
Efficient Sequential Algorithms, Comp309

University of Liverpool

2010–2011
Module Organiser, Igor Potapov

Part 3. String Algorithms

References: T. H. Cormen, C. E. Leiserson, R. L. Rivest
Introduction to Algorithms, Second Edition. MIT Press
(2001). "Longest Common Subsequence" and "Huffman
Codes"

1 / 51

Longest Common Subsequence

The Longest Common Subsequence problem is like the pattern
matching problem, except that you are allowed to skip
characters in the text. Also, the goal is to return just one match,
which is as long as possible. Here is an example of two
sequences, with a longest common subsequence marked in
red.

Sequence 1: A C B C D

Sequence 2: A B C B D

2 / 51

Motivation

Here are some motivating applications from David Eppstein’s
page
http://www.ics.uci.edu/∼eppstein/161/960229.html

Molecular biology. DNA sequences (genes) can be represented
as sequences of four letters ACGT, corresponding to the four
submolecules forming DNA. When biologists find a new
sequences, they typically want to know what other sequences it
is most similar to. One way of computing how similar two
sequences are is to find the length of their longest common
subsequence.

3 / 51

File comparison. The Unix program "diff" is used to compare
two different versions of the same file, to determine what
changes have been made to the file. It works by finding a
longest common subsequence of the lines of the two files; any
line in the subsequence has not been changed, so what it
displays is the remaining set of lines that have changed. In this
instance of the problem we should think of each line of a file as
being a single complicated character in a string.

4 / 51

Definitions

Given a sequence (i.e. a string of characters) X = x1x2 . . . xm,
another sequence Z = z1z2 . . . zk is a subsequence of X if
there exists a (strictly increasing) list of indices of X i1, i2, . . . , ik
such that for all j ∈ {1,2, . . . , k}, we have xij = zj .

Examples. The sequence Z = BCDB is a subsequence of X =

ABCBDAB with corresponding index list: 2,3,5,7.

The sequence Z = 1011 is a subsequence of X = 1011011
with corresponding index list: 1,2,3,4.

The empty sequence is a subsequence of all sequences.

5 / 51

Given two sequences X and Y , we say that a sequence Z is a
common subsequence of X and Y if Z is a subsequence of
both X and Y .

Examples. The sequence ABC is a common subsequence of
both X = ACBCD and Y = ABCBD.

The sequence ABCD is a longer (indeed the longest) common
subsequence of X and Y (and so is ACBD).

6 / 51

In the longest common subsequence problem we are given two
sequences X and Y and wish to find a maximum-length
common subsequence (or LCS) of both X and Y .

7 / 51

Characterising a longest common subsequence

Optimal solutions can be obtained from optimal solutions of
sub-problems.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

1 If xm = yn, then

zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then

if zk 6= xm then Z is an LCS of Xm−1 and Y ;
if zk 6= yn then Z is an LCS of X and Yn−1.

8 / 51

Characterising a longest common subsequence

Optimal solutions can be obtained from optimal solutions of
sub-problems.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

1 If xm = yn, then

zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then

if zk 6= xm then Z is an LCS of Xm−1 and Y ;
if zk 6= yn then Z is an LCS of X and Yn−1.

8 / 51

Characterising a longest common subsequence

Optimal solutions can be obtained from optimal solutions of
sub-problems.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

1 If xm = yn, then

zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then

if zk 6= xm then Z is an LCS of Xm−1 and Y ;
if zk 6= yn then Z is an LCS of X and Yn−1.

8 / 51

Characterising a longest common subsequence

Optimal solutions can be obtained from optimal solutions of
sub-problems.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

1 If xm = yn, then

zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then

if zk 6= xm then Z is an LCS of Xm−1 and Y ;
if zk 6= yn then Z is an LCS of X and Yn−1.

8 / 51

Characterising a longest common subsequence

Optimal solutions can be obtained from optimal solutions of
sub-problems.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

1 If xm = yn, then

zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then

if zk 6= xm then Z is an LCS of Xm−1 and Y ;
if zk 6= yn then Z is an LCS of X and Yn−1.

8 / 51

Proof.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

1. If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1

and Yn−1.

If zk 6= xm we could append xm to the end of Z , getting a longer
common subsequence of X and Y . So Zk−1 is a common
subsequence of Xm−1 and Yn−1.

Suppose for contradiction there is a common subsequence W
of Xm−1 and Ym−1 with length greater than k − 1. Then adding
xm and yn gives a common subsequence of X and Y with
length greater than k .

9 / 51

Proof.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

1. If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1

and Yn−1.

If zk 6= xm we could append xm to the end of Z , getting a longer
common subsequence of X and Y . So Zk−1 is a common
subsequence of Xm−1 and Yn−1.

Suppose for contradiction there is a common subsequence W
of Xm−1 and Ym−1 with length greater than k − 1. Then adding
xm and yn gives a common subsequence of X and Y with
length greater than k .

9 / 51

Proof.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

1. If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1

and Yn−1.

If zk 6= xm we could append xm to the end of Z , getting a longer
common subsequence of X and Y . So Zk−1 is a common
subsequence of Xm−1 and Yn−1.

Suppose for contradiction there is a common subsequence W
of Xm−1 and Ym−1 with length greater than k − 1. Then adding
xm and yn gives a common subsequence of X and Y with
length greater than k .

9 / 51

Proof.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

2. If xm 6= yn and zk 6= xm then Z is an LCS of Xm−1 and Y .

If zk 6= xm then Z is a common subsequence of Xm−1 and Y . If
there were a common sub sequence W of Xm−1 and Y with
length greater than k then W would also be a common
subsequence of X and Y , contradicting the assumption that Z
is an LCS of X and Y .

