
Efficient Sequential Algorithms, Comp309

University of Liverpool

2010–2011
Module Organiser, Igor Potapov

Part 2: Pattern Matching

References: T. H. Cormen, C. E. Leiserson, R. L. Rivest
Introduction to Algorithms, Second Edition. MIT Press
(2001). "String Matching"

Aho, Alfred V, Algorithms for finding patterns in Strings,
Handbook of Theoretical Computer Science, Edited by J van
Leeuwen, Elsevier (1990), 255–300.

1 / 57

String Matching

Finding all occurrences of a pattern in a text is a problem that
arises frequently in various contexts:

text editing typically the text is a document being edited, and
the pattern searched for is a particular word
supplied by the user.

DNA mapping in this case we are interested in finding a
particular pattern in a (long) DNA sequence.

WWW searching the text is the union of all web-pages in the
internet

2 / 57

String Matching

Finding all occurrences of a pattern in a text is a problem that
arises frequently in various contexts:

text editing typically the text is a document being edited, and
the pattern searched for is a particular word
supplied by the user.

DNA mapping in this case we are interested in finding a
particular pattern in a (long) DNA sequence.

WWW searching the text is the union of all web-pages in the
internet

2 / 57

String Matching

Finding all occurrences of a pattern in a text is a problem that
arises frequently in various contexts:

text editing typically the text is a document being edited, and
the pattern searched for is a particular word
supplied by the user.

DNA mapping in this case we are interested in finding a
particular pattern in a (long) DNA sequence.

WWW searching the text is the union of all web-pages in the
internet

2 / 57

String Matching

Finding all occurrences of a pattern in a text is a problem that
arises frequently in various contexts:

text editing typically the text is a document being edited, and
the pattern searched for is a particular word
supplied by the user.

DNA mapping in this case we are interested in finding a
particular pattern in a (long) DNA sequence.

WWW searching the text is the union of all web-pages in the
internet

2 / 57

Problem definition.
Given an alphabet A, a text T (an array of n characters in A)
and a pattern P (another array of m ≤ n characters in A), we
say that P occurs with shift s in T (or P occurs beginning at
position s + 1 in T) if 0 ≤ s ≤ n −m and T [s + j] = P[j] for
1 ≤ j ≤ m. A shift is valid if P occurs with shift s in T and invalid
otherwise. The string-matching problem is the problem of
finding all valid shifts for a given choice of P and T .

Example

T ≡ tadadattaetadadadafa

P ≡ dada

Valid shifts are two, twelve and fourteen.
3 / 57

Problem definition.
Given an alphabet A, a text T (an array of n characters in A)
and a pattern P (another array of m ≤ n characters in A), we
say that P occurs with shift s in T (or P occurs beginning at
position s + 1 in T) if 0 ≤ s ≤ n −m and T [s + j] = P[j] for
1 ≤ j ≤ m. A shift is valid if P occurs with shift s in T and invalid
otherwise. The string-matching problem is the problem of
finding all valid shifts for a given choice of P and T .

Example

T ≡ tadadattaetadadadafa

P ≡ dada

Valid shifts are two, twelve and fourteen.
3 / 57

Problem definition.
Given an alphabet A, a text T (an array of n characters in A)
and a pattern P (another array of m ≤ n characters in A), we
say that P occurs with shift s in T (or P occurs beginning at
position s + 1 in T) if 0 ≤ s ≤ n −m and T [s + j] = P[j] for
1 ≤ j ≤ m. A shift is valid if P occurs with shift s in T and invalid
otherwise. The string-matching problem is the problem of
finding all valid shifts for a given choice of P and T .

Example

T ≡ tadadattaetadadadafa

P ≡ dada

Valid shifts are two, twelve and fourteen.
3 / 57

Problem definition.
Given an alphabet A, a text T (an array of n characters in A)
and a pattern P (another array of m ≤ n characters in A), we
say that P occurs with shift s in T (or P occurs beginning at
position s + 1 in T) if 0 ≤ s ≤ n −m and T [s + j] = P[j] for
1 ≤ j ≤ m. A shift is valid if P occurs with shift s in T and invalid
otherwise. The string-matching problem is the problem of
finding all valid shifts for a given choice of P and T .

Example

T ≡ tadadattaetadadadafa

P ≡ dada

Valid shifts are two, twelve and fourteen.
3 / 57

Problem definition.
Given an alphabet A, a text T (an array of n characters in A)
and a pattern P (another array of m ≤ n characters in A), we
say that P occurs with shift s in T (or P occurs beginning at
position s + 1 in T) if 0 ≤ s ≤ n −m and T [s + j] = P[j] for
1 ≤ j ≤ m. A shift is valid if P occurs with shift s in T and invalid
otherwise. The string-matching problem is the problem of
finding all valid shifts for a given choice of P and T .

Example

T ≡ tadadattaetadadadafa

P ≡ dada

Valid shifts are two, twelve and fourteen.
3 / 57

Problem definition.
Given an alphabet A, a text T (an array of n characters in A)
and a pattern P (another array of m ≤ n characters in A), we
say that P occurs with shift s in T (or P occurs beginning at
position s + 1 in T) if 0 ≤ s ≤ n −m and T [s + j] = P[j] for
1 ≤ j ≤ m. A shift is valid if P occurs with shift s in T and invalid
otherwise. The string-matching problem is the problem of
finding all valid shifts for a given choice of P and T .

Example

T ≡ tadadattaetadadadafa

P ≡ dada

Valid shifts are two, twelve and fourteen.
3 / 57

A Short History

First came the obvious brute-force algorithm (still in widespread
use).

Its worst-case running time is O(nm). According to Aho, the
expected performance is usually O(m + n) “in practical
situations.”

4 / 57

A Short History

First came the obvious brute-force algorithm (still in widespread
use).

Its worst-case running time is O(nm). According to Aho, the
expected performance is usually O(m + n) “in practical
situations.”

