as being posed as a distributed geometric problem. Also included in this chapter

are a set of ‘helper’ algorithms which, algorithmically, extend the power of the

model allowing the accomplishment of tasks that are thought to be common to a

multitude of other algorithms that may be constructed. The main result of this

chapter is the algorithm for the location of the centre of the digital disc where the

initial transmitter is located on the edge of the disc. The algorithm uses all of the

techniques discussed in the previous chapter, that utilise nodal patterns, to locate

the centre of the disc through distributed, geometric computations.

The generalisation of Broadcasting Automata model, by varying the transmission

radius, leads to the problem of the categorisation of digital discs. Results here

include the form of the chain code of the discrete disc, how it may be generated

and manipulated, and a restriction on their form. The structure of the discrete

disc is of paramount importance, making up a large part of the potential power of

the Broadcasting Automata model.

Chapter 6 gives results pertaining to nodal patterns that can be formed from ar-

bitrary neighbourhood sequences and ways of overcoming the limitations in the
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inherent structures of the discs. This is given along with their connection with

Neighbourhood Sequences which Broadcasting Sequences aim to generalise. This

chapter primarily builds on the previous categorisation of the discs themselves fo-

cusing on how these structures may be composed and aggregated. Results include

a notion of composability with a linear time algorithm such that any two discs, or

indeed any two convex polygons that have been reduced to a chain code, may be

composed to result in a single chain code that generates the new polygon. Further,

the notion of composability that was first described as nodal patterns is explored

with the resultant patterning of moiré and anti moiré functions categorised fully

and many others shown experimentally. The aggregation of discs is then used to

give experimental results on the approximation of the concave metric, the astroid,

which was previously impossible to approximate with neighbourhood sequences.

Finally, chapter 7 presents the closing statements of the thesis.

The main body of this work has been presented in numerous places and formats.

Chapters two through to four have been initially presented, in a talk, given at the

British Colloquium of Theoretical Computer Science, first in 2009, under the title

A New Approach for Automata Coordination on Z2 and the following year a fur-

ther expanded talk was given in 2010, under the title, Geometric Computations

on Regular Tilings by a Graph Dynamical System. The results for these early

chapters (2 to 4) were first published in Geometric computations by broadcasting

automata on the integer grid. Russell Martin, Thomas Nickson and Igor Potapov,

volume 6714 of LNCS, pages 138-151 [54] with a talk given at the respective con-

ference Unconventional Computation 2011. Further, expanded material was pre-

sented as a journal version in Geometric computations by broadcasting automata.

Russell Martin, Thomas Nickson and Igor Potapov, Natural Computing, pages

1-13 [55]. Finally, chapters 5 and, partially, 6, were accepted as a long abstract in

Discrete Discs and Broadcasting Sequences. Thomas Nickson and Igor Potapov,

volume 7445 of LNCS, page 235 [56] with the presentation of a poster regarding

the work given at the respective conference, Unconventional Computation and

Natural Computation 2012.



Chapter 2

Broadcasting Automata and their

Communication Primitives

Broadcasting automata connect many of the techniques contained in distributed

algorithms, ad-hoc radio networks and Neighbourhood Sequences. Much like cel-

lular automata with variably defined neighbourhoods Broadcasting Automata are

defined usually on some form of grid or lattice structure and have a simple compu-

tational power comparative to a finite state automata with the ability to receive

and send messages both from and to those automata which are within its trans-

mission radius. Neighbourhoods are defined in the same way as with an ad-hoc

network, all those points within a certain transmission radius, r, receive the mes-

sage from the sender. Algorithms are in the same vain as those encountered in

distributed algorithms using a simple notion of waves, messages passed from au-

tomata to automata throughout the topology, to construct computations. Wave

algorithms are enhanced further with notions of composition of the information

that is carried within each wave borrowed from the physical world and embellished

with the new found computational power of the automata. The following sections

shall solidify the notions that have been put forth here and give a concrete defini-

tion of the framework used to reason about computations constructed using waves,

variable transmission radii and automata.

18
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2.1 Broadcasting Automata Model

One of the fundamental models of computation is the automaton. The model can

be used to explore the notion of the limitations and capabilities of computers and

as such is useful in composing such models. They can be used to model digital

devices that have very limited computational ability and limited memory. This

makes automata a good starting point for the construction of a model for swarm

robotics where limited computational power and memory are both aspirations of

swarm robotics. Finite state automata take as input a word, which may in some

instances be referred to as a tape, and output is limited to an accepting state which

the automata is left in if it is said to accept the word. Traditionally automata used

in cases where it is important to transform some input in to an output, beyond

the use of a single state, is the use of Moore Machines. Such machines differ from

finite state machines in that they are able to produce an output word from an

input word.

Definition 2.1. A Moore machine [57] which is a 6-tuple,

A = (Q,Σ,Λ, δ,∆, q0) ,

where,

• Q is a finite set of states,

• Σ is the set of input symbols,

• Λ the set of output symbols,

• δ : Q × Σ → Q is the transition function mapping a state q ∈ Q and a

symbol, or set of symbols, σ ∈ Σ to a state q ∈ Q,

• ∆ : Q→ Λ is the output function which maps a state, q ∈ Q, to an output

symbol, λ ∈ Λ, and

• q0 is the initial or quiescent state in which the automata starts.
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It is assumed that such a machine is connected to an input tape, or word, and an

output tape, or word, where the result of the computation is read. In a situation,

as is presented in distributed systems, whereby automata are connected to each

other it is possible for the output of one automata to become the input of another

automata. Such a model is known as a network of automata and connections

from one automatons output to another’s input may be represented as a directed

graph, where direction represents the output going to input from automaton to

automaton.

Definition 2.2. A network of finite automata is represented by a triple,

(G,A,C0) ,

where,

• G = (V,E) is a directed graph, with vertices, V , and edges, E, which are

ordered pairs of vertices,

• A, is a Moore machine, and

• C0 is an initial configuration which maps states, Q, of the automata, A, to

vertices, V , such that, C0 : V → Q.

In this model the topology is fixed as specified by the construction of the graph,

G, which dictates the flow of inputs and outputs from the Moore machines. Such

symbols, where a symbol is part of the input/output word of the Moore machine,

are generated as response to some input, by an automaton at vertex, v ∈ V , and

then sent to all of the adjacent vertices in the graph or to a particular adjacent

vertex, G, where the automata that receive the symbols process them as they

would their input word.

This thesis introduces the model of Broadcasting Automata whereby nodes cor-

respond to points in space and connectivity between nodes depend upon the dis-

tances between the points and the strengths of the transmissions generated by the
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automata as may be seen in ad-hoc radio networks. Transmission strength may

vary from round to round for any particular automaton in the space and is dic-

tated by the state of the automaton. In this model the topology, or connectivity

graph, of the network of automata is able to change at each time step based on

the states of the automata.

In order to give a formal definition of the Broadcasting Automata model on a

metric space it is first necessary to introduce the notion of a metric space and to

modify the classical notion of the Moore machine.

Definition 2.3. A metric space is an ordered pair, (M,d), where M is a set and

d is a metric on M such that d : M ×M → R.

Here, (M,d), is any metric space, later the two dimensional euclidean space shall

be used but this is not a necessity simply that a notion of the distance between

two points is required.

Definition 2.4. The Broadcasting Automaton is represented by an 8-tuple

A = (Q,Σ,Λ, δ,∆, τ, q0, F ) .

This definition extends the Moore Machine by introducing a set of final states,

F , along with a function, τ : Q → R, which maps the state to a real number

and represents the radius of transmission for the output symbol and the output

alphabet, Λ, is extended by adding an empty symbol, ε.

A network of Broadcasting Automata, which will also be referred to as the Broad-

casting Automata model, can now be defined.

Definition 2.5. The Broadcasting Automata model is represented by a triple

such that,

BA = ((M,d), A, C0) ,

where,

• (M,d) is a metric space,
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• A is a Broadcasting Automata,

• C0 is the initial configuration of the Broadcasting Automata model, it is a

mapping from points, M , to states of the Broadcasting Automata, Q, such

that, C0 : M → Q.

In some cases it may be that the input and output symbols are drawn from the

same alphabet in which case, Σ = Λ.

The communication between automata is organised by message passing, where

messages are symbols from the output alphabet, Λ, of the automata, A, to all of

the automata within its transmission radius. Messages, symbols from the output

alphabet, Λ, of the automata, A, are generated and passed instantaneously at

discrete time steps, generation of message is given by the function, ∆, for the

automata, A, resulting in synchronous steps. Those automata that have received

a message, for the first time in the computation, are said to be activated.

If several messages are transmitted to an automaton, A, it will receive only a

set of unique messages, i.e. for any multiset of transmitting messages, where

the multiset represents a number of the same message being sent, received by A,

over some number of rounds, the information about quantity of each type, within a

single round, will be lost. This simply dictates that the automaton may not dictate

a number of the same symbol in any transition, all transitions must operate upon

a set of distinct symbols.

More formally the concept of computation and communication is captured in the

concept of configurations of the Broadcasting Automata model and its semantics

presented here.

Definition 2.6. The configuration of the Broadcasting Automata is given by

the mapping, c : M → Q, from points in the metric space to states. It can be noted

here that C0 is an initial configuration for the Broadcasting Automata model.

Automata are updated, from configuration to configuration, synchronously at dis-

crete time steps. The next state of each automaton depends upon the states of
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all other automata which have in their neighbourhood the automaton that is to

be updated. Where here the neighbourhoods are formed by a combination of

their position in M and the range of their transmission, dictated by τ(q) for all

automata.

Definition 2.7. The set of messages received by the automaton at a point, u, v ∈

M , is expressed by the set Γu = {∆(c(v))|v ∈ M ∧ d(u, v) ≤ τ(c(v))} for the

metric space, (M,d).

Figure 2.1: The above figures show the possible evolution over time of a net-
work of Broadcasting Automata. Each figure shows, on the left, the broadcast
range for the automata, depicted by a dotted circle with the node at the centre,

on the right, the same connectivity is shown in graph form.

In Figure. 2.1, it is possible to see an elucidation of message passing in the Broad-

casting Automata model through the process of constructing a digraph represen-

tation of the broadcasting radii. The figure depicts the automatons broadcasting

radius by way of a dashed circle with the automaton broadcasting at that range

shown in the centre. The corresponding graph may be constructed from this by

making a directed edge in the graph from the node that is broadcasting to all
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nodes that are within the broadcast range, where the range is dictated by the

state, q ∈ Q and the function, τ(q) = r where r is the broadcasting radius.

The construction of such a graph shows both the connection to the network au-

tomata model, which operates on a similar premise but with a fixed graph, but

also highlights how Definition. 2.7 is constructed. Incoming edges are generated

by connecting nodes, with the arrow from transmitter to node, reachable from the

transmitter. Naturally such a graph, in the Broadcasting Automata model, can

change over time which is shown by images further down the page as increase time

steps in Figure. 2.1.

It should be noted that this set of messages can be empty. The new state of

the automaton at u is now given by applying the automaton’s transition function

δu(Γu). This may be applied to all of the automata in the BA and as such de-

termines the global dynamics of the system. It can be seen that in one time step

it is possible for configuration c to become configuration e where, for all v ∈ M ,

e(v) = δv(Γu). Such a function is called the global transition function. The set of

all configurations for BA is denoted as C.

Definition 2.8. The global transition function, G : C → C, represents the transi-

tion of the system at discrete time steps such that for two configurations, c ∈ C

and e ∈ C, where e is the configuration the time step directly after c such that,

e = G(c).

Definition 2.9. A computation is defined as any series of applications of the func-

tion, G, from an initial condition, C0, that leads to the set of all automata in the

system being in one of their accepting states from the set, F , or the computation

halts such that there exists no defined relation from the current configuration, c,

under the global transition function G(c).

Here a notion of reachability is given.

Definition 2.10. One configuration, c, is said to be reachable from another,

e, if from the initial configuration, C0, there exists a series of valid intermediary

configurations such that c → c′ → c′′... → e. Where c → c′ is equivalent to
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G(c) = c′. It can also be stated, in a shorthand way, that where the sequence

c→ c′ → c′′...→ e exists reachability from c to e may be shown as c e.

With a concrete definition of a global transition function and a computation it is

also possible to define what the computational complexity of an algorithm in the

Broadcasting Automata model.

Definition 2.11. The time complexity of an algorithm is determined by the

number of applications of the global transition function during the computation.

Whilst in general Broadcasting Automata may be used represent any of the com-

mon network topologies (such as, linear array, ring, star, tree, near-neighbour

mesh, systolic array, completely connected, chordal ring, 3-cubes and hyper-cubes

[58, 59]), through varying the location and transmission radii of the automata in

the space , a different model is employed. The model used throughout the thesis

is a hybrid between the notion of transmission radius in the pathloss geometric

random graph model and common network topologies. The method involves the

physical placement of nodes on the Euclidean plane in a lattice structure such that

the distances between points conform to the euclidean distance. Such regular lat-

tices coincide with those structures that can be formed by previous works [6, 17, 25]

giving the basis of the forms of lattice that can be studied. This thesis will strictly

concern itself with the square grid lattice though it can be extended in to any

of the other grid configurations such as the hexagonal or triangular lattices along

with many others.

The locations of the points on the lattice allow the construction of the metric

space, (M,d) as such the locations of the automata. Assuming a lattice structure

for positioning of the automata and transmission radii, R, is in accordance with

the principles of transmission used in the pathloss geometric random graph model

put forth in Ad-Hoc networks.

A variety of topologies, the lattices that can be constructed as in [6] (square,

hexagon and triangle), and the shapes of neighbourhoods generated by varying the

transmission neighbourhood can be seen in Figure 2.2 where black dots represent
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the placement of automata on the plane according to the lattice here shown by

the black lines. Neighbours are those within the dashed circle and the automata

at the centre of the circle is the initial transmitter of any messages.

Figure 2.2: Showing three differing lattices and how their neighbourhoods
can be altered simply by varying the radii of the transmission neighbourhood
which, here, is depicted as a dotted circle. All automata, shown as black dots,
are able to receive messages from the automata at the centre of the circle.The

three lattices depicted are (left to right) square, hexagon and triangle.

The connectivity graph defined in ad-hoc radio networks denotes those that are

able to send and receive messages with certainty however in distributed algorithms

the possibility of communication errors is not ignored. In such models messages

may be lost, duplicated, reordered or garbled where they must be detected and

corrected by supplementary mechanisms which are mostly referred to as protocols

for example the common network protocol of TCP. The Broadcasting Automata

model sides with the former method of message passing. It is assumed that there

will be no error in transmission, the receipt or sending of messages across the

network is guaranteed however consideration is made to the synchronicity of the

network due to the high sensitivity to the timing of message passing as will become

clear later when discussing pattern formation with such protocols. Usually, though

not a requirement of the model, structured sequences of messages are used such as

a string where each of the symbols are indexed, here denoted as σi, showing that

it is the ith message in such a structured string. This idea is explored fully later in

the thesis, particularly chapter 3, and makes up a large body of the work exploring

the variety of these strings and the constructs that they form in the system.

To this extent we consider two variants of Broadcasting Automata: synchronous

and asynchronous (or reactive) models. In each of the variations both the trans-

mission of a method and amount of time take for the automata to process the
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message is considered to be constant. It is this constant time that will afford

synchronisation within the model. The two differing models are presented to show

that there are possible complexity trade offs depending on how it is to be mea-

sured. If the size of the alphabet is a priority, such that it must be minimised, then

the synchronous model is best, however this comes at a penalty of time complexity,

where the asynchronous model fairs better.

In the asynchronous model upon the receipt of a message, an input symbol (or set

of symbols) σ ∈ Σ, the automaton, A, becomes active. The automaton may only

react to a non-empty set of messages, it may not make and epsilon transition.

Once activated the automaton, A, reacts to the symbol(s), σ, according to the

configuration of the automaton and responds with the transmission of an output

symbol, λ ∈ Λ, to those in its transmission radius for the current state, q ∈ Q,

τ(q). The processing of the input symbols by the automaton is done in one discrete

time step which is the same period for all automata in the graph. Once active the

automaton must wait for another message in order to change its state it is not

allowed epsilon transitions.

The synchronous model has a singular alphabet and as such, Σ = Λ with the

allowance of epsilon transitions. Upon the receipt of a message, an input symbol

(or set of symbols) σ ∈ Σ, the automaton, A, becomes active. Once active the

automaton is synchronised with the rest of the graph by repeated epsilon transi-

tions that are representative of a constant transition via input symbol as in the

asynchronous model. As each such transition is considered a change in configu-

ration of the automaton it must take a single time step. As such this guarantees

the synchronisation of system. However the multiple alphabet can be simulated

by associating different symbols to different time steps as shall be seen later.

The following outlines, informally, the methodology of message passing used by

the two differing constructions of automata, synchronous and asynchronous.

In the synchronous model messages are passed from automaton to automaton

according to the following rules:



Chapter 2. Broadcasting Automata and their Communication Primitives 28

1. An automaton, A, receives a message from an activating source at time, t;

2. At time t + 1, A sends a message to all automata within its transmission

radius dependent on its state, q ∈ Q, τ(q);

3. At time t+ 2, A ignores all incoming messages for this round.

In the asynchronous model the following rules can be applied:

1. An automaton, A, receives a message σi ∈ Σ from an activating source at

time t;

2. The automaton, A, broadcasts a message σ(i+1) mod |Σ| to all automata within

its transmission radius, dependent upon its state, q ∈ Q, τ(q) at time t+ 1;

3. Ignore all incoming messages at time t+ 2.

In both models Step 3 prevents an automaton from receiving back the message that

has just been passed to the automatons neighbours by ignoring all transmissions

received the round after transmission and ensuring that the messages are always

carried away from the initial source of transmission. In both cases this rejection

of all messages may be modelled by the addition of a state that simply does not

accept input in that state, where epsilon transitions apply, or that the transition

is made to another equivalent state independent of input received, where from

here it is possible to receive transmissions that once again affect the logic of the

program.

Naturally, given these two models it is interesting to see if they are capable of the

same computations and that indeed anything that can be done in one model can

be done in the other. There are many ways with which to establish equivalence

between automata and models in general. One important technique that has been

used to show equivalence in connection with Turing machines is simulation [60].
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Here a similar proposition is made with respects to establishing the equivalence of

the two models of automata that are given here, synchronous and asynchronous.

The global configuration function doesn’t change between the two models as the

function shows only how messages are routed through the graph and how those

messages cause the automata to update states.

In this case the differences between the two models are restricted to the con-

struction of the automata themselves and a mapping between the two alphabets

that differ in size. Automata in the asynchronous model are restricted to state

changes only upon the receipt of a set of messages, as epsilon transitions are not

allowed, and the size of the output alphabet, |Λ|, is unbounded. Automata in

the synchronous model can make epsilon transitions, as such they may make state

transitions without any input, but they only have an input and output alphabet

of size one, |Σ| = |Λ| = 1.

Usually when equivalence must be shown for two automata it is done by showing

that they accept the same language [60], however, this is not possible as the

two alphabets are, by definition, different, due to their cardinality. It is for this

reason that the definition of equivalence, via simulation, must be altered such that

the construction using multiple additional states is able to simulate the outcome

of an automata with multiple additional members of its alphabet. It must be

shown that it is possible to map one language in to another using nothing more

than extra transitions of the automatons transition function in the synchronous

model. Having shown that there is a possible mapping from the language of the

asynchronous model, on a symbol by symbol basis, to a series of computations in

the synchronous model, simulating an input of the symbol in the asynchronous

model, it will be possible to construct automata that, using the mapping from

language to automata construct are equivalent in their computations.

Slightly more formally it can be said that for every transition of the asynchronous

model, δa(qi, σi) = qj there exists a simulation, utilising epsilon transitions, such

that, δs(δs(δs(qi, ε), ε)..., σ) = qj , where here σ is the only symbol in the syn-

chronous alphabet.
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Proposition 2.12. Both the synchronous and asynchronous models are able to

simulate the other.

Proof. The following proof considers the input and output alphabets to be the

same and as such Σ = Λ

Any algorithm for broadcasting automata in the asynchronous model with a mes-

sage alphabet of size |Σ| can be simulated by the synchronous model with a singular

alphabet and |Σ| slowdown.

