
Efficient Sequential Algorithms, Comp309

University of Liverpool

2010–2011
Module Organiser, Igor Potapov

Part 1: Algorithmic Paradigms

References: T. H. Cormen, C. E. Leiserson, R. L. Rivest
Introduction to Algorithms, Second Edition. MIT Press
(2001). "Activity Selection" and "Matrix Chain Multiplication"
"All-pairs shortest paths"

1 / 99

Problems

A computational problem is associated with a function from
instances to feasible solutions.

For example, in satisfiability problems, instances are Boolean
formulas, and solutions are satisfying assignments.

2 / 99

Problems

A computational problem is associated with a function from
instances to feasible solutions.

For example, in satisfiability problems, instances are Boolean
formulas, and solutions are satisfying assignments.

2 / 99

A Boolean formula is an expression like

(x25 ∧ x12) ∨ ¬(¬x70 ∨ (¬x3 ∧ x34))

built up from the elements xi called propositional variables, a
finite set of connectives (usually including ∧, ∨ and ¬) and
brackets.

An assignment of the truth-values true and false to the
variables is satisfying if it makes the formula evaluate to true.

3 / 99

A Boolean formula is an expression like

(x25 ∧ x12) ∨ ¬(¬x70 ∨ (¬x3 ∧ x34))

built up from the elements xi called propositional variables, a
finite set of connectives (usually including ∧, ∨ and ¬) and
brackets.

An assignment of the truth-values true and false to the
variables is satisfying if it makes the formula evaluate to true.

3 / 99

A computational problem requires us to take as input an
instance, and compute some information about the set of
feasible solutions associated with the instance.

A decision problem (also known as an existence problem) asks
the following question:

Is there any feasible solution for the given instance?

For example, the decision problem SAT is defined as follows
Instance: A Boolean formula F
Question: Does F have a satisfying assignment?

4 / 99

A computational problem requires us to take as input an
instance, and compute some information about the set of
feasible solutions associated with the instance.

A decision problem (also known as an existence problem) asks
the following question:

Is there any feasible solution for the given instance?

For example, the decision problem SAT is defined as follows
Instance: A Boolean formula F
Question: Does F have a satisfying assignment?

4 / 99

A computational problem requires us to take as input an
instance, and compute some information about the set of
feasible solutions associated with the instance.

A decision problem (also known as an existence problem) asks
the following question:

Is there any feasible solution for the given instance?

For example, the decision problem SAT is defined as follows
Instance: A Boolean formula F
Question: Does F have a satisfying assignment?

4 / 99

Another type of decision problem (which will be referred to as
the membership problem) answers the question:

Is some set of data Y a feasible solution for the given
instance?

5 / 99

Several other types of problems are definable in this setting.

1 In a construction problem the goal is to find a feasible
solution for the given instance.

2 In a listing problem the goal is to list all feasible solutions
for the given instance.

3 In an optimisation problem we associate a numeric value
with every pair (x , y) containing a problem instance x and
a feasible solution y . The goal, given an instance x , is to
find a solution y for which the value is optimised. That is,
the value should be either as large as possible for the
given instance x (in a maximisation problem) or as small
as possible (in a minimisation problem).

4 In a counting problem, the goal is to determine the number
of feasbile solutions associated with the given instance.

6 / 99

Several other types of problems are definable in this setting.

1 In a construction problem the goal is to find a feasible
solution for the given instance.

2 In a listing problem the goal is to list all feasible solutions
for the given instance.

3 In an optimisation problem we associate a numeric value
with every pair (x , y) containing a problem instance x and
a feasible solution y . The goal, given an instance x , is to
find a solution y for which the value is optimised. That is,
the value should be either as large as possible for the
given instance x (in a maximisation problem) or as small
as possible (in a minimisation problem).

4 In a counting problem, the goal is to determine the number
of feasbile solutions associated with the given instance.

6 / 99

Several other types of problems are definable in this setting.

1 In a construction problem the goal is to find a feasible
solution for the given instance.

2 In a listing problem the goal is to list all feasible solutions
for the given instance.

3 In an optimisation problem we associate a numeric value
with every pair (x , y) containing a problem instance x and
a feasible solution y . The goal, given an instance x , is to
find a solution y for which the value is optimised. That is,
the value should be either as large as possible for the
given instance x (in a maximisation problem) or as small
as possible (in a minimisation problem).

4 In a counting problem, the goal is to determine the number
of feasbile solutions associated with the given instance.

6 / 99

Several other types of problems are definable in this setting.

1 In a construction problem the goal is to find a feasible
solution for the given instance.

2 In a listing problem the goal is to list all feasible solutions
for the given instance.

3 In an optimisation problem we associate a numeric value
with every pair (x , y) containing a problem instance x and
a feasible solution y . The goal, given an instance x , is to
find a solution y for which the value is optimised. That is,
the value should be either as large as possible for the
given instance x (in a maximisation problem) or as small
as possible (in a minimisation problem).

4 In a counting problem, the goal is to determine the number
of feasbile solutions associated with the given instance.

6 / 99

Review questions

1 Define a natural counting problem associated with Boolean
formulae.

2 Define a maximisation problem associated with Boolean
formulae.

7 / 99

Example

Let S be a string of text representing a query (e.g. S ≡
“Efficient algorithms” or “Liverpool players”) and
W = {W1,W2, . . .} be the collection of all web pages indexed
by a particular search engine.

The web search problem (S,W) is that of retrieving all web
pages Wi containing the string S.

It is a listing problem.

8 / 99

Greedy Algorithms
We consider optimisation problems. Algorithms for optimisation
problems typically go through a sequence of steps, with a set of
choices at each step.

A greedy algorithm is a process that always
makes the choice that looks best at the mo-
ment.

Greedy algorithms are natural. In a few cases they produce an
optimal solution.

We will look at one simple example and we will try to
understand why it works.

We will consider more examples later.

9 / 99

Greedy Algorithms
We consider optimisation problems. Algorithms for optimisation
problems typically go through a sequence of steps, with a set of
choices at each step.

A greedy algorithm is a process that always
makes the choice that looks best at the mo-
ment.

Greedy algorithms are natural. In a few cases they produce an
optimal solution.

We will look at one simple example and we will try to
understand why it works.

We will consider more examples later.

9 / 99

Greedy Algorithms
We consider optimisation problems. Algorithms for optimisation
problems typically go through a sequence of steps, with a set of
choices at each step.

A greedy algorithm is a process that always
makes the choice that looks best at the mo-
ment.

Greedy algorithms are natural. In a few cases they produce an
optimal solution.

We will look at one simple example and we will try to
understand why it works.

We will consider more examples later.

9 / 99

Greedy Algorithms
We consider optimisation problems. Algorithms for optimisation
problems typically go through a sequence of steps, with a set of
choices at each step.

A greedy algorithm is a process that always
makes the choice that looks best at the mo-
ment.

Greedy algorithms are natural. In a few cases they produce an
optimal solution.

We will look at one simple example and we will try to
understand why it works.

We will consider more examples later.

9 / 99

Greedy Algorithms
We consider optimisation problems. Algorithms for optimisation
problems typically go through a sequence of steps, with a set of
choices at each step.

A greedy algorithm is a process that always
makes the choice that looks best at the mo-
ment.

Greedy algorithms are natural. In a few cases they produce an
optimal solution.

We will look at one simple example and we will try to
understand why it works.

We will consider more examples later.

9 / 99

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

10 / 99

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

10 / 99

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

10 / 99

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

10 / 99

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

10 / 99

Activity-selection problem
We are given a set S of proposed activities that wish to use a
resource. The resource can only be used for one activity at a
time.

Each activity A ∈ S is defined by a pair consisting of a start
time s(A) and a finish time f (A). The start time s(A) is a
non-negative number, and the finish time f (A) is larger than
s(A).

If selected, activity A takes place during the time interval
[s(A), f (A)).

Two activities A and A′ are compatible if s(A) ≥ f (A′) or
s(A′) ≥ f (A).

The activity-selection problem is to select the maximum number
of mutually compatible activities.

11 / 99

Activity-selection problem
We are given a set S of proposed activities that wish to use a
resource. The resource can only be used for one activity at a
time.

Each activity A ∈ S is defined by a pair consisting of a start
time s(A) and a finish time f (A). The start time s(A) is a
non-negative number, and the finish time f (A) is larger than
s(A).

If selected, activity A takes place during the time interval
[s(A), f (A)).

Two activities A and A′ are compatible if s(A) ≥ f (A′) or
s(A′) ≥ f (A).

The activity-selection problem is to select the maximum number
of mutually compatible activities.

11 / 99

Activity-selection problem
We are given a set S of proposed activities that wish to use a
resource. The resource can only be used for one activity at a
time.

Each activity A ∈ S is defined by a pair consisting of a start
time s(A) and a finish time f (A). The start time s(A) is a
non-negative number, and the finish time f (A) is larger than
s(A).

If selected, activity A takes place during the time interval
[s(A), f (A)).

Two activities A and A′ are compatible if s(A) ≥ f (A′) or
s(A′) ≥ f (A).

The activity-selection problem is to select the maximum number
of mutually compatible activities.

11 / 99

Activity-selection problem
We are given a set S of proposed activities that wish to use a
resource. The resource can only be used for one activity at a
time.

Each activity A ∈ S is defined by a pair consisting of a start
time s(A) and a finish time f (A). The start time s(A) is a
non-negative number, and the finish time f (A) is larger than
s(A).

If selected, activity A takes place during the time interval
[s(A), f (A)).

Two activities A and A′ are compatible if s(A) ≥ f (A′) or
s(A′) ≥ f (A).

The activity-selection problem is to select the maximum number
of mutually compatible activities.

11 / 99

Activity-selection problem
We are given a set S of proposed activities that wish to use a
resource. The resource can only be used for one activity at a
time.