4 / 57

In 1970, Cook proved a theoretical result showing that a “2-way
deterministic pushdown automaton” language can be
recognized in linear time on a random-access machine. This
result implies that there is an algorithm which solves the
pattern-matching problem in time O(n + m) (worst case),
because the language

{P#T | T = xPy for some x and y}

can be recognized by a 2DPDA.

His theorem did not explicitly provide the algorithm.

5 / 57

Knuth traced the simulation from Cook’s proof to derive a
linear-time pattern matching algorithm. Pratt modified the
algorithm to make its running time independent of alphabet
size.

This algorithm was independently discovered by J.H. Morris,
who was implementing a text editor, and wanted to avoid
“backing up” in the text string.

Knuth, Morris, and Pratt didn’t get around to publishing their
algorithm until 1976, and in the meantime R. S. Boyer and J. S.
Moore (and, independently, R. W. Gosper) discovered a
different algorithm which is much faster in many applications,
since it often examines only a fraction of the characters in the
text string. Many text editors use this algorithm.

6 / 57

Knuth traced the simulation from Cook’s proof to derive a
linear-time pattern matching algorithm. Pratt modified the
algorithm to make its running time independent of alphabet
size.

This algorithm was independently discovered by J.H. Morris,
who was implementing a text editor, and wanted to avoid
“backing up” in the text string.

Knuth, Morris, and Pratt didn’t get around to publishing their
algorithm until 1976, and in the meantime R. S. Boyer and J. S.
Moore (and, independently, R. W. Gosper) discovered a
different algorithm which is much faster in many applications,
since it often examines only a fraction of the characters in the
text string. Many text editors use this algorithm.

6 / 57

Knuth traced the simulation from Cook’s proof to derive a
linear-time pattern matching algorithm. Pratt modified the
algorithm to make its running time independent of alphabet
size.

This algorithm was independently discovered by J.H. Morris,
who was implementing a text editor, and wanted to avoid
“backing up” in the text string.

Knuth, Morris, and Pratt didn’t get around to publishing their
algorithm until 1976, and in the meantime R. S. Boyer and J. S.
Moore (and, independently, R. W. Gosper) discovered a
different algorithm which is much faster in many applications,
since it often examines only a fraction of the characters in the
text string. Many text editors use this algorithm.

6 / 57

If you look on the web, you can find comparisons of these
algorithms, and also some nice animations.

7 / 57

Notation (1)

|s| if s is a string, denotes the length of s, i.e. the
number of characters in the string.

A∗ (“A-star”) the set of all finite-length strings formed
using characters from the alphabet A.

ε the empty string, the unique string of length 0.

st is the concatenation of strings s and t , obtained by
appending the characters of t after those of s.
Clearly |st | = |s|+ |t |.

8 / 57

Notation (1)

|s| if s is a string, denotes the length of s, i.e. the
number of characters in the string.

A∗ (“A-star”) the set of all finite-length strings formed
using characters from the alphabet A.

ε the empty string, the unique string of length 0.

st is the concatenation of strings s and t , obtained by
appending the characters of t after those of s.
Clearly |st | = |s|+ |t |.

8 / 57

Notation (1)

|s| if s is a string, denotes the length of s, i.e. the
number of characters in the string.

A∗ (“A-star”) the set of all finite-length strings formed
using characters from the alphabet A.

ε the empty string, the unique string of length 0.

st is the concatenation of strings s and t , obtained by
appending the characters of t after those of s.
Clearly |st | = |s|+ |t |.

8 / 57

Notation (1)

|s| if s is a string, denotes the length of s, i.e. the
number of characters in the string.

A∗ (“A-star”) the set of all finite-length strings formed
using characters from the alphabet A.

ε the empty string, the unique string of length 0.

st is the concatenation of strings s and t , obtained by
appending the characters of t after those of s.
Clearly |st | = |s|+ |t |.

8 / 57

Notation (2)

A string w is a prefix of x , if x ≡ wy for some string y ∈ A∗.
Of course the length of w cannot be larger than that of x .

A string w is a suffix of x , if x = yw for some string y ∈ A∗.
We have |w | ≤ |x |.

If x , y are both suffixes of z then only three cases arise: if
|x | ≤ |y | then x is also a suffix of y . Otherwise, y is a suffix
of x . If particular |x | = |y | implies x = y .

9 / 57

Notation (2)

A string w is a prefix of x , if x ≡ wy for some string y ∈ A∗.
Of course the length of w cannot be larger than that of x .

A string w is a suffix of x , if x = yw for some string y ∈ A∗.
We have |w | ≤ |x |.

If x , y are both suffixes of z then only three cases arise: if
|x | ≤ |y | then x is also a suffix of y . Otherwise, y is a suffix
of x . If particular |x | = |y | implies x = y .

9 / 57

Notation (2)

A string w is a prefix of x , if x ≡ wy for some string y ∈ A∗.
Of course the length of w cannot be larger than that of x .

A string w is a suffix of x , if x = yw for some string y ∈ A∗.
We have |w | ≤ |x |.

If x , y are both suffixes of z then only three cases arise: if
|x | ≤ |y | then x is also a suffix of y . Otherwise, y is a suffix
of x . If particular |x | = |y | implies x = y .

9 / 57

Notation (3)

We shall denote the k character prefix of a pattern, say, P,
by Pk . Thus P0 = ε, Pm = P, and the pattern matching
problem is that of finding all shifts s such that P is a suffix
of Ts+m.

We will assume that checking equality between two strings
takes time proportional to the length of the shortest of the
two.

10 / 57

Notation (3)

We shall denote the k character prefix of a pattern, say, P,
by Pk . Thus P0 = ε, Pm = P, and the pattern matching
problem is that of finding all shifts s such that P is a suffix
of Ts+m.

We will assume that checking equality between two strings
takes time proportional to the length of the shortest of the
two.