Broadcasting a message σi ∈ Σ, such that σi is the ith message in Σ, using the

reactive model with a message alphabet of size |Σ| can be simulated in synchronous

model by introducing a number of states equal to |Σ|. Once the automaton is

activated with the initial activation message (the synchronous model only has

a single alphabet) at time t the initiating automata waits until time t + i, after

which i epsilon transitions have taken place and another message from the initiator

indicates to stop epsilon transitions. The states are labelled such that the state

after i epsilon transitions is equivalent to σi. Thus both end up in same state.

Such a construction allows simulation in both directions to occur.

q0

q1

q4

q0

q3

2q

q1 2q

q4 q3

q’1q’2

q’4q’3

c
d

b
a

e

Figure 2.3: The above diagram depicts an equivalent, multi-alphabet, asyn-
chronous automaton and a single alphabet, with epsilon transitions, syn-
chronous automaton. Symbols, a, b, c, d and e, the epsilon transition, are colour

coded such that receipt of the symbol a is signified by a blue edge.
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An example of converting a basic construction in the asynchronous model in to

a construction in the synchronous automata is depicted in Figure. 2.3. The au-

tomaton on the left of the figure depicts the asynchronous multi-alphabet model,

where as the automaton on the right depicts the equivalent construction in the syn-

chronous model where e represents the epsilon transition. Both automata attempt

to recognise the input of a single letter of the alphabet such that the automata

should end up in a state depending on the letter of the alphabet, Σ = a, b, c, d, or

the time the symbol is received. It is noted that the method of transmitting the

symbol in the synchronous model must also be encoded with a time delay such

that when the automata sending the message wishes for the automata to end up

in state qi the sender must wait until the receiver is in state, q′i.

For simplicity all examples that follow shall use the asynchronous model but it is

simple to construct the corresponding synchronous automaton.

It should also be noted that with some generalisation, to allow a variable radius

neighbourhood interaction which has been explored in a limited sense [61, 62], the

Cellular Automata (CA) model may also be used to simulate the Broadcasting

Automata model. In a grid of CA it is possible to assign states that correlate

to transmitters where each transmitter in the grid is assigned a unique state and

all other CA are in the quiescent state. The initial transmitters state causes

each of the automata who have the initial transmitter in their neighbourhood

to change from the quiescent state to the transmitters state plus one over some

modulo. This clearly simulates the transmission of some word over a modulo for all

automata in the grid. Upon finding a CA with one of this initial set of states within

its neighbourhood, and such that it is all encompassing in its neighbourhood,

the second transmitter changes its state which triggers a second cascade of state

changes that are equivalent to those from the first transmitter only this time the

automata must take in to account the initial state that it is already in. This should

provide an exact copy of the Broadcasting Automata model, assuming that CA is

extended to allow such variable neighbourhoods. This does not mean however that

there is an exact translation of Cellular Automata in to Broadcasting Automata

and as such it is only possible to say that BA ⊆ CA. Thus, the ability to translate
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the Firing Squad Synchronisation Problem still holds merit and should not be seen

as a simple task such that any algorithm may find an equivalent in Broadcasting

Automata.

Partial Vision

The broadcasting automata model is such that each element is only aware of its

own state, and information about its neighbours is not directly observable which is,

for example, contrary to the model of Cellular automata. However, it is possible to

organise a partial vision which provides access to a set of distinct values of nodes

from its neighbours via a non-oriented broadcast. In order to get this set of distinct

values an automaton should send a special message (state request), λst ∈ Λ, to

all neighbours which, in return, will send their state in the form of a message

on the next step. Such a message is implemented in the automata by a reflexive

relation on all states that upon receipt of the state request causes a reiteration of

the symbol contained in the state, ∆(q), for q ∈ Q. It is possible to structure the

automata such that an iterative process of such requests propagates through the

whole network of broadcasting automata where each automata will react to this

information by transmitting the value of its own state which naturally cascades

through the system. This method of transmission omits the usual quiescent, state

implemented within the automata, such that an automata is always open to the

receipt of messages. The automata may also be structured in such a way that they

ignore the state request message, in the same way that the usual construction of

the message passing protocol, either synchronous or asynchronous, is formed.

Partial vision is usually used to access a set of final states that represent a small

portion of the completed ‘program’. Such states contain as their output message

the information required when constructing computations with which to solve

problems in this model which usually rely on the constructions of partitions using

patterns which in turn are constructed by the information about the different

states of the neighbourhood gleaned from broadcasting the state request message,

σst. It may be that several subproblems need to be solved, and chained together
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one after another, in order to solve a problem. In algorithms that are constructed

in chapter four of the thesis state requests of the neighbourhood are generally

used to indicate to the automata which section of the solution to the previous

subproblem they are in and as such what further action they need to take. It is in

this way that a notion of ‘programming’ becomes evident within the Broadcasting

Automata paradigm, though much more thorough examples of this will be given

throughout chapter four.

Such notion of partial vision may be built up over time which is a process of the

automata making the relevant transitions in accord with the symbols received, as

with any other method of processing messages given here. In this way there is

nothing special about the processing or the reaction of the receipt of the messages

that make up the partial vision of the neighbourhood. Only the way in which

state requests are instantiated, using the special symbol and the construction of

the automata to accommodate such a message, differ from any previous definition.

As an illustration of the notion of partial vision in the model an example is given

and shown in the Figure 2.4. Here the central vertex of the square will be consid-

ered, the box that progresses through the square shows the motion of the iterative

messages from the surrounding automata (though this motion may be in many

other directions) at each time step and the states, {a, b, c} ∈ Λ, represent cat-

egorisations of the neighbourhood. In Figure 2.4 the model that will be more

thoroughly introduced later, in two dimensions and such that the automata are

placed on the plane in the form a of a square lattice, is used along with the form

of wave generate where all states broadcast at a radius of
√

2, τ(Q) =
√

2.

In the first figure, i), the transmission to the central vertex will be the set {a, b, c}

and so this will be recorded as part of the neighbourhood. If the vertices were to

transmit the characters a, b, a, replacing the c with a, then this would mean that

the central vertex would record it’s neighbourhood as {a, b} for this time step.

The transmission of the wave now progresses as shown in the second and third

figures, the central vertex receiving first {b, c, d} and then in the next time step
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{c, d, a}. This constructs a set that is the neighbourhood of the vertex, in this

case {a, b, c, d}.

a

b c

d a

b

c

c

d

a

b c

d a

b

c

c

d

a

b c

d a

b

c

c

d

i) ii) iii)

Figure 2.4: Showing three stages of neighbourhood recognition for the au-
tomata.

So far a complete account of the broadcasting and synchronisation properties has

been addressed. The model described is weak (indeed it is shown to be the weak-

est model studied here [63]) in the sense that neither input nor output ports are

labelled (it is non-oriented) and all automata send the same message to all neigh-

bours and only a set of messages is receivable in return. The automata are also

homogeneous in the sense that they all run the same algorithm, represented by

their states. Such considerations are made to fit with the domain of the problem,

swarm robotics, as previously discussed. Now, more specific considerations will be

addressed with respects to the set of problems tackled and explored by this thesis

which is by no means a complete exploration of the model presented here.

2.2 Variable Radius Broadcasting over Z2

Whilst the model provided here covers many configurations for the underlying

communication graph this thesis shall only consider the following case where all

automata are place in euclidean space according to a regular arrangement equiv-

alent to that of a square lattice such that, using the Cartesian coordinate system,

for any automata in the space its nearest neighbour is at distance 1 and its next

nearest neighbour is at distance
√

2. This idea is illustrated for two dimensions in

Figure. 2.5. This now leads to the model of Broadcasting Automata where (M,d)

is M = Z×Z and where for ρ = (ρ0, rho1) and ρ′ = (ρ′0, ρ
′
1) the distance function is

d(ρ, ρ′) =
√

(ρ0 − ρ′0)2 + (ρ0 − ρ′0)2, the Euclidean distance function for ρ, ρ′ ∈M .
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Figure 2.5: A variety of transmission radii are shown (l-r) squared radii r2 =
{1, 2, 4, 5, 8, 9, 10, 13, 16}. Crosses represent the centre of the respective discrete

disc.

Figure 2.6 shows as example the automata that receive a message when the eu-

clidean space and square lattice are restricted to two dimensions but the radius of

broadcast, τ(q) for q ∈ Q, is varied. The automaton at point ρ ∈ M which is the

source of the transmission is shown as the circle at the centre of the surrounding

automata on the plane, those that are black are within the transmission range

τ(q) for q ∈ Q. Successive larger collections of automata coloured black show

what happens when range can be changed to alter the automata that are included

in the transmission radius, τ(q) ∈ R. If the transmission radius, R, is equal to 1,

as in Figure 2.6 diagram a) then only four of the eight automata can be reached.

If the radius is made slightly larger and is equal to
√

2, it can encompass all eight

automata in its neighbourhood as shown in diagram b). Such structures are iden-

tical to the well studied neighbourhoods von Neumann and Moore respectively

and as such here it shall be considered that such constructions of neighbourhoods

are a generalisation of these two neighbourhoods. As we will show later, itera-

tive broadcasting within von Neumann and Moore neighbourhoods can distribute

messages in the form of a diamond wave and a square wave as shown in Figure 2.6.

a) b)

Figure 2.6: Diagram a) represents the propagation pattern for a diamond
wave (Von Neumann neighbourhood) and diagram b) shows the propagation

pattern for a square wave (Moore neighbourhood).

The construction of distinct radii for the circles is defined by the numbers n such

that n = x2 + y2 has a solution in non-negative integers x, y [64]. Here it can be

seen that r2 is given for convenience as n always has a convenient representation
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in Z whereas it becomes cumbersome to write out either the root of the integer

or its decimal representation. For an explanation as to how these numbers relate

to the distinct discrete discs it must be noted that distinct discs are constructed

such that r2 contains a new solution in x and y. As it can be considered that

the digital disc represents all of the maximal combinations of Pythagorean triples

such that x2 + y2 ≤ r2 then for one disc to differ from another there must be an

increase of r2 such that there exists a new, distinct, maximal solution for x, y ∈ Z.

Generating these in the inverse direction by choosing x, y ∈ Z such that it is a

new maximal combination not contained in any of the previous, smaller discrete

discs allows the construction of the list of r2 that defines the sequence of distinct

discrete discs. This notion is illustrated in Figure. 2.7.

i)

ii)

a) b) c)

Figure 2.7: Showing two discrete discs i where r2 = 9 and ii where r2 = 10.
The dashed figures beside each discrete disc, a and b, represent the two maximal
combinations of x and y that present themselves as the outline of the discrete
disc. The combination of a and b presents itself as c in order to highlight this
fact and indeed show the resemblance of the outside of the discrete disc to the
composition of these two Pythagorean triples. The solid square represents the

centre of the discrete disc.

The initial inspiration for this work originated from the interference of waves that

arose in the nodal formations on Chladni plates and indeed from instances of

the wave equation and nodal patterns in different media. In this light the initial

inspiration was carried through in the design of the messages that are passed and

the way in which they are combined and used for computation. In this way the

messages were designed to model waves, discretised in the form of words drawn

from the alphabet Σ where here and in most of the rest of the work the input
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and output alphabets will, necessarily, be the same, Σ = Λ. Such combinations

of messages were modelled in an attempt to generate a form of discretised wave

equation complete with nodal patterns on the two dimensional plane in much the

same way as the Chladni plates.

As such, messages, and the automata constructed to generate, pass and process

such messages, are mostly used to simulate the transmission of a wave. Waves

are discretised by taking equidistantly spaced values from time steps along a sine

wave, although naturally such waves can be permuted to represent a cosine wave

or indeed a wave which holds any value at time t = 0. The waves modelled may

be taken to be of any amplitude and frequency with any resolution (number of

values that represent the discretised wave) though naturally these will all affect

the way in which they interact under the model and the resultant effects of such

combinations. The discretisations are represented more generally as words, W =

w0w1w2w3...wn−1 where |W | = n (indicating the size of the word), such that any

two values which are the same are represented by the same symbol drawn from,

Σ = Λ, the input/output alphabets for the automata.

Automata are constructed in such a way that the words that represent waves are

combined and processed in a way which may model waves, that is in this sense the

addition function which represents superposition in the classical sense for waves

in a physical setting [30]. Although the classical model of waves uses the addition

function for the composition of waves later other functions shall be examined

for their properties in the resultant pattern formation in the medium. In the

Broadcasting Automata model such a method of wave passing is model via the use

of automata and their input and output alphabet. In the asynchronous alphabet,

to represent a wave of four values, as seen in Figure 2.8 omitting fractional values

(±0.5), it is necessary to construct an automata that is able to accept the preceding

value in the series, for example if the wave is represented in the following series

of integer values, 0, 1, 0,−1, and translated to a word such as, W = w0w1w2w3,

then the automata must be able to construct upon receipt of the symbol, wi, the

proceeding symbol, wi+1. In this case upon receipt of w1, or the integer 1, the

automaton must be able to accept the symbol and upon state transition emit the
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next message in word, W , that makes up the wave, in this case, 0. Now that

the automaton has received the symbol, w1, it must implement some method of

combining this symbol with another symbol that represents superposition, in two

dimensions a simple addition of the amplitude, here the combination of symbols

from W . Such emissions of symbols are cyclical, just as a wave is, and as such in

the case of W = w0w1w2w3 the next symbol to be emitted after a receipt of w3 is

w0. More generally for any word W of size |W | = n the next symbol after wi is

w(i+1) mod n.

Definition 2.13. A discretised wave is a word, W , such that each symbol, wi ∈ W ,

represents an amplitude, equidistant from the last, and such that within one wave-

length for each equidistant division of amplitude, y, both positive and negative, all

solutions for x (i.e sinx = y) are a new symbol in the word, W , where all symbols

are ordered by their monotonically increasing, x, value. In this case time.

Such a method of combining symbols that represent fractions of waves may be

implemented using states and additional output symbols that are relayed upon

request, using the state request symbol, σst, so that neighbourhoods can be cal-

culated, which shall be heavily used later, chapters three and four, in algorithmic

constructions. As an example, upon receipt of w3, after the receipt of w1, the

automaton makes the transition to a state, which could be a final state if the com-

putation only requires the passing of two waves to construct information about

the plane as it usual in later algorithms, that represents the addition of the two,

in this case the addition of w1 = 1 and w2 = −1 which can be represented as

a remapping to the state with output symbol w0 or w2 where as if the out put

were the additive product of (w1, w1) then a new output symbol representing 2 is

required. Such a Cartesian product of states can be represented as a new state for

each possible combination or, as is the case for a simple addition, replaced with

a symbol for the possible unordered pairs. In fact any number of methods for

mapping the two symbols in to states, that have as their output the symbol for

the combination of the pair, can be designed. In chapter three, information that

can be gleaned from such mappings of combinations of states and what this infers
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about the history of the waves that they represent is more fully explored. Here,

only an notion of how such constructions can be achieved is given.

Figure 2.8 gives an example of the digitisation of a wave showing where the equally

spaced amplitudes occur on the sine wave. Here the wave is of amplitude one (and

if time is to be considered and equal to one also then this would show a frequency

of one hertz) and divided in to four equally spaced parts which give the following

four values as time progresses positively from zero 0, 0.5, 1, 0.5, 0,−0.5,−1,−0.5.

In some cases it may be beneficial to substitute the real values that represent the

wave with symbols over a finite alphabet. Indeed this representation may be more

in line with the definition of broadcasting automata that has been presented by the

model. For example the points 0, 0.5, 1, 0.5, 0,−0.5,−1,−0.5 are now modelled as

a word such that W = w0w1w2w3w4w5w6w7w8w9, where, , and where wi ∈ Σ = Λ

for all 0 ≤ i < |Σ|, W is a word over Σ. Depictions of three successive steps of

broadcast where waves are modelled as waves and in the asynchronous model for

both r2 = 1 and r2 = 2 are given in Figure. 2.9.

1

0

−1

0.5

−0.5

Figure 2.8: Depicting an analogue wave digitised by taking values from it
that are equidistant in amplitude. Here, the x-axis depicts time where the

y-axis depicts amplitude.

An example of the model as shall be used throughout the rest of the thesis is given

in Figure 2.9. Here, the central point, which has been labelled, u0, denotes in

both cases, those that form square and diamond waves, is the initial transmitter,

A ∈ V0, and has been set accordingly at the initial state, shown here as the

output symbol that would be generated, τ(q) ∈ Λ for q ∈ Q. All of the squares

represent, at the central point within such a square, a single automata, A, at

the point of its mapping within the configuration, where here c(v) = u0 and
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v ∈ M is the point in the Euclidean space, (M,d). In the example on the left in

Figure. 2.8 all states of the automata, q ∈ Q, have the same transmission radius

such that, τ(q) = 1. For all of the automata in the right example the transmission

radius is, τ(q) =
√

2 for q ∈ Q. These choices of radius generate equivalent

neighbourhoods for transmission as the Moore and Von Neumann neighbourhoods.

When the automata at the centre, here denoted with its state, u0, here at some

point v ∈M , transmits this symbol to its neighbours, they receive the symbol u0

and act accordingly, making the transition in to the state which has as its output

symbol, u1, such that for all automata within distance of the transmission radius,

d(v, v′) ≤ τ(q) = 1 for all v′ ∈M and q ∈ Q there is the transition, δ(q0, u0) = u1.

The continuation of this process for all other automata generates the wave pattern

that is shown on the left in Figure. 2.8 and with a replacement of all the states

of the automata having a transmission radius of, τ(q) =
√

2, the computation on

the right can be formed. The cyclical nature can be represented here, assuming

that there are only a total of four messages that can be passed which represents

four points of a discretised wave, by having a transition such that, δ(q0, u3) = q1

where ∆(q1) = u0.
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Figure 2.9: Wave propagation with the asynchronous model is shown on the
square grid: Moore neighbourhood (left) and Von Neumann neighbourhood

(right).

With this specific model it is still possible to design many primitives in a similar

style as designed for the cellular automata model [65], including synchronisation

procedures, finding the edge elements on a line, shortest branch of a tree, etc.

These basic tools, based on ideas from cellular automata, will be utilised to il-

lustrate more sophisticated algorithmic methods such as a solution to the Firing



Chapter 2. Broadcasting Automata and their Communication Primitives 41

Squad Synchronisation Problem [66] and locating the centre of discrete disc which

will be presented later on in the thesis.

2.3 Neighbourhood and Broadcasting Sequences

The idea of propagating a pattern of square (r2 = 2) or diamond waves (r2 = 1),

generated by repeated application of Moore or Von Neumann waves respectively, in

dimension two are commonly known as Neighbourhood Sequences. Neighbourhood

Sequences are an abstraction used to study certain discrete distance metrics that

are generated upon the repeated application of certain neighbourhoods to a lattice

for example the Moore neighbourhood to a square lattice. As previously discussed

such neighbourhoods as von Neumann and Moore are encompassed by the more

general model used here whereby the transmission radius is varied on a square

lattice the first two of such transmission radii to produce distinct objects equating

to those of the von Neumann and Moore neighbourhoods.

Definitions and notation concerning neighbourhood sequences as considered in

[35], and many other works, are now given with deviations considered in this

thesis highlighted after the more traditional treatment here.

Let p ∈ Zn where n ∈ N and such that the ith coordinate of p is given by Pri(p)

for 1 ≤ i ≤ n.

Definition 2.14. For M ∈ Z where 0 ≤ M ≤ n the points p, q ∈ Zn are M −

Neighbours when the following two conditions hold:

• |Pri(p)− Pri(q)| ≤ 1 for (1 ≤ i ≤ n)

•
∑n

i=1 |Pri(p)− Pri(q)| ≤M

An n-dimensional neighbourhood sequence is denoted A = (a(i))∞i=1, ∀i ∈ N where

a(i) ∈ 1, ..., n denotes an M − neighbourhood by its value of M such that for a(1)

denotes that the next neighbourhood set of points in the sequence is those that
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differ by at most one coordinate as given by Definition. 2.14 where M = 1 in this

case the Von Neumann neighbourhood. If A is periodic then ∃l ∈ N, a(i+l) = a(i)

(i ∈ N). Such periodic sequences are given as A = (a(1), a(2), ..., a(l)).

