Efficient Sequential Algorithms, Comp309

University of Liverpool

2010-2011
Module Organiser, Igor Potapov

Part 4: NP-Completeness
References: T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction to Algorithms, Second Edition. MIT Press (2001). "NP-completeness"
C.H. Papadimitriou, Computational Complexity Addison-Wesley (1993).

Revision from Comp202

A decision problem is a computational problem for which the output is either yes or no.

The input to a computational problem is encoded as a finite binary string s of length $|s|$.

For a decision problem $X, L(X)$ denotes the set of (binary) strings (inputs) for which the algorithm should output "yes". We refer to $L(X)$ as a language. We say that an algorithm A accepts a language $L(X)$ if A outputs "yes" for each $s \in L(X)$ and outputs "no" for every other input.

Revision from Comp202

The complexity class P is the set of all decision problems X (or languages $L(X)$) that can be solved in polynomial time.

That is, there is an algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is of the form $p(n)=n^{k}$ for a some constant $k .(p(n)$ is a polynomial in $n)$.

The complexity class EXP is the set of all decision problems X (or languages $L(X)$) that can be solved in exponential time.

That is, there is an algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is a function of the form $p(n)=2^{n^{k}}$ for some constant k.

More revision: Nondeterministic computation

An algorithm that guesses some number of non-deterministic bits during its execution is called a non-deterministic algorithm.

We say that a non-deterministic algorithm A accepts a string s if there exists a choice of non-deterministic bits that causes algorithm A to output "yes" with input s. Otherwise, we say that A does not accept s.

We say that a non-deterministic algorithm A accepts a language $L(X)$ if A accepts every string $s \in L(X)$ and no other strings.

PSPACE is the set of all decision problems X (or languages $L(X)$) that can be solved in polynomial space.

That is, there is an algorithm A that accepts language $L(X)$. The amount of computer memory that algorithm A uses on input s is at most $p(|s|)$ where $p(n)$ is a polynomial in n.

The complexity class NP is the set of all decision problems X (or languages $L(X)$) that can be non-deterministically accepted in polynomial time.

That is, there is a non-deterministic algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is a polynomial in n.

Polynomial-time reducibility

It is easy to see that $\mathrm{P} \subseteq \mathrm{NP}$
If $L(X)$ is accepted by a polynomial-time algorithm A then it is also accepted by a non-deterministic algorithm in polynomial time.

The non-deterministic algorithm doesn't have to make non-deterministic choices - it can just simulate algorithm A.

NP-completeness

We say that a language M, defining some decision problem, is NP-hard if every langauge $L \in$ NP is polynomial-time reducible to M.

We say that a language M is NP-complete if M is in NP and M is NP-hard.

We say that a language L, defining some decision problem, is polynomial-time reducible to a language M (written $L \xrightarrow{\text { poly }} M$) if there is a polynomial-time-computable function f that takes as input a binary string s and outputs a binary string $f(s)$ so that $s \in L$ iff $f(s) \in M$.

As you saw in Comp202, If $L_{1} \xrightarrow{\text { poly }} L_{2}$ and $L_{2} \xrightarrow{\text { poly }} L_{3}$ then $L_{1} \xrightarrow{\text { poly }} L_{3}$.

The Cook-Levin Theorem is that the problem SAT is NP-complete.

Name: SAT Instance: A Boolean formula F
Question: Does F have a satisfying assignment?
Recall that a Boolean formula is an expression like

$$
\left(x_{25} \wedge x_{12}\right) \vee \neg\left(\neg x_{70} \vee\left(\neg x_{3} \wedge x_{34}\right)\right)
$$

made up of the constants true and false, propositional variables x_{i}, parentheses and the connectives $\wedge, \vee, \neg, \Rightarrow, \Leftrightarrow$. An assignment of the truth-values true and false to the variables is satisfying if it makes the formula evaluate to true.

3-Conjunctive Normal Form Satisfiability (3-CNF)

- Input: A boolean formula F expressed as an AND of clauses in which each clause is the OR of exactly three distinct literals.
- Output: Is there an assignment of boolean values to the variables which causes F to evaluate to true?

$$
F=\left(\neg y_{1} \vee \neg x_{1} \vee y_{1}\right) \wedge\left(\neg y_{1} \vee x_{1} \vee \neg y_{2}\right) \wedge\left(\neg y_{1} \vee x_{1} \vee y_{2}\right)
$$

Note that y_{1} and $\neg y_{1}$ are distinct literals.