10 / 57

Brute-Force

The obvious method that immediately comes to mind is just to
check, for each possible position in the text, whether the pattern
does in fact match the text.

BRUTE-MATCHING (T , P)
n← length(T)
m← length(P)
for s ← 0 to n −m

if P = T [s + 1..s + m]
print “pattern occurs with shift s”

11 / 57

How good is BRUTE-MATCHING

The algorithm finds all valid shifts in time Θ((n−m + 1)m).

It is easy to verify the upper bound by inspecting the code.

If T = aa . . . a (n times) and P is a substring of length m of T ,
the algorithm BRUTE-MATCHING will actually spend O(m) time
for each of the possible n −m + 1 positions.

12 / 57

How good is BRUTE-MATCHING

The algorithm finds all valid shifts in time Θ((n−m + 1)m).

It is easy to verify the upper bound by inspecting the code.

If T = aa . . . a (n times) and P is a substring of length m of T ,
the algorithm BRUTE-MATCHING will actually spend O(m) time
for each of the possible n −m + 1 positions.

12 / 57

How good is BRUTE-MATCHING

The algorithm finds all valid shifts in time Θ((n−m + 1)m).

It is easy to verify the upper bound by inspecting the code.

If T = aa . . . a (n times) and P is a substring of length m of T ,
the algorithm BRUTE-MATCHING will actually spend O(m) time
for each of the possible n −m + 1 positions.

12 / 57

Examples

Consider the following text:

01010101010101001010101010101010100101010101

and the pattern

010100

13 / 57

The algorithm is often very good in practice. Find the word joy
in the following text:

A very popular definition of Argumentation is the one given in an
important Handbook, which in a way testifies the current period of
good fortune which Argumentation Theory is enjoying. The
definition characterises the process of argumentation as a “verbal
and social activity of reason aimed at increasing (or decreasing)
the acceptability of a controversial standpoint for the listener, by
putting forward a constellation of proposition intended to justify (or
refute) the standpoint before a rational judge”. Having described
many of the characteristics of argumentation theory in the
previous chapter, here we will concentrate on an important aspect
of the arguing activity, that is that it is a process involving two
entities: a listener and a speaker. Dialogue, therefore, is
paramount to argumentation. The present chapter will examine
the dialogic component of the argumentation activities, by
providing a survey of literature in this subject, and concluding with
our own approach to the treatment of this aspect.

14 / 57

The text contains only 4 substrings matching j, and just a single
substring matching both jo and joy:

A very popular definition of Argumentation is the one given in an
important Handbook, which in a way testifies the current period of
good fortune which Argumentation Theory is en j oying. The
definition characterises the process of argumentation as a “verbal
and social activity of reason aimed at increasing (or decreasing)
the acceptability of a controversial standpoint for the listener, by
putting forward a constellation of proposition intended to j ustify

(or refute) the standpoint before a rational j udge”. Having
described many of the characteristics of argumentation theory in
the previous chapter, here we will concentrate on an important
aspect of the arguing activity, that is that it is a process involving
two entities: a listener and a speaker. Dialogue, therefore, is
paramount to argumentation. The present chapter will examine
the dialogic component of the argumentation activities, by
providing a survey of literature in this sub j ect, and concluding
with our own approach to the treatment of this aspect.

15 / 57

What is wrong with BRUTE-MATCHING?

The inefficiency comes from not making proper use of the
partial matches.

If a pattern like: 1010010100110111 has been matched to
10100101001... (and then a miss-match occurs) we may argue
that we don’t need to reset the pointer to the T string to
consider 1 0100101001... .

The partial match (and our knowledge of the pattern) tells us
that, at least, we may restart our comparison from
10100 101001... . The subsequent quest for a O(n + m)

algorithm focused on efficient ways of using this information.

16 / 57

What is wrong with BRUTE-MATCHING?

The inefficiency comes from not making proper use of the
partial matches.

If a pattern like: 1010010100110111 has been matched to
10100101001... (and then a miss-match occurs) we may argue
that we don’t need to reset the pointer to the T string to
consider 1 0100101001... .

The partial match (and our knowledge of the pattern) tells us
that, at least, we may restart our comparison from
10100 101001... . The subsequent quest for a O(n + m)

algorithm focused on efficient ways of using this information.

16 / 57

String matching with finite automata

An alternative approach that, nearly, overcomes the
inefficiencies of BRUTE-MATCHING is based on the idea of
avoiding any backward movements on the text T by keeping
information about portions of T that partially match P. The
amount of information that is kept about these partial matches
depends on the size of the pattern but not on the size of the
text.

The most natural framework to describe such information is
provided by the Theory of Finite State machines (or Automata).

The construction of the automaton is based on the pattern P
and the automaton is used to find matches (and partial
matches) of P in the text T .

17 / 57

String matching with finite automata

An alternative approach that, nearly, overcomes the
inefficiencies of BRUTE-MATCHING is based on the idea of
avoiding any backward movements on the text T by keeping
information about portions of T that partially match P. The
amount of information that is kept about these partial matches
depends on the size of the pattern but not on the size of the
text.

The most natural framework to describe such information is
provided by the Theory of Finite State machines (or Automata).

The construction of the automaton is based on the pattern P
and the automaton is used to find matches (and partial
matches) of P in the text T .

17 / 57

String matching with finite automata

An alternative approach that, nearly, overcomes the
inefficiencies of BRUTE-MATCHING is based on the idea of
avoiding any backward movements on the text T by keeping
information about portions of T that partially match P. The
amount of information that is kept about these partial matches
depends on the size of the pattern but not on the size of the
text.

The most natural framework to describe such information is
provided by the Theory of Finite State machines (or Automata).

The construction of the automaton is based on the pattern P
and the automaton is used to find matches (and partial
matches) of P in the text T .

