
Efficient Sequential Algorithms, Comp309

University of Liverpool

2010–2011
Module Organiser, Igor Potapov

Part 5: Approximation Algorithms and Complexity

References:

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, M. Protasi, Complexity and
Approximation Springer 2003.

R. Motwani, Lecture Notes on Approximation Algorithms -
Volume 1, Stanford University 1992

1 / 95

Coping with hard computational problems

A large number of the optimisation problems, including those
that we need to solve in practice, are NP-hard.

These problems are unlikely to have an efficient algorithm.

Nevertheless, we still need to solve the problems.

If P 6= NP, we cannot find algorithms which will find optimal
solutions to all instances in polynomial time.

There are three possibilities for relaxing the requirements.

2 / 95

Coping with hard computational problems

A large number of the optimisation problems, including those
that we need to solve in practice, are NP-hard.

These problems are unlikely to have an efficient algorithm.

Nevertheless, we still need to solve the problems.

If P 6= NP, we cannot find algorithms which will find optimal
solutions to all instances in polynomial time.

There are three possibilities for relaxing the requirements.

2 / 95

Coping with hard computational problems

A large number of the optimisation problems, including those
that we need to solve in practice, are NP-hard.

These problems are unlikely to have an efficient algorithm.

Nevertheless, we still need to solve the problems.

If P 6= NP, we cannot find algorithms which will find optimal
solutions to all instances in polynomial time.

There are three possibilities for relaxing the requirements.

2 / 95

Coping with hard computational problems

A large number of the optimisation problems, including those
that we need to solve in practice, are NP-hard.

These problems are unlikely to have an efficient algorithm.

Nevertheless, we still need to solve the problems.

If P 6= NP, we cannot find algorithms which will find optimal
solutions to all instances in polynomial time.

There are three possibilities for relaxing the requirements.

2 / 95

Heuristics

Do not require polynomial time.

Sometimes (but not very often!) we can use techniques such as
branch-and-bound and dynamic programming to come up with
algorithms which are not much worse than polynomial.

3 / 95

Heuristics

Do not require polynomial time.

Sometimes (but not very often!) we can use techniques such as
branch-and-bound and dynamic programming to come up with
algorithms which are not much worse than polynomial.

3 / 95

Probabilistic analysis

Do not require success on all instances.

Sometimes (but no so often!) we have information about the
probability distribution from which inputs are chosen.
Sometimes we can find a polynomial-time algorithm that finds
an optimal solution with high probability, when an input is
chosen from the distribution.

4 / 95

Approximation algorithms

Do not require an optimal solution.

Sometimes we can design a polynomial-time algorithm that is
guaranteed to produce a solution that is not much worse than
the best solution.

5 / 95

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

6 / 95

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

6 / 95

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

6 / 95

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

6 / 95

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

6 / 95

An optimisation problem P is defined by four components
(I,S,v, goal) where:

(1) I is the set of the instances of P.

(2) For each x ∈ I, S(x) is the set of feasible solutions associated
with x .

(3) For each x ∈ I and each y ∈ S(x), v(x , y) is a positive integer,
which is the value of solution y for instance x .

(4) goal ∈ {max,min} is the optimisation criterion and tells if the

problem P is a maximisation or a minimisation problem.

6 / 95

For an instance x ∈ I, we use the notation v∗(x) to denote the
value of the optimal solution in S(x).

If goal = min then v∗(x) = min{v(x , y) | y ∈ S(x)}.

If goal = max then v∗(x) = max{v(x , y) | y ∈ S(x)}.

7 / 95

Example: Minimum Vertex Cover

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

8 / 95

Example: Minimum Vertex Cover

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

8 / 95

Example: Minimum Vertex Cover

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

8 / 95

Example: Minimum Vertex Cover

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

8 / 95

Example: Minimum Vertex Cover

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

8 / 95

Small generalisation

We have said that for an instance x and a solution y the value
v(x , y) should be an integer. Sometimes it is useful to
generalise the framework a little bit and allow v(x , y) to be a
rational.

This generalisation does not matter because we could
transform a problem with rational values into one with integer
values.

9 / 95

Example: Minimum Bin Packing

Here is an example where values are integers, but instances involve

rationals. We are given a collection of items, each with an associated

size, which is a number between 0 and 1. We are required to pack

the items into size-1 bins so as to minimise the number of bins used.

Thus, we have the following minimisation problem.

An instance in I is a multiset I = {s1, s2, . . . , sn} such that
∀i , si ∈ (0,1].

A solution in S(I) is a disjoint partition P = {B1,B2, . . . ,Bk} of I
so that for all parts Bj ,

∑
si∈Bj

si ≤ 1.

The value v(I,P) is k .

For example, the instance {0.1,0.8,0.3,0.5} has a solution with
B1 = {0.1,0.8} and B2 = {0.3,0.5}.

10 / 95

Example: Minimum Bin Packing

Here is an example where values are integers, but instances involve

rationals. We are given a collection of items, each with an associated

size, which is a number between 0 and 1. We are required to pack

the items into size-1 bins so as to minimise the number of bins used.

Thus, we have the following minimisation problem.

An instance in I is a multiset I = {s1, s2, . . . , sn} such that
∀i , si ∈ (0,1].

A solution in S(I) is a disjoint partition P = {B1,B2, . . . ,Bk} of I
so that for all parts Bj ,

∑
si∈Bj

si ≤ 1.

The value v(I,P) is k .

For example, the instance {0.1,0.8,0.3,0.5} has a solution with
B1 = {0.1,0.8} and B2 = {0.3,0.5}.

10 / 95

Example: Minimum Bin Packing

Here is an example where values are integers, but instances involve

rationals. We are given a collection of items, each with an associated

size, which is a number between 0 and 1. We are required to pack

the items into size-1 bins so as to minimise the number of bins used.

Thus, we have the following minimisation problem.

An instance in I is a multiset I = {s1, s2, . . . , sn} such that
∀i , si ∈ (0,1].

A solution in S(I) is a disjoint partition P = {B1,B2, . . . ,Bk} of I
so that for all parts Bj ,

∑
si∈Bj

si ≤ 1.

The value v(I,P) is k .

For example, the instance {0.1,0.8,0.3,0.5} has a solution with
B1 = {0.1,0.8} and B2 = {0.3,0.5}.

10 / 95

Example: Minimum Bin Packing

Here is an example where values are integers, but instances involve

rationals. We are given a collection of items, each with an associated

size, which is a number between 0 and 1. We are required to pack

the items into size-1 bins so as to minimise the number of bins used.

Thus, we have the following minimisation problem.

An instance in I is a multiset I = {s1, s2, . . . , sn} such that
∀i , si ∈ (0,1].