Each activity A ∈ S is defined by a pair consisting of a start
time s(A) and a finish time f (A). The start time s(A) is a
non-negative number, and the finish time f (A) is larger than
s(A).

If selected, activity A takes place during the time interval
[s(A), f (A)).

Two activities A and A′ are compatible if s(A) ≥ f (A′) or
s(A′) ≥ f (A).

The activity-selection problem is to select the maximum number
of mutually compatible activities.

11 / 99

Example

A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

s(A) 44 7 37 83 27 49 16 44 44 58 27 26
f (A) 86 25 96 89 84 62 17 70 84 94 79 57

12 / 99

Two possible solutions (the columns marked by a “*”
correspond to activities picked in the particular solution).

A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

s(A) 44 7 37 83 27 49 16 44 44 58 27 26
f (A) 86 25 96 89 84 62 17 70 84 94 79 57

* *

A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

s(A) 44 7 37 83 27 49 16 44 44 58 27 26
f (A) 86 25 96 89 84 62 17 70 84 94 79 57

* * *

13 / 99

Open issues

How well can we do?

In a real life situation, there may be hundreds of activities.
Suppose that our program, when run on a particular input,
returns 50 activities. Is this best-possible? Is it good enough?

We would like to be able argue that our program is “certified” to
produce the best possible answer. That is, we’d like to have a
mathematical proof that the program returns the best-possible
answer.

14 / 99

Open issues

How well can we do?

In a real life situation, there may be hundreds of activities.
Suppose that our program, when run on a particular input,
returns 50 activities. Is this best-possible? Is it good enough?

We would like to be able argue that our program is “certified” to
produce the best possible answer. That is, we’d like to have a
mathematical proof that the program returns the best-possible
answer.

14 / 99

Open issues

How well can we do?

In a real life situation, there may be hundreds of activities.
Suppose that our program, when run on a particular input,
returns 50 activities. Is this best-possible? Is it good enough?

We would like to be able argue that our program is “certified” to
produce the best possible answer. That is, we’d like to have a
mathematical proof that the program returns the best-possible
answer.

14 / 99

Example of Real Life Application
“Time-dependent web browsing”

The access speeds to particular sites on the World Wide Web
can vary depending on the time of access.

Access rates for USA and Asia over 24 hours. (Derived from data

posted by the Anderson News Network

www.internettrafficreport.com)
15 / 99

A single central computer (e.g. a search engine server) collects
all the information stored in a certain number of web
documents, located at various sites.

The information is gathered by scheduling a number of
consecutive client/server TCP connections with the required
web sites.

We assume that the loading time of any particular page from
any site may be different at different times, e.g. the access to
the page is much slower in peak hours than in off-peak hours.

Having a list of pages to be collected along with some
information about the access time at any given instant, the goal
is to download as many pages as possible.

16 / 99

A single central computer (e.g. a search engine server) collects
all the information stored in a certain number of web
documents, located at various sites.

The information is gathered by scheduling a number of
consecutive client/server TCP connections with the required
web sites.

We assume that the loading time of any particular page from
any site may be different at different times, e.g. the access to
the page is much slower in peak hours than in off-peak hours.

Having a list of pages to be collected along with some
information about the access time at any given instant, the goal
is to download as many pages as possible.

16 / 99

A single central computer (e.g. a search engine server) collects
all the information stored in a certain number of web
documents, located at various sites.

The information is gathered by scheduling a number of
consecutive client/server TCP connections with the required
web sites.

We assume that the loading time of any particular page from
any site may be different at different times, e.g. the access to
the page is much slower in peak hours than in off-peak hours.

Having a list of pages to be collected along with some
information about the access time at any given instant, the goal
is to download as many pages as possible.

16 / 99

A single central computer (e.g. a search engine server) collects
all the information stored in a certain number of web
documents, located at various sites.

The information is gathered by scheduling a number of
consecutive client/server TCP connections with the required
web sites.

We assume that the loading time of any particular page from
any site may be different at different times, e.g. the access to
the page is much slower in peak hours than in off-peak hours.

Having a list of pages to be collected along with some
information about the access time at any given instant, the goal
is to download as many pages as possible.

16 / 99

Typical input for this problem can be a sequence of tables like
the following (times are GMT), one for each remote web site

t2 0.30 0.47

t24 11.30 12.29

t25 12.00 13.13

t1 0.00 0.15

t4 1.30 2.06

t3 1.00 1.35

www.one.com

17 / 99

It is an optimisation problem.

The set of instances coincides with the set of all possible
groups of activities (in tabular form).

A solution is a set of compatible activities.

The value of a solution is its size (or cardinality), and we are
seeking a maximum cardinality solution.

This is like the activity selection problem if we make two
simplifying assumptions: (1) we keep only the best access
period for each web site. (2) we assume that the download
happens only once (rather than repeatedly) and the goal is to
collect as many sites as possible.

18 / 99

It is an optimisation problem.

The set of instances coincides with the set of all possible
groups of activities (in tabular form).

A solution is a set of compatible activities.

The value of a solution is its size (or cardinality), and we are
seeking a maximum cardinality solution.

This is like the activity selection problem if we make two
simplifying assumptions: (1) we keep only the best access
period for each web site. (2) we assume that the download
happens only once (rather than repeatedly) and the goal is to
collect as many sites as possible.

18 / 99

It is an optimisation problem.

The set of instances coincides with the set of all possible
groups of activities (in tabular form).

A solution is a set of compatible activities.

The value of a solution is its size (or cardinality), and we are
seeking a maximum cardinality solution.

This is like the activity selection problem if we make two
simplifying assumptions: (1) we keep only the best access
period for each web site. (2) we assume that the download
happens only once (rather than repeatedly) and the goal is to
collect as many sites as possible.

18 / 99

It is an optimisation problem.

The set of instances coincides with the set of all possible
groups of activities (in tabular form).

A solution is a set of compatible activities.

The value of a solution is its size (or cardinality), and we are
seeking a maximum cardinality solution.

This is like the activity selection problem if we make two
simplifying assumptions: (1) we keep only the best access
period for each web site. (2) we assume that the download
happens only once (rather than repeatedly) and the goal is to
collect as many sites as possible.

18 / 99

It is an optimisation problem.

The set of instances coincides with the set of all possible
groups of activities (in tabular form).

A solution is a set of compatible activities.

The value of a solution is its size (or cardinality), and we are
seeking a maximum cardinality solution.

This is like the activity selection problem if we make two
simplifying assumptions: (1) we keep only the best access
period for each web site. (2) we assume that the download
happens only once (rather than repeatedly) and the goal is to
collect as many sites as possible.

18 / 99

Greedy algorithm for activity selection

1 Input S, the set of available activities.
2 Choose the activity A ∈ S with the earliest finish time.
3 Form a sub-problem S′ from S by removing A and

removing any activities that are incompatible with A.
4 Recursively choose a set of activities X ′ from S′.
5 Output the activity A together with the activities in X ′.

19 / 99

Greedy algorithm for activity selection

GREEDY-ACTIVITY-SELECTOR (S)
If S = ∅ Return ∅
Else

A← first activity in list S
For every other A′ ∈ S

If f (A′) < f (A)
A← A′

S′ ← ∅
For every A′ ∈ S

If s(A) ≥ f (A′) or s(A′) ≥ f (A)
S′ ← S′ ∪ {A′}

X ′ ← GREEDY-ACTIVITY-SELECTOR (S′)
X ← {A} ∪ X ′

Return X

20 / 99

Implementation

Represent S with a data structure such as a linked list. Each
list item corresponds to an activity A which has associated data
s(A) and f (A).

21 / 99

Example

Let’s simulate the algorithm.

S
A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

s(A) 44 7 37 83 27 49 16 44 44 58 27 26
f (A) 86 25 96 89 84 62 17 70 84 94 79 57

A = A7

S′
A A1 A3 A4 A5 A6 A8 A9 A10 A11 A12

s(A) 44 37 83 27 49 44 44 58 27 26
f (A) 86 96 89 84 62 70 84 94 79 57

Select A7 and the following. . .

22 / 99

Example

Let’s simulate the algorithm.

S
A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

s(A) 44 7 37 83 27 49 16 44 44 58 27 26
f (A) 86 25 96 89 84 62 17 70 84 94 79 57

A = A7

S′
A A1 A3 A4 A5 A6 A8 A9 A10 A11 A12

s(A) 44 37 83 27 49 44 44 58 27 26
f (A) 86 96 89 84 62 70 84 94 79 57

Select A7 and the following. . .

22 / 99

Example

Let’s simulate the algorithm.

S
A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

s(A) 44 7 37 83 27 49 16 44 44 58 27 26
f (A) 86 25 96 89 84 62 17 70 84 94 79 57

A = A7

S′
A A1 A3 A4 A5 A6 A8 A9 A10 A11 A12

s(A) 44 37 83 27 49 44 44 58 27 26
f (A) 86 96 89 84 62 70 84 94 79 57

Select A7 and the following. . .

22 / 99

Example

Let’s simulate the algorithm.

S
A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

s(A) 44 7 37 83 27 49 16 44 44 58 27 26
f (A) 86 25 96 89 84 62 17 70 84 94 79 57

A = A7

S′
A A1 A3 A4 A5 A6 A8 A9 A10 A11 A12

s(A) 44 37 83 27 49 44 44 58 27 26
f (A) 86 96 89 84 62 70 84 94 79 57

Select A7 and the following. . .

22 / 99

Continuing the Simulation

A A1 A3 A4 A5 A6 A8 A9 A10 A11 A12

s(A) 44 37 83 27 49 44 44 58 27 26
f (A) 86 96 89 84 62 70 84 94 79 57

A = A12

A A4 A10

s(A) 83 58
f (A) 89 94

Select A12 and the following. . .