17 / 57

Finite State Machines

A (deterministic) finite state machine or automaton M is defined
by

A a finite alphabet;

Q, a finite set of states: Q = {q0,q1,q2, . . . ,qk};

S ∈ Q, the initial state;

F ⊆ Q, the set of final states;

δ : Q ×A → Q, the state-transition function.

18 / 57

Given string in A∗, the automaton will start in state S. It will
then read one character at a time. Each time it reads a
character, it uses the transition function to decide whether to
move from one state to another.

19 / 57

Finite State Machines: real-life examples

A CD player controller.

A lift.

A graphical user interface menu structure.

20 / 57

Automata as acceptors

A language L is a set of strings in A∗.

An automaton accepts L if for each string w , M, started in the
initial state on the leftmost character of w , after scanning all
characters of w , enters a final state if and only if w ∈ L.

21 / 57

Automata as acceptors

A language L is a set of strings in A∗.

An automaton accepts L if for each string w , M, started in the
initial state on the leftmost character of w , after scanning all
characters of w , enters a final state if and only if w ∈ L.

21 / 57

Example

A = {0,1, . . . ,9}

Q = {BEGIN, EVEN, ODD}

S = BEGIN

F = {EVEN}

Here’s the definition of the function δ.

s ∈ A

q 0 1 2 3 4 5 6 7 8 9
BEGIN EVEN ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD
EVEN EVEN ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD
ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD

22 / 57

A quick simulation

On reading 125, the automaton will start in the state BEGIN,
reading the leftmost digit (that’s “1”). δ(BEGIN,1) = ODD, so
the automaton moves to state “ODD”, before reading the next
digit. Now it reads “2”, since δ(ODD,2) = EVEN, the automaton
moves to state “EVEN”. Then reads “5” and, since
δ(EVEN,5) = ODD, the automaton moves to state “ODD”.
Since the number is finished “ODD” is the final answer of the
automaton!

Exercise. Write an automaton that recognises multiples of 5.
Write an automaton that recognizes multiples of 3.

Trick: a number is a multiple of 3 iff the sum of its digits is a
multiple of 3.

23 / 57

A quick simulation

On reading 125, the automaton will start in the state BEGIN,
reading the leftmost digit (that’s “1”). δ(BEGIN,1) = ODD, so
the automaton moves to state “ODD”, before reading the next
digit. Now it reads “2”, since δ(ODD,2) = EVEN, the automaton
moves to state “EVEN”. Then reads “5” and, since
δ(EVEN,5) = ODD, the automaton moves to state “ODD”.
Since the number is finished “ODD” is the final answer of the
automaton!

Exercise. Write an automaton that recognises multiples of 5.
Write an automaton that recognizes multiples of 3.

Trick: a number is a multiple of 3 iff the sum of its digits is a
multiple of 3.

23 / 57

A quick simulation

On reading 125, the automaton will start in the state BEGIN,
reading the leftmost digit (that’s “1”). δ(BEGIN,1) = ODD, so
the automaton moves to state “ODD”, before reading the next
digit. Now it reads “2”, since δ(ODD,2) = EVEN, the automaton
moves to state “EVEN”. Then reads “5” and, since
δ(EVEN,5) = ODD, the automaton moves to state “ODD”.
Since the number is finished “ODD” is the final answer of the
automaton!

Exercise. Write an automaton that recognises multiples of 5.
Write an automaton that recognizes multiples of 3.

Trick: a number is a multiple of 3 iff the sum of its digits is a
multiple of 3.

23 / 57

String-matching automaton.

There will be an automaton for each pattern P. First an important
definition: bookmark sigma def!

Given a pattern P, let σ be a function that, for any string x , returns
the length of the longest prefix of P that is a suffix of x .

Examples. Let P ≡abc. Then σ(caba) = 1, σ(cabab) = 2, and

σ(cababc) = 3.

24 / 57

String-matching automaton.

There will be an automaton for each pattern P. First an important
definition: bookmark sigma def!

Given a pattern P, let σ be a function that, for any string x , returns
the length of the longest prefix of P that is a suffix of x .

Examples. Let P ≡abc. Then σ(caba) = 1, σ(cabab) = 2, and

σ(cababc) = 3.

24 / 57

String-matching automaton.

There will be an automaton for each pattern P. First an important
definition: bookmark sigma def!

Given a pattern P, let σ be a function that, for any string x , returns
the length of the longest prefix of P that is a suffix of x .

Examples. Let P ≡abc. Then σ(caba) = 1, σ(cabab) = 2, and

σ(cababc) = 3.

24 / 57

Motivation: what will the algorithm do?

for i ← 1 to n
q ← σ(Ti)
if q = m

print “pattern occurs with shift i −m”
(match ends at position i)

Idea: Say q = σ(Ti) and Ti+1 = Tia. We will show that σ(Ti+1)

(the new q) is σ(Pqa) — it just depends on P and a.

25 / 57

Motivation: what will the algorithm do?

for i ← 1 to n
q ← σ(Ti)
if q = m

print “pattern occurs with shift i −m”
(match ends at position i)

Idea: Say q = σ(Ti) and Ti+1 = Tia. We will show that σ(Ti+1)

(the new q) is σ(Pqa) — it just depends on P and a.

25 / 57

Here’s the definition of the automaton!

Q = {0,1, . . . ,m}.

q0 = 0

The only accepting state is m.

The input alphabet is A.

The transition function is defined by the following equation:

δ(q, x) = σ(Pqx)

26 / 57

How is this to be used?

FINITE-AUTOMATON-MATCHING (T , δ, m)
n← length(T)
q ← 0
for i ← 1 to n

q ← δ(q,T [i])
if q = m

print “pattern occurs with shift i −m”

bookmark automaton alg!

27 / 57

Example

Say the alphabet is {a,b, c} and the pattern P is abc. Let’s
define the automaton.

Q = {0,1,2,3}— the automaton has four states.

The initial state is (always) q0 = 0.

The only accepting state is 3.