Definition 2.15. TheA-distance, d(p, q;A), of p and q is the length of the shortest

A-path(s) between them.

As the spreading of such neighbourhoods is translation invariant only an initial

point of the origin need be considered w.l.o.g.

Definition 2.16. The region occupied after k applications of the neighbourhood

sequence A is denoted as Ak = {p ∈ Zn : d(0, p;A) ≤ k} for k ∈ N.

Also, let H(Ak) be the convex hull, given in Definition. 2.17, of Ak in Zn.

Definition 2.17. A convex hull is the smallest set of points that form a convex

set as given in Definition. 2.18.

Definition 2.18. Convex set. A set C ⊂ Rd is convex if for every two points

x, y ∈ C the whole segment xy is also contained in C. In other words, for every

t ∈ [0, 1], the point tx+ (1− t)y belongs to C. [67]

Discrete discs are formed by the Broadcasting Automata as they are arranged on

the plane at integral Cartesian coordinates, (Z×Z) ∈M , and as such a broadcast

to all automata in range, for point v ∈ M , τ(c(v)) = r will cause a change in

state to all those automata that form a discrete disc of radius r from the point v.

In the broadcasting automata model it is assumed that there is no restriction on

the radius of transmission where it is considered that as the Von Neumann and

Moore neighbourhoods can be described as the first two radii in the set of distinct

discrete discs, r2 = 1 and r2 = 2. This means that discrete discs are quite a

natural extension to the basic notion of neighbourhood sequences merely relaxing

the constraints on the initial definition of M − neighbours in the following way.

Definition 2.19. Two points p, q ∈ Zn are r − neighbours if the Euclidean dis-

tance, d(p, q) =
√∑n

i=0(qi − pi)2, is less than some r, used to denote the radius

of a circle, such that d(p, q) ≤ r.
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Utilising the framework supplied by the work done on neighbourhood sequences

it is no possible to outline Broadcasting sequences which denote any sequence

of radii, r, such that R = (r1, r2, ..., rl). Labelling those points that are reachable

by some application, Rk, of the neighbourhood sequence is another extension to

the notation. All points such that p ∈ R1 are labelled 0, all points p ∈ R2\R1 are

labelled as 1. More generally labels will be assigned b where k ≡ b mod m and

m ∈ N. The work conducted in this thesis will also be restricted to the study of

Z2.

Many of the questions asked and, indeed, answered, in neighbourhood sequences,

shall be useful in the exposition of broadcasting automata. These include whether

a certain sequence of neighbourhoods are metrical or not [44]. Indeed when using

a general form of broadcasting automata whereby alternation of the broadcasting

radius is allowed at each step as suggested here. Considering that all notions

of the construction of algorithms presented here in the broadcasting automata

model rely on the distance from the transmitter to the node, being able to assure

that this distance will be consistent for all automata is essential. Also studied in

neighbourhood sequences is the possible resultant shapes which are categorised

and examined for their various properties such as their use in approximation of

euclidean distances where the isoperimetric ratio is used to compare the sequences

based on the shapes that they form on the plane [38]. This same method is used

to again show and estimation for euclidean distance as well as estimations for

certain Lp distances, here the astroid which will be presented in chapter six. The

characterisation of the shapes generated by these neighbourhood sequences yield

results about the shapes of compositions of such discrete discs on the plane and

the partitions that such compositions form.



Chapter 3

Discrete Interference of Waves

The concepts of broadcasting automata and discrete informational waves intro-

duced in Chapter 2 have much potential for the organisation of distributed com-

putation, pattern formation and the design of new principles for defining metrics

in the discrete digital environment. This chapter will start on the exploration of

novel techniques and methods for pattern formation by coupling the already well

known mechanisms in the automata model with several notions present in natural

phenomena such as waves, superposition, nodal patterns and normal modes.

In physics, a standing wave is a wave that remains in a constant position. This

phenomenon can occur in a stationary medium as a result of interference between

two waves travelling in opposite directions. A standing wave in a transmission line

is a wave in which the distribution of current value is formed by the superposition

of two waves propagating in opposite directions. The effect is a series of nodes (zero

displacement) and anti-nodes (maximum displacement) at fixed points along the

transmission line. In between these lines there are points (or regions) of oscillation

which are bounded by some minimum or maximum. With standing waves in a

two dimensional environment the nodes become nodal lines, lines on the surface at

which there is no movement, that separate regions vibrating with opposite phase

[30].

44
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All of the above affects, already thoroughly explored in physics, can be observed

as components of the Broadcasting Automata model on a square lattice. Moreover

the patterns formed by standing waves can be made more complex than the orig-

inal since, even with the finite memory each automata may recognise not only a

constant value but also any finite periodic sequence of values. The characterisation

of discrete nodal patterns and novel techniques for partitioning are the main re-

sults of this chapter and also constitute important tools for organising distributed

computations based on the broadcasting primitives formalised in the preceding

chapter.

3.1 Modelling Waves Using Broadcast Automata

This chapter will define the discretisation of waves and explore the results of

such a system on mediums in Z1 and Z2 using a transmission radius restricted

to r ∈ {1,
√

2} for τ(q) = r where q ∈ Q representing the classical Moore or

the von Neumann neighbourhoods and their applications in Z1 and Z2 which

will be discussed later. The underlying positioning of the automata on the plane

correlates with the square lattice. This is simplified for the emulation of discrete

waves in a rigid medium presented here and as such the underlying positioning

is given as each automata is at some Cartesian coordinate where all coordinates

are integers. The wave is discretised as previously discussed with equidistantly

spaced amplitude values taken from the appropriate amplitude and frequency of

sine wave which are represented as words. The automata are simplified with states

constructed to allow the functional composition of words. Here that function will

mimic the composition found by waves in a physical environment, addition, as

given by the superposition of waves.

More formally this leads to the model of Broadcasting Automata where (M,d) is

M = Z× Z and where for ρ = (ρ0, rho1) and ρ′ = (ρ′0, ρ
′
1) the distance function is

d(ρ, ρ′) =
√

(ρ0 − ρ′0)2 + (ρ0 − ρ′0)2, the Euclidean distance function for ρ, ρ′ ∈M .

A more formal notion of the workings of the automata that construct the nodal
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patterns will be introduced later when a firm notion of what nodal is has been

introduced and the ways in which it can be computed in a simplified way have

been solidified.

As previously stated the discrete waves are modelled as words, W , drawn from

the symbols that make up the input and output symbols of the automata, Σ, Λ,

respectively and are formally constructed in Definition. 2.13. The symbols will

represent equidistantly space amplitudes of a sine wave and each symbol in the

wave will be referenced by its index in the word W such that wi ∈ W . The waves

that are produced by sources or transmitters, the initial active automata defined

as A ∈ V0, may be different for each transmitter and correspond to any wave of

any amplitude, frequency combination. Just as the combinations of amplitude

from the waves present create the amplitude observed in the medium so the words

combined by the automata mimic such physical properties, combining the models

of amplitudes, words, via states, which represent the superposition of such ampli-

tudes via some function and through the transmission sequences which model the

motion of waves through physical media. In this way the regions of the medium

that oscillate through plus and minus some bounds are represented by the same

oscillations of combinations of symbols over time. Such combinations of symbols

are described as nodal patterns, differing from common physical notation em-

ployed these nodal patterns are not simply nodal points of zero motion but any

set of values over time that are equivalent.

Nodal patterns will here be explained in the simpler model of a single dimen-

sion in which the two transmission radii produce the same underlying graph of

transmission. The following explanation shall also use the more intuitive notion

of simultaneous transmission through the medium which as shall be shown later

is not possible in the model. However, it is possible to show that this more in-

tuitive model of waves as well as the synchronous and asynchronous models are

equivalent which shall be done once the correlation between distance and time is

proved. The one dimensional explanation presented here also expands in to a two

dimensional explanation in much the same way solutions to the two dimensional

wave equation are expansions of the one dimensional wave equation. Indeed the
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following exposition is a simplification through abstraction of the model which,

as only one construction of the automata is used, and explained later when it be-

comes apparent that such automata are easily reducible to a few states, the model

need not reason with such a level of detail. The following exposes this.

Two transmitters, T1 ∈ V0 and T2 ∈ V0, are placed on a one dimensional line

such that each automata is placed at coordinate x ∈ Z and there is distance d

between the two automata. When restricted to one dimension the transmission

radii, r ∈ {1,
√

2}, differs for neither choice, each radius is simply able to transmit

to its neighbours at x+1 and x−1 from an automata at coordinate x. Each initial

automata, T1, T2, broadcasts words u∗ and v∗ respectively, where ∗ is the Kleene

star, u, v ∈ Σ ⊆ Λ where Λ may be bigger as, under composition, the words that

form the output wave may not be closed (i.e under composition two waves of the

form 0, 1, 0,−1 contain the element 1 + 1 = 2) and where |u| = |v| = s is the

length of the word. The broadcasting of symbols begins at transmission points

with symbols broadcast away from the source at each time step, cycling through

all symbols in the word such that the front of the ‘wave’ is always v0 ∈ v or u0 ∈ u.

We now have two infinite words (u)∗ and (v)∗, the reverse of v, that are broadcast

towards the opposing transmitter, from one automata to the next, on every time

step.

It is possible to see a correlation between the time steps, t, and the value of the

symbol for each coordinate x on the line. Assume that transmitter T1 is placed

at the origin, i.e x = 0 for T1, then let N(xT , x, t) be the function that associates

the automaton at coordinate x and time t with an index i of a symbol in the word

what represents the wave, wi ∈ W and xT be the coordinate of the transmitter,

which in this case will be 0. In this instance the mapping can be formed such that

N(xT , x, t) = (x,w(t−(x−xT )) (mod |W |)) assuming that the transmitter is at the origin

and that any mapping N(xT , x, t) = (x,w(t−(x−xT )) (mod |W |)) where (t−(x−xT )) <

0 refers to the quiescent state, q0, as given in the definition of the Moore machine.

Such a mapping associates an automaton at coordinate, x ∈ Z, with a symbol,

wi ∈ W , for a time, t, the pair, (x,wi). This correlates to a higher level abstraction

of the configuration function, given in Definition. 2.6, which associates a point with
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Figure 3.1: Shows two transmitters T1 and T2 broadcasting words u and v

respectively where time, t, is shown as motion down the page.

a state, c(x), for x ∈ M where in this case M = Z and time represents a number

of transitions via the global transition function, G as given in Definition. 2.8.

If the transmitter is not at the origin, which is naturally the case for the second

transmitter T2 then again, N(xT , x, t) = (x,w(t−(x−xT )) (mod |W |)), where xT is the

coordinate for the location of the transmitter in this case T2. This holds here

because the distance that can be travelled by each transmission for each time

step is one coordinate in either direction as given by the transmission radii, r,

though naturally this can be varied along with the dimension. Using the Euclidean
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distance function it is possible to say that all of those points within distance, d,

that are less than or equal to the time step, t, have received a symbol, wi ∈ W .

For simplicity of analysis and intuition, highlighting the correlation with the nat-

ural phenomena that inspired broadcasting automata, it is assumed that the two

waves may move in opposite directions at the same time however, later on in the

chapter, it shall be shown that this is not the case for this model but that these

differences are reconcilable and reduce to the same representation of patterns so

that, where convenient, the reader may consider this to be a reasonable model for

thought experiment.

Once an automata has received as many symbols as there are transmitters, in this

case two, it is able to decide to which of the nodal patterns it belongs. In this case

any automata on the plane at a point ρ ∈ Z which has received two symbols, one

from the word u and one from the word v, forms a pair pi,j = (ui, vj) where such

pairs are not ordered. Once a point ρ is in such a configuration, it is possible to

define a sequence of pairs ρ(i+t) (mod s),(j+t) (mod s) contained in l over discrete time,

t = t′, t′ + 1...t′ + s. It is easy to see that such sequence will be periodic with a

period less or equal to s, where |u| = |v| = s, and it represents a history of symbol

pairs from u and v which are meeting at the point l over time. It is now possible

to give a more formal definition of a nodal pattern.

Definition 3.1. A nodal pattern, P , of a point, ρ ∈ Z, is a finite subsequence

of s pairs p(i+t) mod s,(j+t) mod s ∈ P over some t = t′..t′ + s where s is the length

of the words that are used to generate the pairs and t is sufficient such that for

N(xT , x, t) = (x,w(t−(x−xT )) (mod |W |)) there is (t−(x−xT )) > 0 for all transmitters,

xT .

It is also assumed that nodal patterns are equivalent up to a cyclic shift, so it will

not be dependent on the initial time t′.

Definition 3.2. Two nodal patterns, P and Q are said to be equivalent if they

can be made to be the same using some cyclic shift of the pairs. Otherwise they

are said to be distinct.
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For example, a wave with a periodicity of four is taken such that it has the form,

0, 1, 0,−1, and may be formed as the word, W = w0w1w2w3 in accordance with

Definition. 2.13. Two formations of nodal patterns are constructed for two differ-

ent points where Figure. 3.1 shows the construction of a series of pairs over time,

denoted by the column l, for the words, u and v. Here, it is possible to use the

equation, N(xT , x, t) = (x,w(t−(x−xT )) (mod |W |)), where the point, x ∈ Z, is equiva-

lent to the point, ρ ∈ Z, such that the two tuples formed, from both transmitters,

for Figure. 3.1, T1 and T2, generate the pairings. The set of pairs that are formed

P = ((N(xT1 , ρ, t), N(xT2 , ρ, t)), (N(xT1 , ρ, t+ 1), N(xT2 , ρ, t+ 1))(N(xT1 , ρ, t+ 2),

N(xT2 , ρ, t+ 2))(N(xT1 , ρ, t+ 3), N(xT2 , ρ, t+ 3)))

for point ρ ∈ Z, make up the nodal pattern, P , and similar is done for Q. This

yields for time, t, and points, ρ, ρ′, the nodal patterns, P and Q as follows where

equivalence can be seen of such points via a cyclic shift:

P = ((1, 0), (0,−1), (−1, 0), (0, 1))

becomes equivalent to

Q = ((0, 1), (1, 0), (0,−1), (−1, 0))

when Q is cyclically shifted by 3 to the right such that it becomes

Q = P = ((1, 0), (0,−1), (−1, 0), (0, 1)) .

Nodal patterns are exemplified in Figure. 3.1 where s = 4, u = u0, u1, u2, u3 and

v = v0, v1, v2, v3. At point l the pairs ((u1, v0), (u2, v1), (u3, v2), (u0, v3)) form a

nodal pattern corresponding to p(1+t) mod s,(0+t) mod s over time t. Here the wave-

form is represented by the words u and v and as such it can be said that, 0, 1, 0,−1

can be formed in to the words, u, v such that, u0u1u2u3 = v0v1v2v3.
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Indeed such reasoning may be applied to any of the waveforms that are generated

by digitising a wave form of any amplitude for example, 0, 1, 2, 1, 0,−1,−2,−1

such that 0, 1, 2, 1, 0,−1,−2,−1 gives words, u, v such that, u0u1u2u3u4u5u6u7 =

v0v1v2v3v4v5v6v7.

Looking at all of the resultant patterns that may occur from intersection on the

plane and assuming that the method of composition is the same as that found in

physics, addition, then the following possible nodes are constructed:

((1, 1), (0, 0), (−1,−1), (0, 0))

((1, 0), (0,−1), (−1, 0), (0, 1))

((1,−1), (0, 0), (−1, 1), (0, 0))

((1, 0), (0, 1), (−1, 0), (0,−1))

which, under composition, such that for all pairs the addition function is applied

, yields the following:

(2, 0,−2, 0)

(1,−1,−1, 1)

(0, 0, 0, 0)

(1, 1,−1,−1) .

From the above derivations it can be seen that there will only be a finite number

of values which every automata will find itself oscillating through which directly

parallels what would be found in a physical medium. The traditional nodal pattern

(0, 0, 0, 0) can be found, where there is no motion, but also in this model it is

desirable to extend any set of periodic oscillations to the definition of nodal pattern

such that as long as it is distinct from another pattern, which, along with the whole

body of knowledge on this subject, shall be firmly defined in the next section, shall

constitute a distinct nodal pattern.

As previously discussed the nodal patterns considered here are for words of the

same length which are identical and where the function for aggregation is addition
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which mimics that of superposition in nature. It shall be seen that this it is not

necessary for the function of aggregation to be addition in the Chapter 6 which

examines alternatives at great length. These are directly equivalent to the number

of distinct nodes that are possible to form when all transmitters are transmitting

the same wave, i.e W = 0, 1, 0,−1 for the wave of amplitude one.

It is also noted that the infinite repetition of the words upon broadcast generates

a cyclical nature for the discrete wave that closely correlates with the cyclicality

of waves in nature. Given the finite and cyclical nature of u and v as they are

broadcast throughout the network it is possible to represent each of the nodal

patterns as a single pair of indices, when only considering two transmitters as

is done here, which helps to greatly simplify notation whilst conveying the same

information. As the notation will always assume that the first element of the pair

will be of index 0 only the second index will be used to signify the unique pairings

that are possible for the two words, u and v. This is equivalent to the absolute

value of the two indices where

|(i+ t) (mod s)− (j + t) (mod s)| = |i− j|

and as such represents the constant distance between the two pairs over time

allowing notation to be reduced to P|i−j|.

Lemma 3.3. For any two finite words there are s possible labels, P0, P1, . . . , Ps−1,

one for each of the possible pairings, though they are not all distinct as has been

shown.

Proof. The proof is derived from the equation, |(i+t) (mod s)−(j+t) (mod s)| =

|i − j|, where any constant shift between the two indices, i and j, representing

motion over time, time is cancelled when calculating the distance between the

values of the intersection in the definition for a nodal pattern, Definition. 3.1.
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Such indices, that subscript each P , are now defined as the nodal index of the

automaton, which signify the distinct pairing observed by the automata. The fol-

lowing proposition looks at counting the number exact number of distinct pairings

that are generated using this definition of a nodal point.

Proposition 3.4. Given a non-periodic word u where |u| = s. The number of

possible distinct nodal patterns generated by broadcasting words u and v, where

v = u, is s/2 + 1 if s is even and (s + 1)/2 if s is odd. Further, the patterns Pk

and Ps−k (mod s) are equivalent up to cyclic shift.

Proof. We can represent the pairings that form nodal patterns by the permutation

group that contains the set of permutations σ for which the permutations will be

generated by the function σi(uj) = v(j+i) (mod s) where 0 ≤ i, j < s.

For example one element of the group such that σ1 for some word of size s = 4

would be

σ1 =

u0 u1 u2 u3

v1 v2 v3 v0

 .

As the symbols of each word, u and v, are unordered pairs it is possible to equate

each permutation with its inversion, the permutation formed by switching all u

for all v. The inverse of each permutation is exactly that permutation formed by

its inversion, swapping all symbols of u for those of v, which can be noted from

the fact that σ−1
i σi = I where σi(uj) = v(j+i) (mod s) and the inverse must now

be σ−1
i (vj+i) = uj clearly the inversion of the u and v. Counting the number

of permutations with inverses that are also distinct members of the group, that

is the inverse is not itself where σiσi = I, amounts to all those permutations

where both of the values of σi and σj sum to s, naturally, as these are all of the

permutations that compose to the identity and also equivalent to those elements

Pk and Ps−k (mod s). This means that if s is odd then half of the set of permutations

must have an equivalent permutation within the same set except for the identity

which is of course its own inverse. If the set of permutations is even then there
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is a central element σs/2 which is also its own inverse adding another distinct

element.

Illustration of all of the possible combinations of nodal patterns can be seen in

Figure. 3.2 where the structural equivalence through commutativity can be seen

by the symmetry in the bipartite graph between words u and v. Those that

are equivalent have been highlighted by using the same colour to represent the

enclosing box.
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Figure 3.2: The structure of the nodal patterns constructed from words of
length s = 4 exhibited as graphs where coloured boxes indicate those which are

equivalent where u = v and the function of combination is commutative.

The following example again illustrates the number of combinations of pairs that

can be generated this time explicitly showing the tuples.

Example 3.1. Given a sequence u = v = 1, 0,−1, 0 and so |u| = |v| = s = 4

it can be shown that there are (s/2) + 1 = (4/2) + 1 = 3 distinct nodal points.