To show that 3-CNF is NP-complete, we take some NP-complete problem, say SAT, and find a polynomial-time reduction from SAT to 3-CNF.

We will show that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a "yes" instance of 3-CNF iff F is a "yes" instance of SAT.

The transformation from F to $f(F)$

$$
F=x_{1} \wedge\left(\neg x_{2} \Leftrightarrow\left(x_{3} \vee x_{4} \vee x_{5}\right)\right) \wedge \neg x_{4}
$$

Step 1: Transform F into a formula F^{\prime} which is the AND of clauses, each of which has at most 3 literals.
First, parse F
$F=x_{1} \wedge\left(\neg x_{2} \Leftrightarrow\left(x_{3} \vee x_{4} \vee x_{5}\right)\right) \wedge \neg x_{4}$

Now use the associativity of \wedge and \vee to form an equivalent tree in which every node has at most 2 children.

Now label the parent-edge out of every internal node (on the previous slide) by a new variable.

Rewrite the formula as an equation.

$$
\begin{aligned}
F^{\prime}=y_{1} & \wedge\left(y_{1} \Leftrightarrow\left(x_{1} \wedge y_{2}\right)\right) \\
& \wedge\left(y_{2} \Leftrightarrow\left(y_{3} \wedge \neg x_{4}\right)\right) \\
& \wedge\left(y_{3} \Leftrightarrow\left(\neg x_{2} \Leftrightarrow y_{4}\right)\right) \\
& \wedge\left(y_{4} \Leftrightarrow\left(x_{3} \vee y_{5}\right)\right) \\
& \wedge\left(y_{5} \Leftrightarrow\left(x_{4} \vee x_{5}\right)\right)
\end{aligned}
$$

We have now transformed F into a formula F^{\prime} which is the AND of clauses, each of which has at most 3 literals. F^{\prime} is satisfiable iff F is.

Note that the transformation from F to F^{\prime} can be implemented in polynomial time. Each connective in F introduces at most one variable and one clause to F^{\prime} to $\left|F^{\prime}\right|$ is at most a polynomial in $|F|$.

The transformation from F to $f(F)$

Step 2: Transform F^{\prime} into a formula $F^{\prime \prime}$ which is the AND of clauses, each of which is the OR of at most 3 literals.

We will use a truth table to transform each clause of F^{\prime} to the AND of at most 8 clauses which are algebraically equivalent.

For example, take this clause of $F^{\prime}: y_{1} \Leftrightarrow\left(x_{1} \wedge y_{2}\right)$

y_{1}	x_{1}	y_{2}	result
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	1

The first 0 in the result column of the truth table says you can't have $y_{1} x_{1} \neg y_{2}$ so insert the first clause below.

$$
\begin{aligned}
& \left(\neg y_{1} \vee \neg x_{1} \vee y_{2}\right) \wedge\left(\neg y_{1} \vee x_{1} \vee \neg y_{2}\right) \wedge \\
& \quad\left(\neg y_{1} \vee x_{1} \vee y_{2}\right) \wedge\left(y_{1} \vee \neg \neg x_{1} \vee \neg y_{2}\right)
\end{aligned}
$$

Having done steps 1 and 2 we have now shown how to transform F into a formula $F^{\prime \prime}$ which is the AND of clauses, each of which is the OR of at most 3 literals.
$F^{\prime \prime}$ is satisfiable iff F is.
The transformation can be accomplished in polynomial time.

We have shown that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a "yes" instance of 3-CNF iff F is a "yes" instance of SAT.

This is a polynomial-time reduction from SAT to 3-CNF.
Since SAT is NP-hard, we conclude that 3-CNF is NP-hard.
We already showed that 3-CNF is in NP, so we conclude that 3-CNF is NP-complete.

The transformation from F to $f(F)$

Step 3: Transform $F^{\prime \prime}$ into a formula $F^{\prime \prime \prime}$ which is the AND of clauses, each of which is the OR of exactly 3 literals. Let $f(F)=F^{\prime \prime \prime}$

Transform a 2-literal clause like this, using a new variable p.

$$
(x \vee y) \Rightarrow(x \vee y \vee p) \wedge(x \vee y \vee \neg p)
$$

Transform a 1-literal clause like this, using new variables p and q.

$$
x \Rightarrow(x \vee p \vee q) \wedge(x \vee p \vee \neg q) \wedge(x \vee \neg p \vee q) \wedge(x \vee \neg p \vee \neg q)
$$

Another computational problem

Clique

- Input: An undirected graph G and an integer j
- Output: Is there a set of j vertices of G, each pair of which is connected by an edge?