28 / 57

Example

Say the alphabet is {a,b, c} and the pattern P is abc. Let’s
define the automaton.

Q = {0,1,2,3}— the automaton has four states.

The initial state is (always) q0 = 0.

The only accepting state is 3.

28 / 57

Transition function
Recall P = abc. We can represent the transition function as a
table with rows indexed by characters and columns indexed by
states.

Let’s start with δ(0,a). By definition of σ this is “the length of the
longest prefix of P that is a suffix of P0a(≡ a)”. Therefore
δ(0,a) = 1. Next comes δ(1,a). This is “the length of the longest
prefix of P that is a suffix of P1a(≡ aa)”. Again δ(1,a) = 1.
Iterating this process one can get δ’s full definition (reported in
the following table).

0 1 2 3
a 1 1 1 1
b 0 2 0 0
c 0 0 3 0

29 / 57

Simulation
Let T = aababcabcbb.

T a a b a b c a b c b b
i 1 2 3 4 5 6 7 8 9 10 11
q 0 1 1 2 1 2 3 1 2 3 0 0

output 3 6

FINITE-AUTOMATON-MATCHING (T , δ, m)
n← length(T)

q ← 0
for i ← 1 to n

q ← δ(q,T [i])
if q = m

print “pattern occurs with shift i −m”

30 / 57

Exercise: Another simulation

Simulate the string-matching automaton algorithm for

P ≡ abababa

and

T = abacbababababaacbacaababababaababababababacac.

Hints. You will need to:

1 Define the automaton.

2 Simulate the algorithm FINITE-AUTOMATON-MATCHING step by
step.

31 / 57

Time complexity analysis ... cheating!

The simple loop structure of
FINITE-AUTOMATON-MATCHING implies that its running
time is O(|T |).

However, this does not include the time to compute the
transition function δ: we will look at this later!

Correctness?
Let’s start by understanding what correctness means.

32 / 57

Time complexity analysis ... cheating!

The simple loop structure of
FINITE-AUTOMATON-MATCHING implies that its running
time is O(|T |).

However, this does not include the time to compute the
transition function δ: we will look at this later!

Correctness?
Let’s start by understanding what correctness means.

32 / 57

Time complexity analysis ... cheating!

The simple loop structure of
FINITE-AUTOMATON-MATCHING implies that its running
time is O(|T |).

However, this does not include the time to compute the
transition function δ: we will look at this later!

Correctness?
Let’s start by understanding what correctness means.

32 / 57

Time complexity analysis ... cheating!

The simple loop structure of
FINITE-AUTOMATON-MATCHING implies that its running
time is O(|T |).

However, this does not include the time to compute the
transition function δ: we will look at this later!

Correctness?
Let’s start by understanding what correctness means.

32 / 57

Main Result

Main Result: For each i ≤ n, the value of q af-
ter the i th iteration of the main for loop in FINITE-
AUTOMATON-MATCHING is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

By definition of σ, σ(Ti) = m iff P is a suffix of Ti . Thus, the
main result implies that the algorithm returns all valid shifts.

33 / 57

Main Result

Main Result: For each i ≤ n, the value of q af-
ter the i th iteration of the main for loop in FINITE-
AUTOMATON-MATCHING is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

By definition of σ, σ(Ti) = m iff P is a suffix of Ti . Thus, the
main result implies that the algorithm returns all valid shifts.

33 / 57

Main Result: For each i ≤ n, the value of q af-
ter the i th iteration of the main for loop in FINITE-
AUTOMATON-MATCHING is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

We will prove the main result by induction on i .

If i = 0, then T0 = ε and the theorem holds.

34 / 57

Main Result: For each i ≤ n, the value of q af-
ter the i th iteration of the main for loop in FINITE-
AUTOMATON-MATCHING is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

We will prove the main result by induction on i .

If i = 0, then T0 = ε and the theorem holds.

34 / 57

Main Result: For each i ≤ n, the value of q af-
ter the i th iteration of the main for loop in FINITE-
AUTOMATON-MATCHING is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

For the inductive step, suppose q = σ(Ti) after the i ’th iteration.

In the (i + 1)st iteration, the new value of q is assigned to be
δ(q,T [i + 1]).

We want to show that this is equal to σ(Ti+1).

35 / 57

Main Result: For each i ≤ n, the value of q af-
ter the i th iteration of the main for loop in FINITE-
AUTOMATON-MATCHING is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

For the inductive step, suppose q = σ(Ti) after the i ’th iteration.

In the (i + 1)st iteration, the new value of q is assigned to be
δ(q,T [i + 1]).

We want to show that this is equal to σ(Ti+1).

35 / 57

Main Result: For each i ≤ n, the value of q af-
ter the i th iteration of the main for loop in FINITE-
AUTOMATON-MATCHING is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

For the inductive step, suppose q = σ(Ti) after the i ’th iteration.

In the (i + 1)st iteration, the new value of q is assigned to be
δ(q,T [i + 1]).

We want to show that this is equal to σ(Ti+1).

35 / 57

First, a little lemma.

Lemma: Suppose σ(Ti) = q. Then σ(Ti+1) ≤ q + 1.

Proof:

Suppose for contradiction that σ(Ti+1) = r > q + 1.

Then Pr is a suffix of Ti+1.

So Pr−1 is a suffix of Ti .

So σ(Ti) ≥ r − 1 > q.

36 / 57

First, a little lemma.

Lemma: Suppose σ(Ti) = q. Then σ(Ti+1) ≤ q + 1.

Proof:

Suppose for contradiction that σ(Ti+1) = r > q + 1.

Then Pr is a suffix of Ti+1.

So Pr−1 is a suffix of Ti .

So σ(Ti) ≥ r − 1 > q.

36 / 57

First, a little lemma.

Lemma: Suppose σ(Ti) = q. Then σ(Ti+1) ≤ q + 1.

