
Efficient Sequential Algorithms, Comp309

University of Liverpool

2010–2011
Module Organiser, Igor Potapov

Part 4: NP-Completeness

References: T. H. Cormen, C. E. Leiserson, R. L. Rivest
Introduction to Algorithms, Second Edition. MIT Press
(2001). "NP-completeness"

C.H. Papadimitriou, Computational Complexity
Addison-Wesley (1993).

1 / 40

Revision from Comp202

A decision problem is a computational problem for which the
output is either yes or no.

The input to a computational problem is encoded as a finite
binary string s of length |s|.

For a decision problem X , L(X) denotes the set of (binary)
strings (inputs) for which the algorithm should output “yes”. We
refer to L(X) as a language. We say that an algorithm A
accepts a language L(X) if A outputs “yes” for each s ∈ L(X)

and outputs “no” for every other input.

2 / 40

Revision from Comp202

The complexity class P is the set of all decision problems X (or
languages L(X)) that can be solved in polynomial time.

That is, there is an algorithm A that accepts language L(X).
The amount of time that algorithm A takes on input s is at most
p(|s|) where p(n) is of the form p(n) = nk for a some
constant k . (p(n) is a polynomial in n).

3 / 40

The complexity class EXP is the set of all decision problems X
(or languages L(X)) that can be solved in exponential time.

That is, there is an algorithm A that accepts language L(X).
The amount of time that algorithm A takes on input s is at most
p(|s|) where p(n) is a function of the form p(n) = 2nk

for some
constant k .

4 / 40

Space complexity classes

PSPACE is the set of all decision problems X (or languages
L(X)) that can be solved in polynomial space.

That is, there is an algorithm A that accepts language L(X).
The amount of computer memory that algorithm A uses on
input s is at most p(|s|) where p(n) is a polynomial in n.

5 / 40

More revision: Nondeterministic computation

An algorithm that guesses some number of non-deterministic
bits during its execution is called a non-deterministic algorithm.

We say that a non-deterministic algorithm A accepts a string s
if there exists a choice of non-deterministic bits that causes
algorithm A to output “yes” with input s. Otherwise, we say that
A does not accept s.

We say that a non-deterministic algorithm A accepts a language
L(X) if A accepts every string s ∈ L(X) and no other strings.

6 / 40

The complexity class NP is the set of all decision problems X
(or languages L(X)) that can be non-deterministically accepted
in polynomial time.

That is, there is a non-deterministic algorithm A that accepts
language L(X). The amount of time that algorithm A takes on
input s is at most p(|s|) where p(n) is a polynomial in n.

7 / 40

It is easy to see that P ⊆ NP

If L(X) is accepted by a polynomial-time algorithm A then it is
also accepted by a non-deterministic algorithm in polynomial
time.

The non-deterministic algorithm doesn’t have to make
non-deterministic choices — it can just simulate algorithm A.

8 / 40

Polynomial-time reducibility

We say that a language L, defining some decision problem, is
polynomial-time reducible to a language M (written L

poly→ M) if
there is a polynomial-time-computable function f that takes as
input a binary string s and outputs a binary string f (s) so that
s ∈ L iff f (s) ∈ M.

As you saw in Comp202, If L1
poly→ L2 and L2

poly→ L3 then
L1

poly→ L3.

9 / 40

NP-completeness
We say that a language M, defining some decision problem, is
NP-hard if every langauge L ∈ NP is polynomial-time reducible
to M.

We say that a language M is NP-complete if M is in NP and M
is NP-hard.

NP

NP-complete

P

10 / 40

The Cook-Levin Theorem is that the problem SAT is
NP-complete.

Name: SAT Instance: A Boolean formula F
Question: Does F have a satisfying assignment?

Recall that a Boolean formula is an expression like

(x25 ∧ x12) ∨ ¬(¬x70 ∨ (¬x3 ∧ x34))

made up of the constants true and false, propositional variables
xi , parentheses and the connectives ∧, ∨, ¬,⇒,⇔. An
assignment of the truth-values true and false to the variables is
satisfying if it makes the formula evaluate to true.

11 / 40

If a language M is NP-hard and M
poly→ L then L is NP-hard.

Thus, to show that a language L is NP-complete, we do the
following.

1 Show that L is in NP, and
2 Take some NP-hard problem M and find a polynomial-time

reduction from M to L.

Make sure you don’t go the wrong direction!

We will now show that some problems are NP-complete.

12 / 40

3-Conjunctive Normal Form Satisfiability (3-CNF)

Input: A boolean formula F expressed as an AND of
clauses in which each clause is the OR of exactly three
distinct literals.