23 / 99

Continuing the Simulation

A A1 A3 A4 A5 A6 A8 A9 A10 A11 A12

s(A) 44 37 83 27 49 44 44 58 27 26
f (A) 86 96 89 84 62 70 84 94 79 57

A = A12

A A4 A10

s(A) 83 58
f (A) 89 94

Select A12 and the following. . .

23 / 99

Continuing the Simulation

A A1 A3 A4 A5 A6 A8 A9 A10 A11 A12

s(A) 44 37 83 27 49 44 44 58 27 26
f (A) 86 96 89 84 62 70 84 94 79 57

A = A12

A A4 A10

s(A) 83 58
f (A) 89 94

Select A12 and the following. . .

23 / 99

Continuing the Simulation

A A4 A10

s(A) 83 58
f (A) 89 94

A = A4

A
s(A)
f (A)

Select A4 and (nothing else. . .)

24 / 99

Continuing the Simulation

A A4 A10

s(A) 83 58
f (A) 89 94

A = A4

A
s(A)
f (A)

Select A4 and (nothing else. . .)

24 / 99

Continuing the Simulation

A A4 A10

s(A) 83 58
f (A) 89 94

A = A4

A
s(A)
f (A)

Select A4 and (nothing else. . .)

24 / 99

Our algorithm returned the following solution

A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

s(A) 44 7 37 83 27 49 16 44 44 58 27 26
f (A) 86 25 96 89 84 62 17 70 84 94 79 57

output? X X X

25 / 99

Another example: Time-dependent web browsing

(simplified version)

site A 1 2 3 4 5 6 7 8 9 10 11 12
s(A) 9.15 7.42 10.00 11.54 9.17 9.47 7.34 8.16 8.36 10.45 11.53 11.05
f (A) 9.35 7.49 11.34 12.52 9.57 10.19 8.51 9.23 9.25 10.56 12.30 12.16

26 / 99

Time complexity
Claim. The time complexity of GREEDY-ACTIVITY-SELECTOR is
O(n2), where n = |S|.

Choosing A takes O(n) time.
Constructing S′ takes O(n) time.
The rest of the algorithm takes O(1) time, except for the
recursive call on S′.
But |S′| ≤ n − 1.

T (n) = cn + T (n − 1)

= cn + c(n − 1) + T (n − 2)

= · · ·

= c(n + (n − 1) + (n − 2) + · · ·+ 0)

27 / 99

Time complexity
Claim. The time complexity of GREEDY-ACTIVITY-SELECTOR is
O(n2), where n = |S|.

Choosing A takes O(n) time.
Constructing S′ takes O(n) time.
The rest of the algorithm takes O(1) time, except for the
recursive call on S′.
But |S′| ≤ n − 1.

T (n) = cn + T (n − 1)

= cn + c(n − 1) + T (n − 2)

= · · ·

= c(n + (n − 1) + (n − 2) + · · ·+ 0)

27 / 99

Time complexity
Claim. The time complexity of GREEDY-ACTIVITY-SELECTOR is
O(n2), where n = |S|.

Choosing A takes O(n) time.
Constructing S′ takes O(n) time.
The rest of the algorithm takes O(1) time, except for the
recursive call on S′.
But |S′| ≤ n − 1.

T (n) = cn + T (n − 1)

= cn + c(n − 1) + T (n − 2)

= · · ·

= c(n + (n − 1) + (n − 2) + · · ·+ 0)

27 / 99

Time complexity
Claim. The time complexity of GREEDY-ACTIVITY-SELECTOR is
O(n2), where n = |S|.

Choosing A takes O(n) time.
Constructing S′ takes O(n) time.
The rest of the algorithm takes O(1) time, except for the
recursive call on S′.
But |S′| ≤ n − 1.

T (n) = cn + T (n − 1)

= cn + c(n − 1) + T (n − 2)

= · · ·

= c(n + (n − 1) + (n − 2) + · · ·+ 0)

27 / 99

Time complexity
Claim. The time complexity of GREEDY-ACTIVITY-SELECTOR is
O(n2), where n = |S|.

Choosing A takes O(n) time.
Constructing S′ takes O(n) time.
The rest of the algorithm takes O(1) time, except for the
recursive call on S′.
But |S′| ≤ n − 1.

T (n) = cn + T (n − 1)

= cn + c(n − 1) + T (n − 2)

= · · ·

= c(n + (n − 1) + (n − 2) + · · ·+ 0)

27 / 99

Time complexity
Claim. The time complexity of GREEDY-ACTIVITY-SELECTOR is
O(n2), where n = |S|.

Choosing A takes O(n) time.
Constructing S′ takes O(n) time.
The rest of the algorithm takes O(1) time, except for the
recursive call on S′.
But |S′| ≤ n − 1.

T (n) = cn + T (n − 1)

= cn + c(n − 1) + T (n − 2)

= · · ·

= c(n + (n − 1) + (n − 2) + · · ·+ 0)

27 / 99

Digression:
1 + 2 + · · ·+ n =?

28 / 99

1 + 2 + · · ·+ n =
n(n + 1)

2

How would you prove it?

29 / 99

How can we speed up the algorithm?

GREEDY-ACTIVITY-SELECTOR (S)
If S = ∅ Return ∅
Else

A← first activity in list S
For every other A′ ∈ S

If f (A′) < f (A)
A← A′

S′ ← ∅
For every A′ ∈ S

If s(A) ≥ f (A′) or s(A′) ≥ f (A)
S′ ← S′ ∪ {A′}

X ′ ← GREEDY-ACTIVITY-SELECTOR (S′)
X ← {A} ∪ X ′

Return X

Sort the items in S in order of increasing finishing time. Then
we can always take A to be the first element of S.

30 / 99

How can we speed up the algorithm?

GREEDY-ACTIVITY-SELECTOR (S)
If S = ∅ Return ∅
Else

A← first activity in list S
For every other A′ ∈ S

If f (A′) < f (A)
A← A′

S′ ← ∅
For every A′ ∈ S

If s(A) ≥ f (A′) or s(A′) ≥ f (A)
S′ ← S′ ∪ {A′}

X ′ ← GREEDY-ACTIVITY-SELECTOR (S′)
X ← {A} ∪ X ′

Return X

Sort the items in S in order of increasing finishing time. Then
we can always take A to be the first element of S.

30 / 99

If S is sorted in order of increasing finishing time

GREEDY-ACTIVITY-SELECTOR (S)
If S = ∅ Return ∅
Else

A← first activity in list S
S′ ← ∅
For every A′ ∈ S

If s(A) ≥ f (A′) or s(A′) ≥ f (A)
S′ ← S′ ∪ {A′}

X ′ ← GREEDY-ACTIVITY-SELECTOR (S′)
X ← {A} ∪ X ′

Return X

A′ is incompatible with A unless it starts after A finishes.

When we construct S′ we throw out the first few elements of S until

we finally reach an activity A′ that is compatible with A. It turns out

that, we can just take S′ to be A′ and all items after it in S. 31 / 99

If S is sorted in order of increasing finishing time

GREEDY-ACTIVITY-SELECTOR (S)
If S = ∅ Return ∅
Else

A← first activity in list S
S′ ← ∅
For every A′ ∈ S

If s(A) ≥ f (A′) or s(A′) ≥ f (A)
S′ ← S′ ∪ {A′}

X ′ ← GREEDY-ACTIVITY-SELECTOR (S′)
X ← {A} ∪ X ′

Return X

A′ is incompatible with A unless it starts after A finishes.

When we construct S′ we throw out the first few elements of S until

we finally reach an activity A′ that is compatible with A. It turns out

that, we can just take S′ to be A′ and all items after it in S. 31 / 99

So the algorithm can be written in such a way that it takes
O(n log n) time, for sorting S, followed by O(n) time for the
greedy algorithm.

32 / 99

Correctness

Greedy algorithm for activity selection

1 Input S, the set of available activities.
2 Choose the activity A ∈ S with the earliest finish time.
3 Form a sub-problem S′ from S by removing A and

removing any activities that are incompatible with A.
4 Recursively choose a set of activities X ′ from S′.
5 Output the activity A together with the activities in X ′.

This algorithm always produces an optimal activity selection,
that is, an activity selection of maximum size

33 / 99

The activity-selection problem has two properties

The Greedy Choice Property: Let S be a set of activities and
let A be an activity in S with earliest finish time. There is an
optimal selection of activities X for S that contains A.

The Recursive Property: An optimal selection of activities for S
that contains A can be found from any optimal solution of the
smaller problem instance S′: In particular, if X ′′ is an optimal
solution for S′ then X ′′ ∪ {A} is best amongst feasible solutions
for S that contain A.

34 / 99

Proof of Correctness

Proof by induction on n, the number of activities in S.

Base cases: n = 0 or n = 1.

Inductive step. Assuming that the algorithm is optimal with
inputs of size at most n − 1, we must prove that it returns an
optimal solution with an input of size n.

Let S be an instance with |S| = n. Let A be the activity chosen
by the algorithm. By the Greedy Choice property, there is an
optimal solution containing A. By the Recursive property, we
can construct an optimal solution for S by combining A with an
optimal solution X ′ for S′. But by induction, the algorithm does
return an optimal solution X ′ for S′.

35 / 99

Proof of Correctness

Proof by induction on n, the number of activities in S.

Base cases: n = 0 or n = 1.

Inductive step. Assuming that the algorithm is optimal with
inputs of size at most n − 1, we must prove that it returns an
optimal solution with an input of size n.

Let S be an instance with |S| = n. Let A be the activity chosen
by the algorithm. By the Greedy Choice property, there is an
optimal solution containing A. By the Recursive property, we
can construct an optimal solution for S by combining A with an
optimal solution X ′ for S′. But by induction, the algorithm does
return an optimal solution X ′ for S′.

35 / 99

Proving the Greedy Choice property

The Greedy Choice Property: Let S be a set of activities and
let A be an activity in S with earliest finish time. There is an
optimal selection of activities X for S that contains A.

