
Efficient Sequential Algorithms, Comp309

University of Liverpool

2010–2011
Module Organiser, Igor Potapov

Supplementary Material: String Algorithms.

1 / 16

Lempel-Ziv Welch (LZW) Compression

We will now look at the Lempel-Ziv Welch compression
algorithm, which is a lossless compression algorithm that does
particularly well on data with repetitions.

A useful feature of LZW compression is that the dictionary is
built adaptively during encoding. The dictionary does not need
to be passed with the compressed text — the decoding
algorithm produces the same dictionary from the compressed
text.

2 / 16

Lempel-Ziv Welch (LZW) Compression

We will now look at the Lempel-Ziv Welch compression
algorithm, which is a lossless compression algorithm that does
particularly well on data with repetitions.

A useful feature of LZW compression is that the dictionary is
built adaptively during encoding. The dictionary does not need
to be passed with the compressed text — the decoding
algorithm produces the same dictionary from the compressed
text.

2 / 16

The original paper that describes the LZW algorithm is:

Terry A. Welch. A Technique for High Performance
Data Compression. IEEE Computer, Vol. 17, No. 6,
1984, pp. 8-19.

This paper describes an improvement to a compression
method introduced by Ziv and Lempel in 1977 and 1978.

LZW and variants have been used in popular software such as
Unix compress and GIF compression.

3 / 16

The original paper that describes the LZW algorithm is:

Terry A. Welch. A Technique for High Performance
Data Compression. IEEE Computer, Vol. 17, No. 6,
1984, pp. 8-19.

This paper describes an improvement to a compression
method introduced by Ziv and Lempel in 1977 and 1978.

LZW and variants have been used in popular software such as
Unix compress and GIF compression.

3 / 16

Sources

There is a lot of information about LZW on the web. See, for
example, Wikipedia, or the nice animation at

http://www.data-compression.com/lempelziv.shtml

Also, see Dave Marshall’s notes.

http://www.cs.cf.ac.uk/Dave/Multimedia

4 / 16

Compression

The dictionary is initialised so that there is a codeword for every
extended ASCII character.

character code word
null 0
.
A 65
B 66
C 67
D 68
.
� 255

5 / 16

The compression algorithm

Initialise dictionary
w ← NIL
while there is a character to read

k ← next character in text
If wk is in the dictionary

w ← wk
Else

Add wk to the dictionary
Output the code for w
w ← k

Output the code for w

6 / 16

Example

T = ABACABA

dictionary
.
A 65
B 66

rest of C 67
w k text

NIL A BACABA output
A B ACABA AB 256 65
B A CABA BA 257 66
A C ABA AC 258 65
C A BA CA 259 67
A B A

AB A ABA 260 256
A 65

Initialise dictionary
w ← NIL
while there is a char to read

k ← next char in text
If wk is in the dictionary

w ← wk
Else

Add wk to dictionary
Output code for w
w ← k

Output the code for w

7 / 16

The Decompression Algorithm

The basic decompression algorithm is as follows.

Initialise dictionary
c ← first codeword
output the translation of c
w ← c
While there is a codeword to read

c ← next codeword
output the translation of c
s ← translation of w
k ← first character of translation of c
Add sk to dictionary
w ← c

8 / 16

Example
Code = 65,66,65,67,256,65

dictionary
.
A 65
B 66
C 67

c w s k output
65 65 A
66 A B B

66 AB 256
65 B A A

65 BA 257
67 A C C

67 AC 258
256 C A AB

256 CA 259
65 AB A A

65 ABA 260

Initialise dictionary
c ← first codeword
output the translation of c
w ← c
While there is a codeword
to read

c ← next codeword
output the translation of c
s ← translation of w
k ← first character of

translation of c
Add sk to dictionary
w ← c

9 / 16

Refinement

The decoding algorithm as stated does not always work as it
fails if c is not in the dictionary.

10 / 16

Example

dictionary
.
A 65
B 66
C 67

w k
NIL A output
A B AB 256 65
B C BC 257 66
C A CA 258 67
A B

AB A ABA 259 256
A B

AB A
ABA 259

Initialise dictionary
w ← NIL
while there is a char to read

k ← next char in text
If wk is in the dictionary

w ← wk
Else

Add wk to dictionary
Output code for w
w ← k

Output the code for w

11 / 16

Example

Code = 65,66,67,256,259

dictionary
.
A 65
B 66
C 67

c w s k output
65 65 A
66 A B B

66 AB 256
67 B C C

67 BC 257
256 C A AB

256 CA 258
259 ?

Initialise dictionary
c ← first codeword
output the translation of c
w ← c
While there is a codeword
to read

c ← next codeword
output the translation of c
s ← translation of w
k ← first character of

translation of c
Add sk to dictionary
w ← c

12 / 16

The problem arises when the dictionary has cs in the dictionary
for a character c and a string s and then the input contains
cscsc.

The decompression algorithm can be modified to deal with this
case.

13 / 16

The problem arises when the dictionary has cs in the dictionary
for a character c and a string s and then the input contains
cscsc.

The decompression algorithm can be modified to deal with this
case.

13 / 16

Initialise dictionary
c ← first codeword
output the translation of c
w ← c
While there is a codeword to read

c ← next codeword
s ← translation of w
If c is in dictionary

k ← first character of translation of c
output the translation of c

Else (* c is the code for what we add here*)
k ← first character of s
output sk

Add sk to dictionary
w ← c

14 / 16

Example

Code = 65,66,67,256,259

dictionary
.
A 65
B 66
C 67

c w s k output
65 65 A
66 A B B

66 AB 256
67 B C C

67 BC 257
256 C A AB

256 CA 258
259 AB A ABA

259 ABA 259

Initialise dictionary
c ← first codeword
output the translation of c
w ← c
While there is a codeword

c ← next codeword
s ← translation of w
If c is in dictionary

k ← 1st char of trans c
output trans c

Else (* c is next added*)
k ← first character of s
output sk

Add sk to dictionary
w ← c

15 / 16

There are lots of interesting implementation issues. For
example, what if the dictionary runs out of space?

Also, if we start re-using dictionary space, what data structure
do we use to make dictionary access efficient?

GIF compression solves the problem of dictionary overflow by
having variable-length codes. We will not cover the details.

16 / 16