A solution in S(I) is a disjoint partition P = {B1,B2, . . . ,Bk} of I
so that for all parts Bj ,

∑
si∈Bj

si ≤ 1.

The value v(I,P) is k .

For example, the instance {0.1,0.8,0.3,0.5} has a solution with
B1 = {0.1,0.8} and B2 = {0.3,0.5}.

10 / 95

Example: Minimum Bin Packing

Here is an example where values are integers, but instances involve

rationals. We are given a collection of items, each with an associated

size, which is a number between 0 and 1. We are required to pack

the items into size-1 bins so as to minimise the number of bins used.

Thus, we have the following minimisation problem.

An instance in I is a multiset I = {s1, s2, . . . , sn} such that
∀i , si ∈ (0,1].

A solution in S(I) is a disjoint partition P = {B1,B2, . . . ,Bk} of I
so that for all parts Bj ,

∑
si∈Bj

si ≤ 1.

The value v(I,P) is k .

For example, the instance {0.1,0.8,0.3,0.5} has a solution with
B1 = {0.1,0.8} and B2 = {0.3,0.5}.

10 / 95

Decision Problems

An optimisation problem P with components (I,S,v, goal) can
be associated with a corresponding decision problem PD.

If goal = max, the corresponding decision problem is as follows:
Given an instance x ∈ I and a positive integer K , decide
whether v∗(x) ≥ K .

If goal = min, the corresponding decision problem is as follows:
Given an instance x ∈ I and a positive integer K , decide
whether v∗(x) ≤ K .

11 / 95

The class of NPO optimisation problems

The following complexity class is analogous to the class NP of
decision problems.

An optimisation problem P = (I,S,v, goal) is in NPO if the
following holds.

(1) The set I of instances is recognizable in polynomial time.

(2) There is a polynomial q so that, for every instance x ∈ I
and any feasible solution y ∈ S(x), we have |y | ≤ q(|x |). Also,
it is decidable in polynomial time whether y ∈ S(x).

(3) v(x , y) is computable in polynomial time.

12 / 95

The class of NPO optimisation problems

The following complexity class is analogous to the class NP of
decision problems.

An optimisation problem P = (I,S,v, goal) is in NPO if the
following holds.

(1) The set I of instances is recognizable in polynomial time.

(2) There is a polynomial q so that, for every instance x ∈ I
and any feasible solution y ∈ S(x), we have |y | ≤ q(|x |). Also,
it is decidable in polynomial time whether y ∈ S(x).

(3) v(x , y) is computable in polynomial time.

12 / 95

The class of NPO optimisation problems

The following complexity class is analogous to the class NP of
decision problems.

An optimisation problem P = (I,S,v, goal) is in NPO if the
following holds.

(1) The set I of instances is recognizable in polynomial time.

(2) There is a polynomial q so that, for every instance x ∈ I
and any feasible solution y ∈ S(x), we have |y | ≤ q(|x |). Also,
it is decidable in polynomial time whether y ∈ S(x).

(3) v(x , y) is computable in polynomial time.

12 / 95

The class of NPO optimisation problems

The following complexity class is analogous to the class NP of
decision problems.

An optimisation problem P = (I,S,v, goal) is in NPO if the
following holds.

(1) The set I of instances is recognizable in polynomial time.

(2) There is a polynomial q so that, for every instance x ∈ I
and any feasible solution y ∈ S(x), we have |y | ≤ q(|x |). Also,
it is decidable in polynomial time whether y ∈ S(x).

(3) v(x , y) is computable in polynomial time.

12 / 95

Example: Minimum Vertex Cover

Minimum Vertex Cover is in NPO, since

(1) The set of instances (undirected graphs) is recognizable in
polynomial time.

(2) If G = (V ,E) is an instance with n vertices then a feasible
solution is a vertex cover, which is a subset U of V . Checking
whether U is a vertex cover can be done in polynomial time.

(3) v(G,U) is just the size of U, which can easily be computed
in polynomial time.

13 / 95

The reason for our interest in the class NPO is this.

If P is in NPO then the corresponding decision problem PD is in
NP.

Proof: Suppose that P is a minimisation problem. Given an
instance x ∈ I and an integer K , we can solve PD by
performing the following nondeterministic algorithm.

Guess a string y with |y | ≤ q(|x |). Check whether y ∈ S(x).
Compute v(x , y). If v(x , y) ≤ K , output “yes”. Otherwise,
output “No”.

(Output “no” if y /∈ S(x). Also output “no” if v(x , y) > K .)

14 / 95

An optimisation problem P = (I,S,v, goal) is in PO if it is in
NPO and there is a polynomial-time algorithm A that, for any
instance x ∈ I, computes a feasible solution y ∈ S(x) with
v(x , y) = v∗(x).

It is not known whether PO = NPO. This question is equivalent
to P=NP, so instead of dwelling on this, we will turn to
approximation algorithms for problems in NPO.

15 / 95

An optimisation problem P = (I,S,v, goal) is in PO if it is in
NPO and there is a polynomial-time algorithm A that, for any
instance x ∈ I, computes a feasible solution y ∈ S(x) with
v(x , y) = v∗(x).

It is not known whether PO = NPO. This question is equivalent
to P=NP, so instead of dwelling on this, we will turn to
approximation algorithms for problems in NPO.

15 / 95

Approximation algorithms

Given an optimisation problem P = (I,S,v, goal), an algorithm
A is an approximation algorithm for P if, for any given instance
x ∈ I, it returns a feasible solution A(x) ∈ S(x).

We will be interested in polynomial-time approximation
algorithms.

A performance guarantee for an approximation algorithm tells
us how far the value of the approximate solution is from the
value of an optimal one.

There are several kinds of performance guarantees.

16 / 95

Approximation algorithms

Given an optimisation problem P = (I,S,v, goal), an algorithm
A is an approximation algorithm for P if, for any given instance
x ∈ I, it returns a feasible solution A(x) ∈ S(x).

We will be interested in polynomial-time approximation
algorithms.

A performance guarantee for an approximation algorithm tells
us how far the value of the approximate solution is from the
value of an optimal one.

There are several kinds of performance guarantees.

16 / 95

Approximation algorithms

Given an optimisation problem P = (I,S,v, goal), an algorithm
A is an approximation algorithm for P if, for any given instance
x ∈ I, it returns a feasible solution A(x) ∈ S(x).

We will be interested in polynomial-time approximation
algorithms.

A performance guarantee for an approximation algorithm tells
us how far the value of the approximate solution is from the
value of an optimal one.

There are several kinds of performance guarantees.

16 / 95

Absolute Performance Guarantees

Given an optimisation problem P, for any instance x and any
feasible solution y of x , the absolute error of y with respect to x
is defined as

D(x , y) = |v∗(x)− v(x , y)|.