Proof:

Suppose for contradiction that σ(Ti+1) = r > q + 1.

Then Pr is a suffix of Ti+1.

So Pr−1 is a suffix of Ti .

So σ(Ti) ≥ r − 1 > q.

36 / 57

First, a little lemma.

Lemma: Suppose σ(Ti) = q. Then σ(Ti+1) ≤ q + 1.

Proof:

Suppose for contradiction that σ(Ti+1) = r > q + 1.

Then Pr is a suffix of Ti+1.

So Pr−1 is a suffix of Ti .

So σ(Ti) ≥ r − 1 > q.

36 / 57

First, a little lemma.

Lemma: Suppose σ(Ti) = q. Then σ(Ti+1) ≤ q + 1.

Proof:

Suppose for contradiction that σ(Ti+1) = r > q + 1.

Then Pr is a suffix of Ti+1.

So Pr−1 is a suffix of Ti .

So σ(Ti) ≥ r − 1 > q.

36 / 57

First, a little lemma.

Lemma: Suppose σ(Ti) = q. Then σ(Ti+1) ≤ q + 1.

Proof:

Suppose for contradiction that σ(Ti+1) = r > q + 1.

Then Pr is a suffix of Ti+1.

So Pr−1 is a suffix of Ti .

So σ(Ti) ≥ r − 1 > q.

36 / 57

First, a little lemma.

Lemma: Suppose σ(Ti) = q. Then σ(Ti+1) ≤ q + 1.

Proof:

Suppose for contradiction that σ(Ti+1) = r > q + 1.

Then Pr is a suffix of Ti+1.

So Pr−1 is a suffix of Ti .

So σ(Ti) ≥ r − 1 > q.

36 / 57

Now, remind ourselves of what we are trying to do.

Main Result: For each i ≤ n, the value of q af-
ter the i th iteration of the main for loop in FINITE-
AUTOMATON-MATCHING is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

For the inductive step, suppose q = σ(Ti) after the i ’th iteration.

In the (i + 1)st iteration, the new value of q is assigned to be
δ(q,T [i + 1]).

We want to show that this is equal to σ(Ti+1).

From the lemma that we just proved, we can assume
σ(Ti+1) ≤ q + 1.

37 / 57

σ(Ti+1) is the length of the longest prefix of P that is a suffix of
Ti+1.

Since σ(Ti+1) ≤ q + 1, we know that
σ(Ti+1) = σ(T [i + 1− q] . . .T [i + 1]) where
T [i + 1− q] . . .T [i + 1] is the last q + 1 characters of Ti+1.

But we know what the last q + 1 characters of Ti+1 are.
T [i + 1− q] . . .T [i + 1] = PqT [i + 1].

So σ(Ti+1) = σ(PqT [i + 1]) = δ(q,T [i + 1]), which is just what
the algorithm does.

38 / 57

σ(Ti+1) is the length of the longest prefix of P that is a suffix of
Ti+1.

Since σ(Ti+1) ≤ q + 1, we know that
σ(Ti+1) = σ(T [i + 1− q] . . .T [i + 1]) where
T [i + 1− q] . . .T [i + 1] is the last q + 1 characters of Ti+1.

But we know what the last q + 1 characters of Ti+1 are.
T [i + 1− q] . . .T [i + 1] = PqT [i + 1].

So σ(Ti+1) = σ(PqT [i + 1]) = δ(q,T [i + 1]), which is just what
the algorithm does.

38 / 57

σ(Ti+1) is the length of the longest prefix of P that is a suffix of
Ti+1.

Since σ(Ti+1) ≤ q + 1, we know that
σ(Ti+1) = σ(T [i + 1− q] . . .T [i + 1]) where
T [i + 1− q] . . .T [i + 1] is the last q + 1 characters of Ti+1.

But we know what the last q + 1 characters of Ti+1 are.
T [i + 1− q] . . .T [i + 1] = PqT [i + 1].

So σ(Ti+1) = σ(PqT [i + 1]) = δ(q,T [i + 1]), which is just what
the algorithm does.

38 / 57

σ(Ti+1) is the length of the longest prefix of P that is a suffix of
Ti+1.

Since σ(Ti+1) ≤ q + 1, we know that
σ(Ti+1) = σ(T [i + 1− q] . . .T [i + 1]) where
T [i + 1− q] . . .T [i + 1] is the last q + 1 characters of Ti+1.

But we know what the last q + 1 characters of Ti+1 are.
T [i + 1− q] . . .T [i + 1] = PqT [i + 1].

So σ(Ti+1) = σ(PqT [i + 1]) = δ(q,T [i + 1]), which is just what
the algorithm does.

38 / 57

We have now proven the correctness of the following algorithm.

FINITE-AUTOMATON-MATCHING (T , δ, m)
n← length(T)

q ← 0
for i ← 1 to n

q ← δ(q,T [i])
if q = m

print “pattern occurs with shift i −m”

But we have not shown how to compute the transition function
δ.

39 / 57

Computing the transition function

The following procedure computes the transition function δ from
a given pattern P and alphabet A. Recall that δ(q, x) should be
σ(Pqx), the length of the longest pattern prefix that is a suffix of
Pqx .

COMPUTE-TRANSITION-FUNCTION (P, A)
m← length(P)
for q ← 0 to m

for each x ∈ A
k ← min(m + 1,q + 2)
repeat k ← k − 1 until Pk is a suffix of Pqx
δ(q, x)← k

The running time is O(m3|A|) ... why?

Complexity improvable to Θ(m|A|), which is best possible.

40 / 57

Computing the transition function

The following procedure computes the transition function δ from
a given pattern P and alphabet A. Recall that δ(q, x) should be
σ(Pqx), the length of the longest pattern prefix that is a suffix of
Pqx .