3. If xm 6= yn and zk 6= yn then Z is an LCS of X and Yn−1.
symmetric proof.

10 / 51

Proof.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

2. If xm 6= yn and zk 6= xm then Z is an LCS of Xm−1 and Y .

If zk 6= xm then Z is a common subsequence of Xm−1 and Y . If
there were a common sub sequence W of Xm−1 and Y with
length greater than k then W would also be a common
subsequence of X and Y , contradicting the assumption that Z
is an LCS of X and Y .

3. If xm 6= yn and zk 6= yn then Z is an LCS of X and Yn−1.
symmetric proof.

10 / 51

Proof.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

2. If xm 6= yn and zk 6= xm then Z is an LCS of Xm−1 and Y .

If zk 6= xm then Z is a common subsequence of Xm−1 and Y . If
there were a common sub sequence W of Xm−1 and Y with
length greater than k then W would also be a common
subsequence of X and Y , contradicting the assumption that Z
is an LCS of X and Y .

3. If xm 6= yn and zk 6= yn then Z is an LCS of X and Yn−1.
symmetric proof.

10 / 51

Proof.

Let X = x1x2 . . . xm, and Y = y1y2 . . . yn be sequences. and let
Z = z1z2 . . . zk be any LCS of X and Y .

2. If xm 6= yn and zk 6= xm then Z is an LCS of Xm−1 and Y .

If zk 6= xm then Z is a common subsequence of Xm−1 and Y . If
there were a common sub sequence W of Xm−1 and Y with
length greater than k then W would also be a common
subsequence of X and Y , contradicting the assumption that Z
is an LCS of X and Y .

3. If xm 6= yn and zk 6= yn then Z is an LCS of X and Yn−1.
symmetric proof.

10 / 51

A recursive solution to subproblems

A recursive solution to the LCS problem also has the
overlapping-subproblems property. The analysis so far implies
that to find the LCS of X and Y we either have xm = yn, in
which case the problem is reduced to compute the LCS of
Xm−1 and Yn−1 or else we find an LCS in Xm−1 and Y or X and
Yn−1. Each of these subproblems has LCS(Xm−1,Yn−1) as
common sub-problem.

The recursive definition of the optimal cost is readily completed.
If lcs[i , j] is the longest common subsequence of Xi and Yj , then

lcs[i , j] =

0 i = 0 ∨ j = 0
lcs[i − 1, j − 1] + 1 i , j > 0 ∧ xi = yj
max{lcs[i , j − 1], lcs[i − 1, j]} i , j > 0 ∧ xi 6= yj

11 / 51

A recursive solution to subproblems

A recursive solution to the LCS problem also has the
overlapping-subproblems property. The analysis so far implies
that to find the LCS of X and Y we either have xm = yn, in
which case the problem is reduced to compute the LCS of
Xm−1 and Yn−1 or else we find an LCS in Xm−1 and Y or X and
Yn−1. Each of these subproblems has LCS(Xm−1,Yn−1) as
common sub-problem.

The recursive definition of the optimal cost is readily completed.
If lcs[i , j] is the longest common subsequence of Xi and Yj , then

lcs[i , j] =

0 i = 0 ∨ j = 0
lcs[i − 1, j − 1] + 1 i , j > 0 ∧ xi = yj
max{lcs[i , j − 1], lcs[i − 1, j]} i , j > 0 ∧ xi 6= yj

11 / 51

Computing the length of an LCS
One can easily write an exponential time recursive algorithm to
compute lcs. However, since there are only Θ(nm) distinct
subproblems, we can also use dynamic programming to
compute the solutions bottom up.

The following procedure takes two sequences X = x1x2 . . . xm

and Y = y1y2 . . . yn and stores the output in a two dimensional
array lcs. The first row is filled from left to right, then the second
row, and so on. On completion lcs[m,n] contains the size of an
LCS between X and Y .

The table b[1..m,1..n] will be used later to simplify the
construction of a longest common subsequence from lcs.

The overall running time of the procedure is O(nm) since each
table entry takes O(1) time to compute.

12 / 51

Computing the length of an LCS
One can easily write an exponential time recursive algorithm to
compute lcs. However, since there are only Θ(nm) distinct
subproblems, we can also use dynamic programming to
compute the solutions bottom up.

The following procedure takes two sequences X = x1x2 . . . xm

and Y = y1y2 . . . yn and stores the output in a two dimensional
array lcs. The first row is filled from left to right, then the second
row, and so on. On completion lcs[m,n] contains the size of an
LCS between X and Y .

The table b[1..m,1..n] will be used later to simplify the
construction of a longest common subsequence from lcs.

The overall running time of the procedure is O(nm) since each
table entry takes O(1) time to compute.

12 / 51

Computing the length of an LCS
One can easily write an exponential time recursive algorithm to
compute lcs. However, since there are only Θ(nm) distinct
subproblems, we can also use dynamic programming to
compute the solutions bottom up.

The following procedure takes two sequences X = x1x2 . . . xm

and Y = y1y2 . . . yn and stores the output in a two dimensional
array lcs. The first row is filled from left to right, then the second
row, and so on. On completion lcs[m,n] contains the size of an
LCS between X and Y .

The table b[1..m,1..n] will be used later to simplify the
construction of a longest common subsequence from lcs.

The overall running time of the procedure is O(nm) since each
table entry takes O(1) time to compute.

12 / 51

Computing the length of an LCS
One can easily write an exponential time recursive algorithm to
compute lcs. However, since there are only Θ(nm) distinct
subproblems, we can also use dynamic programming to
compute the solutions bottom up.

The following procedure takes two sequences X = x1x2 . . . xm

and Y = y1y2 . . . yn and stores the output in a two dimensional
array lcs. The first row is filled from left to right, then the second
row, and so on. On completion lcs[m,n] contains the size of an
LCS between X and Y .

The table b[1..m,1..n] will be used later to simplify the
construction of a longest common subsequence from lcs.

The overall running time of the procedure is O(nm) since each
table entry takes O(1) time to compute.