Given an optimisation problem P and an approximation
algorithm A for P, we say that A is an absolute approximation
algorithm if there exists a constant k such that, for every
instance x of P, D(x ,A(x)) ≤ k .

17 / 95

Absolute Performance Guarantees

Given an optimisation problem P, for any instance x and any
feasible solution y of x , the absolute error of y with respect to x
is defined as

D(x , y) = |v∗(x)− v(x , y)|.

Given an optimisation problem P and an approximation
algorithm A for P, we say that A is an absolute approximation
algorithm if there exists a constant k such that, for every
instance x of P, D(x ,A(x)) ≤ k .

17 / 95

Example 1. Colouring Planar Graphs

A proper vertex colouring of
a graph G is a function from
V (G) to the set of colours
such that no two adjacent ver-
tices have the same colour.

The chromatic number χ(G)
is the minimum number of
colours needed to colour G.

10

9

8

7

5

6

4

3

2

1
11

18 / 95

Determining whether a graph is k -colourable is
NP-complete

To show that it is NP-hard to determine whether a graph is
3-colourable, we will give a polynomial-time reduction from
3-CNF.

Suppose that F is a boolean Formula expressed as an AND of
clauses, each of which is the OR of exactly three distinct
literals.

We will show a polynomial-time construction of a graph G
which has is 3-colourable iff F is satisfiable.

19 / 95

Add vertices R, T , and F connected
like this. For each variable x , add
vertices x and ¬x , connected to R
like this.

For each clause x ∨ ¬y ∨ z add a
subgraph with five new (unnamed)
vertices connected like this.

R

T

F

x
¬x

x ¬y z

T

In any 3-colouring, let r , t and f be
the colours of vertices R, T and F ,
respectively. Note that x and ¬x get
colours t and f (in some order).

Note that this cannot be 3-coloured
if all 3 literals in the clause are f .
Otherwise, it can. (See next few
slides.)

20 / 95

Add vertices R, T , and F connected
like this. For each variable x , add
vertices x and ¬x , connected to R
like this.

For each clause x ∨ ¬y ∨ z add a
subgraph with five new (unnamed)
vertices connected like this.

R

T

F

x
¬x

x ¬y z

T

f f f

r
f

In any 3-colouring, let r , t and f be
the colours of vertices R, T and F ,
respectively. Note that x and ¬x get
colours t and f (in some order).

Note that this cannot be 3-coloured
if all 3 literals in the clause are f .
Otherwise, it can. (See next few
slides.)

21 / 95

Add vertices R, T , and F connected
like this. For each variable x , add
vertices x and ¬x , connected to R
like this.

For each clause x ∨ ¬y ∨ z add a
subgraph with five new (unnamed)
vertices connected like this.

R

T

F

x
¬x

x ¬y z

T

f f

r
f

t

In any 3-colouring, let r , t and f be
the colours of vertices R, T and F ,
respectively. Note that x and ¬x get
colours t and f (in some order).

Note that this cannot be 3-coloured
if all 3 literals in the clause are f .
Otherwise, it can. (See next few
slides.)

22 / 95

Add vertices R, T , and F connected
like this. For each variable x , add
vertices x and ¬x , connected to R
like this.

For each clause x ∨ ¬y ∨ z add a
subgraph with five new (unnamed)
vertices connected like this.

R

T

F

x
¬x

x ¬y z

T

f f

rf

t

In any 3-colouring, let r , t and f be
the colours of vertices R, T and F ,
respectively. Note that x and ¬x get
colours t and f (in some order).

Note that this cannot be 3-coloured
if all 3 literals in the clause are f .
Otherwise, it can. (See next few
slides.)

23 / 95

We will not prove it here, but it is NP-hard to determine whether
a graph is 3-colourable even when the graph is planar.

10

9

8

7

5

6

4

3

2

1
11

A planar graph is a graph that can be drawn on the plane with
every vertex distinct, and no edges crossing.

24 / 95

The (planar) Vertex Colouring optimisation problem

I = planar graphs

For every planar graph G,

S(G) = {σ | σ is a proper colouring of G}

v(G, σ) = number of colours used in σ

goal = min

25 / 95

An approximation algorithm

Fact: Every planar graph has a vertex of degree at most 5

The proof of this fact is no more difficult than some other things
we have proved in this module, but it is a bit of a digression. We
will simply use the fact, without proving it.

We will give an approximation algorithm A that takes an input G
and returns a colouring σ using at most 5 colours Thus, the
absolute error is

D(G,A(G)) = v(G,A(G))− v∗(G) ≤ 5− 1 = 4.

26 / 95

An approximation algorithm

Fact: Every planar graph has a vertex of degree at most 5

The proof of this fact is no more difficult than some other things
we have proved in this module, but it is a bit of a digression. We
will simply use the fact, without proving it.

We will give an approximation algorithm A that takes an input G
and returns a colouring σ using at most 5 colours Thus, the
absolute error is

D(G,A(G)) = v(G,A(G))− v∗(G) ≤ 5− 1 = 4.

26 / 95

The algorithm

If the graph has only one vertex, give it a colour.

Otherwise, If the graph is disconnected, then recursively colour
each component.

Otherwise, let v be a vertex of degree at most 5. Recursively
colour G − v , and let σ be the resulting colouring. If the
neighbours of v are coloured with at most 4 colours then
choose some other colour for v .

Otherwise, let v1, . . . , v5 be the neighbours of v and let
c1, . . . , c5 be their respective colours in σ. We will modify σ to
obtain a colouring of G . . .

27 / 95

The algorithm

If the graph has only one vertex, give it a colour.

Otherwise, If the graph is disconnected, then recursively colour
each component.

Otherwise, let v be a vertex of degree at most 5. Recursively
colour G − v , and let σ be the resulting colouring. If the
neighbours of v are coloured with at most 4 colours then
choose some other colour for v .

Otherwise, let v1, . . . , v5 be the neighbours of v and let
c1, . . . , c5 be their respective colours in σ. We will modify σ to
obtain a colouring of G . . .

27 / 95

The algorithm

If the graph has only one vertex, give it a colour.

Otherwise, If the graph is disconnected, then recursively colour
each component.

Otherwise, let v be a vertex of degree at most 5. Recursively
colour G − v , and let σ be the resulting colouring. If the
neighbours of v are coloured with at most 4 colours then
choose some other colour for v .

Otherwise, let v1, . . . , v5 be the neighbours of v and let
c1, . . . , c5 be their respective colours in σ. We will modify σ to
obtain a colouring of G . . .

27 / 95

The algorithm

If the graph has only one vertex, give it a colour.

Otherwise, If the graph is disconnected, then recursively colour
each component.