Enumerating all possible patterns (modulo removed for clarity) and where t is over

time.

P0 = ((1, 1), (0, 0), (−1,−1), (0, 0))

P1 = ((1, 0), (0,−1), (−1, 0), (0, 1))

P2 = ((1,−1), (0, 0), (−1, 1), (0, 0))
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P3 = ((1, 0), (0, 1), (−1, 0), (0,−1))

Patterns P1 and P3 are the same assuming that the order of the symbols is not

relevant i.e. (−1, 0) = (0,−1), as P1 = p(0+t),(1+t) = ((1, 0), (0,−1), (−1, 0), (0, 1))

becomes equivalent to P3 = p(0+t+3),(3+t+3) = ((0, 1), (−1, 0), (0,−1), (1, 0)) when

P3 is cyclically shifted by 3.

Proposition 3.5. It is possible to construct the automaton which is able to elect

itself, such that the output symbol of the automatons final state, F , corresponds to

one of the distinct members of the set of nodal patterns, P , by receipt of only one

message per initial transmitter which are automata in V0.

Proof. Such an automaton is derived from the result in Lemma. 3.3 which shows

that only two symbols from the alphabet are required to define a nodal pattern as

being a member of the set, P . As such it is possible to construct the automaton

that takes two symbols, ui and vj, and based on their, i and j values elects the

member of the set P that the nodal pattern belongs to by a simple process of

enumerating the combinations in states. This implies that for ever set of symbols

such that |i−j| is an element of P , such that, P|i−j| ∈ P , then there is a transition

for symbols that match |i − j| to a final state that represents the nodal pattern,

P|i−j|.

It is noted that this method of constructing nodes is not the only possibility

that may be considered. Indeed there are many permutations of this problem of

counting distinctness. The problem may be extended to include words of differing

sizes, differing symbols and they may be composed with any number of functions.

There are more general solutions to a slight extension of this problem for n differing

transmitters which may be solved using an encoding in the pólya enumeration

theorem and utilising partitioning. Also a trivial upper bound is known to be

equivalent to the size of the words, considered to be different, and based upon the

non-commutativity of the function of composition.
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Much work within this area has been done regarding estimating the size of distinct

sum sets, where bounds on the number of distinct combinations of sets of number

over the composition using addition are required, which illustrates the difficulty

of providing the full picture with respects to these questions. Results are already

well noted for general sum sets where combinations are considered only over addi-

tion [68] but not without the added constraint of permutable vectors as has been

addressed here.

3.1.1 Distance Functions and Model Equivalence in Z2

Standing waves and nodal patterns may be formed when u∗, where |u| = s, is

transmitted from one source T0 and is retransmitted from another source T1 after

reaching it. Any point in Z2 having both signals from T0 and T1 will have identified

its nodal pattern as the ‘difference’ between them as addressed with concerns to

the standard two transmitter model.

Nodal patterns depends upon the distance and the time from the initial trans-

mitter and transmission respectively. Let us assume that the symbol wi would

have been received by the vertex at coordinate x from the transmitter at co-

ordinate xT at time t. In order to refer to the index i for wi the function

N(xT , x, t) = (x,w(t−(x−xT )) (mod |W |)) is defined. This forms the very intuitive

notion of waves that may pass at over each other simultaneously and is directly

comparable to the notion that is seen in the physical world. However such a rep-

resentation is not possible in broadcasting automata model. In this model due

to the message passing primitive for both the synchronous and the asynchronous

models whereby the automata sends a message and then refuses all other messages

for a single round so as not to receive the message it has just sent. This affords

broadcasting automata a simple way to send messages such that they are broad-

cast away from the transmitter which in turn generates the wave formations. As

such the construction of nodal patterns on the plane is examined here with re-

spects to the model for broadcasting automata that had been described. It shall

be seen later that the nodal patterns, used for the construction of algorithms, are
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structurally equivalent regardless of the method of propagation used. This section

aims to bring together and show the clear equivalence of both models, by showing

propagation equivalence, and dimension equivalence. Both of these goals may be

made possible by discussing the distance functions that represent the transmission

of Moore and Von Neumann waves by broadcasting automata.

As already addressed in waves for one dimension there is no difference to the

resulting propagation when using either a Moore or Von Neumann transmission

pattern. However, upon moving the waves to two dimensions, Z2, it is important

to define the distance between the points in terms of (square or diamond) wave

propagation for correct calculation of the nodal patterns, as it is not the same as

in Cartesian geometry. The following definitions correspond to the well known

Lp spaces, specifically, L1, representing the Von Neumann neighbourhood and,

L∞, representing the Moore Neighbourhood where, L2, is the standard Euclidean

metric [69].

Definition 3.6. Square waves adhere to the distance function d� for distances

from p to q where d� : Zn × Zn → Z and is defined by the correspondence

d�((p1, . . . , pn), (q1, . . . , qn)) = max1≤i≤n{|pi − qi|}, (p1, . . . , pn), (q1, . . . , qn) ∈ Zn.

Definition 3.7. Diamond waves adhere to the distance function d♦ for distances

from p to q where d♦ : Zn × Zn → Z and is defined by the correspondence

d♦((p1, p2, ..., pn), (q1, q2, ..., qn)) =
∑n

i=1 |pi− qi|, (p1, p2, ..., pn), (q1, q2, ..., qn) ∈ Zn.

Informally speaking, the distance functions defined above provide the time taken

for the diamond/square wave front to reach an automata at coordinate (p1, p2, ..., pn)

from a transmitter at (q1, q2, ..., qn).

Let us consider two ways of computing nodal patterns for this process in terms of

synchronous and asynchronous cases with transmitters T0 and T1. In both cases

we aim to get the same distribution of nodal patterns on Z2 without the need

to continuously propagate values from the sources. It is also with this method

that it will finally become apparent that all of the preceding intuition regarding

these calculations, in which the waves are able to pass over each other much like
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occurrences in physical media, coincides with the reality of the calculation that

happens within the model. The local distribution of these patterns will allow us

later to locate points in a non-oriented environment.

In order to illustrate how the two different models, synchronous and asynchronous,

can be reconciled with the more intuitive notion of how the waves might move in

the plane the introduction of the following definition of a nodal pattern for a point

on the plane will prove insightful.

Definition 3.8. An index i of a nodal pattern Pi, resulting from the transmission

of two waves, in a point ρ ∈ Z2 is defined as

iρ = |d(T0, ρ)− (d(T0, T1) + d(T1, ρ))| (mod s)

where d is understood as d� or d♦ for square or diamond wave respectively.

This definition illustrates all that is needed to know about the way in which these

nodal patterns are formed on the plane. It is the distance, which is, ultimately,

equatable to time, as each automata takes a constant amount of time to process

and pass the message, that is between the time taken for the first message, from

the first transmitter, to reach the automata and the time taken for that message

to reach the second transmitter, thus activating it, and for that second transmit-

ters first message to reach the automata which solidifies the nodal pattern after

the receipt of two messages. The following diagram depicts this labelling of the

automata which is seen in Figure. 3.3.

Synchronous model with a single message. In case of transmitting a single

message, waves here are activation waves, which the automata use to start internal

clocks. Transmissions begin from T0 where the activation wave propagates through

the use of a square (or diamond) wave arriving at T1 which is activated when

reached by the first wave after a constant delay s. Any point that has received

the first signal will start its internal clock (which counts modulo s), and then

after receipt of the second signal the clock is stopped and the value of clocks
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T1T0
d(T0,T1)

d(T0,p) d(T1,p)

p

Figure 3.3: A depiction of the labelling of automata on the plane. Each of the
distances are computed with the appropriate distance function for the shape
of the broadcast, here, square or diamond. As the nodal pattern is decided by
the distance between the first transmission to be received by p and the second
the distances must be calculated as shown and the absolute difference found in

order to label p.

corresponds to the index of the nodal pattern for this point which is |(d(T0, ρ)

(mod s))− ((d(T0, T1) (mod s)) + (d(T1, ρ) (mod s)))|.

Asynchronous model with multiple messages. In the case of the asyn-

chronous model, the same distribution of nodal patterns can be simulated by

sending a wave from T0 where, on the wave front, every point that receives a

symbol ui immediately transmits the symbol u(i+1) (mod s). The synchronisation

of wave propagation is achieved by assuming that every transmission takes the

same constant time. Then transmitter T1 operates in the same way once reached

by ui, transmitting the next symbol corresponding to ui+1 but using a different

alphabet {v1, ..., vs} to avoid problems whereby transmitting in the same alphabet

could have a blocking effect on the wave. Each node should now contain a pair of

symbols (ui′ , vi′′) which is enough to define the pattern P|i′−i′′|, where i′ = d(T0, ρ)

(mod s) and i′′ = (d(T0, T1) + d(T1, ρ)) (mod s).

In the next theorem the properties of nodal pattern distribution is shown resulting

in a new approach for partitioning Z2 via non-oriented transmissions and is one

of the core tools for the geometric algorithms discussed in this thesis.
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3.2 Nodal Patterns of Discrete Interference in Z2

This section details those nodal patterns that may be formed by the placement of

two transmitters on the plane or, in the case of those patterns constructed from a

single point it may be considered that one transmitter sends first one transmission

then the next. These patterns will be essential in the construction of algorithms

to locate the centre of a circle and can be considered to be central to the use of

broadcasting automata to construct a whole host of algorithms and as such these

patterns may be considered to be the basic building blocks of algorithms in the

broadcasting automata model.

3.2.1 Nodal Patterns Resultant from Two Sources

A complex system of patterning can be achieved with the basic primitives that

have been laid out so far. A characterisation of this patterning and a proof of its

existence and stability are given here. Such reasoning is given for the diamond

wave, however, with some basic substitution of distance function such patterning

can also be derived for the square waves. It can be observed from Figure. 3.4

the direction of motion of the waves that are generated by repeated broadcast of

the Von Neumann waves. The direction of motion of the wave describes the no-

tion that, within the sections contained within black borders, a directional arrow

indicates there are a series of lines, orthogonal to the arrow, that make up that

section. Two arrows, one black, one white, indicate that in this sector there are

two waves with the direction of motion as given by the arrow. The direction of

the arrows give a good intuitive notion of how distinct nodal patterns are formed

on the plane, both how and where. It can be seen from the combinations of wave

direction, orthogonal, towards each other and in the same direction of motion,

and the resultant patterns that form on the plane that there are three distinct

patterns. Such patterns are given in the following way:

{D9} — has two nodal patterns,

{D1, D3, D5, D7} — has one nodal pattern,
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{D2, D4, D6, D8} — has three nodal patterns:

The sectors containing the sets are given rigorous algebraic boundaries thus, which

can be seen pictorially in Figure. 3.4.

D1 = {(x, y)|y ≥ −x+ (k1 + j1), y ≥ x+ (k0 − j0)}

D2 = {(x, y)|y ≥ −x+ (k1 + j1), y ≤ x+ (k0 − j0), y ≥ x+ (k1 − j1)}

D3 = {(x, y)|y ≤ x+ (k2 − j2), y ≥ −x+ (k2 + j2)}

D4 = {(x, y)|y ≤ −x+ (k1 + j1), y ≤ x+ (k0 − j0), y ≥ x+ (k0 + j0)}

D5 = {(x, y)|y ≤ −x+ (k0 + j0), y ≤ x+ (k1 − j1)}

D6 = {(x, y)|y ≤ x+ (k0 − j0), y ≤ −x+ (k0 + j0), y ≥ x+ (k1 − j1)}

D7 = {(x, y)|y ≥ x+ (k0 − j0), y ≤ −x+ (k0 + j0)}

D8 = {(x, y)|y ≥ x+ (k0 − j0, y ≤ −x+ (k1 + j1), y ≥ −x+ (k0 + j0)}

D9 = {(x, y)|y ≤ x+(k0−j0, y ≥ −x+(k0+j0), y ≤ −x+(k1+j1), y ≥ x+(k1−j1)}.

Theorem 3.9. Let T0 and T1 be any two points in Z2 with coordinates (j0, k0)

and (j1, k1), respectively. Assume that nodal patterns Pi were formed by square

waves, i.e. i = |d�(T0, ρ)−(d�(T0, T1)+d�(T1, ρ))| (mod s). For any point ρ ∈ Z2

the membership to one of the following sets {D1, D3, D5, D7}, {D2, D4, D6, D8} or

{D9} is uniquely identified by a number of distinct nodal patterns Pi in the Moore

neighbourhood of ρ.

Proof. In a system with two transmitters, T0 and T1, nodal patterns are formed

by broadcasting the square wave from T0 which, once reached by the wave, will

then be broadcast by T1. The main observation is that broadcasting a square

wave generates quadrants defined by the lines x = y and x = −y, assuming that

the transmitter is the origin, whereby within each quadrant the front of the wave

expands such that each element of the orthogonal axis, to the one wholly contained

by the quadrant (i.e. x,-x,y,-y), within the quadrant will contain the same member

of the alphabet as all the others. This defines the direction of the wave and dictates

the structure of the neighbourhoods for the automata here depicted in Figure. 3.4.



Chapter 3. Discrete Interference of Waves 62

It is shown that the 3 differing combinations of directions of the waves result

in the same number of differing nodal patterns and that the number of distinct

combinations of differing wave directions equate to the number of distinct modes

that appear on the plane.

The nodal pattern at some point ρ = (x, y) is given in Definition. 3.8 as

i = |d(T0, ρ)− (d(T0, T1) + d(T1, ρ))| (mod s)

and the distance function for the square wave is given as

d�((x1, . . . , xn), (y1, . . . , yn)) = max
1≤i≤n

{|xi − yi|}, (x1, . . . , xn), (y1, . . . , yn) ∈ Zn .

The statement of the theorem is proved by showing the form of the neighbours

in the four distinct cases and illustrating their differences, they cannot be the

same assuming some sufficient alphabet, naturally a single alphabet will render

the plane in a singular nodal pattern.

If ρ, ρ1 = (x + 1, y) and ρ2 = (x, y + 1) are in the previously defined areas

{D2, D6} then according to the distance function in Definition. 3.8 the difference

in distance between d(T0, ρ), d(T0, ρ1) and d(T0, ρ1) corresponds to the difference

in the abscissa and as such d(T0, ρ) + 1 = d(T0, ρ1) and d(T0, ρ) = d(T0, ρ2).

Similarly distances for T1 are restricted to differences in the ordinate resulting

in d(T1, ρ) = d(T1, ρ1) and d(T1, ρ) + 1 = d(T1, ρ2). As such iρ = iρ1 + 1 and

iρ = iρ2 − 1. The full neighbourhood may now be inferred:

iρ − 2 iρ − 1 iρ

iρ − 1 iρ iρ + 1

iρ iρ + 1 iρ + 2

Cases {D8, D4} are seen to be the same via the symmetry of the two groups.

By the same reasoning the area D9 is explored noting that in such an area the

distance function shows the abscissa to be greater than or equal to the ordinate

for both T{1,2} resulting in d(T0, ρ) = d(T0, ρ1) and d(T0, ρ) = d(T0, ρ2) and for T1
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the following d(T1, ρ) = d(T1, ρ1) and d(T1, ρ) = d(T1, ρ2). This give nodal pattern

differences as iρ = iρ1 + 2 and iρ = iρ2 .

Further more the areas {D3, D7} which, by the same reasoning, the distance func-

tions from T{1,2} are again bounded by the abscissa. Distances for d(T0, ρ) + 1 =

d(T0, ρ1) and d(T0, ρ) = d(T0, ρ2). Similarly distances for T1 are restricted to differ-

ences in the ordinate resulting in d(T1, ρ) = d(T1, ρ1) and d(T1, ρ) + 1 = d(T1, ρ2).

.This results in nodal pattern neighbourhoods of iρ = iρ1 and iρ = iρ2 . By

symmetry, neighbourhoods in areas {D1, D5} are equivalent.

3.2.2 Nodal Patterns Resultant from One Source

A pattern produced by both types of wave from a single source gives the possibility

to partition the plane in to four distinct partitions. As such it is possible to elect,

Proposition. 3.5, vertical, horizontal (set L0) and diagonal lines (set L1) starting

from a single source by transmitting square and diamond waves after a constant

delay.

Proposition 3.10. Given a vertex, T0 = (j, k) on Z2, it is possible to elect a

set of points L0 = {(x, y)|y = k, x ∈ Z} ∪ {(x, y)|x = j, y ∈ Z} or the set

L1 = {(x, y)|y = x + k − j ∈ Z} ∪ {(x, y)|x = −y + k + j ∈ Z} in linear time as

by Definition. 2.11.

Proof. Without loss of generality we may assume that the source, T0, is at (0, 0)

and that both the square and diamond waves are broadcast at the same time.

Whilst simultaneous broadcast is not possible all values are over modulo equivalent

to the size of the alphabet. Hence any delay between the broadcast of the two

waves that is equivalent to the size of the alphabet will reduce to 0 resulting in

equations that will be the same as if a simultaneous broadcast had taken place.

Patterns formed by the transmission of a square wave, shown in Figure. 3.5 a),

then a diamond wave, shown in Figure. 3.5 b), can now be expressed as the
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Figure 3.4: The distribution of three distinct nodal patterns in case of two
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difference in time between its activation by the diamond wave the point at which

its nodal pattern is fixed by the square wave or Pd♦((0,0),(ρ1,ρ2))−d�((0,0),(ρ1,ρ2)) for

any point ρ = (ρ1, ρ2) where d♦ is the distance function for the diamond wave

and d� is the distance function for the square wave. If points are of the form

ρ = (0, ρ2) for ρ2 ∈ Z or ρ = (ρ1, 0) for ρ1 ∈ Z then Pd�(0,ρ2)−d�(0,ρ2) = Pρ2−ρ2 = P0

or Pd♦(ρ1,0)−d�(ρ1,0) = Pρ1−ρ1 = P0 so all points in L0 have been elected as P0,

shown in Figure. 3.5 c). This notion can be observed through the composition of

the labelled numbers in diagrams Figure. 3.5 a) and Figure. 3.5 b) to get, after

addition and through modulo 4 a diagram that resembles Figure. 3.5 c).

The elected nodes will be distinct from the nodes that surround them as can be

seen if r is substituted for 0 or ρ = (r, ρ2) for ρ2 ∈ Z or ρ = (ρ1, r) for ρ1 ∈ Z then

Pd♦(r,ρ2)−d�(r,ρ2) = Pr+ρ2−ρ2 = Pr or Pd♦(ρ1,r)−d�(ρ1,r) = Pr+ρ1−ρ1 = Pr for ρ,ρ2 > r or

Pd♦(r,ρ2)−d�(r,ρ2) = Pr+ρ2−r = Pρ2 or Pd♦(ρ1,r)−d�(ρ1,r) = Pr+ρ1−r = Pρ1 for ρ1, ρ2 < r.

Showing the elected points in L0 to be distinct where ρ1, ρ2, r 6= 0.

The election of the set L1 requires the neighbourhood to be checked through the

use of a diamond node wave originating from the initial point T0. The distinct

neighbourhoods of the diagonal elements which are detected with a diamond node

wave allows the election of all points in L1, two diagonal lines meeting at point

T0.

Theorem. 3.9 and Proposition. 3.10 will feature prominently in the following chap-

ter on algorithms. In fact it is quite safe to say that almost all work on algorithms

will be built on the principles that are outlined by this Theorem and proposi-

tion. The ability to generate straight lines where no information is known by the

automata about the orientation, origin or indeed anything outside of the local

reception of messages is essential if the model is to be used to generate partitions,

patterns and lines which are to be utilised for geometric computation. It is also of

paramount importance that once these lines and partitions have been constructed

that it is possible for the automata to be able to elect themselves to the correct

partition or part of the line using only their minimal capability to receive trans-

missions from their surrounding neighbours and to store distinct messages as a
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set. It can be noted that such minimal abilities are indeed the most minimal class

of such networked automata [63].

Whilst, even with the examples that are given here, it is possible to construct com-

plex algorithms, in this case the leader election algorithm that shall be described

in detail in the next chapter, once this is generalised to a variable radius transmis-

sion then it is possible to construct polygonal partitions with a variety of sloped

sides as shall be seen in the categorisation of the discrete circle and its properties

in later chapters. Here, even with only the most basic of principles it has been

seen, and will be seen, that it generates a useful and usable set of primitives for

the construction of algorithms.