12 / 51

LCS (X , Y)
m← length(X)
n← length(Y)
for i ← 1 to m lcs[i ,0]← 0
for j ← 0 to n lcs[0, j]← 0
for i ← 1 to m

for j ← 1 to n
if xi = yj

lcs[i , j]← lcs[i − 1, j − 1] + 1
b[i , j]← “↖”

else if lcs[i − 1, j] ≥ lcs[i , j − 1]
lcs[i , j]← lcs[i − 1, j]
b[i , j]← “↑”

else
lcs[i , j]← lcs[i , j − 1]
b[i , j]← “←”

return lcs and b

13 / 51

Constructing an LCS
The b table can be used to construct a LCS for the given
instance. We simply begin at b[m,n] and trace through the
table “following directions”: the “↖” symbol implies that xi = yj

is an element of the LCS.

PRINT-LCS (b, X , i , j)
if i = 0 ∨ j = 0 return
if b[i , j] = “↖”

PRINT-LCS (b, X , i − 1, j − 1)
print xi

else if b[i , j] = “↑”
PRINT-LCS (b, X , i − 1, j)

else
PRINT-LCS (b, X , i , j − 1)

The procedure takes O(n + m) time, since at least one of i and
j is decremented in each stage of the recursion.

13 / 51

Example
Let X = 10010101 and Y = 010110110.

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1

0
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0
14 / 51

i = 1, j = 1: xi 6= yj . Also lcs[i − 1, j] ≥ lcs[i, j − 1] so we do

lcs[i, j]← lcs[i − 1, j] and b[i, j] becomes ↑

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1 ↑

0 0
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0
15 / 51

i = 1, j = 2: xi = yj . So we do lcs[i, j]← lcs[i − 1, j − 1] + 1 and b[i, j] becomes↖

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1 ↑ ↖

0 0 1
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0

16 / 51

i = 1, j = 3: xi 6= yj . Also lcs[i − 1, j] < lcs[i, j − 1] so we do lcs[i, j]← lcs[i, j − 1] and

b[i, j] becomes←
j 0 1 2 3 4 5 6 7 8 9

i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1 ↑ ↖

0 0 1 ← 1
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0
17 / 51

i = 1, j = 4: xi = yj . So we do lcs[i, j]← lcs[i − 1, j − 1] + 1 and b[i, j] becomes↖

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1 ↑ ↖ ↖

0 0 1 ← 1 1
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0

18 / 51

The process should be clear now. Here is the final table.

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1 ↑ ↖ ↖ ↖ ↖ ↖

0 0 1 ← 1 1 1 ← 1 1 1 ← 1
2 0 ↖ ↑ ↖ ↖ ↖

0 1 1 2 ← 2 ← 2 2 ← 2 ← 2 2
3 0 ↖ ↑ ↖ ↑ ↑ ↖ ↖

0 1 1 2 2 2 3 ← 3 ← 3 3
4 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖

0 1 2 2 3 3 3 4 4 ← 4
5 0 ↖ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↖

0 1 2 3 3 3 4 4 4 5
6 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↑

0 1 2 3 4 4 4 5 5 5
7 0 ↖ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↖

0 1 2 3 4 4 5 5 5 6
8 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↑

0 1 2 3 4 5 5 6 6 6

19 / 51

And here is the common subsequence: print xi when we leave row i with↖
j 0 1 2 3 4 5 6 7 8 9

i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1 ↑ ↖ ↖ ↖ ↖ ↖

0 0 1 ← 1 1 1 ← 1 1 1 ← 1
2 0 ↖ ↑ ↖ ↖ ↖

0 1 1 2 ← 2 ← 2 2 ← 2 ← 2 2
3 0 ↖ ↑ ↖ ↑ ↑ ↖ ↖

0 1 1 2 2 2 3 ← 3 ← 3 3
4 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖

0 1 2 2 3 3 3 4 4 ← 4
5 0 ↖ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↖

0 1 2 3 3 3 4 4 4 5
6 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↑

0 1 2 3 4 4 4 5 5 5
7 0 ↖ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↖

0 1 2 3 4 4 5 5 5 6
8 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↑

0 1 2 3 4 5 5 6 6 6

20 / 51

Improvements

It is possible to eliminate the b table altogether. Each entry
lcs[i , j] depends on only three other values: lcs[i − 1, j − 1],
lcs[i − 1, j], and lcs[i , j − 1]. Given lcs[i , j] we can determine in
O(1) time which of the three values was used to compute it.
Thus, we can reconstruct an LCS in O(n + m) time using a
procedure similar to PRINT-LCS (exercise!). Although we save
Θ(mn) space by this method, the auxiliary space requirement for
computing an LCS does not asymptotically decrease, since we
still need Θ(mn) space for the table lcs.

If we care only about the length of the longest common
subsequence and we don’t want to construct it, we can reduce
the asymptotic space requirements by keeping only two rows of
lcs, the current one and the previous one.

21 / 51

Improvements

It is possible to eliminate the b table altogether. Each entry
lcs[i , j] depends on only three other values: lcs[i − 1, j − 1],
lcs[i − 1, j], and lcs[i , j − 1]. Given lcs[i , j] we can determine in
O(1) time which of the three values was used to compute it.
Thus, we can reconstruct an LCS in O(n + m) time using a
procedure similar to PRINT-LCS (exercise!). Although we save
Θ(mn) space by this method, the auxiliary space requirement for
computing an LCS does not asymptotically decrease, since we
still need Θ(mn) space for the table lcs.

If we care only about the length of the longest common
subsequence and we don’t want to construct it, we can reduce
the asymptotic space requirements by keeping only two rows of
lcs, the current one and the previous one.

21 / 51

Currently David Eppstein, Zvi Galil, Raffaele Giancarlo and
Giuseppe Italiano hold the record for the fastest LCS algorithm:

“Actually, if you look at the matrix above, you can tell
that it has a lot of structure – the numbers in the matrix
form large blocks in which the value is constant, with
only a small number of corners at which the value
changes. It turns out that one can take advantage of
these corners to speed up the computation. The
current (theoretically) fastest algorithm for longest
common subsequences (due to myself and
co-authors) runs in time
O(n log s + c log log min(c,mn/c)) where c is the
number of these corners, and s is the number of
characters appearing in the two strings.”