Proof:

Suppose X ⊆ S is an optimal solution. Suppose A′ is the
activity in X with the smallest finish time. If A = A′ we are done
(because we have found an optimal selection containing A).
Otherwise, we could replace A′ with A in X and obtain another
solution X ′ with the same number of activities as X . Then X ′ is
an optimal solution containing A.

36 / 99

Proving the Recursive Property

Suppose that X ′′ is an optimal solution to S′. We have to show
that X ′′ ∪ {A} has as many activities as possible, amongst
feasible solutions for S that contain A.

Suppose for contradiction that there was some better solutoin
{A} ∪ Y ′ for S. Then Y ′ would be a better solution for S′ than
the supposedly-optimal X ′′, giving a contradiction.

37 / 99

General Properties of a recursive greedy solution

A simple recursive greedy algorithm produces an optimal
answer if the following properties are true.

The Greedy Choice Property: For every instance, there is an
optimal solution consistent with the first greedy choice.

The Recursive Property: For every instance S of the problem
there is a smaller instance S′ such that, using any optimal
solution to S′, one obtains a best-possible solution for S
amongst all solutions that are consistent with the greedy choice.

38 / 99

Another example

A A1 A2 A3 A4 A5 A6 A7
s(A) 1 1 5 8 7 11 3
f (A) 2 4 6 9 10 12 13

(to speed things up activities are already sorted by
non-decreasing finish time).

39 / 99

A related problem

Weighted Activity-selection problem.

Suppose that each activity A ∈ S has a positive integer value
w(A).

The weighted activity-selection problem is to select a number of
mutually compatible activities of the largest possible total
weight.

You can think of w(A) as the profit gained from doing activity A.

40 / 99

How would you solve the problem?

An example...

3

A

1A

A

2

2

1

2

41 / 99

One more example

3

1

2A

A

A 2

5

2

42 / 99

... and again

A

2A

A1

3

2

4.2

2

43 / 99

Remarks

No (optimal) greedy algorithm is known for the Weighted
Activity Selection problem.

The Greedy Choice property seems to fail! An activity that ends
earliest is not guaranteed to be included in an optimal solution.

Note that proving that a greedy algorithm does not work is
much easier than proving that it does work — you just need to
provide an input on which it is not optimal.

Digression: Let’s look at another example where a greedy
algorithm does not work.

44 / 99

Remarks

No (optimal) greedy algorithm is known for the Weighted
Activity Selection problem.

The Greedy Choice property seems to fail! An activity that ends
earliest is not guaranteed to be included in an optimal solution.

Note that proving that a greedy algorithm does not work is
much easier than proving that it does work — you just need to
provide an input on which it is not optimal.

Digression: Let’s look at another example where a greedy
algorithm does not work.

44 / 99

Remarks

No (optimal) greedy algorithm is known for the Weighted
Activity Selection problem.

The Greedy Choice property seems to fail! An activity that ends
earliest is not guaranteed to be included in an optimal solution.

Note that proving that a greedy algorithm does not work is
much easier than proving that it does work — you just need to
provide an input on which it is not optimal.

Digression: Let’s look at another example where a greedy
algorithm does not work.

44 / 99

Remarks

No (optimal) greedy algorithm is known for the Weighted
Activity Selection problem.

The Greedy Choice property seems to fail! An activity that ends
earliest is not guaranteed to be included in an optimal solution.

Note that proving that a greedy algorithm does not work is
much easier than proving that it does work — you just need to
provide an input on which it is not optimal.

Digression: Let’s look at another example where a greedy
algorithm does not work.

44 / 99

In CS202, you considered the Fractional Knapsack Problem.
The input was a set of n items, in which the i th item has benefit
bi ≥ 0 and weight wi ≥ 0. Also a weight limit W .

In the output, we choose a portion xi of item i (0 ≤ xi ≤ wi) so
total weight is

∑
i xi ≤W . Maximise

∑
i bi

xi
wi

.

The greedy solution that you studied picks items in order of
decreasing bi/wi . This gives the optimal solution.

What if we insist xi ∈ {0,wi}?

b1 = 60,w1 = 10,b2 = 100,w2 = 20,b3 = 120,w3 = 30,W =

50

greedy: items 1 and 2. better: items 2 and 3.

45 / 99

In CS202, you considered the Fractional Knapsack Problem.
The input was a set of n items, in which the i th item has benefit
bi ≥ 0 and weight wi ≥ 0. Also a weight limit W .

In the output, we choose a portion xi of item i (0 ≤ xi ≤ wi) so
total weight is

∑
i xi ≤W . Maximise

∑
i bi

xi
wi

.

The greedy solution that you studied picks items in order of
decreasing bi/wi . This gives the optimal solution.

What if we insist xi ∈ {0,wi}?

b1 = 60,w1 = 10,b2 = 100,w2 = 20,b3 = 120,w3 = 30,W =

50

greedy: items 1 and 2. better: items 2 and 3.

45 / 99

In CS202, you considered the Fractional Knapsack Problem.
The input was a set of n items, in which the i th item has benefit
bi ≥ 0 and weight wi ≥ 0. Also a weight limit W .

In the output, we choose a portion xi of item i (0 ≤ xi ≤ wi) so
total weight is

∑
i xi ≤W . Maximise

∑
i bi

xi
wi

.

The greedy solution that you studied picks items in order of
decreasing bi/wi . This gives the optimal solution.

What if we insist xi ∈ {0,wi}?

b1 = 60,w1 = 10,b2 = 100,w2 = 20,b3 = 120,w3 = 30,W =

50

greedy: items 1 and 2. better: items 2 and 3.

45 / 99

In CS202, you considered the Fractional Knapsack Problem.
The input was a set of n items, in which the i th item has benefit
bi ≥ 0 and weight wi ≥ 0. Also a weight limit W .

In the output, we choose a portion xi of item i (0 ≤ xi ≤ wi) so
total weight is

∑
i xi ≤W . Maximise

∑
i bi

xi
wi

.

The greedy solution that you studied picks items in order of
decreasing bi/wi . This gives the optimal solution.

What if we insist xi ∈ {0,wi}?

b1 = 60,w1 = 10,b2 = 100,w2 = 20,b3 = 120,w3 = 30,W =

50

greedy: items 1 and 2. better: items 2 and 3.

45 / 99

In CS202, you considered the Fractional Knapsack Problem.
The input was a set of n items, in which the i th item has benefit
bi ≥ 0 and weight wi ≥ 0. Also a weight limit W .

In the output, we choose a portion xi of item i (0 ≤ xi ≤ wi) so
total weight is

∑
i xi ≤W . Maximise

∑
i bi

xi
wi

.

The greedy solution that you studied picks items in order of
decreasing bi/wi . This gives the optimal solution.

What if we insist xi ∈ {0,wi}?

b1 = 60,w1 = 10,b2 = 100,w2 = 20,b3 = 120,w3 = 30,W =

50

greedy: items 1 and 2. better: items 2 and 3.

45 / 99

In CS202, you considered the Fractional Knapsack Problem.
The input was a set of n items, in which the i th item has benefit
bi ≥ 0 and weight wi ≥ 0. Also a weight limit W .

In the output, we choose a portion xi of item i (0 ≤ xi ≤ wi) so
total weight is

∑
i xi ≤W . Maximise

∑
i bi

xi
wi

.

The greedy solution that you studied picks items in order of
decreasing bi/wi . This gives the optimal solution.

What if we insist xi ∈ {0,wi}?

b1 = 60,w1 = 10,b2 = 100,w2 = 20,b3 = 120,w3 = 30,W =

50

greedy: items 1 and 2. better: items 2 and 3.

45 / 99

In CS202, you considered the Fractional Knapsack Problem.
The input was a set of n items, in which the i th item has benefit
bi ≥ 0 and weight wi ≥ 0. Also a weight limit W .

In the output, we choose a portion xi of item i (0 ≤ xi ≤ wi) so
total weight is

∑
i xi ≤W . Maximise

∑
i bi

xi
wi

.

The greedy solution that you studied picks items in order of
decreasing bi/wi . This gives the optimal solution.

What if we insist xi ∈ {0,wi}?

b1 = 60,w1 = 10,b2 = 100,w2 = 20,b3 = 120,w3 = 30,W =

50

greedy: items 1 and 2. better: items 2 and 3.

45 / 99

How do we solve weighted activity selection?
Divide and Conquer

Let S = {A1, . . . ,An}. Assume that the activities are sorted by
nondecreasing finish time so f (A1) ≤ f (A2) ≤ · · · ≤ f (An).

For each j , define p(j) to be the largest index smaller than j of
an activity compatible with Aj (p(j) = 0 if such index does not
exist).

Let’s look at the p(j) values for an example.

46 / 99

How do we solve weighted activity selection?
Divide and Conquer

Let S = {A1, . . . ,An}. Assume that the activities are sorted by
nondecreasing finish time so f (A1) ≤ f (A2) ≤ · · · ≤ f (An).

For each j , define p(j) to be the largest index smaller than j of
an activity compatible with Aj (p(j) = 0 if such index does not
exist).

Let’s look at the p(j) values for an example.

46 / 99

How do we solve weighted activity selection?
Divide and Conquer

Let S = {A1, . . . ,An}. Assume that the activities are sorted by
nondecreasing finish time so f (A1) ≤ f (A2) ≤ · · · ≤ f (An).

For each j , define p(j) to be the largest index smaller than j of
an activity compatible with Aj (p(j) = 0 if such index does not
exist).

Let’s look at the p(j) values for an example.

46 / 99

How do we solve weighted activity selection?
Divide and Conquer

Let S = {A1, . . . ,An}. Assume that the activities are sorted by
nondecreasing finish time so f (A1) ≤ f (A2) ≤ · · · ≤ f (An).

For each j , define p(j) to be the largest index smaller than j of
an activity compatible with Aj (p(j) = 0 if such index does not
exist).