Chapter 4

Distributed Algorithms in the

Broadcasting Automata

Previous chapters have explored many of the primitives of broadcasting automata,

the message passing primitives and many of the forms that are produced as a series

of nodal patterns over the plane. In this chapter those primitives shall be assembled

in to a variety of algorithms. Some translated from the cellular automata cannon,

with respects to the firing squad synchronisation problem, and others taken from

the distributed algorithms model, in the from of finding the centre of a discrete

disc which can be considered to be a solution to the leader election problem that

is commonly found in the distributed computing world [31] and constitutes the

central result of the chapter. The rest of the assorted algorithms are general

‘helper’ algorithms that will be found to be useful in a large majority of the cases

when constructing algorithms in this model.

The main result of this chapter is the algorithm for the location of the centre of

the digital disc where the initial transmitter is located on the edge of the disc. The

algorithm uses all of the techniques discussed in the previous chapter, that utilise

nodal patterns, to locate the centre of the disc through distributed, geometric

computations.

67
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4.1 Basic Algorithms

The following algorithms are considered basic in that they are consider to be the

basic building blocks of algorithms, used as helper algorithms, which would most

likely be required in the construction of more complex algorithms. In general

these algorithms are considered to alleviate some of the restrictions of the model

illustrating that even though the model may be technically primitive and compu-

tationally simple it is still possible to, through a variety of algorithmic techniques,

remove the limitations inherent in the model.

4.1.1 Firing Squad Synchronisation Problem for BA

The Firing Squad Synchronisation Problem (FSSP) originated with J. Myhill in

1957 and is informally described by the following analogy:

Given a firing squad and knowing that any order given by a

general located at one of the two ends needs n units of time to

reach the nth soldier, how can we make all the soldiers fire at

the same time [70].

The solution to the problem is the construction of a finite state automata that

is homogeneous for every element in the one dimensional line and such that the

automata is not changed if the size of n is increased. There have been many

attempts to minimise two factors of the complexities of the automata, the number

of states and the time taken to synchronise the automata.

It has been shown that the lower bound for a solution to FSSP is [71] 2n− 2 for n

automata. There have been several advancements in attempting to find a minimal

state solution that can solve the problem and a minimal state configuration that

can solve the problem in minimal time. It has also been shown that there is no

optimum time solution in four states [72] where a five state solution is known to

be an open problem [70] and the minimal time solution with the smallest number

of states that is known is a six state solution [71].
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In this setting the problem is the standard FSSP problem whereby the automata

in question are only able to send and receive messages of a single character, as

opposed to the usual observation of the neighbours states as presented in the

version of the problem which has been tackled by cellular automata. It is possible

to solve the FSSP problem in this fashion with an alphabet of four where all

automata are modelled the same except for the two end generals which need only

a slight modification of their rules.

For the algorithm only two cases need be considered and these are the cases in

which the elected points are of an even distance and those which are of an odd

distance owing to each recursive sub-problem falling in to one of these categories.

The state diagram for the automata is shown in figure. 4.1. This is a translation

of Minsky’s solution [73] in 3n time to the firing squad problem which completes

in a time 3n.

4.1.1.1 Odd Case

The intuition behind this algorithm is that two messages are passed on at 1/3 of

the speed of the other and when these meet the centre of the line of automata

will have been elected. The first pulse that is sent will travel at a speed of 1 with

each of the automata receiving the first a signal immediately transmitting it to

the next. The other pulse initiates a series of states implementing a time delay of

3 before sending the second a which propagates this delay of 3 for each automata,

after sending this last a the automata resets to the quiescent state, this allows

deconstruction in to simple identical sub-problems all starting from the quiescent

state. When the first signal, propagating at a speed of one, reaches the general

that is opposing the first it sends back a signal, c. When a b signal is propagated

to an automata in the delay 3 loop then it becomes a general.
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Figure 4.1: The above figure represents the state diagram for each of the
broadcasting automata involved in the Firing Squad Synchronisation Problem.

4.1.1.2 Even Case

The basic concept here is the same except that this time the automaton in the

delayed signal loop will be met with a c signal at which point the automaton

makes the transition to the state outputting the f symbol and after a time delay

both automata have been elected as the central automata, the new generals, the

leftmost general, G′, will be outputting the symbol, g whereas the rightmost will

be outputting the symbol, h, from general G′′. This is done so that they do not

move in to the firing state prematurely by instantly sending each other a d symbol.
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4.1.1.3 Firing State

The final firing state is achieved when the generals receive a transmission which

makes the transition to the final state. In this case it must be from a general

that is emitting either a d symbol or the same symbol as the general symbol it’s

emitting.

4.1.1.4 Correctness of the Algorithm

The correctness of the algorithm can be derived from the paper by Minsky [73] from

which the solution is a translation of. Intuitively the automata constantly divide

the set of automata in half creating two new subproblems. Such subproblems are

solved recursively, in the same way, until there are two generals next to each other

that were not formed in the same even case dividing operation. Here all generals

transition to the firing state.

4.1.2 Election of the Edges of BA in Zn

This algorithm is of the class of algorithms that are considered building blocks for

much larger algorithms allowing a circumvention of some the models restrictions

in an algorithmic way. Here, the problem of being able to locate the end of a line of

automata is tackled. The problem arises because of the way the automata detect

their neighbours which is only by being informed of their states. The automata in

this way are otherwise directly blind to their neighbours being unable to ‘probe’

for their neighbours states or even to find out if they exist. The following Lemma

may be used in this way to remove this limitation.

Lemma 4.1. Given a network of finite automata, (G,Λ, V0) with a graph which

form a single line and is of size n and a single source v, such that v ∈ V0, it is

possible to elect the automata with no successor in (n − k) + 3 time steps, where

k is the number of automata from the initiating automaton, v, to its closest side,

and with an alphabet, Σ, of size |Σ| = 3, in the asynchronous model.
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Proof. The proof is given as a constructive argument such that the following algo-

rithm describes a method for any automaton to establish itself as an automaton

that is, or is not, on the edge and correctness of the algorithm is given. The algo-

rithm, presented below, assumes that there is some v ∈ V0 that begins the initial

transmission and that the standard form of transmission for broadcast automata

is utilised. After use of the following procedure, which is utilised by all broadcast

automata, then any such automata which have no successor should have elected

themselves as such.

The following algorithm is followed by every automata and provides a method for

locating the edge automata in any line of size n with an alphabet of size 3 and is

visualised in Figure. 4.2.

1. Automaton vi receives symbol si ∈ Σ activating it at time t

2. For the following three time steps, t+ {1, 2, 3}, it emits symbol si+1 mod 3

3. If at time t + 2 automaton vi receives two signals of differing types, si and

si+2 mod 3 then it is not on the edge. Should the vi at time t = 3 receive only

signal si then the automaton has no successor.

The above algorithm elucidates the observation that those automata on the edge

of the graph have no successor and as such it is not possible for them to receive

two signals of differing types. Let us assume for contradiction that there is such

an element vi that has no successor but which will not be elected by the above

algorithm. It must be that vi, to have successfully been elected by the algorithm,

has received two differing symbols at the same time step. As each automaton

is only able to transmit a single symbol during one time step this means that

the automaton vi must have at least two automata in its neighbourhood. As the

automaton lies on a line it must be that this automata has both a predecessor and

a successor however this is now in contradiction to the premise that this automaton

has no successor and so the algorithm must hold.
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Whilst the algorithms may be presented in a single, specific model, asynchronous,

it is possible to transfer that algorithm to the opposing model, synchronous, by

the result presented in Proposition. 2.12.
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Figure 4.2: The detection of a none edge case, that has two neighbours (left),
and an edge case, with only one neighbour (right)

4.1.3 Election of the Shortest Branch of a Tree

The following algorithm presented in the Lemma shall be important in the case

of electing the centre of a digital disc but as the notion of distance is intrinsically

linked to broadcasting automata through the notion of nodal patterns it may very

well be considered another example of a fundamental algorithm.

Lemma 4.2. It is possible to elect the automaton with no successor of the shortest

branch of a tree with a single node at the root with k branches, such that no other

node in the tree branches other than the root node, in time 3R, where R is the

length of the shortest branch(es) with a distinct alphabet of |Σ| = 2.

Proof. The following algorithm provides a constructive proof of the existence of

such an algorithm. It is assumed that there is an initial automaton v0 ∈ V0 that

is at the root vertex of the graph.

1. From the root vertex v0 the symbol a is broadcast to all neighbours of vo,

propagating through the system as defined by the message passing algorithm

for broadcast automata.
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2. Once the wave reaches the final vertex in each branch it is broadcast back up

towards the root vertex after 2 time steps waiting for the refractory period

of the previous vertex to expire.

3. After the root receives the first of the a symbols it begins to broadcast

symbol b which is only accepted by those automata which have received two

a symbols, which are the automata of the shortest branch(es).

4. Upon receiving symbol b those automata that have already received a, a will

be elected as the shortest branch(es).

All other automata which have at that moment only received a single a will

have rejected the b symbol and so are not elected.

The correctness of the algorithm is given by the lengths of the paths in which the

transmissions must traverse. Given a set, S, of k branches such that each branch

is of length p0 ≤ p1 ≤ ... ≤ pk−1 there must be some set of least paths which will

be denoted Smin and contain only those branches that are of equal length to p0

the branch of least length. Given that the messages are passed at constant speed,

and as such are synchronised throughout the system, it must be that each path is

traversed in time 2 · pi and those that reach v0 first, after the initial transmission

from v0, must have taken the shortest path, here given as Smin. As only those

automata which have received the symbol a twice are elected by the b symbol,

other automata, in the set S \ Smin, will reject the symbol, and so only those in

the set Smin will be elected by b.

v
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v
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b

Figure 4.3: The above two figures show the algorithm in action.
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4.2 Geometric Computations with BA

The following section showcases the power of broadcasting automata that complex

algorithms can indeed be derived from such a simple model with low computa-

tional abilities and a simple message passing schema. The model is used to solve

a problem that could be stated as one of the most fundamental problems in dis-

tributed algorithms [31] and also one of the most often tackled problems in swarm

robotics [7].

4.2.1 Finding the Centre of a Discrete Disc

A set ζ of points in Z2 is a digital disk if there exists a Euclidean circle, with a

centre at an integral point, that encloses the pixels of ζ but excludes its comple-

ment. Let us consider a model of broadcasting automata on a digital disk which

has a diameter D. We define a procedure for finding the centre of the digital disk

in linear time using the notion of waves as described in previous sections. The

problem is now posed as such;

Problem 4.3. Beginning from any point on the circumference of the circle it is

possible to find the centre of the digital disk as a single point or as a set of

two points, depending on whether the radius of the digital disk is odd or even,

respectively.

In this section we abbreviate the partitions previously mentioned to a = {D9},

b = {D1, D3, D5, D7} and c = {D2, D4, D6, D8}. The algorithm for finding the

centre can begin from any arbitrary point, T1, on the edge of the digital disc and

is implementable in both asynchronous and synchronous models.

Depending on the location of the initial point, one of three algorithms is applicable.

Finding the correct algorithm to apply is reduced to checking the initial point’s

neighbourhood to one of three possible sets in the following way.

Definition 4.4. Eight points {0, 1, ..., 7} on the circumference of a digital circle,

ζ corresponds to the following eight angles {0, 45, 90, 135, 180, 225, 270, 315}.
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Lemma 4.5. Given an automaton on the edge of ζ it is possible to check the

automaton’s membership to one of three sets: {0, 2, 4, 6}, {1, 3, 5, 7} and all other

points on the edge of the circle in a time O(D) for both models.

Proof. From automaton T1, on the edge of ζ, Proposition. 3.10 is applied via the

transmission of a square then diamond wave, resulting in horizontal, vertical lines

of elected automata and electing at most two paths. All elected automata on the

edge of the disc, ζ, become new points TN which is a set of points encompassing up

to three automata, {T2, T3, T4} ∈ TN . As soon as the automaton or automata on

the edge of the disc, ζ, have been elected by T1, the automata, now denoted as TN ,

begin transmission of a square wave. As the transmission of these waves from all

automata in TN , may occur simultaneously on the disc, points at which waves meet

each other proceed no further on the disc, due to the automata’s inability to receive

and broadcast at the same time, cancelling each other. Points of wave cancellation

are shown as dotted lines in Figure. 4.4 and Figure. 4.5. The partitions formed

by the transmissions from new points in TN can now be detected by the initial

point T1 through the transmission of a neighbourhood detection wave which gives

nodal patterns to automata through the transmission of its own square wave and

causing neighbouring automata to transmit their states which allows the detection

of T1’s neighbouring nodal patterns. By Theorem. 3.9, possible neighbourhood

partitions for the initial point T1 are now be categorised as {a},{a, c} and {a, b, c}

which are the points {0, 2, 4, 6} and {1, 3, 5, 7} and all other points respectively.

The procedure requires only three waves of transmissions, each wave requires an

amount of time that is no more then the diameter of the circle as well as some

constant time between transmissions and the constant time for the neighbourhood

recognition.
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Figure 4.4: The above Figure shows two of the three possible cases stemming
from the five possible variants that require differing solutions based on their
location. The two differing sets of the 8 points and those points which lay in none
of these. The two diagrams for Case 1 correspond to the situations whereby, for
case 1, T1 generates a 3-branched tree with two equidistant branches or a single

chord respectively.

Figure 4.5: The above figure shows the two possible variations of the final case
of the three cases. For case 3 the situations are those such that T1 generates a

2- or 3-branched tree respectively.
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4.2.2 An Algorithm for Locating the centre of a Digital

Disk

There are many edge cases to consider in the construction of the algorithm that is

presented in this section. This part of the algorithm may be considered almost a

meta algorithm or a ‘switch’ which uses Lemma. 4.5 in order to find which of the

algorithms is applicable due to variations in the formations that may be found on

the edges of the circle, where the initial transmitter is found.

1. An automaton on the edge of the disc ζ, T1, checks its location by the

creation of the unique local neighbourhood sets: {a}, {a, c} or {a, b, c}, see

Lemma. 4.5.

2. In case of neighbourhood set {a, c} apply the algorithm for case 1. In case

of neighbourhood set {a} apply algorithm case 2.

3. In the case of neighbourhood set {a, b, c}, T1 is the root of a tree with two or

three branches. The third branch may appear if the automata, T1, finds itself

on a ’ledge’, such that there are automata on three sides of its Von Neumann

neighbourhood, formed from the digitisation of the circle. The end point of

the shortest branch of such tree, placing the automata in a position whereby

there are only two automata in its Von Neumann neighbourhood, is found

by Lemma. 4.2 which is relabelled T1 and then apply case 3.

Cases 1 and 2 are basic because the location of the point T1 is known exactly. The

least trivial case is Case 3 where further partitioning is required for locating the

centre. Algorithm for Case 1 (set {0, 2, 4, 6})

1. T1 sends message m0 to T2 through the chord which will be sent back from

T2 after some constant delay k = |Σ|.

2. T1 sends message m1 which has a delay of 3 after a constant delay k = |Σ|.
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3. The automata on the chord elected through receipt of both message m0 and

m1 at the same time will be the centre of the digital disc ζ.

Algorithm for Case 2 (set {1, 3, 5, 7})

1. A new point T4 is generated along the diagonal through the use of diamond

neighbourhood detection wave as described in Proposition. 3.10.

2. T1 sends message m0 to T2 through the chord which will be sent back from

T2 after some constant delay k = |Σ|.

3. T1 sends message m1 which has a delay of 3 after a constant delay k = |Σ|.

4. The automata on the chord elected, through receipt of both message m0 and

m1 at the same time, will be the centre of the digital disc ζ.

Case 1 Case 2

T
1

T
2

T
1

T
2

T
3 T

4

T
1 T

2

T
3

T
4

T
5T

6

Case 3

T
6

a

a

c

c

c c

b

b

Figure 4.6: Constructions required to find the centre of the circle for the three
differing cases. Centres are indicated by black dots.

Algorithm for Case 3

1. Point T2 is identified as the shortest chord of the tree constructed from T1

via Lemma. 4.2.

2. Point T3 is identified as the longest chord of the tree constructed from T1 by

broadcasting a signal c only to those automata that have received two a’s

but no b’s after Lemma. 4.2, the longest chord.
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3. Transmissions from T3 followed by T1 elect the point T5, the only point on the

digital disc that has a neighbourhood containing the nodal patterns {a, b, c}.

4. Transmissions from T2 followed by T1 elect the point T4, the only point on the

digital disc that has a neighbourhood containing the nodal patterns {a, b, c}.

5. Application of proposition. 3.10 from T4 and T5 will generate horizontal and

vertical lines. The points at which these two line cross are elected as T6.

Only one of the two points marked T6 will be in partition a given by the

initial construction of T1 and T3, this is the centre point of the circle.

Theorem 4.6. It is possible to find the centre of a digital disc ζ with diameter

D starting from a point on the circumference of ζ, T0, in both models, in O(D)

time, where the notion of complexity is given in Definition. 2.11.As there are a

finite number of passing of waves which all time-bounded by at most O(D), the

algorithm cannot exceed linear growth by D.

Theorem. 4.7 directly follows from the construction of the next algorithm for elect-

ing the elements of the inscribed square and also holds when starting from a point

is on the circumference of ζ.

An Algorithm for electing elements of the inscribed square

Theorem 4.7. Given an initial transmitting node in the centre of a digital disc.

It is possible to elect automata forming an inscribed square in time O(D), where

D is the diameter of the digital disk.

Proof. 1. From point P1 transmit two waves (square and diamond) to elect the

four points A1, A2, A3 and A4. This follows from Theorem. 3.10 whereby the

already mentioned subset is reduced by intersection with the set of those

points on the edge of the circle. (see Figure. 4.7).
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2. A square wave is transmitted from the points A1, A2, A3 and A4 as elected

in the previous step of the algorithm. The waves form four squares, shown

as S1, S2, S3, S4 but do not intersect each other as once the waves meet all

transmission halts. The points at which the waves meet are exactly those

that are along the diagonal lines that intersect the central point P1.

3. A wave is now sent from P1 forming nodal patterns throughout the circle.

It can be noted now that the patterns that form, for each pair, (P1, Ai), are

those which are given in Theorem. 3.9.

4. Another wave is now propagated from P1 which informs the automata of

their neighbours and allows the automata to place themselves in the set D9

if it is within the inscribed square.

Note that the complement of the square will also have a distinct pattern of type

{D2, D4, D6, D8} again given by Theorem. 3.9.

It is noted that the bounds on complexity are again calculated based on the notion

of complexity as given in Definition. 2.11 such that linearity, n, is considered to

be for some coefficient of messages passed to every member of the Broadcasting

Automata. The complexity is derived from the liner time it takes to pass the wave,

a wave pass is more formally a transition from one configuration to another, and

the maximum time that this transmission can take is equivalent to the diameter

of the disc. Any multiple of D still results in an O(D) complexity as previously

noted.
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Figure 4.7: Figure corresponds to production of the inscribed square from
centre point.



Chapter 5

Transmission Radii and their

Wave Formation in Z2

There are two main variables in broadcasting automata, the words that are trans-

mitted through the lattice of automata forming nodal patterns in the plane as they

intersect and the size of the transmission radius, altering the number of neighbours

that receive that signal in a single time step. In this chapter a characterisation

of the shape of the discrete circle will be given. From this information it, in

conjunction with the work on the resultant nodal patterns formed by functional

combination, is possible to derive a full characterisation of the nodal patterns as

they fall on the plane under broadcasting automata.

5.1 Geometrical Properties of Discrete Circles

This section discusses the geometrical properties of discrete circles on the square

lattice and its chain coding and their manipulation. Chain code representation of

circles are characterised and results given in [74] are expanded. Characterisation of

the circle is given with respects to chain coding and the ordering of line segments

which make up faces of the resulting discrete polygons are given.