22 / 51

Text Compression

Suppose we have a text (a sequence of characters) that we
wish to store on a computer. Information is stored as a binary
sequence. The simplest option is to use the extended ASCII
code, like Java. Encode each character using two bytes.
Clearly, this method uses 200,000 bytes to store a
100,000-character text. We can do much better in practice.

23 / 51

Lossless Compression

Lossless compression algorithms are algorithms that allow the
exact original data to be reconstructed from the compressed
data.

A lossless compression algorithm cannot make every file
shorter.

If some file gets shorter, some other file must get longer.

To see this, use the pigeonhole principle.

24 / 51

Lossless Compression

Lossless compression algorithms are algorithms that allow the
exact original data to be reconstructed from the compressed
data.

A lossless compression algorithm cannot make every file
shorter.

If some file gets shorter, some other file must get longer.

To see this, use the pigeonhole principle.

24 / 51

Lossless Compression

Lossless compression algorithms are algorithms that allow the
exact original data to be reconstructed from the compressed
data.

A lossless compression algorithm cannot make every file
shorter.

If some file gets shorter, some other file must get longer.

To see this, use the pigeonhole principle.

24 / 51

Let `(f) denote the length of a file f and let c(f) denote the
length of the compressed version of f .

Suppose for contradiction that ∀f , c(f) ≤ `(f) and
∃f , c(f) < `(f).

Let L be the smallest integer such that there exists an f with
L = `(f) > c(f). Pick some such f and let C = c(f) < L.

Now, how many different files f have c(f) = C?

At least 2C + 1, including 2C files f with `(f) = C and at least
one file with `(f) = L.

By the pigeonhole principle, at least two of these have the
same compressed text, so the compression is not lossless.

25 / 51

Let `(f) denote the length of a file f and let c(f) denote the
length of the compressed version of f .

Suppose for contradiction that ∀f , c(f) ≤ `(f) and
∃f , c(f) < `(f).

Let L be the smallest integer such that there exists an f with
L = `(f) > c(f). Pick some such f and let C = c(f) < L.

Now, how many different files f have c(f) = C?

At least 2C + 1, including 2C files f with `(f) = C and at least
one file with `(f) = L.

By the pigeonhole principle, at least two of these have the
same compressed text, so the compression is not lossless.

25 / 51

Let `(f) denote the length of a file f and let c(f) denote the
length of the compressed version of f .

Suppose for contradiction that ∀f , c(f) ≤ `(f) and
∃f , c(f) < `(f).

Let L be the smallest integer such that there exists an f with
L = `(f) > c(f). Pick some such f and let C = c(f) < L.

Now, how many different files f have c(f) = C?

At least 2C + 1, including 2C files f with `(f) = C and at least
one file with `(f) = L.

By the pigeonhole principle, at least two of these have the
same compressed text, so the compression is not lossless.

25 / 51

Let `(f) denote the length of a file f and let c(f) denote the
length of the compressed version of f .

Suppose for contradiction that ∀f , c(f) ≤ `(f) and
∃f , c(f) < `(f).

Let L be the smallest integer such that there exists an f with
L = `(f) > c(f). Pick some such f and let C = c(f) < L.

Now, how many different files f have c(f) = C?

At least 2C + 1, including 2C files f with `(f) = C and at least
one file with `(f) = L.

By the pigeonhole principle, at least two of these have the
same compressed text, so the compression is not lossless.

25 / 51

Let `(f) denote the length of a file f and let c(f) denote the
length of the compressed version of f .

Suppose for contradiction that ∀f , c(f) ≤ `(f) and
∃f , c(f) < `(f).

Let L be the smallest integer such that there exists an f with
L = `(f) > c(f). Pick some such f and let C = c(f) < L.

Now, how many different files f have c(f) = C?

At least 2C + 1, including 2C files f with `(f) = C and at least
one file with `(f) = L.

By the pigeonhole principle, at least two of these have the
same compressed text, so the compression is not lossless.

25 / 51

So choosing the compression algorithm, is essentially choosing
which files will get shorter.

26 / 51

Text Compression through Huffman Coding

In a code, each character in the text is represented by a unique
binary string.

Fixed-length codes (for example, the extended ASCII code in
which each character is stored in two bytes) can be inefficient.
We can do better with a variable length code. Give frequent
characters short codewords.

Huffman codes represent a very effective technique for
compressing data; they usually produce savings between 20%
and 90%.

27 / 51

Text Compression through Huffman Coding

In a code, each character in the text is represented by a unique
binary string.

Fixed-length codes (for example, the extended ASCII code in
which each character is stored in two bytes) can be inefficient.
We can do better with a variable length code. Give frequent
characters short codewords.

Huffman codes represent a very effective technique for
compressing data; they usually produce savings between 20%
and 90%.

27 / 51

Text Compression through Huffman Coding

In a code, each character in the text is represented by a unique
binary string.

Fixed-length codes (for example, the extended ASCII code in
which each character is stored in two bytes) can be inefficient.
We can do better with a variable length code. Give frequent
characters short codewords.

Huffman codes represent a very effective technique for
compressing data; they usually produce savings between 20%
and 90%.

27 / 51

Text Compression through Huffman Coding

In a code, each character in the text is represented by a unique
binary string.

Fixed-length codes (for example, the extended ASCII code in
which each character is stored in two bytes) can be inefficient.
We can do better with a variable length code. Give frequent
characters short codewords.

Huffman codes represent a very effective technique for
compressing data; they usually produce savings between 20%
and 90%.

27 / 51

Which characters are frequent?

English character frequencies, from Wikipedia.