Otherwise, let v be a vertex of degree at most 5. Recursively
colour G − v , and let σ be the resulting colouring. If the
neighbours of v are coloured with at most 4 colours then
choose some other colour for v .

Otherwise, let v1, . . . , v5 be the neighbours of v and let
c1, . . . , c5 be their respective colours in σ. We will modify σ to
obtain a colouring of G . . .

27 / 95

Let G13 be the subgraph of G \ v induced by the vertices
coloured c1 and c3.

If v1 and v3 belong to different components of G13 then
interchange the colours of the vertices in the component
containing v1. Vertex v can now be coloured c1.

Otherwise, we have

v

v5

v4

v3

v2
v1

Now just use colours c2 and
c4 instead.
That is, since v1 and v3 be-
long to the same component,
there exists a path P between
v1 and v3 such that P + v
forms a cycle. This cycle cuts
v2 off from v4. We can then
complete the colouring using
G24 and assigning c2 to v .

28 / 95

Note: It is important that we numbered the
vertices v1, . . . , v1, . . . , v5 in cyclical order (on the plane) so that
v2 gets cut off by the v1-v3 path.

29 / 95

example

7 8 9

2 3 4 5 6

1

Vertex 1 has degree at most 5. Take it out and recursively
colour G − {1} . . .

30 / 95

Vertices to be added back and coloured: 1

7 8 9

2 3 4 5 6

1

Vertex 9 has degree at most 5. Take it out and ecursively colour
G − {9,1} . . .

31 / 95

Vertices to be added back and coloured: 9,1

7 8 9

2 3 4 5 6

1

Vertex 6 has degree at most 5. Take it out and recursively
colour G − {6,9,1}.

32 / 95

Vertices to be added back and coloured: 9,1

7 8 9

2 3 4 5 6

1

Vertex 6 has degree at most 5. Take it out and recursively
colour G − {6,9,1}.

32 / 95

Vertices to be added back and coloured: 6,9,1

7 8 9

2 3 4 5 6

1

Vertex 5 has degree at most 5. Take it out and recursively
colour G − {5,6,9,1}.

33 / 95

Vertices to be added back and coloured: 5,6,9,1

7 8 9

2 3 4 5 6

1

Vertex 3 has degree at most 5. Take it out and recursively
colour G − {3,5,6,9,1}.

34 / 95

Vertices to be added back and coloured: 3,5,6,9,1

7 8 9

2 3 4 5 6

1

At this point the graph splits into three components, which get
coloured separately. Vertex 8 is isolated, so gets any colour,
say red. Vertex 4 is isolated, so gets any colour, say yellow.

In the recursive colouring of the component (2,7), vertex 2 is
removed, then vertex 7 is isolated and gets any colour, say red.
Then vertex 2 is put back and coloured some other colour, say

green.

35 / 95

Vertices to be added back and coloured: 3,5,6,9,1

7 8 9

2 3 4 5 6

1

Now vertex 3 is put back and gets some colour other than red,
green, or yellow, say blue.

36 / 95

Vertices to be added back and coloured: 3,5,6,9,1

7 8 9

2 3 4 5 6

1

Now vertex 3 is put back and gets some colour other than red,
green, or yellow, say blue.

36 / 95

Vertices to be added back and coloured: 5,6,9,1

7 8 9

2 3 4 5 6

1

Now vertex 5 is put back and coloured some colour other than
yellow, say red, and then vertex 6 is put back and coloured

some colour other than red, say purple.

37 / 95

Vertices to be added back and coloured: 9,1

7 8 9

2 3 4 5 6

1

Then vertex 9 is put back and is coloured some colour other
than red, say blue.

38 / 95

Vertices to be added back and coloured: 1

7 8 9

2 3 4 5 6

1

Now, we would like to colour vertex 1, but all five colours are
used at its neighbours. So we find two neighbours, say vertex 2
and vertex 4 which are not connected by a green-yellow path.
We can swap green and yellow in the component of vertex 4,

colouring vertex 4 green, and then we’ll be able to colour
vertex 1 yellow.

39 / 95

Improving the absolute error

The approximation algorithm A that we have just described
takes as input a planar graph G and returns a proper colouring
σ of G using at most 5 colours. Thus, the absolute error is

D(G,A(G)) = v(G,A(G))− v∗(G) ≤ 5− 1 = 4.

How can the absolute error be improved?

Check first whether G can be coloured with 1 or 2 colours. If so,
return an optimal colouring in polynomial time. If not, return a
colouring using at most 5 colours. Then
D(G,A(G)) ≤ 5− 3 = 2.

40 / 95

Improving the absolute error

The approximation algorithm A that we have just described
takes as input a planar graph G and returns a proper colouring
σ of G using at most 5 colours. Thus, the absolute error is

D(G,A(G)) = v(G,A(G))− v∗(G) ≤ 5− 1 = 4.

How can the absolute error be improved?

Check first whether G can be coloured with 1 or 2 colours. If so,
return an optimal colouring in polynomial time. If not, return a
colouring using at most 5 colours. Then
D(G,A(G)) ≤ 5− 3 = 2.

40 / 95

Improving the absolute error

The approximation algorithm A that we have just described
takes as input a planar graph G and returns a proper colouring
σ of G using at most 5 colours. Thus, the absolute error is

D(G,A(G)) = v(G,A(G))− v∗(G) ≤ 5− 1 = 4.

How can the absolute error be improved?

Check first whether G can be coloured with 1 or 2 colours. If so,
return an optimal colouring in polynomial time. If not, return a
colouring using at most 5 colours. Then
D(G,A(G)) ≤ 5− 3 = 2.

40 / 95

How do you check whether a graph is 2-colourable?

Depth-first search.

DFS_Colour(V,E)

Forall u ∈ V
colour[u]← blank

For all u ∈ V
If colour[u] = blank

Make_Blue(u)
Return Yes

41 / 95

How do you check whether a graph is 2-colourable?

Depth-first search.

DFS_Colour(V,E)

Forall u ∈ V
colour[u]← blank

For all u ∈ V
If colour[u] = blank

Make_Blue(u)
Return Yes

41 / 95

How do you check whether a graph is 2-colourable?

Depth-first search.

DFS_Colour(V,E)

Forall u ∈ V
colour[u]← blank

For all u ∈ V
If colour[u] = blank

Make_Blue(u)
Return Yes

41 / 95

Make_Blue(u)
colour[u]← blue
For all v ∼ u

If colour[v] = blue
Return No

If colour[v] = blank
Make_Green(v)

Make_Green(u)
colour[u]← green
For all v ∼ u

If colour[v] = green
Return No

If colour[v] = blank
Make_Blue(v)

42 / 95

The algorithm for finding a 5-colouring in a planar graph is
based on an argument by Kempe, which was an early attempt
to prove the 4-colour theorem, which says that every planar
graph can be coloured with just four colours. Kempe’s
argument had an error, but his ideas were useful and Appel and
Haken eventually proved the theorem.