Output: Is there an assignment of boolean values to the
variables which causes F to evaluate to true?

F = (¬y1 ∨ ¬x1 ∨ y1) ∧ (¬y1 ∨ x1 ∨ ¬y2) ∧ (¬y1 ∨ x1 ∨ y2)

Note that y1 and ¬y1 are distinct literals.

13 / 40

3-CNF is in NP.

The non-deterministic algorithm “guesses” a satisfying
assignment then checks in polynomial time that the guess is a
satisfying assignment for F .

14 / 40

To show that 3-CNF is NP-complete, we take some
NP-complete problem, say SAT, and find a polynomial-time
reduction from SAT to 3-CNF.

We will show that there is a polynomial-time computable
function f that takes as input an input F of SAT and outputs an
input f (F) of 3-CNF so that f (F) is a “yes” instance of 3-CNF iff
F is a “yes” instance of SAT.

15 / 40

The transformation from F to f (F)

Step 1: Transform F into a formula F ′ which is the AND of
clauses, each of which has at most 3 literals.

First, parse F

F = x1 ∧ (¬x2 ⇔ (x3 ∨ x4 ∨ x5)) ∧ ¬x4

16 / 40

F = x1 ∧ (¬x2 ⇔ (x3 ∨ x4 ∨ x5)) ∧ ¬x4

∧
�
�	 ?
@
@R

x1 ⇔ ¬
�
���

A
AAU

A
AAU
x4¬ ∨

�
���

x2

�
���

A
AAU?

x3 x4 x5

17 / 40

Now use the associativity of ∧ and ∨ to form an equivalent tree
in which every node has at most 2 children.

18 / 40

?
y1

x1

∧
�

��	
@
@@R

y2

∧

?
y3@

@@R
⇔ ¬
�
�
��

A
A
AUy4

A
A
AU

x4¬ ∨
�
�
��

x2

�
�
�� ?

y5

x3 ∨
�
���

A
AAU

x4 x5

19 / 40

Now label the parent-edge out of every internal node (on the
previous slide) by a new variable.

Rewrite the formula as an equation.

F ′ = y1 ∧ (y1 ⇔ (x1 ∧ y2))

∧ (y2 ⇔ (y3 ∧ ¬x4))

∧ (y3 ⇔ (¬x2 ⇔ y4))

∧ (y4 ⇔ (x3 ∨ y5))

∧ (y5 ⇔ (x4 ∨ x5))

We have now transformed F into a formula F ′ which is the AND
of clauses, each of which has at most 3 literals. F ′ is satisfiable
iff F is.

20 / 40

Note that the transformation from F to F ′ can be implemented
in polynomial time. Each connective in F introduces at most
one variable and one clause to F ′ to |F ′| is at most a
polynomial in |F |.

21 / 40

The transformation from F to f (F)

Step 2: Transform F ′ into a formula F ′′ which is the AND of
clauses, each of which is the OR of at most 3 literals.

We will use a truth table to transform each clause of F ′ to the
AND of at most 8 clauses which are algebraically equivalent.

22 / 40

For example, take this clause of F ′: y1 ⇔ (x1 ∧ y2)

y1 x1 y2 result
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

The first 0 in the result column of the truth table says you can’t
have y1x1¬y2 so insert the first clause below.

(¬y1 ∨ ¬x1 ∨ y2) ∧ (¬y1 ∨ x1 ∨ ¬y2) ∧

(¬y1 ∨ x1 ∨ y2) ∧ (y1 ∨ ¬x1 ∨ ¬y2)

23 / 40

Having done steps 1 and 2 we have now shown how to
transform F into a formula F ′′ which is the AND of clauses,
each of which is the OR of at most 3 literals.

F ′′ is satisfiable iff F is.

The transformation can be accomplished in polynomial time.

24 / 40

The transformation from F to f (F)

Step 3: Transform F ′′ into a formula F ′′′ which is the AND of
clauses, each of which is the OR of exactly 3 literals. Let
f (F) = F ′′′.

Transform a 2-literal clause like this, using a new variable p.

(x ∨ y)⇒ (x ∨ y ∨ p) ∧ (x ∨ y ∨ ¬p)

Transform a 1-literal clause like this, using new variables p and
q.

x ⇒ (x ∨ p ∨ q) ∧ (x ∨ p ∨ ¬q) ∧ (x ∨ ¬p ∨ q) ∧ (x ∨ ¬p ∨ ¬q)

25 / 40

We have shown that there is a polynomial-time computable
function f that takes as input an input F of SAT and outputs an
input f (F) of 3-CNF so that f (F) is a “yes” instance of 3-CNF iff
F is a “yes” instance of SAT.