28 / 51

Prefix Codes

A prefix code is a code in which no codword is a prefix of some
other codeword.

symbol codeword
a 0
b 10
c 110

encoding is easy. Given the source text T , simply concatenate
the codewords for the characters in T :

abababa becomes 0100100100

(the colour is to help you see what is going on — it is not part of
the code).

29 / 51

Prefix Codes

A prefix code is a code in which no codword is a prefix of some
other codeword.

symbol codeword
a 0
b 10
c 110

encoding is easy. Given the source text T , simply concatenate
the codewords for the characters in T :

abababa becomes 0100100100

(the colour is to help you see what is going on — it is not part of
the code).

29 / 51

symbol codeword
a 0
b 10
c 110

decoding is easy too.

the code 0100100100 corresponds to a followed by text for
100100100

which is ab followed by text for 0100100

which is aba followed by text for 100100

...

which is abababa.

30 / 51

Exercise

Write a decoder for this code.

symbol codeword
a 0
b 10
c 110

What is its time complexity?

31 / 51

It has been shown that the optimal data compression
achievable by any code can always be achieved with a prefix
code. Therefore we will stick to prefix codes.

32 / 51

Data Structures

We will use a priority queue, which you learned about in
Comp202. A priority queue is a data structure for maintaining a
set Q of elements, each with an associated value (or key). A
priority queue supports the following operations:

INSERT(Q,x) inserts the element x into Q.

MIN(Q) returns the element of Q with minimal key.

EXTRACT-MIN(Q) removes and returns the element of Q with
minimal key.

You learned an implementation in which each operation takes
O(log n) time, where n is the maximum size of Q.

33 / 51

Data Structures
We represent a codeword as a binary tree. We store the
characters at the leaves. The binary codeword for a character
is interpreted as a path from the root to the character, where 0
means “go left” and 1 means “go right”. So the code

symbol codeword
a 0
b 10
c 110

is depicted like this.

0 1

0

0 1
a

b

c

34 / 51

An optimal code is full, meaning that every non-leaf node has
two children.

0 1

0

0 1
a

b

c

0 1

0 1
a

b c

A full binary tree with n leaves has n − 1 internal nodes, so So,
if Σ is the text alphabet, then the tree for an optimal prefix code
has exactly |Σ| leaves, one for each letter in Σ, and |Σ| − 1
internal nodes.

35 / 51

An optimal code is full, meaning that every non-leaf node has
two children.

0 1

0

0 1
a

b

c

0 1

0 1
a

b c

A full binary tree with n leaves has n − 1 internal nodes, so So,
if Σ is the text alphabet, then the tree for an optimal prefix code
has exactly |Σ| leaves, one for each letter in Σ, and |Σ| − 1
internal nodes.

35 / 51

Cost of a tree

Suppose that we are given relative character frequencies for
the characters in the alphabet where f [c] denotes the relative
frequency of character c.

Given a tree T corresponding to a prefix code, the cost of T is
defined to be the average code-word length, which is denoted
B(T) and is computed as follows.

Let dT (c) denote the depth of c’s leaf in T (note that dT (c) is
also the length of the codeword for c).

B(T) =
∑
c∈Σ

f [c]dT (c).

36 / 51

Cost of a tree

Suppose that we are given relative character frequencies for
the characters in the alphabet where f [c] denotes the relative
frequency of character c.

Given a tree T corresponding to a prefix code, the cost of T is
defined to be the average code-word length, which is denoted
B(T) and is computed as follows.

Let dT (c) denote the depth of c’s leaf in T (note that dT (c) is
also the length of the codeword for c).

B(T) =
∑
c∈Σ

f [c]dT (c).

36 / 51

Cost of a tree

Suppose that we are given relative character frequencies for
the characters in the alphabet where f [c] denotes the relative
frequency of character c.

Given a tree T corresponding to a prefix code, the cost of T is
defined to be the average code-word length, which is denoted
B(T) and is computed as follows.

Let dT (c) denote the depth of c’s leaf in T (note that dT (c) is
also the length of the codeword for c).

B(T) =
∑
c∈Σ

f [c]dT (c).

36 / 51

Cost of a tree

Suppose that we are given relative character frequencies for
the characters in the alphabet where f [c] denotes the relative
frequency of character c.

Given a tree T corresponding to a prefix code, the cost of T is
defined to be the average code-word length, which is denoted
B(T) and is computed as follows.

Let dT (c) denote the depth of c’s leaf in T (note that dT (c) is
also the length of the codeword for c).

B(T) =
∑
c∈Σ

f [c]dT (c).

36 / 51

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix
code, called a Huffman code.

The algorithm builds the tree T corresponding to an optimal code in a
bottom-up manner. It begins with a set of |Σ| leaves and performs a
sequence of |Σ| − 1 “merging” operations to create the final tree.

For each c ∈ Σ, f [c] denotes the (given) frequency of c.

The nodes of T are stored in a priority queue Q. Initially, Q contains
an object corresponding to each leaf c and the object has key f [c].

The two least frequent leaves are then selected and merged together.
The leaves are merged by adding a new root which points to both of
them. The key of the new object is the sum of the frequencies of the
two objects that were merged.

The generic node z of T is an object containing two pointers “left” and

“right” to the left and right child of z in T .

37 / 51

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix
code, called a Huffman code.

The algorithm builds the tree T corresponding to an optimal code in a
bottom-up manner. It begins with a set of |Σ| leaves and performs a
sequence of |Σ| − 1 “merging” operations to create the final tree.

For each c ∈ Σ, f [c] denotes the (given) frequency of c.

The nodes of T are stored in a priority queue Q. Initially, Q contains
an object corresponding to each leaf c and the object has key f [c].

The two least frequent leaves are then selected and merged together.
The leaves are merged by adding a new root which points to both of
them. The key of the new object is the sum of the frequencies of the
two objects that were merged.

The generic node z of T is an object containing two pointers “left” and

“right” to the left and right child of z in T .