43 / 95

Example 2: edge colouring

We are given a graph and we want to colour its edges with the
smallest possible number of colours such that no two adjacent
edges have the same colour.

I = graphs

For every graph G,
S(G) = {σ | σ is a proper edge-colouring of G}

v(G, σ) = number of colours used in σ

goal = min

44 / 95

Example 2: edge colouring

We are given a graph and we want to colour its edges with the
smallest possible number of colours such that no two adjacent
edges have the same colour.

I = graphs

For every graph G,
S(G) = {σ | σ is a proper edge-colouring of G}

v(G, σ) = number of colours used in σ

goal = min

44 / 95

Example 2: edge colouring

We are given a graph and we want to colour its edges with the
smallest possible number of colours such that no two adjacent
edges have the same colour.

I = graphs

For every graph G,
S(G) = {σ | σ is a proper edge-colouring of G}

v(G, σ) = number of colours used in σ

goal = min

44 / 95

Example 2: edge colouring

We are given a graph and we want to colour its edges with the
smallest possible number of colours such that no two adjacent
edges have the same colour.

I = graphs

For every graph G,
S(G) = {σ | σ is a proper edge-colouring of G}

v(G, σ) = number of colours used in σ

goal = min

44 / 95

Example 2: edge colouring

We are given a graph and we want to colour its edges with the
smallest possible number of colours such that no two adjacent
edges have the same colour.

I = graphs

For every graph G,
S(G) = {σ | σ is a proper edge-colouring of G}

v(G, σ) = number of colours used in σ

goal = min

44 / 95

Suppose that G has degree ∆. Then ν∗(G) ≥ ∆.

Vizing has shown that there is a polynomial-time algorithm that
takes as input a graph G and returns an edge colouring with at
most ∆ + 1 colours, where ∆ is the maximum degree of G.

Thus, we have an approximation algorithm A with absolute
error

D(G,A(G)) = ν(G,A(G))− ν∗(G) ≤ ∆ + 1−∆ = 1.

Hoyler has shown that deciding whether a graph is
edge-colourable with ∆ colours is NP-complete.

45 / 95

Suppose that G has degree ∆. Then ν∗(G) ≥ ∆.

Vizing has shown that there is a polynomial-time algorithm that
takes as input a graph G and returns an edge colouring with at
most ∆ + 1 colours, where ∆ is the maximum degree of G.

Thus, we have an approximation algorithm A with absolute
error

D(G,A(G)) = ν(G,A(G))− ν∗(G) ≤ ∆ + 1−∆ = 1.

Hoyler has shown that deciding whether a graph is
edge-colourable with ∆ colours is NP-complete.

45 / 95

Suppose that G has degree ∆. Then ν∗(G) ≥ ∆.

Vizing has shown that there is a polynomial-time algorithm that
takes as input a graph G and returns an edge colouring with at
most ∆ + 1 colours, where ∆ is the maximum degree of G.

Thus, we have an approximation algorithm A with absolute
error

D(G,A(G)) = ν(G,A(G))− ν∗(G) ≤ ∆ + 1−∆ = 1.

Hoyler has shown that deciding whether a graph is
edge-colourable with ∆ colours is NP-complete.

45 / 95

Suppose that G has degree ∆. Then ν∗(G) ≥ ∆.

Vizing has shown that there is a polynomial-time algorithm that
takes as input a graph G and returns an edge colouring with at
most ∆ + 1 colours, where ∆ is the maximum degree of G.

Thus, we have an approximation algorithm A with absolute
error

D(G,A(G)) = ν(G,A(G))− ν∗(G) ≤ ∆ + 1−∆ = 1.

Hoyler has shown that deciding whether a graph is
edge-colourable with ∆ colours is NP-complete.

45 / 95

Unfortunately, there are few problems for which there are
absolute approximation algorithms.

For example, consider the Clique optimisation problem.

I = graphs

For every graph G, S(G) = {U ⊆ V (G) |
every pair of vertices in U is connected by an edge}

ν(G,U) = |U|

goal = max

We have shown in the “NP-completeness” section that this
optimisation problem is NP-hard.

46 / 95

Unfortunately, there are few problems for which there are
absolute approximation algorithms.

For example, consider the Clique optimisation problem.

I = graphs

For every graph G, S(G) = {U ⊆ V (G) |
every pair of vertices in U is connected by an edge}

ν(G,U) = |U|

goal = max

We have shown in the “NP-completeness” section that this
optimisation problem is NP-hard.

46 / 95

Unfortunately, there are few problems for which there are
absolute approximation algorithms.

For example, consider the Clique optimisation problem.

I = graphs

For every graph G, S(G) = {U ⊆ V (G) |
every pair of vertices in U is connected by an edge}

ν(G,U) = |U|

goal = max

We have shown in the “NP-completeness” section that this
optimisation problem is NP-hard.

46 / 95

Unfortunately, there are few problems for which there are
absolute approximation algorithms.

For example, consider the Clique optimisation problem.

I = graphs

For every graph G, S(G) = {U ⊆ V (G) |
every pair of vertices in U is connected by an edge}

ν(G,U) = |U|

goal = max

We have shown in the “NP-completeness” section that this
optimisation problem is NP-hard.

46 / 95

Unfortunately, there are few problems for which there are
absolute approximation algorithms.

For example, consider the Clique optimisation problem.

I = graphs

For every graph G, S(G) = {U ⊆ V (G) |
every pair of vertices in U is connected by an edge}

ν(G,U) = |U|

goal = max

We have shown in the “NP-completeness” section that this
optimisation problem is NP-hard.

46 / 95

Unfortunately, there are few problems for which there are
absolute approximation algorithms.

For example, consider the Clique optimisation problem.

I = graphs

For every graph G, S(G) = {U ⊆ V (G) |
every pair of vertices in U is connected by an edge}

ν(G,U) = |U|

goal = max

We have shown in the “NP-completeness” section that this
optimisation problem is NP-hard.

46 / 95

Unfortunately, there are few problems for which there are
absolute approximation algorithms.

For example, consider the Clique optimisation problem.

I = graphs

For every graph G, S(G) = {U ⊆ V (G) |
every pair of vertices in U is connected by an edge}

ν(G,U) = |U|

goal = max

We have shown in the “NP-completeness” section that this
optimisation problem is NP-hard.

46 / 95

Here is a tool that will use to show that the Clique optimisation
problem has no absolute approximation algorithm (unless
P=NP).

Define the m-power of a graph G, (written Gm) by taking m
copies of G and connecting any two vertices that lie in different
copies.