COMPUTE-TRANSITION-FUNCTION (P, A)
m← length(P)
for q ← 0 to m

for each x ∈ A
k ← min(m + 1,q + 2)
repeat k ← k − 1 until Pk is a suffix of Pqx
δ(q, x)← k

The running time is O(m3|A|) ... why?

Complexity improvable to Θ(m|A|), which is best possible.

40 / 57

Computing the transition function

The following procedure computes the transition function δ from
a given pattern P and alphabet A. Recall that δ(q, x) should be
σ(Pqx), the length of the longest pattern prefix that is a suffix of
Pqx .

COMPUTE-TRANSITION-FUNCTION (P, A)
m← length(P)
for q ← 0 to m

for each x ∈ A
k ← min(m + 1,q + 2)
repeat k ← k − 1 until Pk is a suffix of Pqx
δ(q, x)← k

The running time is O(m3|A|) ... why?

Complexity improvable to Θ(m|A|), which is best possible.

40 / 57

Computing the transition function

The following procedure computes the transition function δ from
a given pattern P and alphabet A. Recall that δ(q, x) should be
σ(Pqx), the length of the longest pattern prefix that is a suffix of
Pqx .

COMPUTE-TRANSITION-FUNCTION (P, A)
m← length(P)
for q ← 0 to m

for each x ∈ A
k ← min(m + 1,q + 2)
repeat k ← k − 1 until Pk is a suffix of Pqx
δ(q, x)← k

The running time is O(m3|A|) ... why?

Complexity improvable to Θ(m|A|), which is best possible.

40 / 57

The picture so far

Defined the String Matching problem.

Defined, implemented and seen examples of the
brute-force algorithm. Time complexity Θ((n −m)m).

Defined and seen examples of an alternative approach
based on automata theory. Time complexity O(n + m|A|).

Now we will look at the Knuth, Morris & Pratt algorithm.
This algorithm is still based on the string-matching
automaton approach but its time complexity is O(n + m).
The trick is to avoid the explicit computation of δ.

41 / 57

The picture so far

Defined the String Matching problem.

Defined, implemented and seen examples of the
brute-force algorithm. Time complexity Θ((n −m)m).

Defined and seen examples of an alternative approach
based on automata theory. Time complexity O(n + m|A|).

Now we will look at the Knuth, Morris & Pratt algorithm.
This algorithm is still based on the string-matching
automaton approach but its time complexity is O(n + m).
The trick is to avoid the explicit computation of δ.

41 / 57

The picture so far

Defined the String Matching problem.

Defined, implemented and seen examples of the
brute-force algorithm. Time complexity Θ((n −m)m).

Defined and seen examples of an alternative approach
based on automata theory. Time complexity O(n + m|A|).

Now we will look at the Knuth, Morris & Pratt algorithm.
This algorithm is still based on the string-matching
automaton approach but its time complexity is O(n + m).
The trick is to avoid the explicit computation of δ.

41 / 57

The picture so far

Defined the String Matching problem.

Defined, implemented and seen examples of the
brute-force algorithm. Time complexity Θ((n −m)m).

Defined and seen examples of an alternative approach
based on automata theory. Time complexity O(n + m|A|).

Now we will look at the Knuth, Morris & Pratt algorithm.
This algorithm is still based on the string-matching
automaton approach but its time complexity is O(n + m).
The trick is to avoid the explicit computation of δ.

41 / 57

Knuth, Morris, Pratt algorithm

The only inefficiency in the automaton algorithm is in the
computation of the automaton itself.

The running time of Knuth, Morris, and Pratt’s algorithm is
linear in n + m. The algorithm uses an auxiliary function π,
defined over the states of the automaton. The computation of
π, given P, takes time O(m).

Roughly speaking, π(q) gives us enough information to quickly
compute δ(q, x) = σ(Pqx) for any x ∈ A.

42 / 57

Knuth, Morris, Pratt algorithm

The only inefficiency in the automaton algorithm is in the
computation of the automaton itself.

The running time of Knuth, Morris, and Pratt’s algorithm is
linear in n + m. The algorithm uses an auxiliary function π,
defined over the states of the automaton. The computation of
π, given P, takes time O(m).

Roughly speaking, π(q) gives us enough information to quickly
compute δ(q, x) = σ(Pqx) for any x ∈ A.

42 / 57

Knuth, Morris, Pratt algorithm

The only inefficiency in the automaton algorithm is in the
computation of the automaton itself.

The running time of Knuth, Morris, and Pratt’s algorithm is
linear in n + m. The algorithm uses an auxiliary function π,
defined over the states of the automaton. The computation of
π, given P, takes time O(m).

Roughly speaking, π(q) gives us enough information to quickly
compute δ(q, x) = σ(Pqx) for any x ∈ A.

42 / 57

Prefix function

The prefix function for a pattern P, is the function
π : {1, . . . ,m} → {0, . . . ,m − 1} such that

π[q] = max{k : Pk is a proper suffix of Pq}

Example. Let P = 113 111 513 113. The corresponding prefix
function is

q 1 2 3 4 5 6 7 8 9 10 11 12
P[q] 1 1 3 1 1 1 5 1 3 1 1 3
π[q] 0 1 0 1 2 2 0 1 0 1 2 3

To define, say, π[q] for q = 6 we consider Pq ≡ 113 111, and
then all prefixes Pq−1,Pq−2, . . . , ε. We find out that P2(≡ 11) is
a suffix of Pq. Hence π[6] = 2.

43 / 57

Prefix function

The prefix function for a pattern P, is the function
π : {1, . . . ,m} → {0, . . . ,m − 1} such that

π[q] = max{k : Pk is a proper suffix of Pq}

Example. Let P = 113 111 513 113. The corresponding prefix
function is

q 1 2 3 4 5 6 7 8 9 10 11 12
P[q] 1 1 3 1 1 1 5 1 3 1 1 3
π[q] 0 1 0 1 2 2 0 1 0 1 2 3

To define, say, π[q] for q = 6 we consider Pq ≡ 113 111, and
then all prefixes Pq−1,Pq−2, . . . , ε. We find out that P2(≡ 11) is
a suffix of Pq. Hence π[6] = 2.