37 / 51

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix
code, called a Huffman code.

The algorithm builds the tree T corresponding to an optimal code in a
bottom-up manner. It begins with a set of |Σ| leaves and performs a
sequence of |Σ| − 1 “merging” operations to create the final tree.

For each c ∈ Σ, f [c] denotes the (given) frequency of c.

The nodes of T are stored in a priority queue Q. Initially, Q contains
an object corresponding to each leaf c and the object has key f [c].

The two least frequent leaves are then selected and merged together.
The leaves are merged by adding a new root which points to both of
them. The key of the new object is the sum of the frequencies of the
two objects that were merged.

The generic node z of T is an object containing two pointers “left” and

“right” to the left and right child of z in T .

37 / 51

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix
code, called a Huffman code.

The algorithm builds the tree T corresponding to an optimal code in a
bottom-up manner. It begins with a set of |Σ| leaves and performs a
sequence of |Σ| − 1 “merging” operations to create the final tree.

For each c ∈ Σ, f [c] denotes the (given) frequency of c.

The nodes of T are stored in a priority queue Q. Initially, Q contains
an object corresponding to each leaf c and the object has key f [c].

The two least frequent leaves are then selected and merged together.
The leaves are merged by adding a new root which points to both of
them. The key of the new object is the sum of the frequencies of the
two objects that were merged.

The generic node z of T is an object containing two pointers “left” and

“right” to the left and right child of z in T .

37 / 51

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix
code, called a Huffman code.

The algorithm builds the tree T corresponding to an optimal code in a
bottom-up manner. It begins with a set of |Σ| leaves and performs a
sequence of |Σ| − 1 “merging” operations to create the final tree.

For each c ∈ Σ, f [c] denotes the (given) frequency of c.

The nodes of T are stored in a priority queue Q. Initially, Q contains
an object corresponding to each leaf c and the object has key f [c].

The two least frequent leaves are then selected and merged together.
The leaves are merged by adding a new root which points to both of
them. The key of the new object is the sum of the frequencies of the
two objects that were merged.

The generic node z of T is an object containing two pointers “left” and

“right” to the left and right child of z in T .

37 / 51

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix
code, called a Huffman code.

The algorithm builds the tree T corresponding to an optimal code in a
bottom-up manner. It begins with a set of |Σ| leaves and performs a
sequence of |Σ| − 1 “merging” operations to create the final tree.

For each c ∈ Σ, f [c] denotes the (given) frequency of c.

The nodes of T are stored in a priority queue Q. Initially, Q contains
an object corresponding to each leaf c and the object has key f [c].

The two least frequent leaves are then selected and merged together.
The leaves are merged by adding a new root which points to both of
them. The key of the new object is the sum of the frequencies of the
two objects that were merged.

The generic node z of T is an object containing two pointers “left” and

“right” to the left and right child of z in T .

37 / 51

HUFFMAN (Σ)
n← |Σ|
Q ← Σ
for i ← 1 to n − 1

z ← ALLOCATE-NODE()
left[z]← EXTRACT-MIN(Q)
x ← left[z]
right[z]← EXTRACT-MIN(Q)
y ← right[z]
f [z]← f [x] + f [y]
INSERT(Q, z)

return EXTRACT-MIN(Q)

38 / 51

Example

f : 5/55 e : 9/55 d : 16/55 c : 12/55 b : 13/55

39 / 51

f : 5/55 e : 9/55
�
�
�

@
@
@

14/55

d : 16/55 c : 12/55 b : 13/55

40 / 51

f : 5/55 e : 9/55
�
�
�

@
@
@

14/55

d : 16/55 c : 12/55 b : 13/55
�
�
�

@
@
@

25/55

41 / 51

f : 5/55 e : 9/55
�
�
�

@
@
@

14/55

d : 16/55 c : 12/55 b : 13/55
�
�
�

@
@
@

25/55
�
�
�

A
A
A
A
A
A
A

30/55

42 / 51

f : 5/55 e : 9/55
�
��

@
@@

14/55

d : 16/55 c : 12/55 b : 13/55
�
��

@
@@

25/55
�
�
�

A
A
A
A
A
A
A

30/55

A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
��

1

So codeword for f is 000

43 / 51

Analysis

HUFFMAN (Σ)
n← |Σ|
Q ← Σ
for i ← 1 to n − 1

z ← ALLOCATE-NODE()
left[z]← EXTRACT-MIN(Q)
x ← left[z]
right[z]← EXTRACT-MIN(Q)
y ← right[z]
f [z]← f [x] + f [y]
INSERT(Q, z)

return EXTRACT-MIN(Q)

Each priority queue operation takes O(log n) so total is
O(n log n).

44 / 51

Correctness

To prove the greedy algorithm HUFFMAN is correct, we must
show that the problem exhibits these two properties:

Greedy-Choice property: For every instance, there is an optimal
solution consistent with the first greedy choice. Let x and y be
two characters in Σ having the lowest frequencies. Then there
exists an optimal prefix code in which the codewords for x and
y have the same length and differ only in the last bit.

Recursive property: For every instance Σ of the problem there
is a smaller instance Σ′ (namely the one in which x and y are
replaced with z) such that, using any optimal solution to Σ′, one
obtains a best-possible solution for Σ amongst all solutions
which are consistent with the first greedy choice.

45 / 51

Correctness

To prove the greedy algorithm HUFFMAN is correct, we must
show that the problem exhibits these two properties:

Greedy-Choice property: For every instance, there is an optimal
solution consistent with the first greedy choice. Let x and y be
two characters in Σ having the lowest frequencies. Then there
exists an optimal prefix code in which the codewords for x and
y have the same length and differ only in the last bit.

Recursive property: For every instance Σ of the problem there
is a smaller instance Σ′ (namely the one in which x and y are
replaced with z) such that, using any optimal solution to Σ′, one
obtains a best-possible solution for Σ amongst all solutions
which are consistent with the first greedy choice.