Let’s look at the p(j) values for an example.

46 / 99

How do we solve weighted activity selection?
Divide and Conquer

Let S = {A1, . . . ,An}. Assume that the activities are sorted by
nondecreasing finish time so f (A1) ≤ f (A2) ≤ · · · ≤ f (An).

For each j , define p(j) to be the largest index smaller than j of
an activity compatible with Aj (p(j) = 0 if such index does not
exist).

Let’s look at the p(j) values for an example.

46 / 99

p (4)=0

A1

A5

A

(5)=3

A4

A3

A2 p (2)=0

p

(6)=3p

(3)=1p

(1)=0

6

p4

4

4

7

2

1

A divide and conquer approach: Let X be an optimal solution.
The last activity An can either be in X or not.

47 / 99

p (4)=0

A1

A5

A

(5)=3

A4

A3

A2 p (2)=0

p

(6)=3p

(3)=1p

(1)=0

6

p4

4

4

7

2

1

A divide and conquer approach: Let X be an optimal solution.
The last activity An can either be in X or not.

47 / 99

p (4)=0

A1

A5

A

(5)=3

A4

A3

A2 p (2)=0

p

(6)=3p

(3)=1p

(1)=0

6

p4

4

4

7

2

1

Case 1. An in X : then X cannot contain any other activity with
index larger than p(n).

48 / 99

p (4)=0

A1

A5

A

(5)=3

A4

A3

A2 p (2)=0

p

(6)=3p

(3)=1p

(1)=0

6

p4

4

4

7

2

1

Case 2. An is not in X . We can throw it away and consider
A1, . . . ,An−1.

49 / 99

To summarize either the optimal solution is formed by some
solution to the instance formed by activities A1, . . . ,Ap(n) plus
An or the optimal solution does not contain An (and therefore it
is some solution to the instance formed by activities
A1, . . . ,An−1).

So, to to find the solution to the whole instance, we should
choose between the optimal solutions of these two
subproblems.

In other words

MaxWeight(n) = max{w(An)+MaxWeight(p(n)),MaxWeight(n−1)}.

50 / 99

To summarize either the optimal solution is formed by some
solution to the instance formed by activities A1, . . . ,Ap(n) plus
An or the optimal solution does not contain An (and therefore it
is some solution to the instance formed by activities
A1, . . . ,An−1).

So, to to find the solution to the whole instance, we should
choose between the optimal solutions of these two
subproblems.

In other words

MaxWeight(n) = max{w(An)+MaxWeight(p(n)),MaxWeight(n−1)}.

50 / 99

To summarize either the optimal solution is formed by some
solution to the instance formed by activities A1, . . . ,Ap(n) plus
An or the optimal solution does not contain An (and therefore it
is some solution to the instance formed by activities
A1, . . . ,An−1).

So, to to find the solution to the whole instance, we should
choose between the optimal solutions of these two
subproblems.

In other words

MaxWeight(n) = max{w(An)+MaxWeight(p(n)),MaxWeight(n−1)}.

50 / 99

Recursive solution

Based on the argument so far we can at least write a recursive
method that computes the weight of an optimal solution ...
rather inefficiently.

RECURSIVE-WEIGHTED-SELECTOR (j)
if j = 0

return 0
else

return max{w(Aj)+ RECURSIVE-WEIGHTED-SELECTOR (p(j)),
RECURSIVE-WEIGHTED-SELECTOR (j − 1)}

The optimum for the given instance on n activities is obtained
by running RECURSIVE-WEIGHTED-SELECTOR (n).

51 / 99

Recursive solution

Based on the argument so far we can at least write a recursive
method that computes the weight of an optimal solution ...
rather inefficiently.

RECURSIVE-WEIGHTED-SELECTOR (j)
if j = 0

return 0
else

return max{w(Aj)+ RECURSIVE-WEIGHTED-SELECTOR (p(j)),
RECURSIVE-WEIGHTED-SELECTOR (j − 1)}

The optimum for the given instance on n activities is obtained
by running RECURSIVE-WEIGHTED-SELECTOR (n).

51 / 99

Recursive solution

Based on the argument so far we can at least write a recursive
method that computes the weight of an optimal solution ...
rather inefficiently.

RECURSIVE-WEIGHTED-SELECTOR (j)
if j = 0

return 0
else

return max{w(Aj)+ RECURSIVE-WEIGHTED-SELECTOR (p(j)),
RECURSIVE-WEIGHTED-SELECTOR (j − 1)}

The optimum for the given instance on n activities is obtained
by running RECURSIVE-WEIGHTED-SELECTOR (n).

51 / 99

Memoization

The array M[j] (another global variable) contains the size of the
optima for the instances A1, . . . ,Aj .

FAST-REC-WEIGHTED-SELECTOR (j)
if j = 0

return 0
else if M[j] not empty

return M[j]
else

M[j]← max{w(Aj)+ FAST-REC-WEIGHTED-SELECTOR (p(j)),
FAST-REC-WEIGHTED-SELECTOR (j − 1)}

return M[j]

52 / 99

Exercises

1 Derive a recursive algorithm that actually computes the
optimal set of activities from the algorithm
RECURSIVE-WEIGHTED-SELECTOR.

2 Derive a recursive algorithm that actually computes the
optimal set of activities from the algorithm
FAST-REC-WEIGHTED-SELECTOR.

3 Simulate both RECURSIVE-WEIGHTED-SELECTOR and
FAST-REC-WEIGHTED-SELECTOR on the following
instance:

A A1 A2 A3 A4 A5
s(A) 1 2 3 5 3
f (A) 3 6 7 7 10
w(A) 4 2 4 2 6

53 / 99

Exercises

1 Derive a recursive algorithm that actually computes the
optimal set of activities from the algorithm
RECURSIVE-WEIGHTED-SELECTOR.

2 Derive a recursive algorithm that actually computes the
optimal set of activities from the algorithm
FAST-REC-WEIGHTED-SELECTOR.

3 Simulate both RECURSIVE-WEIGHTED-SELECTOR and
FAST-REC-WEIGHTED-SELECTOR on the following
instance:

A A1 A2 A3 A4 A5
s(A) 1 2 3 5 3
f (A) 3 6 7 7 10
w(A) 4 2 4 2 6

53 / 99

Exercises

1 Derive a recursive algorithm that actually computes the
optimal set of activities from the algorithm
RECURSIVE-WEIGHTED-SELECTOR.

2 Derive a recursive algorithm that actually computes the
optimal set of activities from the algorithm
FAST-REC-WEIGHTED-SELECTOR.

3 Simulate both RECURSIVE-WEIGHTED-SELECTOR and
FAST-REC-WEIGHTED-SELECTOR on the following
instance:

A A1 A2 A3 A4 A5
s(A) 1 2 3 5 3
f (A) 3 6 7 7 10
w(A) 4 2 4 2 6

53 / 99

Dynamic Programming

Dynamic programming, like the divide-and-conquer method
used in quicksort, solves problems by combining the solutions
to subproblems.

54 / 99

Divide-and-conquer algorithms partition the problem
into independent subproblems, solve the subproblems
recursively, and then combine their solutions to solve
the original problem.

1.1.1

1

1.1
1.2

1.65

1.1.2

1.2.1

1.2.2
1.2.3

1.2.1.1
1.2.1.2

55 / 99

1

1.1.1

1.1
1.2

1.65

If two subproblems share subsubproblems then a
divide-and-conquer algorithm does more work than necessary,
repeatedly solving the common subsubproblems.

56 / 99

In contrast, dynamic programming is applicable (and often
advisable) when the subproblems are not independent, that is,
when subproblems share subsubproblems. A dynamic
programming algorithm solves every subproblem just once and
then saves its answer in a table, thereby avoiding the work of
recomputing the answer every time the subproblem is
encountered.

Dynamic programming is typically applied to optimisation
problems.

57 / 99

In contrast, dynamic programming is applicable (and often
advisable) when the subproblems are not independent, that is,
when subproblems share subsubproblems. A dynamic
programming algorithm solves every subproblem just once and
then saves its answer in a table, thereby avoiding the work of
recomputing the answer every time the subproblem is
encountered.

Dynamic programming is typically applied to optimisation
problems.

57 / 99

The development of a dynamic programming algorithm can be
broken into a sequence of steps.

1 Show how you can get an optimal solution by combining
optimal solutions to subproblems

2 Show how you can recursively compute the value of an
optimal solution using the values of optimal solutions to
subproblems.

3 Compute the value of an optimal solution bottom-up by first
solving the simplest subproblems.

4 Save enough information to allow you to construct an
optimal solution (and not merely its value).

58 / 99

The development of a dynamic programming algorithm can be
broken into a sequence of steps.

1 Show how you can get an optimal solution by combining
optimal solutions to subproblems

2 Show how you can recursively compute the value of an
optimal solution using the values of optimal solutions to
subproblems.

3 Compute the value of an optimal solution bottom-up by first
solving the simplest subproblems.

4 Save enough information to allow you to construct an
optimal solution (and not merely its value).

58 / 99

The development of a dynamic programming algorithm can be
broken into a sequence of steps.

1 Show how you can get an optimal solution by combining
optimal solutions to subproblems

2 Show how you can recursively compute the value of an
optimal solution using the values of optimal solutions to
subproblems.

3 Compute the value of an optimal solution bottom-up by first
solving the simplest subproblems.

4 Save enough information to allow you to construct an
optimal solution (and not merely its value).

58 / 99

The development of a dynamic programming algorithm can be
broken into a sequence of steps.

1 Show how you can get an optimal solution by combining
optimal solutions to subproblems

2 Show how you can recursively compute the value of an
optimal solution using the values of optimal solutions to
subproblems.

3 Compute the value of an optimal solution bottom-up by first
solving the simplest subproblems.

4 Save enough information to allow you to construct an
optimal solution (and not merely its value).

58 / 99

The development of a dynamic programming algorithm can be
broken into a sequence of steps.