Claim. v∗(Gm) = m · v∗(G).
47 / 95

Here is a tool that will use to show that the Clique optimisation
problem has no absolute approximation algorithm (unless
P=NP).

Define the m-power of a graph G, (written Gm) by taking m
copies of G and connecting any two vertices that lie in different
copies.

Claim. v∗(Gm) = m · v∗(G).
47 / 95

Theorem: If there is an absolute approximation algorithm for
the Clique problem then P=NP

Suppose A is an approximation algorithm with error k . Let B be
an approximation that does the following. Given a graph G, run
A on input Gk+1 and let C be the resulting clique. Using C, find
a clique of size at least 1/(k + 1) times as large as C in G.

Note that v(G,B(G)) ≥ v(Gk+1,A(Gk+1))/(k + 1).

48 / 95

Theorem: If there is an absolute approximation algorithm for
the Clique problem then P=NP

Suppose A is an approximation algorithm with error k . Let B be
an approximation that does the following. Given a graph G, run
A on input Gk+1 and let C be the resulting clique. Using C, find
a clique of size at least 1/(k + 1) times as large as C in G.

Note that v(G,B(G)) ≥ v(Gk+1,A(Gk+1))/(k + 1).

48 / 95

v∗(G)− v(G,B(G)) ≤ v∗(G)− v(Gk+1,A(Gk+1))

k + 1

=
(k + 1)v∗(G)− v(Gk+1,A(Gk+1))

k + 1

=
v∗(Gk+1)− v(Gk+1,A(Gk+1))

k + 1

≤ k
k + 1

< 1 = 0,

since these quantities are integers.

49 / 95

So we cannot have an absolute approximation algorithm for the
clique optimisation problem unless P=NP (in which case we can
solve it exactly). Similar results exist for most other problems.

50 / 95

Relative Performance Guarantees

Example: Multiprocessor scheduling

The input consists of n jobs, J1, . . . , Jn.

Job Ji has a corresponding runtime pi (a rational number).

The jobs are to be distributed between m identical machines

The finish-time is the maximum, over machines M, of the total
runtime of jobs assigned to M.

The goal is to minimise the finish-time.

51 / 95

Relative Performance Guarantees

Example: Multiprocessor scheduling

The input consists of n jobs, J1, . . . , Jn.

Job Ji has a corresponding runtime pi (a rational number).

The jobs are to be distributed between m identical machines

The finish-time is the maximum, over machines M, of the total
runtime of jobs assigned to M.

The goal is to minimise the finish-time.

51 / 95

Relative Performance Guarantees

Example: Multiprocessor scheduling

The input consists of n jobs, J1, . . . , Jn.

Job Ji has a corresponding runtime pi (a rational number).

The jobs are to be distributed between m identical machines

The finish-time is the maximum, over machines M, of the total
runtime of jobs assigned to M.

The goal is to minimise the finish-time.

51 / 95

Relative Performance Guarantees

Example: Multiprocessor scheduling

The input consists of n jobs, J1, . . . , Jn.

Job Ji has a corresponding runtime pi (a rational number).

The jobs are to be distributed between m identical machines

The finish-time is the maximum, over machines M, of the total
runtime of jobs assigned to M.

The goal is to minimise the finish-time.

51 / 95

Relative Performance Guarantees

Example: Multiprocessor scheduling

The input consists of n jobs, J1, . . . , Jn.

Job Ji has a corresponding runtime pi (a rational number).

The jobs are to be distributed between m identical machines

The finish-time is the maximum, over machines M, of the total
runtime of jobs assigned to M.

The goal is to minimise the finish-time.

51 / 95

An instance I ∈ I is a set of jobs {p1, . . . ,pn}.

A feasible solution in S(I) is a partition B of {p1, . . . ,pn} into m
subsets B1, . . . ,Bm.

The value of the partition v(I,B) is maxm
j=1
∑

pi∈Bj
pi .

goal = min.

This optimisation problem is known to be NP-hard even for the
special case m = 2.

52 / 95

A greedy approximation algorithm

The following approximation algorithm is due to Graham, and is
called the “List scheduling algorithm” (we will refer to it as LS).

Consider the n jobs one-by-one.

When a job is considered, pick the currently least-loaded
machine, and assign the job to that machine.

53 / 95

We will show that the “relative performance” of algorithm LS is
good in the sense that, for any instance x ,

v(x ,LS(x))

v∗(x)
≤ 2− 1

m
.

54 / 95

Let M be the machine that ends up with the highest load. Let L
be this load, namely L = v(x ,LS(x)).

Let Jj be the last job assigned to machine M.

Every machine has load at least L− pj . (Otherwise, Jj would
have been given to a different machine.)

So
∑n

i=1 pi ≥ m(L− pj) + pj .

Also, v∗(x) ≥ 1
m
∑n

i=1 pi , since some machine gets at least the
average load.

So v∗(x) ≥ L− pj +
pj
m = v(x ,LS(x))− (1− 1

m)pj .

55 / 95

Let M be the machine that ends up with the highest load. Let L
be this load, namely L = v(x ,LS(x)).

Let Jj be the last job assigned to machine M.

Every machine has load at least L− pj . (Otherwise, Jj would
have been given to a different machine.)

So
∑n

i=1 pi ≥ m(L− pj) + pj .

Also, v∗(x) ≥ 1
m
∑n

i=1 pi , since some machine gets at least the
average load.

So v∗(x) ≥ L− pj +
pj
m = v(x ,LS(x))− (1− 1

m)pj .

55 / 95

Let M be the machine that ends up with the highest load. Let L
be this load, namely L = v(x ,LS(x)).

Let Jj be the last job assigned to machine M.

Every machine has load at least L− pj . (Otherwise, Jj would
have been given to a different machine.)

So
∑n

i=1 pi ≥ m(L− pj) + pj .

Also, v∗(x) ≥ 1
m
∑n

i=1 pi , since some machine gets at least the
average load.

So v∗(x) ≥ L− pj +
pj
m = v(x ,LS(x))− (1− 1

m)pj .

55 / 95

Let M be the machine that ends up with the highest load. Let L
be this load, namely L = v(x ,LS(x)).

Let Jj be the last job assigned to machine M.

Every machine has load at least L− pj . (Otherwise, Jj would
have been given to a different machine.)

So
∑n

i=1 pi ≥ m(L− pj) + pj .

Also, v∗(x) ≥ 1
m
∑n

i=1 pi , since some machine gets at least the
average load.

So v∗(x) ≥ L− pj +
pj
m = v(x ,LS(x))− (1− 1

m)pj .

55 / 95

Let M be the machine that ends up with the highest load. Let L
be this load, namely L = v(x ,LS(x)).

Let Jj be the last job assigned to machine M.

Every machine has load at least L− pj . (Otherwise, Jj would
have been given to a different machine.)