45 / 51

Correctness

To prove the greedy algorithm HUFFMAN is correct, we must
show that the problem exhibits these two properties:

Greedy-Choice property: For every instance, there is an optimal
solution consistent with the first greedy choice. Let x and y be
two characters in Σ having the lowest frequencies. Then there
exists an optimal prefix code in which the codewords for x and
y have the same length and differ only in the last bit.

Recursive property: For every instance Σ of the problem there
is a smaller instance Σ′ (namely the one in which x and y are
replaced with z) such that, using any optimal solution to Σ′, one
obtains a best-possible solution for Σ amongst all solutions
which are consistent with the first greedy choice.

45 / 51

Recursive property: For every instance Σ of the problem there
is a smaller instance Σ′ (namely the one in which x and y are
replaced with z) such that, using any optimal solution to Σ′, one
obtains a best-possible solution for Σ amongst all solutions
which are consistent with the first greedy choice.

Let T be a full binary tree representing an optimal prefix code
for Σ. Consider any two characters x and y that appear as
sibling leaves in T and let z be their parent. Construct Σ′ from
Σ by replacing x and y by a new character z with frequency
f [z] = f [x] + f [y]. The induced tree T ′ = T − {x , y} is an
optimal prefix code for the alphabet Σ′ = Σ− {x , y} ∪ {z}

We must show that any tree for Σ′ that is as good as T ′ can be
extended by adding x and y below z to get a tree as good as T

46 / 51

Recursive property: For every instance Σ of the problem there
is a smaller instance Σ′ (namely the one in which x and y are
replaced with z) such that, using any optimal solution to Σ′, one
obtains a best-possible solution for Σ amongst all solutions
which are consistent with the first greedy choice.

Let T be a full binary tree representing an optimal prefix code
for Σ. Consider any two characters x and y that appear as
sibling leaves in T and let z be their parent. Construct Σ′ from
Σ by replacing x and y by a new character z with frequency
f [z] = f [x] + f [y]. The induced tree T ′ = T − {x , y} is an
optimal prefix code for the alphabet Σ′ = Σ− {x , y} ∪ {z}

We must show that any tree for Σ′ that is as good as T ′ can be
extended by adding x and y below z to get a tree as good as T

46 / 51

Greedy-Choice

Let x and y be two characters in Σ having the lowest
frequencies. Then there exists an optimal prefix code in which
the codewords for x and y have the same length and differ only
in the last bit.

Proof idea: Take any optimal T and modify it to make another
optimal T ′′ in which x and y are sibling leaves of maximum
depth.

47 / 51

Greedy-Choice

Let x and y be two characters in Σ having the lowest
frequencies. Then there exists an optimal prefix code in which
the codewords for x and y have the same length and differ only
in the last bit.

Proof idea: Take any optimal T and modify it to make another
optimal T ′′ in which x and y are sibling leaves of maximum
depth.

47 / 51

Details

Take any optimal T and modify it to make another optimal T ′′ in
which x and y are sibling leaves of maximum depth.

Let b and c be sibling leaves of maximum depth with
f [b] ≤ f [c], f [x] ≤ f [y]

Since x and y have lowest frequencies, f [x] ≤ f [b] and
f [y] ≤ f [c]

Produce T ′ from T by exchanging x and b. Produce T ′′ from T ′

by exchanging y and c.

48 / 51

Details

Take any optimal T and modify it to make another optimal T ′′ in
which x and y are sibling leaves of maximum depth.

Let b and c be sibling leaves of maximum depth with
f [b] ≤ f [c], f [x] ≤ f [y]

Since x and y have lowest frequencies, f [x] ≤ f [b] and
f [y] ≤ f [c]

Produce T ′ from T by exchanging x and b. Produce T ′′ from T ′

by exchanging y and c.

48 / 51

Details

Take any optimal T and modify it to make another optimal T ′′ in
which x and y are sibling leaves of maximum depth.

Let b and c be sibling leaves of maximum depth with
f [b] ≤ f [c], f [x] ≤ f [y]

Since x and y have lowest frequencies, f [x] ≤ f [b] and
f [y] ≤ f [c]

Produce T ′ from T by exchanging x and b. Produce T ′′ from T ′

by exchanging y and c.

48 / 51

Details

Take any optimal T and modify it to make another optimal T ′′ in
which x and y are sibling leaves of maximum depth.

Let b and c be sibling leaves of maximum depth with
f [b] ≤ f [c], f [x] ≤ f [y]

Since x and y have lowest frequencies, f [x] ≤ f [b] and
f [y] ≤ f [c]

Produce T ′ from T by exchanging x and b. Produce T ′′ from T ′

by exchanging y and c.

48 / 51

Details

Take any optimal T and modify it to make another optimal T ′′ in
which x and y are sibling leaves of maximum depth.

Let b and c be sibling leaves of maximum depth with
f [b] ≤ f [c], f [x] ≤ f [y]

Since x and y have lowest frequencies, f [x] ≤ f [b] and
f [y] ≤ f [c]

Produce T ′ from T by exchanging x and b. Produce T ′′ from T ′

by exchanging y and c.

48 / 51

B(T)− B(T ′) =
∑
c∈Σ

f [c]dT (c)−
∑
c∈Σ

f [c]dT ′(c)

= f [x]dT (x) + f [b]dT (b)− f [x]dT ′(x)− f [b]dT ′(b)

= f [x]dT (x) + f [b]dT (b)− f [x]dT (b)− f [b]dT (x)

= (f [b]− f [x])(dT (b)− dT (x))

≥ 0 since both factors are non-negative

Similarly, B(T ′) ≥ B(T ′′)

So B(T ′′) ≤ B(T) and since T is optimal, so is T ′′.