1 Show how you can get an optimal solution by combining
optimal solutions to subproblems

2 Show how you can recursively compute the value of an
optimal solution using the values of optimal solutions to
subproblems.

3 Compute the value of an optimal solution bottom-up by first
solving the simplest subproblems.

4 Save enough information to allow you to construct an
optimal solution (and not merely its value).

58 / 99

Example: matrix-chain multiplication
Background: multiplying two matrices

-�
cols(A) = rows(B)

?

6A

-�
cols(B)

B = C

Number of scalar multiplications:
rows(A)× columns(B)× columns(A).

59 / 99

Matrix-Multiply (A,B)

(* columns(A) = rows(B) *)

For i ← 1 to rows(A)
For j ← 1 to columns(B)

C[i , j]← 0
For k ← 1 to columns(A)

C[i , j]← C[i , j] + A[i , k] · B[k , j]

60 / 99

Given a chain of matrices to multiply, any parenthesization is
valid (dimensions are OK, so multiplication makes sense)

100× 200
×

200
×
50

× 50× 85

100
×
50 × 50× 85 or

100× 200
×

200
×
85

61 / 99

Given a chain of matrices to multiply, any parenthesization
gives the same answer (matrix multiplication is associative)

 1 1 1 1 1
2 2 2 2 2
3 3 3 3 3




1 2
2 4
3 6
4 8
5 10


[
−1
1

]

 15 30
30 60
45 90

[−1
1

]
=

 15
30
45

 , or

 1 1 1 1 1
2 2 2 2 2
3 3 3 3 3




1
2
3
4
5

 =

 15
30
45



62 / 99

To see that you get the same answer, look at the top left corner of the
output...


a1 a2 a3

·
·
·


 b1 b4

b2 b5
b3 b6

[x1 · · ·
x2 · · ·

]

x1(a1b1 + a2b2 + a3b3) + x2(a1b4 + a2b5 + a3b6)

a1(x1b1 + x2b4) + a2(x1b2 + x2b5) + a3(x1b3 + x2b6)

63 / 99

However, different parenthesizations lead to different
numbers of scalar multiplications. Consider this
example.

20× 40

M1

40× 100

M2

100× 10

M3

10× 200

M4

Method 1: Multiplying M3 by M4 costs 200,000 scalar multiplications.

20× 40

M1

40× 100

M2

100× 200

M3 M4

Then multiplying M2 by M3 M4 costs 800,000 scalar multiplications.

64 / 99

However, different parenthesizations lead to different
numbers of scalar multiplications. Consider this
example.

20× 40

M1

40× 100

M2

100× 10

M3

10× 200

M4

Method 1: Multiplying M3 by M4 costs 200,000 scalar multiplications.

20× 40

M1

40× 100

M2

100× 200

M3 M4

Then multiplying M2 by M3 M4 costs 800,000 scalar multiplications.

64 / 99

However, different parenthesizations lead to different
numbers of scalar multiplications. Consider this
example.

20× 40

M1

40× 100

M2

100× 10

M3

10× 200

M4

Method 1: Multiplying M3 by M4 costs 200,000 scalar multiplications.

20× 40

M1

40× 100

M2

100× 200

M3 M4

Then multiplying M2 by M3 M4 costs 800,000 scalar multiplications.

64 / 99

However, different parenthesizations lead to different
numbers of scalar multiplications. Consider this
example.

20× 40

M1

40× 100

M2

100× 10

M3

10× 200

M4

Method 1: Multiplying M3 by M4 costs 200,000 scalar multiplications.

20× 40

M1

40× 100

M2

100× 200

M3 M4

Then multiplying M2 by M3 M4 costs 800,000 scalar multiplications.

64 / 99

20× 40

M1

40× 200

M2(M3 M4)

Then multiplying M1 by M2(M3 M4) costs 160,000 scalar

multiplications. The total cost is 1,160,000 scalar multiplications.

65 / 99

20× 40

M1

40× 200

M2(M3 M4)

Then multiplying M1 by M2(M3 M4) costs 160,000 scalar

multiplications. The total cost is 1,160,000 scalar multiplications.

65 / 99

20× 40

M1

40× 100

M2

100× 10

M3

10× 200

M4

Method 2: Multiplying M2 by M3 costs 40,000 scalar multiplications.

20× 40

M1

40× 10

M2 M3

10× 200

M4

Then multiplying M1 by M2 M3 costs 8,000 scalar multiplications.

66 / 99

20× 40

M1

40× 100

M2

100× 10

M3

10× 200

M4

Method 2: Multiplying M2 by M3 costs 40,000 scalar multiplications.

20× 40

M1

40× 10

M2 M3

10× 200

M4

Then multiplying M1 by M2 M3 costs 8,000 scalar multiplications.

66 / 99

20× 40

M1

40× 100

M2

100× 10

M3

10× 200

M4

Method 2: Multiplying M2 by M3 costs 40,000 scalar multiplications.

20× 40

M1

40× 10

M2 M3

10× 200

M4

Then multiplying M1 by M2 M3 costs 8,000 scalar multiplications.

66 / 99

20× 10

M1(M2 M3)

10× 200

M4

Then multiplying M1(M2 M3) by M4 costs 40,000 scalar

multiplications. The total number of scalar multiplications is only

88,000 (as opposed to 1,160,000 when we chose the parentheses

according to method 1).

67 / 99

20× 10

M1(M2 M3)

10× 200

M4

Then multiplying M1(M2 M3) by M4 costs 40,000 scalar

multiplications. The total number of scalar multiplications is only

88,000 (as opposed to 1,160,000 when we chose the parentheses

according to method 1).

67 / 99

Problem definition

Given a sequence of matrices A1, . . . ,AN such
that Ai has dimensions ni×ni+1, find the paren-
thesization of A1 × . . . × AN that minimises
the number of scalar multiplications (assuming
that each matrix multiplication is done using
Matrix-Multiply).

This is an optimisation problem. Each instance is a sequence
of integers n1,n2, . . . ,nN+1. A solution to the instance is an
ordering of the N − 1 multiplications. The cost of an ordering is
the number of scalar multiplications performed and the problem
seeks a minimum-cost ordering.

68 / 99

Problem definition

Given a sequence of matrices A1, . . . ,AN such
that Ai has dimensions ni×ni+1, find the paren-
thesization of A1 × . . . × AN that minimises
the number of scalar multiplications (assuming
that each matrix multiplication is done using
Matrix-Multiply).

This is an optimisation problem. Each instance is a sequence
of integers n1,n2, . . . ,nN+1. A solution to the instance is an
ordering of the N − 1 multiplications. The cost of an ordering is
the number of scalar multiplications performed and the problem
seeks a minimum-cost ordering.

68 / 99

Next we present a dynamic programming algorithm for solving
this problem. We follow the method given earlier.

Getting an optimal solution out of optimal solutions to
subproblems

Denote Ai × . . .× Aj by Ai..j .

An optimal ordering y of A1..N splits the product at some matrix
Ak : A1 × . . .× AN = A1..k × Ak+1..N

Then if y1 denotes the ordering for A1..k in y and y2 denotes the
ordering for Ak+1..N in y we have

cost(A1..N , y) =
cost(A1..k , y1) + cost(Ak+1..N , y2) + mult(A1..k ,Ak+1..N)

where mult(A,B) denotes the number of scalar multiplications
performed in a call to Matrix-Multiply(A,B).

69 / 99

Next we present a dynamic programming algorithm for solving
this problem. We follow the method given earlier.

Getting an optimal solution out of optimal solutions to
subproblems

Denote Ai × . . .× Aj by Ai..j .

An optimal ordering y of A1..N splits the product at some matrix
Ak : A1 × . . .× AN = A1..k × Ak+1..N

Then if y1 denotes the ordering for A1..k in y and y2 denotes the
ordering for Ak+1..N in y we have

cost(A1..N , y) =
cost(A1..k , y1) + cost(Ak+1..N , y2) + mult(A1..k ,Ak+1..N)

where mult(A,B) denotes the number of scalar multiplications
performed in a call to Matrix-Multiply(A,B).

69 / 99

Next we present a dynamic programming algorithm for solving
this problem. We follow the method given earlier.

Getting an optimal solution out of optimal solutions to
subproblems

Denote Ai × . . .× Aj by Ai..j .

An optimal ordering y of A1..N splits the product at some matrix
Ak : A1 × . . .× AN = A1..k × Ak+1..N

Then if y1 denotes the ordering for A1..k in y and y2 denotes the
ordering for Ak+1..N in y we have

cost(A1..N , y) =
cost(A1..k , y1) + cost(Ak+1..N , y2) + mult(A1..k ,Ak+1..N)

where mult(A,B) denotes the number of scalar multiplications
performed in a call to Matrix-Multiply(A,B).

69 / 99

Note that y1 is an optimal solution for the instance A1..k

(otherwise the supposedly-optimal solution y can be
improved!). Similarly, y2 is an optimal solution for the instance
Ak+1..N .

Thus, an optimal solution to an instance of the matrix-chain
multiplication problem contains within it optimal solutions to
subproblem instances!

70 / 99

How to recursively compute the value of an optimal solution
using the values of optimal solutions to subproblems

Let m[i , j] be the minimum number of scalar multiplications
needed to compute the matrix Ai..j .

The cost of a cheapest way to compute A1..N is m[1,N].

71 / 99

How to recursively compute the value of an optimal solution
using the values of optimal solutions to subproblems

Let m[i , j] be the minimum number of scalar multiplications
needed to compute the matrix Ai..j .

The cost of a cheapest way to compute A1..N is m[1,N].

71 / 99

Definition of m[i , j]

If i = j , the chain consists of a single matrix Ai..i = Ai , no
scalar multiplication is needed and therefore m[i , i] = 0.