43 / 57

Algorithm
KMP-MATCHING (T , P)

n← length(T)
m← length(P)
π ← COMPUTE-PREFIX-FUNCTION (P)
q ← 0
for i ← 1 to n

while (q > 0 ∧ P[q + 1] 6= T [i]) q ← π[q]
if (P[q + 1] = T [i]) q ← q + 1
if q = m

print “pattern occurs with shift i −m”
q ← π[q]

Main Result: For each i ≤ n, the value of q after the i th
iteration of the main for loop is σ(Ti), i.e. the length of the
longest prefix of the pattern P that is a suffix of Ti .

44 / 57

COMPUTE-PREFIX-FUNCTION (P)
m← length(P)
π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]
if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

π[q] = max{k : Pk is a proper suffix of Pq}

Note: Before iteration q starts, the value of k is π[q − 1].

45 / 57

Example
Let T = abdcababdcabdcb and P = abdcabd.

We first compute the prefix function.

COMPUTE-PREFIX-FUNCTION (P)
m← length(P)
π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]
if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

q 1 2 3 4 5 6 7
P[q] a b d c a b d
π[q] 0 0 0 0 1 2 3

46 / 57

Now given the prefix function

q 1 2 3 4 5 6 7
P[q] a b d c a b d
π[q] 0 0 0 0 1 2 3

we simulate the algorithm

KMP-MATCHING (T , P)
π ← COMPUTE-PREFIX-FUNCTION (P)
q ← 0
for i ← 1 to n

while (q > 0 ∧ P[q + 1] 6= T [i]) q ← π[q]
if (P[q + 1] = T [i]) q ← q + 1
if q = m

print “pattern occurs with shift i −m”
q ← π[q]

with text T = abdcababdcabdcb, n = 15, m = 7.

47 / 57

The simulation starts like this before i = 1.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0

Then i = 1 and q = 0 so the while loop is skipped, P[q + 1] is
equal to T [i] so q becomes one, and we move to the i = 2
iteration

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1

1

48 / 57

So starting from

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1

1

i = 2, q IS positive, but P[q + 1] = T [i] so the while loop is
skipped again, and q is increased to two, and we move to the
i = 3 iteration.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1 2

1 2

49 / 57

i = 3, i = 4 up to i = 6 same story, q is successively increased,
and each time we move to the next iteration.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6

1 2 3 4 5 6

50 / 57

So starting from

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6

1 2 3 4 5 6

i = 7, q = 6 is positive and P[q + 1] 6= T [i] (meaning we can’t
match P7 with Ti) so we run q ← π[q] inside the while loop to
get q = 2. But we still have P[q + 1] 6= T [i] (meaning that we
can’t match P3 with Ti so we run q ← π[q] again to get q = 0.
Now P[q + 1] = T [i] so q gets incremented.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1

1 2 3 4 5 6 2
0
1 51 / 57

i = 8 up to i = 12, nothing exciting happens, q keeps
increasing ...

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 2 2 3 4 5 6
0
1

... i = 13 again we skip the while loop and increase q and ...
there is a match! So we run q ← π[q] in the final if statement.
Therefore q is set to three.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1 2 3 4 5 6 3

1 2 3 4 5 6 2 2 3 4 5 6 7
0 3
1 52 / 57

i = 14, P[q + 1] = T [i], hence q is increased but for i = 15, q IS
positive and P[q + 1] 6= T [i], hence we enter the while loop and
reset q to zero ... and that’s the end of it!

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P a b d c a b d
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1 2 3 4 5 6 3 4

1 2 3 4 5 6 2 2 3 4 5 6 7 4 0
0 3
1

53 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki .

Then
∑m

i=2 ĉi =
∑m

i=2 ci + km+1 − k2.

π(k) is the maximum j so that Pj is a proper suffix of Pk . So
0 ≤ π(k) < k so km+1 ≤ m and k2 = 0. So it suffices to show
that ĉi = O(1). 54 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki . We need to show
ĉi = O(1).

Since 0 ≤ π(k) < k , every iteration of the while loop makes
ki+1 − ki smaller by at least −1 so the contribution of the while
loop to ĉi is at most 0.

55 / 57

Runinng Time Analysis - Amortized Analysis
COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0
k ← 0
for q ← 2 to m

while (k > 0 ∧ P[k + 1] 6= P[q]) k ← π[k]

if (P[k + 1] = P[q]) k ← k + 1
π[q]← k

Let ki be value of k just before iteration q = i . Let ci be cost of
this iteration. Let ĉi = ci + ki+1 − ki . We need to show
ĉi = O(1).

Since 0 ≤ π(k) < k , every iteration of the while loop makes
ki+1 − ki smaller by at least −1 so the contribution of the while
loop to ĉi is at most 0.

55 / 57

Running Time Analysis

KMP-MATCHING (T , P)
n← length(T)
m← length(P)
π ← COMPUTE-PREFIX-FUNCTION (P)
q ← 0
for i ← 1 to n

while (q > 0 ∧ P[q + 1] 6= T [i]) q ← π[q]
if (P[q + 1] = T [i]) q ← q + 1
if q = m

print “pattern occurs with shift i −m”
q ← π[q]

Similar amortized analysis. qi is the value of q just before
iteration i . ci is the cost of iteration i . ĉi = ci + qi+1 − qi . It
suffices to show ĉi = O(1).

56 / 57

Exercises

1 Simulate the behaviour of the three algorithm we have
considered on the pattern P ≡ abc and the text T =

aabcbcbabcabcabc.
2 Count the number of instructions executed in each case

and find out how the algorithms rank with respect to
running time.

3 Repeat exercise 1 and 2 with the text T =

abababababababab. Comment on the results!

57 / 57