This is a polynomial-time reduction from SAT to 3-CNF.

Since SAT is NP-hard, we conclude that 3-CNF is NP-hard.

We already showed that 3-CNF is in NP, so we conclude that
3-CNF is NP-complete.

26 / 40

Another computational problem
Clique

Input: An undirected graph G and an integer j

Output: Is there a set of j vertices of G, each pair of
which is connected by an edge?

1

2

3

4

5

6

27 / 40

Clique is in NP

The non-deterministic algorithm “guesses” a set of j vertices
then checks in polynomial time to see whether each pair is
connected by an edge.

28 / 40

3-CNF
poly→ Clique

Let F be an input to 3-CNF. We show how to transform it to into
an input (G, j) of Clique such that G has a j-clique iff F is
satisfiable.

Let j = number of clauses in F . For every clause
Cr = (x1 ∨ x2 ∨ ¬x3), introduce vertices x1,r , x2,r and ¬x3,r .
Introduce edges between vertices in different clauses, unless
they are the negation of each other. For example...
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x4)

x1,1 �
�
�
��

�
�
�
�
�
�
�
�
�

r
x2,1

\
\
\
\\

�
�
�
��

r
¬x3,1 r

\
\
\
\\

L
L
L
L
L
L
L
L
L ¬x1,2r

x2,2r
x4,2r

29 / 40

Suppose we have a satisfying assignment. We can choose one
“true” literal from each of the j clauses, and that gives us a
clique.

Similarly, we can turn a clique into a satisfying assignment.

Note that the transformation takes polynomial time.

We have shown that Clique is NP-complete.

30 / 40

Another computational problem, familiar from our work
on matchings

Vertex Cover

Input: An undirected graph G and an integer k
Output: Is there a set U of k vertices of G such that for
every edge (u, v) of G, at least one of u and v is in U?

1

2

3

4

5

6

31 / 40

Vertex Cover is in NP

The non-deterministic algorithm “guesses” a set of k vertices
then checks in polynomial time to see whether every edge is
covered.

32 / 40

Clique
poly→ Vertex Cover

Let G = (V ,E) and j be an input to clique. We show how to
transform it to into an input (G′, k) of Vertex Cover such that G′

has a vertex cover of size k iff G has a clique of size j .

Method: Let E = {(u, v) | (u, v) 6∈ E} and G′ = (V ,E) and
k = |V | − j .

If U is a clique then V − U covers all non-edges (and
vice-versa).

This is a polynomial-time transformation, so we have shown
that vertex cover is NP-complete.

33 / 40

One last computational problem (this one is pretty
tricky!)

Subset Sum

Input: A set S of non-negative integers and a
non-negative integer t .

Output: Is there a subset of S whose elements sum to t?

Example: S = {1,3,5}. What about t = 4? What about t = 2?

34 / 40

Subset Sum is in NP

The non-deterministic algorithm “guesses” the subset and
checks that its elements sum to t .

35 / 40

Vertex Cover
poly→ Subset Sum

Let G = (V ,E) and k be an input to vertex cover. We show how
to transform it to an input S, t of subset sum such that G has a
vertex cover of size k iff S has a subset that sums to t .

Notation: Let V = {v0, . . . , vn−1}. Let E = {e0, . . . ,em−1}.

36 / 40

The (polynomial-time) transformation:

For i ← 0 to n − 1
xi ← 4m

For j ← 0 to m − 1
If ej is incident on vi

xi ← xi + 4j

For j ← 0 to m − 1
yj ← 4j

S ← {x0, . . . , xn−1, y0, . . . , ym−1}
t ← k4m +

∑m−1
j=0 2 · 4j

Return S and t

37 / 40

We claim that if G has a size-k vertex cover then S has a
subset that sums to t .

Start with a size-k vertex cover.

Let S′ contain xis for vertices in the cover and yjs for edges
incident once on cover.

Sum of xis in S′ is k4m.

Edge incident twice on cover contributes 2 · 4j to x ’s

Edge incident once on cover contributes 4j to xs and 4j to
y ’s.

Elements in S′ sum to t .

38 / 40

We claim that if S has a subset that sums to t then G has a
size-k vertex cover.

Start with S′ which sums to t .

Each ej contributes at most 2 · 4j to xs and 4j to ys.

The ejs do not contribute to the k4m in t .

S′ has k xis.

These k vertices are a vertex cover because each ej

contributes exactly 2 · 4j to t but only 4j of this can come
from yj so it must be adjacent to one of the vertices in S′.

39 / 40

We have shown that Subset Sum is NP-complete.

40 / 40