83
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5.1.1 Chain coding

The method of chain coding was first described in [52] as a way in which to

encode arbitrary geometric configurations where they were initially used, as they

shall be here, to facilitate their analysis and manipulation through computational

means. At the time there were many questions about the encoding of shapes

and the methodologies which should be used to encode such shapes and chain

coding presented an schema which was simple, highly standardised and universally

applicable to all continuous curves. Whilst the definition given here differs from

the definition given in [52] it only differs for convenience when discussing discrete

discs in the first octant allowing the use of only the numeric symbols 0 and 1

instead of 0 and 7 as Freeman suggested. This gives the following definition of

chain coding that shall be used throughout.

Definition 5.1. From a starting point on the square lattice a chain code is a

word from the alphabet {0, 1, 2, 3, 4, 5, 6, 7}.

13

4

5 76

2

0

5 7

0

123

4

6

Figure 5.1: (Left) Showing the eight possibilities of motion from the single
point of origin, circled, as they may be traced out on the plane (Centre) Shows
the eight possible points of motion from a central point and (Right) gives and
example of an arbitrary line traced out on the lattice with a chain code of form

70102435 originating from the circled point.

From some starting point chain codes may be used to reconstruct a shape, S, by

translating the code’s motion on to the lattice where 0 indicates positive movement

along the x− axis with increasing values moving clockwise through all 8 possible

degrees of motion on the lattice, labelled from 0 to 7 respectively. An integral

shape, S, can be encoded using an inverse method whereby the shape is traced

from some starting point and the motion from one point to the next connected

point in the shape is recorded as a chain code. For example, a straight line would
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be represented by the infinite repetition of a single digit such as 00000000000000...,

a line that satisfies the equation, x − y = 0, may be encoded 77777777... or as

the example given in Figure. 5.1 and arbitrary line may be encoded numerically

as 7010235.

5.1.2 Discrete Circles and their Chain Code representation

The discrete disc is the basic descriptor of a transmission in broadcasting au-

tomata. It represents the total set of all automata that could be reached on the

square lattice after a single broadcast of radius, r2. In the following sections rea-

soning will follow only from the first octant, which can be seen in Figure. 5.2, of

the discrete circle which shall now be defined and gives all the information that

is required to categorise the discrete disc, its perimeter, but also has a convenient

method of chain code construction. The need only to observe the first octant is

derived from the symmetry that occurs such that it is possible to take a solution

of the first octant and by successive reflection operations about the eight octants

generate a full circle [75] under the assumption, which is also made here, that the

circles are centred on a integral point on the plane.

Definition 5.2. A discrete circle is composed of points in the Z2 set ζ = {(x, y)|x2+

y2 ≤ r2, x, y ∈ Z, r ∈ R} that have in their Moore neighbourhood any point in

the complement of ζ.

In Definition. 5.2 it is shown that r ∈ R however many of these do not produce

distinct discrete circles. The set of r that includes all distinct circles are those

which form Pythagorean triples which consist of two positive integers a, b ∈ N,

such that a2 + b2 = r2.

A simple way to draw the discrete circle is to divide it into octants as can be seen

in Figure. 5.3. First calculate only one octant of the circle and as the rest of the

circle is ”mirrored” from the first octant it can now be successively mirrored to

allow the construction of the other sections of the circle. Let us divide the circle

into eight octants labelled 1-8 clockwise from the y-axis. The notation Octant(i)
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Figure 5.2: An illustration of a circle that has been divided in to eight octants
with the labelling of those octants applied accordingly.

l
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Figure 5.3: An illustration of a discrete disc and its accompanying discrete
circle of radius squared 116, where the chain code for the first octant is labelled

as l0l1l2.

is used to refer to octant sector i. If an algorithm can generate the discrete circle

segment on one octant, it can be used to generate other octants by using some

simple transformations, such as rotation by 90◦ and reflection around the x-axis,

y-axis, and the +45◦ diagonal lines.

Some basic results are now given about chain codes of such discrete circles. It is

possible to show that in the first octant and given the definition of chain coding

presented here only two digits, 0 and 1 are required to fully represent the discrete

circle.

Lemma 5.3. A Chain coding w for the circle in the first octant is a word in

{0, 1}∗.
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Proof. First let us show that in the first octant for any given point p0 = (x0, y0) on

the circle at the point p1 = (x0 + 1, y0− 1) must also be in the circle as |p1| < |p0|.

When p0 is in the circle and in the first octant segment such that x < y it follows

that the magnitude of p1 is less than p0 as |p0| − |p1| = (x2
0 + y2

0) − (x2
1 + y2

1) =

(x2
0 − x2

1) + (y2
0 − y2

1) = (x2
0 − (x0 + 1)2) + (y2

0 − (y0 − 1)2) = (x2
0 − x2

0 − 2x0 − 1) +

(y2
0−y2

0 + 2y0−1) = 2y0−2x0−2 ≥ 0. Since p1 = (x0 + 1, y0−1) should be in the

circle if p0 = (x0, y0) is on the circle we have that any chain code for the circle in

the first octant does not contain a subword “22” as it will lead to contradiction.

Moreover in any subword a single symbol “2” should be followed by “0” and can

be substituted by 1.

As only the first octant segment is considered the solutions can be represented

using strings consisting of only 0 and 1 where 0 is positive motion along the

x − axis and 1 is positive motion along the x − axis and negative motion along

the y − axis.

Indeed in the generation of such chain codes the following method shall be used

which is a modification of the algorithm that is given in [74]. Starting with the

equation for the circle x2 + y2 = r2 where it is known, by definition, that r2 ∈ Z.

Now as solutions of the first octant are required and under the assumption that,

without loss of generality, the centre of the circle is at the origin it is now possible

to replace y2 with (r′−k)2, where r′ = brc, such that when k = 0 and rearranging

for x2 such that x2 = r2 − r′2 − k2 + 2r′k the solution to the circle equation gives

x2 = r2 − r′2 where r′ ≤ r, as such the length of the first solution of such an

equation is
√
r2 − r′2. Successive values of k give solutions to the length in the

x-axis of that particular maximal Pythagorean triangle. All such Pythagorean

triangles will give the final solution to the circle.

Here it is necessary to start with some terminology to say more precisely which

parts of the chain code are considered to represent specific components in the

resulting polygons. It will become much clearer later on why such distinctions are

required as a single side of the polygon may differ in its chain code categorisation.

The first of these categories of chain code, the most basic, is given here.
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Definition 5.4. A chain code segment is a subword of a chain code which is

either a word 0|s0| or 10|si|−1.

A discrete circle, u, is composed of chain code segments where each segment is

represented as ui, i.e u = u0u1u2...un. Chain code segments can be expressed

using a power notation for the number of repetitions e.g 100100 may be rewritten

as (100)2 and if u = u0u1u2u3 = (00)(100)(100)(10) = (00)1(100)2(10)1.

It is possible to map the chain code, u, in Octant(1), to the others octants through

a function that maps the alphabet of the chain code {0, 1}, to code to a new code

in another octant segment. A chain code of a circle in an Octant(n) can be

constructing from an Octant(1) first by applying the following mapping {0, 1} →

{n−1 mod 8, n mod 8}, where 0 ≤ n ≤ 7. Then for the Octant(n), where n ≡ 1

mod 2, or n is odd, the code and the mapping itself must be reversed such that

{0, 1} → {n mod 8, n−1 mod 8}. For the rest of this paper we will only consider

chain codes in the first octant.

Proposition 5.5. A circle in the first octant can be chain coded as follows:

0|s0|10|s1|−110|s2|−1 . . . 10|si|−1 . . . 10|sr′2/2|−1

where,

si = {x|r2 − r′2 + 2(i− 1)r′ − (i− 1)2 < x2 ≤ r2 − r′2 + 2ir′ − i2, x ∈ Z}

r is the radius and r′ is the floor of the radius.

Proof. It follows from [74] where such a method of chain coding is introduced.

Proposition 5.6. Chain code segments, following the schema

0|s0|10|s1|−110|s2|−1 . . . 10|si|−1 . . . 10|sr′2/2|−1

have the following constraints to their lengths in the discrete circle:

bsi − 1

2
c − 1 ≤ si−1 ≤ si + 1 .
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Proof. It, again, follows from [74] where this property is proved.

5.1.3 Line Segments

As previously noted terminology must be introduced to distinguish the varying

parts of the chain code and in order to talk about what they represent. In order

to characterise the discrete circle two notions are introduced, Line Segments and

Gradients of Line segments.The following definition for the gradient gives a method

for extracting such information from the series of digits that construe the line as

a word.

Definition 5.7. A gradient, G(u), of a chain code subword in {0, 1}, u, is given

by G(u) = #1(u)
|u| , where the function #1 returns the number of 1′s found in the

chain code and |u| is the length of word u.

Line segments are in reference to actual lines that these sections of chain code

would represent on the plane. That is if one were to draw a line and then attempt

to translate this line in to a chain, under the assumption that the gradient of the

line is rational, for reasons which can be seen in the definition of a gradient, it

would be done via a periodic series of chain code segments. Taking a single period

of this chain all the information that is required to identify and reconstitute this

line to any length is now known. In this way the name may interpreted quite

literally as a segment of a line in chain coded form such that any repetition of this

object produces a line. With this in mind it will naturally be of benefit to be able

to know a little more about the line that has been chain coded as a line segment.

Definition 5.8. A Line segment, li = ujuj+1...uj+n, is the shortest contiguous

subsequence of chain code segments which maintain an increasing gradient such

that G(li) < G(li+1), ∀i > 0, where the last chain code segment in li, uj + n,

is contiguous to the first chain code segment in the next line segment, that is,

li+1 = uj+n+1uj+n+2...uj+n+m.

As, ultimately, all of the discrete discs that are discussed here, and, more impor-

tantly, that are possible to construct, are polygons, such polygons are composed of
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Figure 5.4: Showing the the relationship between chain codes, chain code
segments and line segments.

line segments which represent the sides of the convex shape on the plane. Further,

when categorising the repeated broadcast of such discrete discs, later discussed as

composition, the shapes that are generated are known to be similar, in the strict

geometric sense. A definition for chain codes, translating from the geometry of

the Reals, is given.

Definition 5.9. For any two chain codes, u, v, comprising line segments such

that, u = l0l1...lm and v = l′0l
′
1...l

′
n, for m = n, given by Definition. 5.8, are similar

(geometrically) if there is a constant k ∈ N such that u = l′0
kl′1

k...l′n
k.

In this way it is possible to say that two shapes are similar in a geometric sense

such that they contain the same number of distinct line segments but the number

of each of these line segments is different by some constant.

With these definitions stated it is possible to begin the categorisation of the set of

discrete circles with the first observation which extends an already known notion

about the chain code of the discrete disc. Following [74] it is known that in the

chain code u any chain code segments with increasing lengths, such that |ui| <

|ui+1| < ... < |ui+n|, may increase it by at most 1 from the length of a previous

segment, i.e. |ui+1| ≤ |ui|+ 1 for all i.

(x,y) (x,y) (x,y)

li

Figure 5.5: (Left and Centre) Showing the initial point (x, y) the chord and
the point on the chord, the solid circle. (Right) Showing a chord on a circle

from (x, y)
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By direct construction it is easy to check that a line segment can be of the form

10n or 10n10n+1. However we can show that no line segment may be composed of

more than two chain codes which increase in length by one.

Lemma 5.10. No line segment can be of the form 10n10n+110n+2 . . . 10n+i, where

i > 1.

Proof. Let us first show that any line segment which is part of the discrete circle

cannot be of the form 10n10n+110n+2 for any n > 1. We will prove it by contradic-

tion. Assume that the line segment li = 10n10n+110n+2 with the gradient 1/n+ 1

starting at a point p with coordinates (x, y) and finishing at (x + 3n + 6, y − 3).

Therefore a point (x + 2(n + 2), y − 2) , i.e. a point which can be reached by

a code 10n10n+2 from a point (x, y), is above the discrete circle. By the def-

inition of the chordal property of the circle any line that joins two points on

the circle must bound, within the triangle formed from the two points on the

circle and its centre, points which are again within the circle. On the other

hand a point (x + 2(n + 2), y − 2), shown circled in Figure. 5.5, belongs to a

chord between end points of a chord (x, y) and (x + 3n + 6, y − 3) and there-

fore should be within a discrete circle. So it is not possible to have a line seg-

ment with the following chain code 10n10n+110n+2. The same argument holds for

the general case 10n10n+110n+2 . . . 10n+i, where i > 1 since the extension of the

line segment still keep the point (x − 2, y + 2(n + 2)) above the discrete circle

and on the other hand this point will be in the triangle formed by a centre of

the circle and two end points of the line segment since its gradient is equal to

i+1
n(i+1)+(i+1)+i(i+1)/2

= 1
n+1+i/2

≤ 1
n+2

, where i ≥ 2.

Further to this weak restriction, that the chain codes may not be monotonically

increasing or indeed non-decreasing, it is possible to give a more definite generali-

sation of the structure of the chain codes. This structure, which must be adhered

to for all discrete discs, is given here.

Theorem 5.11. Any line segments on the discrete circle with non-negative gradi-

ents should be in one of the following forms (10n)∗, (10n)(10n+1)∗, (10n)∗(10n+1).
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Proof. Following Lemma. 5.10 we can restrict number of cases since any concate-

nations of more than two chain codes which increase in length by one may not

be part of a line segment. The line segments are sub-words of a chain code with

increasing gradients, so if a subword (10n)m is surrounded by any chain code seg-

ments 10n1 and 10n2 , where n1, n2 6= n± 1 , then (10n)m is a line segment. In

the case were n1, n2 = n± 1 a subword (10n)m(10n+1)k can be surrounded by only

chain codes 10n3 and 10n4 , where n3 6= n − 1 and n4 6= n + 2 (by Lemma. 5.10).

We will show now that the only line segments of the form (10n)m(10n+1)k can be

where either m = 1 or k = 1. The proof is similar to Lemma. 5.10. Let us first

show that the line segment from a point (x, y) cannot have the following chain

code (10n)2(10n+1)2. If we assume that such chain code may correspond to a line

segment such that a point (x − 2, y + 2n + 3), shown in the centre diagram in

Figure. 5.5, is above the chain code (i.e. our of a circle) and at the same time is

on a chord between points (x, y) and (x− 4, y+ 4n+ 6), so should be in a discrete

circle. Extending the chain code (10n)2(10n+1)2 from the left by (10n)m1 or from

the right by (10n+1)m2 for any m1,m2 > 0 will not change the property of the point

(x− 4, y + 4n+ 6). So it can be in one of the following forms either (10n)m10n+1

or 10n(10n+1)k.



Chapter 6

Pattern Formation and

Composition.

Building on the categorisation of the chain codings of discrete circles, that has

been presented in the previous chapter, this chapter will focus on the use of such

objects to compose any number of discrete discs. This technique will allow the

restrictions that are naturally imposed by the structures of the discs themselves

to be relaxed. Further to this an exploration of methods of functional aggregation

of differing broadcasting sequences shall be put forth, again, with an interest in

removing the restrictions that are imposed on neighbourhood sequences. For these

reasons results regarding the composition of discrete discs, which lead to construc-

tion of discs that would otherwise not be possible, are presented, with an algorithm

for their composition given. Aggregation functions, an extension and further gen-

eralisation to the concept of nodal patterns, are used to remove the constraint of

convexity on the polygons that are generated. Using this technique of aggrega-

tion experimental results pertaining to the approximation of a particular form of

non-convex metric, the astroid, are given, which were previously unobtainable.

93
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6.1 Composition

This section deals with the composition of the chain codes that have been previ-

ously characterised. The following definitions, and further characterisations, shall

be required in order to discuss the properties of their composition and develop the

proofs.

Definition 6.1. A discrete disc is composed of points in the Z2 set ζr
2

= {(x, y)|x2+

y2 ≤ r2, x, y ∈ Z, r ∈ R}.

Definition 6.2. The composition of l digital discs is defined as ζr0 ◦ζr1 ◦ ...◦ζrl for

ri ∈ N, where, ζr ◦ ζr′ = {a+ b|a ∈ ζr, b ∈ ζr′} and is equivalent to H(Al) where

A = r0, r1, ..., rl as given in Definition. 2.17 and Definition. 2.19 respectively.

Definition 6.3. The composition u ◦ v = w represents the composition of the

chain codes in the first octant for their respective discs, ζu and ζv, which results in

w the chain code for the first octant of the resultant disc of ζu ◦ ζv. This method

can be seen in Figure. 6.1.

85

17

85o17

Figure 6.1: Showing the composition of squared radii Disc(85) ◦ Disc(17)
where Disk(85) is shown as a solid line and 17’s first composition is shown
dashed. The hatched area represents all contributions from the previous com-

positions.

Example 6.1. Iterative composition of discrete circles may create different poly-

gons. For example, in the following picture, Figure. 6.2, there are two differing

cases, in one case we iteratively apply the digital circle with squared radius 9 re-

sulting in the equilateral octagon. In the second case squared radii 16 and 26 are

periodically applied starting with 16.
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Figure 6.2: The above figures illustrate (left) the constant iteration of the
discrete disc of squared radius 9 and (right) the alternation between the trans-

mission of squared radii 16 then 26.

From these definitions it is now possible to describe a naive algorithm, and derive

its correctness, for the composition of any number of chain codes that represent

discrete discs. The result is again a convex polygon that represents the combi-

nation of the constituent parts. Such an algorithm merely systematically checks

all possible combinations of the chain code and reports the largest that is found

for that step. Later it shall be seen that if the chain code of the discrete disc is

categorised further it is possible to give a simple linear time algorithm with a proof

of correctness that is derived from the Minkowski sum along with a combinatorial

proof.

Lemma 6.4. Given two chain codes, u = u0u1...un and v = v0v1...vm, in form

{0, 1}∗ then u ◦ v = w = 0|w0|10|w1|−1...10|wm+n−1|−1, such that

|wk| = max({
n∑
i=0

|ui|+
k−n∑
j=0

|vj| | 0 ≤ n ≤ k}).

Proof. The naive way of generating the composition u ◦ v is for all points on the

chain code of the disc u = 0|u0|10|u1|−1...10|ui|−1...10|un|−1, to be the centre of the

disc v = 0v010|v1|−1...10|vj |−1...10|vm|−1. This is equivalent to placing the centre of

the chain code v at every point defined by the chain code u generating w. The

maximal point in each chain code segment (i.e if ui = 100 then the coordinate of
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the final 0) need only be considered, clearly covering all others. Let ui ◦′ vj = wi+j

denote the centring v at the coordinate reached by the maximal point of ui in which

we consider the maximal point attained by chain code segment vj and represent a

possible length of the chain code for w at wi+j. The maximal of all such combina-

tions of lengths, those for which the sum of i, j are equivalent, is required and is

defined as the longest contiguous subsequence of length k from v = v0v1...vj and

u = u0u1...ui for all i, j such that i+ j = k which represents wk for 0 ≤ k < m+n

i.e:

max
(
|u0|+ |v0|

)
= |w0|

max

|u0|+ |v0|+ |v1|

|u0|+ |u1|+ |v0|

 = |w1|

...

max


|u0|+ |v0|+ |v1|+ |v2|

|u0|+ |u1|+ |v0|+ |v1|

|u0|+ |u1|+ |u2|+ |v0|

 = |w3|

...

max



|u0|+ |v0|+ |v1|+ ...+ |vk|

|u0|+ |u1|+ |v0|+ ...+ |vk−1|

...

|u0|+ |u1|+ ...|ui|+ |v0|+ ...+ |vk−i|

...

|u0|+ |u1|+ ...+ |uk|+ |v0|


= |wk|

...

|u0|+ |u1|+ ...+ |un|+ |v0|+ |v1|+ ...+ |vm| = |wm+n|
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Such an algorithm allows a characterisation of the composition of discrete discs.

Indeed, here, it can be shown that the composition of chain codes, which have

been shown to be a word W ∈ {0, 1}∗, is, again, a word, W ′ ∈ {0, 1}∗.

Corollary 6.5. Given two chain codes u, v ∈ {0, 1}∗. The composition u ◦ v ∈

{0, 1}∗

Proof. Each segment in u, v, is non-zero ∀i |ui| 6= 0, |vi| 6= 0. It is followed

from Lemma. 6.4 that by enlarging k, for l(k + 1), the previous set of solutions is

extended by a chain code from u or v so l(k) < l(k + 1). Thus the composition

will be in {0, 1}∗.