So
∑n

i=1 pi ≥ m(L− pj) + pj .

Also, v∗(x) ≥ 1
m
∑n

i=1 pi , since some machine gets at least the
average load.

So v∗(x) ≥ L− pj +
pj
m = v(x ,LS(x))− (1− 1

m)pj .

55 / 95

Let M be the machine that ends up with the highest load. Let L
be this load, namely L = v(x ,LS(x)).

Let Jj be the last job assigned to machine M.

Every machine has load at least L− pj . (Otherwise, Jj would
have been given to a different machine.)

So
∑n

i=1 pi ≥ m(L− pj) + pj .

Also, v∗(x) ≥ 1
m
∑n

i=1 pi , since some machine gets at least the
average load.

So v∗(x) ≥ L− pj +
pj
m = v(x ,LS(x))− (1− 1

m)pj .

55 / 95

Finally, we can rewrite

v∗(x) ≥ v(x ,LS(x))−
(

1− 1
m

)
pj

as

v(x ,LS(x))

v∗(x)
≤ 1 +

(
1− 1

m

)
pj

v∗(x)
,

and the right-hand-side is at most 1 + (1− 1
m) since some

processor has to take job Jj so v∗(x) ≥ pj .

56 / 95

Finally, we can rewrite

v∗(x) ≥ v(x ,LS(x))−
(

1− 1
m

)
pj

as

v(x ,LS(x))

v∗(x)
≤ 1 +

(
1− 1

m

)
pj

v∗(x)
,

and the right-hand-side is at most 1 + (1− 1
m) since some

processor has to take job Jj so v∗(x) ≥ pj .

56 / 95

We have shown that for any instance x ,

v(x ,LS(x))

v∗(x)
≤ 2− 1

m
.

This bound cannot be improved — there is an instance x on
which the algorithm really does this badly.

Here is one such instance x . Let n = m(m − 1) + 1. The first
n − 1 jobs each have runtime 1 and the last job has pn = m.

v∗(x) = m since m − 1 of the machines share the n − 1
runtime 1 jobs and (n − 1)/(m − 1) = m.

But LS gives each of the machines (n − 1)/m = m − 1 of the
first n − 1 jobs. The last job has to go somewhere, so
v(x ,LS(x)) = 2m − 1.

57 / 95

We have shown that for any instance x ,

v(x ,LS(x))

v∗(x)
≤ 2− 1

m
.

This bound cannot be improved — there is an instance x on
which the algorithm really does this badly.

Here is one such instance x . Let n = m(m − 1) + 1. The first
n − 1 jobs each have runtime 1 and the last job has pn = m.

v∗(x) = m since m − 1 of the machines share the n − 1
runtime 1 jobs and (n − 1)/(m − 1) = m.

But LS gives each of the machines (n − 1)/m = m − 1 of the
first n − 1 jobs. The last job has to go somewhere, so
v(x ,LS(x)) = 2m − 1.

57 / 95

We have shown that for any instance x ,

v(x ,LS(x))

v∗(x)
≤ 2− 1

m
.

This bound cannot be improved — there is an instance x on
which the algorithm really does this badly.

Here is one such instance x . Let n = m(m − 1) + 1. The first
n − 1 jobs each have runtime 1 and the last job has pn = m.

v∗(x) = m since m − 1 of the machines share the n − 1
runtime 1 jobs and (n − 1)/(m − 1) = m.

But LS gives each of the machines (n − 1)/m = m − 1 of the
first n − 1 jobs. The last job has to go somewhere, so
v(x ,LS(x)) = 2m − 1.

57 / 95

We have shown that for any instance x ,

v(x ,LS(x))

v∗(x)
≤ 2− 1

m
.

This bound cannot be improved — there is an instance x on
which the algorithm really does this badly.

Here is one such instance x . Let n = m(m − 1) + 1. The first
n − 1 jobs each have runtime 1 and the last job has pn = m.

v∗(x) = m since m − 1 of the machines share the n − 1
runtime 1 jobs and (n − 1)/(m − 1) = m.

But LS gives each of the machines (n − 1)/m = m − 1 of the
first n − 1 jobs. The last job has to go somewhere, so
v(x ,LS(x)) = 2m − 1.

57 / 95

We have shown that for any instance x ,

v(x ,LS(x))

v∗(x)
≤ 2− 1

m
.

Thus, we have measured the quality of algorithm LS in terms of
the ratio between the value of its solution and the value of the
optimal solution.

This is what is meant by a relative performance measure.

58 / 95

Performance ratio

Given an optimisation problem P, an instance x of P and a
feasible solution y of x , the performance ratio of y with respect
to x is defined as

R(x , y) = max
(

v(x , y)

v∗(x)
,

v∗(x)

v(x , y)

)

The performance ratio R(x , y) is at least 1, and is equal to 1 iff
y is optimal.

59 / 95

r -approximation algorithm

Given an optimisation problem P and an approximation
algorithm A for P, we say that A is an r -approximation
algorithm for P if, given any input instance x of P,

R(x ,A(x)) ≤ r .

If P has an r -approximation algorithm then we say that it can be
approximated with ratio r .

For example, we have seen that the list-scheduling algorithm is
a (2− 1/m)-approximation algorithm for the m-machine
scheduling problem.

It is sometimes useful to generalise this definition.

60 / 95

r -approximation algorithm

Given an optimisation problem P and an approximation
algorithm A for P, we say that A is an r -approximation
algorithm for P if, given any input instance x of P,

R(x ,A(x)) ≤ r .

If P has an r -approximation algorithm then we say that it can be
approximated with ratio r .

For example, we have seen that the list-scheduling algorithm is
a (2− 1/m)-approximation algorithm for the m-machine
scheduling problem.

It is sometimes useful to generalise this definition.

60 / 95

r -approximation algorithm

Given an optimisation problem P and an approximation
algorithm A for P, we say that A is an r -approximation
algorithm for P if, given any input instance x of P,

R(x ,A(x)) ≤ r .

If P has an r -approximation algorithm then we say that it can be
approximated with ratio r .

For example, we have seen that the list-scheduling algorithm is
a (2− 1/m)-approximation algorithm for the m-machine
scheduling problem.

It is sometimes useful to generalise this definition.

60 / 95

r -approximation algorithm

Given an optimisation problem P and an approximation
algorithm A for P, we say that A is an r -approximation
algorithm for P if, given any input instance x of P,

R(x ,A(x)) ≤ r .

If P has an r -approximation algorithm then we say that it can be
approximated with ratio r .

For example, we have seen that the list-scheduling algorithm is
a (2− 1/m)-approximation algorithm for the m-machine
scheduling problem.

It is sometimes useful to generalise this definition.