If i < j then m[i , j] can be computed by taking advantage of
the structure of an optimal solution, as described earlier.
Therefore, if the optimal cost ordering of Ai..j is obtained
multiplying Ai..k and Ak+1..j then we can define

m[i , j] = m[i , k] + m[k + 1, j]+ mult(Ai..k ,Ak+1..j).

Notice that Ai..k is a ni × nk+1 matrix and Ak+1..j is an
nk+1 × nj+1 matrix. Therefore multiplying them takes
nk+1 · ni · nj+1 multiplications. Hence

m[i , j] = m[i , k] + m[k + 1, j] + nk+1 · ni · nj+1.

... but, alas! We do not know k !!!

72 / 99

Definition of m[i , j]

If i = j , the chain consists of a single matrix Ai..i = Ai , no
scalar multiplication is needed and therefore m[i , i] = 0.

If i < j then m[i , j] can be computed by taking advantage of
the structure of an optimal solution, as described earlier.
Therefore, if the optimal cost ordering of Ai..j is obtained
multiplying Ai..k and Ak+1..j then we can define

m[i , j] = m[i , k] + m[k + 1, j]+ mult(Ai..k ,Ak+1..j).

Notice that Ai..k is a ni × nk+1 matrix and Ak+1..j is an
nk+1 × nj+1 matrix. Therefore multiplying them takes
nk+1 · ni · nj+1 multiplications. Hence

m[i , j] = m[i , k] + m[k + 1, j] + nk+1 · ni · nj+1.

... but, alas! We do not know k !!!

72 / 99

Definition of m[i , j]

If i = j , the chain consists of a single matrix Ai..i = Ai , no
scalar multiplication is needed and therefore m[i , i] = 0.

If i < j then m[i , j] can be computed by taking advantage of
the structure of an optimal solution, as described earlier.
Therefore, if the optimal cost ordering of Ai..j is obtained
multiplying Ai..k and Ak+1..j then we can define

m[i , j] = m[i , k] + m[k + 1, j]+ mult(Ai..k ,Ak+1..j).

Notice that Ai..k is a ni × nk+1 matrix and Ak+1..j is an
nk+1 × nj+1 matrix. Therefore multiplying them takes
nk+1 · ni · nj+1 multiplications. Hence

m[i , j] = m[i , k] + m[k + 1, j] + nk+1 · ni · nj+1.

... but, alas! We do not know k !!!

72 / 99

Definition of m[i , j]

If i = j , the chain consists of a single matrix Ai..i = Ai , no
scalar multiplication is needed and therefore m[i , i] = 0.

If i < j then m[i , j] can be computed by taking advantage of
the structure of an optimal solution, as described earlier.
Therefore, if the optimal cost ordering of Ai..j is obtained
multiplying Ai..k and Ak+1..j then we can define

m[i , j] = m[i , k] + m[k + 1, j]+ mult(Ai..k ,Ak+1..j).

Notice that Ai..k is a ni × nk+1 matrix and Ak+1..j is an
nk+1 × nj+1 matrix. Therefore multiplying them takes
nk+1 · ni · nj+1 multiplications. Hence

m[i , j] = m[i , k] + m[k + 1, j] + nk+1 · ni · nj+1.

... but, alas! We do not know k !!!

72 / 99

Definition of m[i , j]

If i = j , the chain consists of a single matrix Ai..i = Ai , no
scalar multiplication is needed and therefore m[i , i] = 0.

If i < j then m[i , j] can be computed by taking advantage of
the structure of an optimal solution, as described earlier.
Therefore, if the optimal cost ordering of Ai..j is obtained
multiplying Ai..k and Ak+1..j then we can define

m[i , j] = m[i , k] + m[k + 1, j]+ mult(Ai..k ,Ak+1..j).

Notice that Ai..k is a ni × nk+1 matrix and Ak+1..j is an
nk+1 × nj+1 matrix. Therefore multiplying them takes
nk+1 · ni · nj+1 multiplications. Hence

m[i , j] = m[i , k] + m[k + 1, j] + nk+1 · ni · nj+1.

... but, alas! We do not know k !!!

72 / 99

No problem, there can only be j − i possible values for k , we
can try all of them. Thus, we have

m[i , j] =
{

0 i = j
mini≤k<j{m[i , k] + m[k + 1, j] + nk+1ninj+1} i < j

73 / 99

Computing the optimal costs

Here is a simple recursive program that, given the sequence
n1,n2, . . . ,nN+1, computes m[1,N].

Matrix-Chain (i,j)
If i=j

Return 0
Else

C ←∞
For k ← i to j-1

Z ← Matrix-Chain(i,k) + Matrix-Chain(k+1,j)+
nk+1ninj+1

If Z< C
C ← Z

Return C

74 / 99

How long does the recursive algorithm take? Let n = j − i .

T (n) = n +
n−1∑
`=1

T (`) + T (n − `)

= n + 2
n−1∑
`=1

T (`)

Prove by induction on n that T (n) ≥ 2n−1

Base case. n = 1. Inductive step.

T (n) ≥ n + 2
n−2∑
`=0

2`

= n + 2(2n−1 − 1)

≥ 2n−1
75 / 99

How long does the recursive algorithm take? Let n = j − i .

T (n) = n +
n−1∑
`=1

T (`) + T (n − `)

= n + 2
n−1∑
`=1

T (`)

Prove by induction on n that T (n) ≥ 2n−1

Base case. n = 1. Inductive step.

T (n) ≥ n + 2
n−2∑
`=0

2`

= n + 2(2n−1 − 1)

≥ 2n−1
75 / 99

How long does the recursive algorithm take? Let n = j − i .

T (n) = n +
n−1∑
`=1

T (`) + T (n − `)

= n + 2
n−1∑
`=1

T (`)

Prove by induction on n that T (n) ≥ 2n−1

Base case. n = 1. Inductive step.

T (n) ≥ n + 2
n−2∑
`=0

2`

= n + 2(2n−1 − 1)

≥ 2n−1
75 / 99

How long does the recursive algorithm take? Let n = j − i .

T (n) = n +
n−1∑
`=1

T (`) + T (n − `)

= n + 2
n−1∑
`=1

T (`)

Prove by induction on n that T (n) ≥ 2n−1

Base case. n = 1. Inductive step.

T (n) ≥ n + 2
n−2∑
`=0

2`

= n + 2(2n−1 − 1)

≥ 2n−1
75 / 99

Key Observation!

There are relatively few subproblems: one for
each choice of i and j (that’s

(N
2

)
+ N in total,(N

2

)
for pairs with i < j and N more for pairs

with i = j).

Instead of computing the solution to the recurrence recursively
(top-down), we perform the third step of the dynamic
programming paradigm and compute the optimal costs of the
subproblems using a bottom-up approach.

76 / 99

Key Observation!

There are relatively few subproblems: one for
each choice of i and j (that’s

(N
2

)
+ N in total,(N

2

)
for pairs with i < j and N more for pairs

with i = j).

Instead of computing the solution to the recurrence recursively
(top-down), we perform the third step of the dynamic
programming paradigm and compute the optimal costs of the
subproblems using a bottom-up approach.

76 / 99

MATRIX-CHAIN-ORDER (n1,n2, . . . ,nN+1, N)
// First, fill all the elements in the diagonal with zero
for i ← 1 to N m[i , i]← 0
// Next, fill all elements at distance ` from the diagonal
for `← 1 to N − 1

for i ← 1 to N − `
j ← i + `
define m[i , j] as the minimum of

m[i , k] + m[k + 1, j] + nink+1nj+1
for i ≤ k < j .

77 / 99

More intuition

Now, focus on
m[i , j] = mink m[i , k] + m[k + 1, j] + nink+1nj+1 for i ≤ k < j .

The figure on the right shows
how the entries of m[i , j] are
filled. For each fixed value of
` the process fills the entries
that are ` places to the right
of the main diagonal. No-
tice that all that is needed to
compute m[i , j] are the en-
tries m[i , k] and m[k + 1, j] for
i ≤ k < j .
For example, m[1,5] will need
m[1,1] and m[2,5], or m[1,2]
and m[3,5], and so on.

i
j

i
j

l = 2

i
j

l = 3

l = 4
i

j

l = 1

78 / 99

Example instance: N = 6 and
i 1 2 3 4 5 6 7
ni 12 5 2 5 8 4 7

m[i , j] = mink m[i , k] +m[k +1, j] +nink+1nj+1 for i ≤ k < j .

i\ j 1 2 3 4 5 6
1 0 12*5*2 0 0 0 0
2 0 5*2*5 0 0 0
3 0 2*5*8 0 0
4 0 5*8*4 0
5 0 8*4*7
6 0

for ` = 1 we have j = i + ` and the only choice is k = i (which
gives k + 1 = j).