Also as a derivation from the algorithm an observation about the properties of the

composition function ◦.

Theorem 6.6. The composition ◦ of two chain codes, u and v is commutative,

i.e. u ◦ v = v ◦ u.

Proof. Following Lemma. 6.4 it is possible to exchange u and v and still obtain

the same result, showing commutativity of composition of chain codes u and v.

The following two sets representing k-th level of a new chain code are equal as

well as their maximums:

{S|S =
n∑
i=0

|ui|+
k−n∑
j=0

|vj|, 0 ≤ n ≤ k} = {S|S =
n∑
i=0

|vi|+
k−n∑
j=0

|uj|, 0 ≤ n ≤ k}

It is also notable that having shown commutativity chain code composition it

may be possible that it is an Abelian group, where the identity element is simply

the circle of radius 0, associativity is derived from the algorithms ordering of line

segments by gradient, which is naturally the same irrespective of the order it is

carried out in, the inverse is simply the removal of one set of line segments from

a chain code. However, it is currently unknown whether or not the operation is

closed.
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Further, a proof of the ordering of the line segments in the discrete circle is here

required in order to validate the proof of the composition theorem that is given as

one of the main tools and results of this section.

Lemma 6.7. Given line segments, li, of a form produced by the digitisation of a

circle , which are composed of chain code segments of its first octant a = 10m−1

and b = 10m, then the ordering of their gradient for combinations of a and b is

G(b) < ... < G(ab∗) < ... < G(ab) < ... < G(a∗b) < G(a) .

Proof. The proof is a simple comparison of the gradients which shows, where

|a| = m, 1
m+1

< n
(n−1)(m+1)+m

< n−i
(n−1−i)(m+1)+m

< n−i
(n−1−i)(m)+m+1

<

< n
(n−1)(m)+m+1

< n
(n−1)m+m+1

, where i < n−1, forG(b) < G(abn−1) < G(abn−1−i) <

G(an−1−ib) < G(an−1b) < G(a) respectively.

Given the preceding validation about the convexity of the discrete discs it is now

possible to employ the Minkowski sum to conclude and validate the composition

of any number of discrete discs using the composition function.

Theorem 6.8. Composition Theorem. Given two chain codes u and v which

contain line segments lu1 l
u
2 . . . l

u
t and lv1l

v
2 . . . l

v
t′ with strictly increasing gradients.

The chain code of a composition u◦v can be constructed by combining line segments

of u and v and ordering them by increasing gradient.

Proof. One of the ways to prove the above statement is to use a similar result

about the Minkowski sum [51] of convex polygons in R2 and then to prove that it

holds for the ordering of the segments of the digital circles in Z2. Here, a purely

combinatorial proof is given in terms of chain codes, chain code segments and line

segments. The above statement is proved by induction. The fact that the base

case for the composition of the first two line segments holds can be seen by directly

checking the expression from Lemma. 6.4.

Assume that the statement of the lemma holds and the first z line segments of

u ◦ v were composed from a set LS = {lu1 , lu2 , . . . , lui , lv1, lv2, . . . , lvj} and contains x
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chain code segments. Let us also denote a set with other line segments from u

and v as L̄S. Without loss of generality suppose that the last line segment that

has been added is lvj , so G(lvj ) ≥ G(l′), where l′ ∈ LS and G(lvj ) ≤ G(l′′), where

l′′ ∈ L̄S. By adding the next line segment l′′′ which will have a gradient larger or

equal than all other line segments in LS and smaller or equal than gradients of

L̄S it must be shown that the extended chain code of u ◦ v is still correct, i.e. it

satisfies to Lemma. 6.4.

First of all note that adding a new part of the chain code would not change the

previous x layers. If a current maximum is in the form

|up|+ |up−1|+ ...+ |u0|+ |v0|+ |v1|+ ...+ |vq|

then the next #1(l′′′) sums will be extended by chain codes from l′′′. If l′′′ is a line

segment in u the gradient of G(lvj ) is greater then G(l′′′) and, taking into account

Lemma. 6.7 and Theorem. 5.11, it can be seen that

|up+1|+ |up|+ |up−1|+ ...+ |u0|+ |v0|+ |v1|+ ...+ |vq|

is a maximum within the following set

{|up+1+shift|+ ...+ |up|+ |up−1|+ ...+ |u0|+ |v0|+ |v1|+ ...+ |vq−shift|, shift ∈ N}

since the shift will represent removal of a larger value from the v component and

appending the smaller value from the u component.

Repeating the procedure and extending the sum by one value it can be seen that,

again,

|up+2|+ |up+1|+ |up|+ |up−1|+ ...+ |u0|+ |v0|+ |v1|+ ...+ |vq|

is a maximum within a set

{|up+2+shift|+ ...+ |up|+ |up−1|+ ...+ |u0|+ |v0|+ |v1|+ ...+ |vq−shift|, shift ∈ N}
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following the same reasoning. Similar arguments can be applied for the case were

l′′′ ∈ v.

Example 6.2. Let us illustrate the composition of two chain codes corresponding

to digital circles with squared radii 45 and 9 in the first octant. The chain code

of the first octant is ζ45 = 0001 and for ζ9 = 10 under composition this yields

ζ45 ◦ ζ9 = 000101.

From the preceding notions it is now possible to describe a linear time algorithm,

which vastly out performs the exhaustive search of all combinations that has pre-

viously been given, which is able to form the composition of the chain codes of

any two discrete circles.

Algorithm: As Lemma. 6.7 shows that all of the line segments will be in a non-

increasing order it is possible to construct such line segments by counting the

number of 0′s after each delimiting 1 combining those that increase in size with

the preceding smaller chain code segment. Having found all line segments for

both chain codes it is a simple case of, starting with the chain code with the line

segment with the largest gradient, adding that element to a new chain code which

is the composition of the initial two. Continue choosing the line segment with the

largest gradient from either of the initial chain codes until there are no elements

left in either of the original circles. The result of the algorithm is the composition

of the two circles.

The following proposition gives a proof of the algorithm and the notion that it is

linear time computable.

Proposition 6.9. Two discrete circles chain codes can be composed into a single

chain code in a linear time.

Proof. As Lemma. 6.7 shows that all of the line segments will be in a non-increasing

order it is possible to construct such line segments by counting the number of 0′s

after each delimiting 1 combining those that increase in size with the preceding

smaller line segment. Having found all line segments for both chain codes it is a
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simple case of starting with the chain code with the line segment with the largest

gradient adding that to a new chain code which is the composition of the initial

two.

It is also now possible to state a more formal definition of ‘similar’ such that it is

possible to mathematically determine whether two objects are ‘similar’, geometri-

cally. The following algorithm is given as one application of such an algorithm and

also hints at the notion of composing one discrete disc from other discrete discs

which allows an insight in to the primality of discrete discs those that cannot be

composed from any other set of discrete discs.

Theorem 6.10. Given a finite broadcasting sequence of radii R = (r1, r2, ..., rl)

and a convex polygon P , it is decidable whether there are radii such that the chain

coding of the composition of is similar to P .

Proof. The algorithm computes all line segments, and their corresponding gradi-

ents, for the chain codes of the set of digital disks with radii in, R, and the convex

polygon, P . Each digital disk ri ∈ R can be represented as a vector with k values,

where k is the cardinality of the set of gradients and each vector component cor-

responds to a particular gradient with an integer value standing for the number of

line segments with this gradient in R. Finally we would need to solve a system of

linear Diophantine equation over positive integers to check whether there is a set

of factors for defined vectors that may match a vector for P with another unknown

factor.

6.2 r-neighbourhood Sequences and their Limi-

tations

This section offers an analysis on limitations of the forms of circles which may be

found under composition of any radii. It is from these limitations that the tech-

niques of broadcasting sequences with aggregation and composition shall become

especially fruitful in expanding the usefulness of the described techniques.
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It’s seen that by Lemma. 5.10 there are only three possible forms which the lines

that comprise the discrete circle may take. Translating these in to their respective

gradients gives the following three possible gradient forms

G1 = G((10n−1)m) =
m

mn
=

1

n

G2 = G((10n−1)(10n)m) =
m+ 1

n+m(n+ 1)

G3 = G((10n−1)m(10n)) =
m+ 1

nm+ n+ 1
.

The above gradients are reduced to a minimal form in order to elucidate the

exclusivity of the gradients.

Proposition 6.11. It is only possible to express gradients in the first octant of a

circle in a reduced form 1
n

, a
a(n+1)−1

or a
an+1

for a, n ∈ N.

Proof. As G1 is already in a minimal form it is obvious that this can only express

those gradients, g, of the form 1
n
. For G2 and G3 the following method is employed,

G2 = m+1
n+m(n+1)

= a
b
, where a⊥b from which it follows that m = a − 1 such that

through substitution of m in to denominator, a
a(n+1)−1

is arrived at. Similarly for

G3 by substitution the equation a
an+1

arises.

It now becomes more clear of what cannot be expressed and the limitations inher-

ent in the hulls of the broadcasting sequences.

Proposition 6.12. Not all rational gradients, 0 ≤ g ≤ 1, are expressed by the

lines that comprise the discrete circle in the first octant.

Proof. A counter example is given as proof. It is impossible to express any such

rational of the form 5
8
. It is clear that it is not possible for G1 to express such a

fraction. For G2 and G3 the following suffices. G2 = a
a(n+1)−1

where a = 5 such

that 5
5n+4

where there is no such n ∈ N such that G2 = 5
8
. Similarly for G3 = a

an+1

where a = 5 and 5
5n+1

there is no such n ∈ N such that G3 = 5
8
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It also becomes clear from the composition theorem (Theorem. 6.8) itself that it is

not possible to generate any further gradients or new line segments through com-

position and in turn successive broadcasts of radii may not generate any polygons

with chain codes that include gradients not previously present.

Corollary 6.13. The set of line segments, and as such gradients, that compose

any discrete circle are closed under composition.

As noted here the shapes that are generatable are limited by their convexity as

well as by the gradients of the lines that compose them. In the next section some

of these limitations will be removed or relaxed using multiple broadcast sequences

and an aggregation function with which to map all values to a single value.

6.3 Reducing Restrictions Through Aggregation

This section makes uses of the notion of aggregation to reduce the restrictions that

are imposed by the continual composition, or simple construction of discrete discs.

It can be shown that it is possible in certain cases, which shall be exposited both

here and in further sections where it is employed to show the approximation of

the astroid metric.

As all points may be labelled by their distance over some arbitrary modulo value an

extension to the current work is proposed whereby two differing r−neighbourhood

sequences, A and A′ are used to label the Z2 lattice from the same point p. At any

point, p′, there are now two labels such that p′ = (i, j) where by k ≡ i mod m

for the sequence A and k′ ≡ j mod m for the sequence A′. Here two differing

functions for the aggregation of values of i and j which define new shapes on the

lattice and in turn new metrics. The new shapes defined by the lattice are not

necessarily convex.

As all of the discrete disks which make up the labellings of the lattice are composed

of discrete lines it is possible to analyse the effects of the combinations of disks by

considering only the intersections of the lines that make up the disks. Consider
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a series of parallel lines expressed in the form y0 = m0x0 + c0 where ci ∈ Z is an

arbitrary constant or offset, mi ∈ Q is any gradient permitted by the line segments

of a discrete circle and x, y ∈ Z are the usual Euclidean coordinates. These lines are

such that each successive line is of a distance wi from the last which shall imitate

the width between iterations of the discrete circles, for the first line segment this

is equivalent to b
√
r2c, and the discrete lines that they generate. All coordinates

such that m0x0 + c0 + kw0 ≤ y0 < m0x0 + c0 + (k + 1)w0 are labelled as k0. A

second set of parallel lines differing from the first are defined as y1 = m1x1 + c1

where all coordinates such that m1x1 + c1 + k1w1 ≤ y1 < m1x1 + c1 + (k1 + 1)w1

are labelled k1. The intersection of these two areas is thus (k, k′). Increasing the

offset of k0 and k1 to k0 + 1 and k1 + 1 naturally results in the labelling of the area

of their intersection as (k0 + 1, k1 + 1). The ordering of the tuple is not relevant

to the functions that aggregate them.

The first of the functions here have previously been studied in [54] with regards to

geometric computations on the lattice. It is of particular interest in the Broadcast-

ing Automata model where the notion of waves as observed in nature are used to

control a large number of distributed automata. Being able to predict the resultant

shapes that are formed by the transmission of waves is, naturally, largely advan-

tageous in that it affords the ability to predict and manipulate the formations on

the plane. Such formations can then be used for a variety of computational duties

such as partitioning and geometric computation.

Waves are represented as strings of the form (1, 0,−1, 0) and pairs of such values

result in the nodal pattern, given in Definition. 3.1, that is resultant on the grid

after distribution by broadcasting sequences. Here, summation is used over these

values, much like the natural aggregation of the superposition of waves, to derive

four sequences of the following form;

(2, 0,−2, 0) = a

,

(1,−1,−1, 1) = b
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,

(0, 0, 0, 0) = c

and

(1,−1,−1, 1) = d

which are all pairs of cyclic permutation.

Two functions for aggregation will now be introduced with the relevant equations

for resultant patterning of the lattice.

Definition 6.14. The moiré aggregation function is given in the table below.

moiré(x,y)=
⊕ 0 1 2 3

0 a b c b

1 b a b c

2 c b a b

3 b c b a

Definition 6.15. The Anti-moiré aggregation function can be expressed simply

as addition over modulo 4 and is given in the table below.

Anti-moiré(x,y)=
⊕ 0 1 2 3

0 a b c d

1 b c d a

2 c d a b

3 d a b c

Proposition 6.16. The gradients of the new lines formed by the moiré equation

can be predicted using the equation

wo ·m1 − w1 ·m0

w0 − w1

.

Variables refer to the, line gradient, mi, and the width of the line, wi.
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Proof. The form of the moiré function is such that if the intersection of one area

is labelled as (k, k′) then the next area that is labelled similarly will be of the form

(k+1, k′+1). Encoding this as the intersections of lines y = m0x+c0 +k ·w0 with

y = m1x+c1 +k′ ·w1 and y = m0x+c0 +(k+1)·w0 with y = m1x+c1 +(k′+1)·w1.

All that is left is to find the gradient of the two intersections. Solving the first

case, x0 = c1−c0−k·w0−k′·w1

m0−m1
and y0 = m0( c1−c0−k·w0−k′·w1

m0−m1
) + c0 + k ·w0 . The second,

x1 = c1−c0−(k+1)·w0−(k′+1)·w1

m0−m1
and y1 = m0( c1−c0−(k+1)·w0−(k′+1)·w1

m0−m1
) + c0 + (k+ 1) ·w0.

The gradient of the two points can be found, y1−y0
x1−x0 , which results in the gradient

of the labelling applied to the lattice.

Proposition 6.17. The gradients of the new lines formed by the Anti-moiré equa-

tion can be predicted using the equation

wo ·m1 + w1 ·m0

w0 + w1

.

Variables refer to, line gradient, mi, and the width of the line, wi.

Proof. The form of the moiré function is such that if the intersection of one area

is labelled as (k, k′) then the next area that is labelled similarly will be of the form

(k+1, k′+1). Encoding this as the intersections of lines y = m0x+c0 +k ·w0 with

y = m1x+c1 +(k′+1)·w1 and y = m0x+c0 +(k+1)·w0 with y = m1x+c1 +k′ ·w1.

All that is left is to find the gradient of the two intersections. Solving the first

case, x0 = c1−c0−k·w0−(k′+1)·w1

m0−m1
and y0 = m0( c1−c0−k·w0−(k′+1)·w1

m0−m1
) + c0 + k · w0 . The

second, x1 = c1−c0−(k+1)·w0−k′·w1

m0−m1
and y1 = m0( c1−c0−(k+1)·w0−k′·w1

m0−m1
)+c0 +(k+1) ·w0.

The gradient of the two points can be found, y1−y0
x1−x0 , which results in the gradient

of the labelling applied to the lattice.

Composition of this form is given as example in Figure. 6.3. Here the two lines are

shown on the lattice correspond to the gradients of the two differing aggregation

functions.

The following proposition is now noted.
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Pattern A Pattern B

Figure 6.3: The two forms of aggregation via the above functions. Here
pattern A gives the line formed by the anti-moire function and the pattern b

gives the line as formed by the moire function.

Proposition 6.18. For any two discrete lines on the Z2 lattice it is possible to

vary the observed gradients for resultant from aggregate functions by varying the

width of the lines.

Proof. The proof is an observation of the equations for the gradients of the lines

resultant from aggregation. Observing the results of two aggregating functions,

wo·m1+w1·m0

w0+w1
and wo·m1−w1·m0

w0−w1
, any alteration to the width of the line which repre-

sents results in a direct change in the gradient.

It is now possible to formulate the following statement which shows the increase

in expressivity that comes from using the composition of two broadcast sequences.

The number of lines formed by aggregation are not limited by the restrictions that

are demonstrated in Proposition. 6.11 where it is now possible to construct new

lines through the varying of widths and indeed new polygons may now be formed

with this technique such that they are non-convex.
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6.4 Formation of Polygons Through Aggregation.

Having shown that it is possible to construct different gradients from line sections

it is natural to now observe what happens when whole circles are intersected and

the relationships that are formed by the aggregation functions that have been in-

troduced. It is noted that a diagram for the formation of polygons in case of the

moiré aggregation function is shown in Figure. 6.4. Two digital discs, those with

squared radii two and 25 such that the discs are ζ2 and ζ25, are composed gener-

ating, from the two convex polygons, and new, previously unreachable, polygon

which is non− convex.

m
3

m
4

l0

l1

0l

’

’

Figure 6.4: The above schematic depicts the broadcast of two discrete circles.
The first, inner, circle (of squared radius two where ζ2 = l0 with gradient m0)
and the second discrete circle (of squared radius 25 where ζ25 = l′0l

′
1 with gradi-

ents m1 and m2 respectively) the outer construction shows the resulting moiré
lines here labelled m3 and m4. Arrowed lines show line width measurements,

the respective wi, here, w0 = 1, w1 = 5, w2 = 7, w3 = 5
4 and w4 = 7

6 .

The following examples given in Figure. 6.5 also elucidate the differences between

the two aggregation functions showing the non-convex polygon generated by the

two digital discs that are represented by, ζ2 and ζ9.

It is also possible to gain a better picture of the overall shapes produced by the

anti moire equation by reducing the number of labels, and so the colours, further.
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Figure 6.5: Above gives an example of aggregation of two broadcast sequences,
one of the discrete disc ζ32 and the other ζ36, from a central point on the diagram

and with the two aggregation functions (left) moiré and (right) Anti-moiré.

This is done by a process of merging certain values or reducing the values over

some modulo which in this example, Figure. 6.6, is two. The reduction is given by

the following aggregation function:

Anti-moiré-Mod2(x,y)=
⊕ 0 1 2 3

0 a b b a

1 b b a a

2 b a a b

3 a a b b

6.5 Approximating Lp Metrics with Composed

Broadcasting Automata

Previously, von Neumann and Moore neighbourhoods have been used to achieve

an approximation of the Euclidean metric through some mixing of the neighbour-

hoods. This has been done in many different settings such as periodic, non-periodic

combinations of the two neighbourhoods, regular and non-regular, i.e, hexagonal,

triangular grids to which different sequences, i.e applying different definitions of
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Figure 6.6: The above figure depicts the anti moire pattern after the merging
of two sets of two colours and initially generated by the discrete discs of squared

radius 32 and 36 from the central point on the plane.

neighbourhood, are applied, as well as a variety of methods for defining just how

an approximation of Euclidean distance by neighbourhood sequences should be

defined and measured, where most of these techniques discuss notions of digital

circularity such as the isoperimetric ratio, perimeter comparisons, etc. In short

this has been one of the main studies with regards to neighbourhood sequences.