49 / 51

B(T)− B(T ′) =
∑
c∈Σ

f [c]dT (c)−
∑
c∈Σ

f [c]dT ′(c)

= f [x]dT (x) + f [b]dT (b)− f [x]dT ′(x)− f [b]dT ′(b)

= f [x]dT (x) + f [b]dT (b)− f [x]dT (b)− f [b]dT (x)

= (f [b]− f [x])(dT (b)− dT (x))

≥ 0 since both factors are non-negative

Similarly, B(T ′) ≥ B(T ′′)

So B(T ′′) ≤ B(T) and since T is optimal, so is T ′′.

49 / 51

B(T)− B(T ′) =
∑
c∈Σ

f [c]dT (c)−
∑
c∈Σ

f [c]dT ′(c)

= f [x]dT (x) + f [b]dT (b)− f [x]dT ′(x)− f [b]dT ′(b)

= f [x]dT (x) + f [b]dT (b)− f [x]dT (b)− f [b]dT (x)

= (f [b]− f [x])(dT (b)− dT (x))

≥ 0 since both factors are non-negative

Similarly, B(T ′) ≥ B(T ′′)

So B(T ′′) ≤ B(T) and since T is optimal, so is T ′′.

49 / 51

Recursive property
Let T be a full binary tree representing an optimal prefix code.
Consider any two characters x and y that appear as sibling
leaves in T and let z be their parent. Let’s first check that,
considering z as a character with frequency f [z] = f [x] + f [y],
the induced tree T ′ = T − {x , y} is an optimal prefix code for
the alphabet Σ′ = Σ− {x , y} ∪ {z}

f [x]dT (x) + f [y]dT (y) = (f [x] + f [y])(dT ′(z) + 1)

= f [z]dT ′(z) + f [x] + f [y],

so B(T) = B(T ′) + f [x] + f [y]

Suppose for contradiction that T ′ is not optimal so there is a T ′′

for Σ− {x , y} ∪ {z} with B(T ′′) < B(T ′)

Then from T ′′ we can obtain a tree for Σ with cost
B(T ′′) + f [x] + f [y] < B(T) contradicting optimality of T .

50 / 51

Recursive property
Let T be a full binary tree representing an optimal prefix code.
Consider any two characters x and y that appear as sibling
leaves in T and let z be their parent. Let’s first check that,
considering z as a character with frequency f [z] = f [x] + f [y],
the induced tree T ′ = T − {x , y} is an optimal prefix code for
the alphabet Σ′ = Σ− {x , y} ∪ {z}

f [x]dT (x) + f [y]dT (y) = (f [x] + f [y])(dT ′(z) + 1)

= f [z]dT ′(z) + f [x] + f [y],

so B(T) = B(T ′) + f [x] + f [y]

Suppose for contradiction that T ′ is not optimal so there is a T ′′

for Σ− {x , y} ∪ {z} with B(T ′′) < B(T ′)

Then from T ′′ we can obtain a tree for Σ with cost
B(T ′′) + f [x] + f [y] < B(T) contradicting optimality of T .

50 / 51

Recursive property
Let T be a full binary tree representing an optimal prefix code.
Consider any two characters x and y that appear as sibling
leaves in T and let z be their parent. Let’s first check that,
considering z as a character with frequency f [z] = f [x] + f [y],
the induced tree T ′ = T − {x , y} is an optimal prefix code for
the alphabet Σ′ = Σ− {x , y} ∪ {z}

f [x]dT (x) + f [y]dT (y) = (f [x] + f [y])(dT ′(z) + 1)

= f [z]dT ′(z) + f [x] + f [y],

so B(T) = B(T ′) + f [x] + f [y]

Suppose for contradiction that T ′ is not optimal so there is a T ′′

for Σ− {x , y} ∪ {z} with B(T ′′) < B(T ′)

Then from T ′′ we can obtain a tree for Σ with cost
B(T ′′) + f [x] + f [y] < B(T) contradicting optimality of T .

50 / 51

Recursive property
Let T be a full binary tree representing an optimal prefix code.
Consider any two characters x and y that appear as sibling
leaves in T and let z be their parent. Let’s first check that,
considering z as a character with frequency f [z] = f [x] + f [y],
the induced tree T ′ = T − {x , y} is an optimal prefix code for
the alphabet Σ′ = Σ− {x , y} ∪ {z}

f [x]dT (x) + f [y]dT (y) = (f [x] + f [y])(dT ′(z) + 1)

= f [z]dT ′(z) + f [x] + f [y],

so B(T) = B(T ′) + f [x] + f [y]

Suppose for contradiction that T ′ is not optimal so there is a T ′′

for Σ− {x , y} ∪ {z} with B(T ′′) < B(T ′)

Then from T ′′ we can obtain a tree for Σ with cost
B(T ′′) + f [x] + f [y] < B(T) contradicting optimality of T .

50 / 51

Recursive property
Let T be a full binary tree representing an optimal prefix code.
Consider any two characters x and y that appear as sibling
leaves in T and let z be their parent. Let’s first check that,
considering z as a character with frequency f [z] = f [x] + f [y],
the induced tree T ′ = T − {x , y} is an optimal prefix code for
the alphabet Σ′ = Σ− {x , y} ∪ {z}

f [x]dT (x) + f [y]dT (y) = (f [x] + f [y])(dT ′(z) + 1)

= f [z]dT ′(z) + f [x] + f [y],

so B(T) = B(T ′) + f [x] + f [y]

Suppose for contradiction that T ′ is not optimal so there is a T ′′

for Σ− {x , y} ∪ {z} with B(T ′′) < B(T ′)

Then from T ′′ we can obtain a tree for Σ with cost
B(T ′′) + f [x] + f [y] < B(T) contradicting optimality of T .

50 / 51

We must show that any tree for Σ′ that is as good as T ′ can be
extended by adding x and y below z to get a tree as good as T .

Any such tree would have cost B(T ′) and addding x and y
gives B(T ′) + f [x] + f [y] = B(T).

51 / 51