79 / 99

Example instance: N = 6 and
i 1 2 3 4 5 6 7
ni 12 5 2 5 8 4 7

m[i , j] = mink m[i , k] +m[k +1, j] +nink+1nj+1 for i ≤ k < j .

i\ j 1 2 3 4 5 6
1 0 120 240 0 0 0
2 0 50 160 0 0
3 0 80 144 0
4 0 160 300
5 0 224
6 0

for ` = 2 we have j = i + ` and the choices are k = i and
k = i + 1. For example, for i = 1 and j = 3, we have two
choices.

k = 1 : 0 + 50 + 12 · 5 · 5 = 350

k = 2 : 120 + 0 + 12 · 2 · 5 = 240

80 / 99

Example instance: N = 6 and
i 1 2 3 4 5 6 7
ni 12 5 2 5 8 4 7

m[i , j] = mink m[i , k] +m[k +1, j] +nink+1nj+1 for i ≤ k < j .

i\ j 1 2 3 4 5 6
1 0 120 240 392 0 0
2 0 50 160 184 0
3 0 80 144 200
4 0 160 300
5 0 224
6 0

for ` = 3 we have j = i + ` and the choices are k = i , k = i + 1,
and k = i + 2. For example, for i = 2 and j = 5, we have these
choices.

k = 2 : 0 + 144 + 5 · 2 · 4 = 184

k = 3 : 50 + 160 + 5 · 5 · 4 = 310

k = 4 : 160 + 0 + 5 · 8 · 4 = 320
81 / 99

Example instance: N = 6 and
i 1 2 3 4 5 6 7
ni 12 5 2 5 8 4 7

m[i , j] = mink m[i , k] +m[k +1, j] +nink+1nj+1 for i ≤ k < j .

i\ j 1 2 3 4 5 6
1 0 120 240 392 360 0
2 0 50 160 184 270
3 0 80 144 200
4 0 160 300
5 0 224
6 0

82 / 99

Example instance: N = 6 and
i 1 2 3 4 5 6 7
ni 12 5 2 5 8 4 7

m[i , j] = mink m[i , k] +m[k +1, j] +nink+1nj+1 for i ≤ k < j .

i\ j 1 2 3 4 5 6
1 0 120 240 392 360 488
2 0 50 160 184 270
3 0 80 144 200
4 0 160 300
5 0 224
6 0

488 is the answer - this is the number of scalar multiplications
needed to multiply A1 × A2 × A3 × A4 × A5 × A6.

83 / 99

What is the complexity of the algorithm?

MATRIX-CHAIN-ORDER (n1,n2, . . . ,nN+1, N)
// First, fill all the elements in the diagonal with zero
for i ← 1 to N m[i , i]← 0
// Next, fill all elements at distance ` from the diagonal
for `← 1 to N − 1

for i ← 1 to N − `
j ← i + `
define m[i , j] as the minimum of

m[i , k] + m[k + 1, j] + nink+1nj+1
for i ≤ k < j .

O(N3)

84 / 99

What is the complexity of the algorithm?

MATRIX-CHAIN-ORDER (n1,n2, . . . ,nN+1, N)
// First, fill all the elements in the diagonal with zero
for i ← 1 to N m[i , i]← 0
// Next, fill all elements at distance ` from the diagonal
for `← 1 to N − 1

for i ← 1 to N − `
j ← i + `
define m[i , j] as the minimum of

m[i , k] + m[k + 1, j] + nink+1nj+1
for i ≤ k < j .

O(N3)

84 / 99

Comparing Running times

Michele’s Java implementation of both algorithms, run on a Linux

200MHz PC on N square matrices of size 3.

Divide
and
conquer

N time scalar mults
6 1.20 135
8 1.04 189
10 1.10 243
12 1.15 297
14 1.78 351
16 6.86 405
18 51.40 459
20 7:32.80 513
22 1:11:20.64 567

Dynamic
pro-
gram-
ming

N time
6 1.05
8 1.04
10 1.09
12 1.15
14 1.08
16 1.11
18 1.12
20 1.07
22 1.09

85 / 99

Constructing an optimal solution

We can use another table s to allow us to compute the optimal
parenthesization. Each entry s[i , j] records the value k such
that the optimal ordering to compute Ai × . . .× Aj splits the
product as

(Ai × . . .× Ak)(Ak+1 × . . .× Aj).

Thus we know that the final ordering for computing A1..N

optimally is A1..s[1,N] × As[1,N]+1..N . Earlier matrix multiplications
can be computed recursively.

86 / 99

MATRIX-CHAIN-ORDER (n1,n2, . . . ,nN+1, N)
for i ← 1 to N

m[i , i]← 0
for `← 1 to N − 1

for i ← 1 to N − `
j ← i + `
m[i , j]← +∞
for k ← i to j − 1

q ← m[i , k] + m[k + 1, j] + nink+1nj+1
if q < m[i , j]

m[i , j]← q
s[i , j]← k

87 / 99

MATRIX-CHAIN-MULTIPLY (A, s, i , j)
if j > i

X ← MATRIX-CHAIN-MULTIPLY(A, s, i , s[i , j])
Y ← MATRIX-CHAIN-MULTIPLY(A, s, s[i , j] + 1, j)
return MATRIX-MULTIPLY(X ,Y)

else return Ai

88 / 99

Another example of dynamic programming: The
All-Pairs Shortest Paths Problem

Input: An n × n matrix W in which W [i , j] is the weight of
the edge from i to j in a graph. W must satisfy the
following.

W [i , i] = 0
W [i , j] =∞ if there is no edge from i to j .
There are no negative-weight cycles in the weighted
digraph corresponding to W .

Output: An n × n matrix D in which D[i , j] is the weight of
a shortest (smallest-weight) path from i to j .

For example, consider the undirected graph with vertices
{1,2,3,4} and W [1,2] = 2, W [2,3] = 2, and W [1,3] = 4.

89 / 99

Let D[m, i , j] be the minimum weight of any path from i to j that
contains at most m edges.

D[m, i , j] = min {D[m − 1, i , k] + W [k , j] | 1 ≤ k ≤ n} .

90 / 99

A dynamic-programming algorithm

for i ← 1 to n
for j ← 1 to n

D[0, i , j]←∞
for i ← 1 to n

D[0, i , i]← 0
for m← 1 to n − 1

for i ← 1 to n
for j ← 1 to n

D[m, i , j]← D[m − 1, i ,1] + W [1, j]
for k ← 2 to n

If D[m, i , j] > D[m − 1, i , k] + W [k , j]
D[m, i , j]← D[m − 1, i , k] + W [k , j]

91 / 99

Simulating the algorithm

D[0, i , j] =

1 2 3 4 5
1 0 ∞ ∞ ∞ ∞
2 ∞ 0 ∞ ∞ ∞
3 ∞ ∞ 0 ∞ ∞
4 ∞ ∞ ∞ 0 ∞
5 ∞ ∞ ∞ ∞ 0

92 / 99

D[1, i , j] = min{D[0, i , k] + W [k , j] | 1 ≤ k ≤ n} = W [i , j].

D[1, i , j] = W [i , j] =

1 2 3 4 5
1 0 3 8 ∞ −4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 ∞ ∞
4 2 ∞ −5 0 ∞
5 ∞ ∞ ∞ 6 0

93 / 99

D[1, i , j] = W [i , j] =

1 2 3 4 5
1 0 3 8 ∞ −4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 ∞ ∞
4 2 ∞ −5 0 ∞
5 ∞ ∞ ∞ 6 0

D[2, i , j] = min{D[1, i , k] + W [k , j] | 1 ≤ k ≤ n}.

D[2, i , j] =

1 2 3 4 5
1 0 3 8 2 −4
2 3 0 −4 1 7
3 ∞ 4 0 5 11
4 2 −1 −5 0 −2
5 8 ∞ 1 6 0

94 / 99

D[2, i , j] =

1 2 3 4 5
1 0 3 8 2 −4
2 3 0 −4 1 7
3 ∞ 4 0 5 11
4 2 −1 −5 0 −2
5 8 ∞ 1 6 0

W [i , j] =

1 2 3 4 5
1 0 3 8 ∞ −4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 ∞ ∞
4 2 ∞ −5 0 ∞
5 ∞ ∞ ∞ 6 0

D[3, i , j] = min{D[2, i , k] + W [k , j] | 1 ≤ k ≤ n}.

D[3, i , j] =

1 2 3 4 5
1 0 3 −3 2 −4
2 3 0 −4 1 −1
3 7 4 0 5 11
4 2 −1 −5 0 −2
5 8 5 1 6 0

95 / 99

D[3, i , j] =

1 2 3 4 5
1 0 3 −3 2 −4
2 3 0 −4 1 −1
3 7 4 0 5 11
4 2 −1 −5 0 −2
5 8 5 1 6 0

W [i , j] =

1 2 3 4 5
1 0 3 8 ∞ −4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 ∞ ∞
4 2 ∞ −5 0 ∞
5 ∞ ∞ ∞ 6 0

D[4, i , j] = min{D[3, i , k] + W [k , j] | 1 ≤ k ≤ n}.

D[4, i , j] =

1 2 3 4 5
1 0 1 −3 2 −4
2 3 0 −4 1 −1
3 7 4 0 5 3
4 2 −1 −5 0 −2
5 8 5 1 6 0

96 / 99

for i ← 1 to n
for j ← 1 to n

D[0, i , j]←∞
for i ← 1 to n

D[0, i , i]← 0
for m← 1 to n − 1

for i ← 1 to n
for j ← 1 to n

D[m, i , j]← D[m − 1, i ,1] + W [1, j]
for k ← 2 to n

If D[m, i , j] > D[m − 1, i , k] + W [k , j]
D[m, i , j]← D[m − 1, i , k] + W [k , j]

The time complexity is O(n4). There are faster
dynamic-programming algorithms.

97 / 99

Exercise

Golf playing. A target value N is given, along with a set
S = {s1, s2, . . . , sn} of admissible segment lengths and a set
B = {b1, . . . ,bm} of forbidden values. The aim is to choose the
shortest sequence σ1, σ2, . . . , σu of elements of S such that

1
∑u

i=1 σi = N and
2
∑j

i=1 σi 6∈ B for each j ∈ {1, . . . ,u}.

Claim. Any instance of this problem is solvable optimally in
time polynomial in N and n.

98 / 99

Exercise

Consider the problem of neatly printing a paragraph on a printer. The
input text is a sequence of n words of length `1, . . . , `n (number of
characters). We want to print this paragraph neatly on a number of
lines that hold a maximum of M characters each. Our criterion of
“neatness” is as follows. If a given line contains words i through j ,
where i ≤ j , and we leave exactly one space between words, the
number of extra space characters at the end of the line is

M − j + i −
∑j

k=i `k ,

(which must be non-negative so that the word fit on the line). We wish
to minimise the sum, over all lines except the last, of the cubes of the
numbers of extra space characters at the ends of lines.

Dynamic programming solution?

Run-time? Space requirements?

99 / 99