There is ultimately, as has been previously discussed, a large barrier to the ex-

tension of this body of work in the approximation of the more general Lp metrics

due to the impossibility constructing any non-convex polygon from the compo-

sition of the two convex polygons which represent the Moore and von Neumann

neighbourhoods. The astroid is part of the ‘family’ of Lp metrics of which the

Moore neighbourhood, L∞, the von Neumann neighbourhood, L1, and the Eu-

clidean metric, L2 are the most well known. In general an Lp space is defined by

the formula ‖ x ‖p= (|x1|p + |x2|p + ...+ |xn|p)
1
p such that ‖ x ‖p is the p-norm.
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It is in this section that a new method for the generalisation of metric approx-

imation with broadcasting neighbourhoods shall be given and, using only two

broadcasting radii, here given in terms of r2, and the moiré aggregating function,

explore the ability of this model to approximate the astroid and, as such, a new

class of metrics outside of the reach of neighbourhood sequences.

It has previously been seen, in this chapter, that the methodology of combining

two broadcasting sequences using an aggregating function can be used to extend

the possible resulting polygons. In this section it shall be seen that this can be

employed in the solution to a practical problem. The problem, in this case, is the

approximation of Lp metric, L2/3, which forms an astroid [76]. The astroid can

be expressed by the equation, x2/3 + y2/3 = r2/3, where x and y are those of the

Cartesian plane and, as with the equation for the circle from which this equation

is generalised, the r is the ’radius’ of the astroid.

A few preliminaries with regards to the astroid which are taken from [76] will be

required to understand the methods proposed for comparing the approximation,

via broadcasting sequence and aggregation, and the actual astroid. The astroid

was discovered in Roemer in 1674 whilst searching for the best form of gear teeth.

It is a hypercycloid of four cups and can be described by a point on a circle of

radius 3
4
· a rolling on the inside of a fixed circle of radius a. The resultant shape

has a perimeter, L, of L = 6a where a is the radius of the outer fixed circle and is

the maximal point reached by the astroid. The area, A, encapsulated is given by

A = 3
8
πa2. Finally, the point at which the x and y coordinates are equivalent on

the perimeter of the astroid can be expressed as r
2
. The equation is known to have

applications in magnetism where the Stoner-Wohlfarth astroid curve separates

regions with two minima of free energy density from those with only one energy

minimum and is a geometric representation of the model of the same name [77].

In [40, 78] a number of methods for how well a particular neighbourhood sequence

approximates the euclidean distance are given. The authors of [40] consider any

sequence, including those sequences which are non-periodic, of neighbourhoods

with which to approximate the euclidean distance. In order to show how well, or
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Figure 6.7: The above figure depicts the astroid, here, rotated by 45◦ (left)
compared to its best, found, approximation with broadcasting sequences (right),

an aggregation of the discrete discs of squared radius, 2 and 5.

poorly, the sequence approximates the euclidean distance it is compared to the

euclidean circle through a variety of methods. One such method is through the

use of the isoperimetric ratio or the noncompactness ratio. Here, the attempt is

to measure P 2

A
where, P , is the perimeter, and, A, is the area. This measure is

conjectured to be minimal for the circle where it is 4π, however, this does not help

when looking at non-convex shapes, such as those produced when approximating

the an astroid, due to the measure being optimised for convex and symmetrical

shapes.

Other ways of approximating the euclidean circle are suggested such as a perimeter

based approximation and area based approximation. With respects to are based

approximation there are two techniques used. The first is that of the inscribed

circle based approximation. This method attempts to find a sequence that gen-

erates the polygon, generated by the neighbourhood sequence, which is closest to

the polygon having the given circle as the inscribed circle. The second of these

methods is the covering circle based approximation such that polygon must be

covered by the circle. More methods are given but rely on properties distinct to

the circle and so are not discussed here.

Further, in [78], another measure of circularity is considered using three differing

methods. They formulate three approximation problems whereby the aim is to

find the neighbourhood sequence that minimises the error in each formulation.
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The problems may be informally described as the following: problem one requires

finding the neighbourhood sequence that best minimises the size of the symmetric

difference between some neighbourhood sequence at step k, given as Ak and the

Euclidean circle of radius k; the second problem attempts to find the sequence

that best minimises the complement of the neighbourhood generated by Ak with

it’s smallest inscribed circle; the third problem is a discretisation of the second

problem where an Ak must be found such that it minimises the complement with

the largest discrete disc that can be inscribed within.

It is the second of these problems from [78] that shall be explored as a method

for showing a best approximation of the astroid with combined broadcasting se-

quences. In this case the method is the most simplistic to calculate and also the

least dependent on any of the properties that are only present in the circle. As

such a more formal representation of the problem can now be posed, here, given

as, Area(H(fk(A,B))\G′k ≤ Area(H(fk′(A,B
′))\G′k′), where, fk(A,B) is the kth

polygon generated by the aggregation of the broadcasting sequences, A, which

here will be the discrete disc, r2 = 2, and the broadcasting sequence, B,B′, here

a variable which is to be optimised to find the best approximation. There is a

simple change to Gk, originally used in [78] to represent the circle of radius k, to

convert it to G′k in that G′k = {q ∈ R2 : L
2
3 (0, q) ≤ k} as simple conversion of the

metric from that of the euclidean distance, L2, to the astroid distance, L
2
3 .

The complexity of calculating these compositions for the purposes of optimisation

means that only experimental data shall be given here as a proof of validity of

the approximation of the concave metrics, which the astroid represents. As the

astroids require a rotation by 45◦ in order to match the polygon that is generated

by the aggregation, f(A,B), as defined before. In matching the point that is at the

largest euclidean distance from the origin, which for simplicity, and without loss of

generality, is considered the initial point from which all broadcasting occurs. This

point is matched to the same point on some polygon on some composition, f(A,B),

and the complement of the areas compared. The following table is produced with

this method.
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Astroid - L
2
3 moiré - fk(A,B)

Radius Min Area Radius Min Area B k Complement
17 8.5 340 17 11 461 5 5 121
17 8.5 340 17 13 753 9 8 413
17 8.5 340 17 13 873 10 9 533
18 9 382 18 16 1121 13 11 739
18 9 382 18 14 1033 16 11 651
18 9 382 18 14 1001 17 11 619
17 8.5 340 17 15 1041 37 13 701
17 8.5 340 17 16 1141 45 14 801
17 8.5 340 17 16 1093 61 14 753
17 8.5 340 17 16 1181 82 15 841

Table 6.1: Illustrating the experiments done with regards to the approxima-
tion of the astroid.

The function of aggregation must also be defined. Here the choice is moiré aggre-

gation without the modulo restriction, although, such a restriction is retained in

the images for simplicity. Such a function can now be defined as, f(Ai, Bj) = |i−j|

for the ith and jth iteration of the sequence A and B respectively. For the function

fk(A,B) where there exists some Ai and Bj such that |i− j| = k.

The min point for the L
2
3 is calculated by r

2
where r is the radius of the astroid,

the r in x
2
3 + y

2
3 = r

2
3 . The B is the second broadcasting sequence, here, given as

the r2 of the disc. Images for each of the resultant, aggregated images are given

in Table. 6.2 and Table. 6.3.
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Table 6.2: The above diagrams show the patterns generated by the aggregation
of the two discs, where one is the disc of squared radius 2 and the other is varied,
in these diagrams (from left to right and line by line) there are discs of squared

radius, 5, 9, 10 and 13.
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Table 6.3: The above diagrams show the patterns generated by the aggregation
of the two discs, where one is the disc of squared radius 2 and the other is varied,
in these diagrams (from left to right and line by line) there are discs of squared

radius, 16, 17, 37, 45, 61 and 82.
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Astroid - L
2
3 moiré - fk(A,B)

Radius Min Area Radius Min Area B k Complement
2 1 5 2 1 13 5 1 8
5 2.5 30 5 3 65 5 2 35
8 4 75 8 5 157 5 3 82
11 5.59 143 11 7 289 5 4 146
18 9 382 18 9 461 5 5 79
21 10.5 520 21 11 673 5 6 153
24 12 679 24 13 925 5 7 246
27 13.5 859 27 15 1217 5 8 358
30 15 1060 30 17 1549 5 9 489
33 16.5 1283 33 19 1921 5 10 628

Table 6.4: Illustrating the experiments done with regards to the approxima-
tion of the astroid where both A and B are fixed.

Table. 6.4 gives a series of comparisons for Area(H(fk(A,B)))\G′k. From this

table it is possible to observe that the best approximation, from those constructed,

though there is a trend towards worsening approximations as B increases, that the

simplest composition yields the best results. In this case this value for B is the disc

generated by the squared radius r2 of 5, this disc being constructed by the next

smallest squared radius that constructs a new discrete disc. The following table

now looks, again, experimentally, at how the approximation changes as k increases.

The table notes that the approximation weakens as it increases perhaps indicating

a divergence between the astroid and the polygon generated by fK(A,B).

6.6 Pattern Formations and Periodic Structures

in Z2

It is natural after observing the variety of effects that are the result of the applica-

tion of an aggregation function to look at functions which are themselves shapes

of some form. Here, functions of this form and their resultant patterns, imposed

on the grid according to their application, are given. Such functions are only re-

stricted by their symmetry, a result of the unordered nature of the tuples to be

aggregated.
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The first function, depicted in Figure. 6.8 (Left) takes the form of a discrete disc

itself, in this case one which is also represented by the discrete disc of squared

radius five. The functions here have also been increased in size and the size of

the modulo for the labels has been increased. The use of discrete discs of squared

radius 8 is important here as it constructs, in some sections of the lattice, a perfect

reproduction of the shape given in the aggregating function. The following table

describes the aggregating function and the details of the image.

Figure 6.8: (Left) Patterns generated by the aggregating function representing
the discrete disc of squared radius five and the labelling of the lattice given by
two broadcasting sequences of squared radius eight. (Right) Patterns generated
by the aggregating function representing the discrete disc of squared radius five
and the labelling of the lattice given by two broadcasting sequences, one of

squared radius 26 and the other of squared radius 36.
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Array Size: 300

Centre 1: (100,150)

Centre 2: (200,150)

Radius 1: 8

Radius 2: 8

Modular Labelling: (0,1,2,3,4,5,6)

Aggregation Function: Shown right.

Figure. 6.8 (Left)

⊕ 0 1 2 3 4 5 6

0 a a a a a a a

1 a a b b b a a

2 a b b a b b a

3 a b a a a b a

4 a b b a b b a

5 a a b b b a a

6 a a a a a a a

This reproduction of the aggregating function is not always exact. It is possible

to skew and deform the representation of the image described by altering the radii

of the circles that are used to form the underlying labelling of the lattice. The

following image, Figure. 6.8 (right) gives an example of such a deformation.

Array Size: 300

Centre 1: (100,150)

Centre 2: (200,150)

Radius 1: 26

Radius 2: 36

Modular Labelling: (0,1,2,3,4,5,6)

Aggregation Function: Shown right.

Figure. 6.8 (Right)

⊕ 0 1 2 3 4 5 6

0 a a a a a a a

1 a a b b b a a

2 a b b a b b a

3 a b a a a b a

4 a b b a b b a

5 a a b b b a a

6 a a a a a a a

The two following figures, Figure. 6.9, demonstrates changes that occur when ma-

nipulating the number of colours, changing the aggregation function and altering

the underlying tuples that generate the overall shape of the colourings.
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Figure 6.9: Patterns generated by the aggregating function represented by
the table and the labelling of the lattice given by two broadcasting sequences,
(right) both of squared radius eight (left) one of squared radius 26 and the other

of squared radius 36.

Array Size: 300

Centre 1: (100,150)

Centre 2: (200,150)

Radius 1: 8

Radius 2: 8

Modular Labelling: (0,1,2,3,4,5)

Aggregation Function: Shown right.

Figure. 6.9

⊕ 0 1 2 3 4 5

0 b b c c b b

1 b c a a c b

2 c a a a a c

3 c a a a a c

4 b c a a c b

5 b b c c b b
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Array Size: 300

Centre 1: (100,150)

Centre 2: (200,150)

Radius 1: 26

Radius 2: 36

Modular Labelling: (0,1,2,3,4,5)

Aggregation Function: Shown right.

Figure. 6.9

⊕ 0 1 2 3 4 5

0 b b c c b b

1 b c a a c b

2 c a a a a c

3 c a a a a c

4 b c a a c b

5 b b c c b b

Altering the aggregating function is clearly a powerful tool in pattern and polygon

formation. The alteration of the discs that are used as the basis of the aggregation

also show that any underlying shape generate by an aggregating function can be

skewed and otherwise altered whilst retaining the gestalt representation. Methods

of manipulating the hew and scale of the shapes that are generated through some

aggregating function may be useful to pattern recognition and detection methods

that are part of the Swarm Robotics cannon among others. Whilst altering the

aggregation function is one an interesting concept, for the purpose of pattern

formation, there is still a lot of possibility that remains when only considering the

standard moiré function. Such as can be seen in the variety of patterns that are

formed in Figure. 6.10.
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Figure 6.10: The above figure shows a number of distinct patterns that are
here generated by four different transmissions where two, one of squared radius

2 and the other of squared radius 12, are placed at two separate points.



Chapter 7

Conclusions

7.1 New Results

The thesis begins with the statement of a new and compelling model for geometric,

distributed computation as it pertains to the field of Swarm Robotics. The work

primarily concerned itself, initially, with the exposition of this model, Broadcasting

Automata, its possibilities and uses, as given by a series of algorithms, as derived

from the natural phenomena that inspired it. In the introduction the connection to

the natural phenomena are made, highlighting the elements of the physical world

that are drawn on for inspiration as well as the way in which this correlates with

Cellular Automata with which there is a strong comparison though, as has been

seem, no such equivalence. Also, the computational aspects that are drawn on

for the model are noted, with concepts taken from a variety of fields; algorithmic,

distributed, ad-hoc networking and neighbourhood sequences. This is coupled

with mathematical concepts, or formalisations of physical notions, such as moiré

patterns, superposition, discrete circle, convex polygons and Minkowski sums.

The model then aims to represent all of these constituent parts, which, once com-

bined are used to define a notion of distributed geometric computation. The

systems in defined rigorously and in a general way such that, whilst one form of

123
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this model is completely examined here, there are many more forms and gener-

alisations that can be made. It is here that not only the general foundation for

the body of work but the first exposition of the foundations of the specific model

in question is laid. The focus here is on the square lattice and which is retained

throughout the rest of the thesis.

The third chapter introduces the notion of waves more concretely as being made

of words. Combinations of words are defined to be nodal patterns and a series

of results are given about them. These include the most important to the thesis,

the situation in which there are two transmitters and two words, both the same,

with a result given pertaining to the exact number of distinct combinations. Then,

distance functions are given for the two primitive broadcasting radii, Moore and

von Neumann, and is used to show how the previously counted nodal patterns

will fall on the plane. This leads to a formulation of the patterns resultant from

two sources and an indication of the ability of the automata to recognise the

partitions that are formed by the nodal patterning. These results are given for

two dimensions and with one and two different sources.

The fourth chapter highlights the viability and uses of the Broadcasting Automata

model, elucidating a series of algorithms, a translation from a Cellular Automata

algorithm in the form of the Firing Squad Synchronisation Problem, methods for

locating the centre of a circle from any point on its edge which is of interest both

to the fields of distributed and geometric computation as well as Swarm Robotics.

These are also supported by a series of ‘helper’ algorithms designed to embellish

the basic principles already in force and remove some of the limitations in the

model that may be considered reusable or necessary in many other algorithms.

The main result of this chapter is the algorithm for the location of the centre of

the digital disc where the initial transmitter is located on the edge of the disc. The

algorithm uses all of the techniques discussed in the previous chapter, that utilise

nodal patterns, to locate the centre of the disc through distributed, geometric

computations.
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The variation of the broadcasting radius, which generates a discrete disc, provides

a great many resultant shapes which must be studied in order to fully understand

the Broadcasting Automata model. With this study required, and in mind, the

fifth chapter begins with the analysis of the discrete disc. After the prerequisite

notions of chain coding are dealt with, where such results are considered important

with respects to the number of automata that are encompassed by the discrete

disc and that the resulting shape affords control of such aspects as the resultant

patterning on the plane, the angles and number of partitions and the shape of the

polygon that is formed.

The final set of results pertain to the ability to compose the discrete discs giving

an algorithm that is linear in time, after a further series of categorisation of the

discrete disc that leads to the proof of this notion. The set of gradients that it is

possible to construct with the set of natural discrete discs is given and shown to

be incomplete and closed under composition.

Given the limitations of neighbourhood sequences it is shown that it is interest-

ing, that is, that it is possible, to use the notion of aggregation to remove such

perceived restrictions by allowing the generation of a series of new angles. These

new angles are shown to allow the construction of convex polygons which were

clearly impossible before and formula and results pertaining to the two important

aggregation function moiré and anti-moiré. This notion is then used to develop a

construction which is able to approximate the convex metric, the astroid, where

metric approximation was one of the main sections of research in the area of

neighbourhood sequences.

Finally a brief experimental exploration of the possibilities of the variety of re-

sultant patterns that can be produced by the infinite combinations of discrete

disc size, placement and composition can afford when paired with any of the, also

infinite, aggregating functions.
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7.2 Considerations for Further Work

As a large part of the body of this work is dedicated to foundations of a model

that is only partially explored here in detail there is a great deal of work left open.

As noted in Chapter 2, which discusses the model, the model can be extended to

any of the common or uncommon lattices of which, for two common lattices, the

hexagonal and triangular lattices, some work, in the form of neighbourhood se-

quences and the approximation of Euclidean metrics within those various models

[40, 79, 80]. Such work means that this would be a viable extension to the Broad-

casting Automata model for pattern formation and partitioning considerations

and it may even suggest that the aggregation of such neighbourhood sequences

may improve the approximations that have already been obtained for Euclidean

distance or even, as has been shown in this thesis, to allow the approximation of

metrics that weren’t possible before.

Further to the exploration of different grids in two dimensions is the exploration

of the square grid, as can be seen elucidated throughout this thesis, is the explo-

ration of the square grid in three dimensions and what this means to the patterns

and algorithms that have been demonstrated here, to some degree this has been

considered in neighbourhood sequences [36] and so could be considered a viable ex-

tension. Naturally such considerations could also be extended to three dimensional

interpretations of the various lattices that may be formed in the three dimensional

Euclidean space. Exploration of these ideas would lead to new categorisations of

the shapes defined by broadcast of various radii and the definition of composition

that may be formed in those models. Further to the expansion of the various forms

of lattices and transmission radii it is also possible to explore that model on graphs

which may be of any form. Complications of this approach will most likely stem

from Broadcasting Automata’s exploitation of the underlying arrangement of the

structure that messages will be passed through. Graphs, especially those that are

random, are not necessarily constructed in such a way that it may be exploited to

from resultant geometric forms from the embedding in the plane. All such models
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may be used to explore questions of metrics and approximations and indeed such

questions will all add to the robustness of the Broadcasting Automata model.

Whilst the structure that underpins the organisation of Broadcasting Automata

is, as has been exposed in this thesis, central to the concept and uses of the

model, as important is the notion of aggregation of the messages that are broadcast

throughout the system. Whilst a brief inspection of the addition function has been

discussed here giving concrete combinatorial results on the number of distinct

combination this area, is again, vast. There are many more problems that could

be assessed here with respects to exact bounds for a variety of functions, words and

number of transmitters. As previously suggested some such general considerations

within this area can be seen in work by the name of additive combinatorics[68].

With the preceding in mind a combination of the two, analysing the resulting

partitions that are formed by the various discrete metrics imposed by the trans-

missions and the resultant patterns formed within those partitions would also be

something worth considering.

Aside from the exploration of the many different permutations of the model there

are the considerations of the applications. The model naturally lends itself to the

construction of fast, parallel algorithms that are attempting to tackle geometric

problems. In this nature problems such as the convex hull problem, where the

smallest convex set that encloses some collection of points, where, perhaps the

points could be pre-elected transmitter. Another problem is that of constructing

a Voronoi diagram where the aim is to construct the corresponding Voronoi cell

for each point such that the set of all points in the given space whose distance to

the given object is not greater than their distance to the other objects. Both such

algorithms would also be useful addition to the algorithms with regards to their

usefulness in the field of Swarm Robotics.

By the very nature of the project, in that it has presented a model in a new light,

with aims to examine its plausibility and efficacy, which have been detailed, the

scope for further work is unbounded. In this way it is only the hopes of this thesis

to begin an elucidation of the possibilities that are presented by Broadcasting
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Automata and it is hoped that it will be much help to the further exposition of

the concepts presented here.
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