Clique is in NP

The non-deterministic algorithm "guesses" a set of j vertices then checks in polynomial time to see whether each pair is connected by an edge.

Suppose we have a satisfying assignment. We can choose one "true" literal from each of the j clauses, and that gives us a clique.

Similarly, we can turn a clique into a satisfying assignment.
Note that the transformation takes polynomial time.
We have shown that Clique is NP-complete.

3-CNF $\xrightarrow{\text { poly }}$ Clique

Let F be an input to 3-CNF. We show how to transform it to into an input (G, j) of Clique such that G has a j-clique iff F is satisfiable.

Let $j=$ number of clauses in F. For every clause
$C_{r}=\left(x_{1} \vee x_{2} \vee \neg x 3\right)$, introduce vertices $x_{1, r}, x_{2, r}$ and $\neg x_{3, r}$.
Introduce edges between vertices in different clauses, unless
they are the negation of each other. For example...

Another computational problem, familiar from our work

 on matchings
Vertex Cover

- Input: An undirected graph G and an integer k
- Output: Is there a set U of k vertices of G such that for every edge (u, v) of G, at least one of u and v is in U ?

Let $G=(V, E)$ and j be an input to clique. We show how to transform it to into an input (G^{\prime}, k) of Vertex Cover such that G^{\prime} has a vertex cover of size k iff G has a clique of size j.

Method: Let $\bar{E}=\{(u, v) \mid(u, v) \notin E\}$ and $G^{\prime}=(V, \bar{E})$ and $k=|V|-j$.

If U is a clique then $V-U$ covers all non-edges (and vice-versa).

This is a polynomial-time transformation, so we have shown that vertex cover is NP-complete.

One last computational problem (this one is pretty tricky!)

Subset Sum

- Input: A set S of non-negative integers and a non-negative integer t.
- Output: Is there a subset of S whose elements sum to t ?

Example: $S=\{1,3,5\}$. What about $t=4$? What about $t=2$?

Subset Sum is in NP

The non-deterministic algorithm "guesses" the subset and checks that its elements sum to t.

Let $G=(V, E)$ and k be an input to vertex cover. We show how to transform it to an input S, t of subset sum such that G has a vertex cover of size k iff S has a subset that sums to t.

Notation: Let $V=\left\{v_{0}, \ldots, v_{n-1}\right\}$. Let $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$.

The (polynomial-time) transformation:

```
For \(i \leftarrow 0\) to \(n-1\)
    \(x_{i} \leftarrow 4^{m}\)
    For \(j \leftarrow 0\) to \(m-1\)
        If \(e_{j}\) is incident on \(v_{i}\)
        \(x_{i} \leftarrow x_{i}+4^{j}\)
For \(j \leftarrow 0\) to \(m-1\)
    \(y_{j} \leftarrow 4\)
\(S \leftarrow\left\{x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{m-1}\right\}\)
\(t \leftarrow k 4^{m}+\sum_{j=0}^{m-1} 2 \cdot 4^{j}\)
Return \(S\) and \(t\)
```

We claim that if G has a size- k vertex cover then S has a subset that sums to t.

- Start with a size- k vertex cover.
- Let S^{\prime} contain x_{i} s for vertices in the cover and y_{j} s for edges incident once on cover.
- Sum of x_{i} s in S^{\prime} is $k 4^{m}$.
- Edge incident twice on cover contributes 2.4^{j} to x^{\prime} s
- Edge incident once on cover contributes 4^{j} to x s and 4^{j} to y 's.
- Elements in S^{\prime} sum to t.

We claim that if S has a subset that sums to t then G has a size-k vertex cover.

- Start with S^{\prime} which sums to t.
- Each e^{j} contributes at most $2 \cdot 4^{j}$ to x s and 4^{j} to $y \mathrm{~s}$.
- The e^{j} s do not contribute to the $k 4^{m}$ in t.
- S^{\prime} has $k x_{i}$ s.
- These k vertices are a vertex cover because each e_{j} contributes exactly $2 \cdot 4^{j}$ to t but only 4^{j} of this can come from y_{j} so it must be adjacent to one of the vertices in S^{\prime}.

We have shown that Subset Sum is NP-complete.