60 / 95

r(n)-approximation algorithm

Let r : N→ Q be a function.

Given an optimisation problem P and an approximation
algorithm A for P, we say that A is an r(n)-approximation
algorithm for P if, given any input instance x of P,

R(x ,A(x)) ≤ r(|x |).

61 / 95

Improvement

The LS algorithm can be improved by first sorting the jobs so
that p1 ≥ · · · ≥ pn. We will call the resulting algorithm LPT for
"largest-processing time first".

LPT is a (4
3 −

1
3m)-approximation algorithm.

We will not prove this, but we prove a slightly weaker result —
we will prove that LPT is a (3

2 −
1

2m)-approximation algorithm
(so it is a 3/2-approximation algorithm).

62 / 95

Proof

Using the exact same argument as before, we find that

v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)pj , where job Jj is the last job to

be assigned to machine M, which is a machine that ends up
with the largest load, namely load v(x ,LPT(x)).

But we can assume j > m (otherwise the algorithm is optimal
because Jj gets its own machine and v(x ,LPT(x)) = pj).

So p1 ≥ p2 ≥ · · · ≥ pm+1 ≥ pj .

But there must be two jobs from the first m + 1 that share a
machine (since we only have m machines) so v∗(x) ≥ 2pj .

Then v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)v∗(x)

2 = v∗(x)(3
2 −

1
2m).

63 / 95

Proof

Using the exact same argument as before, we find that

v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)pj , where job Jj is the last job to

be assigned to machine M, which is a machine that ends up
with the largest load, namely load v(x ,LPT(x)).

But we can assume j > m (otherwise the algorithm is optimal
because Jj gets its own machine and v(x ,LPT(x)) = pj).

So p1 ≥ p2 ≥ · · · ≥ pm+1 ≥ pj .

But there must be two jobs from the first m + 1 that share a
machine (since we only have m machines) so v∗(x) ≥ 2pj .

Then v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)v∗(x)

2 = v∗(x)(3
2 −

1
2m).

63 / 95

Proof

Using the exact same argument as before, we find that

v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)pj , where job Jj is the last job to

be assigned to machine M, which is a machine that ends up
with the largest load, namely load v(x ,LPT(x)).

But we can assume j > m (otherwise the algorithm is optimal
because Jj gets its own machine and v(x ,LPT(x)) = pj).

So p1 ≥ p2 ≥ · · · ≥ pm+1 ≥ pj .

But there must be two jobs from the first m + 1 that share a
machine (since we only have m machines) so v∗(x) ≥ 2pj .

Then v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)v∗(x)

2 = v∗(x)(3
2 −

1
2m).

63 / 95

Proof

Using the exact same argument as before, we find that

v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)pj , where job Jj is the last job to

be assigned to machine M, which is a machine that ends up
with the largest load, namely load v(x ,LPT(x)).

But we can assume j > m (otherwise the algorithm is optimal
because Jj gets its own machine and v(x ,LPT(x)) = pj).

So p1 ≥ p2 ≥ · · · ≥ pm+1 ≥ pj .

But there must be two jobs from the first m + 1 that share a
machine (since we only have m machines) so v∗(x) ≥ 2pj .

Then v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)v∗(x)

2 = v∗(x)(3
2 −

1
2m).

63 / 95

Proof

Using the exact same argument as before, we find that

v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)pj , where job Jj is the last job to

be assigned to machine M, which is a machine that ends up
with the largest load, namely load v(x ,LPT(x)).

But we can assume j > m (otherwise the algorithm is optimal
because Jj gets its own machine and v(x ,LPT(x)) = pj).

So p1 ≥ p2 ≥ · · · ≥ pm+1 ≥ pj .

But there must be two jobs from the first m + 1 that share a
machine (since we only have m machines) so v∗(x) ≥ 2pj .

Then v(x ,LPT(x)) ≤ v∗(x) + (1− 1
m)v∗(x)

2 = v∗(x)(3
2 −

1
2m).

63 / 95

Example
processing times: 1,2,1,3,3,2,6

LS would proceed as follows

machines 1 2 3 4
1 2 1 3

1,3 2 1 3
1,3 2 1,2 3
1,3 2,6 1,2 3

Value is 8.

sorted processing times: 6,3,3,2,2,1,1

LPT would proceed as follows

machines 1 2 3 4
6 3 3 2
6 3 3 2,2
6 3,1 3 2,2
6 3,1 3,1 2,2

Value is 6 (which is optimal since some machine has to take the
job with processing time 6)

64 / 95

Example: approximation algorithms for vertex covers

Recall the vertex cover optimisation problem:

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

We showed in the NP-completeness section that it is
NP-complete to decide whether a graph G has a vertex cover of
size k , so this optimisation problem is NP-hard.

65 / 95

Example: approximation algorithms for vertex covers

Recall the vertex cover optimisation problem:

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

We showed in the NP-completeness section that it is
NP-complete to decide whether a graph G has a vertex cover of
size k , so this optimisation problem is NP-hard.

65 / 95

Example: approximation algorithms for vertex covers

Recall the vertex cover optimisation problem:

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

We showed in the NP-completeness section that it is
NP-complete to decide whether a graph G has a vertex cover of
size k , so this optimisation problem is NP-hard.

65 / 95

Example: approximation algorithms for vertex covers

Recall the vertex cover optimisation problem:

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

We showed in the NP-completeness section that it is
NP-complete to decide whether a graph G has a vertex cover of
size k , so this optimisation problem is NP-hard.

65 / 95

Example: approximation algorithms for vertex covers

Recall the vertex cover optimisation problem:

I is the set of undirected graphs.

For every G ∈ I, S(G) is the set of vertex covers of G.

(Recall that a vertex cover is a set U ⊆ V (G) such that every
edge of G has at least one endpoint in U.)

The value v(G,U) is the size of U.

Finally, this is a minimisation problem, so goal = min.

We showed in the NP-completeness section that it is
NP-complete to decide whether a graph G has a vertex cover of
size k , so this optimisation problem is NP-hard.

65 / 95

Example

U

An optimal vertex cover is shown on the left. It has size 2. The
vertex cover U has size 3, so R(G,U) = 3/2.

We will look at several approximation algorithms for vertex
cover.

66 / 95

Simplest Greedy

A natural heuristic for VC is a greedy algorithm which
repeatedly picks an edge that has not yet been covered, and
places one of its end-points in the current covering set.

GREEDY1 (G)
C ← ∅
while E 6= ∅

Pick any edge e ∈ E and any endpoint v of e
C ← C ∪ {v}
E ← E \ {e′ ∈ E : v ∼ e′}

return C

It is easy to see that this algorithm outputs a vertex cover. We
will show that GREEDY1 does not achieve a bounded
performance ratio.

67 / 95

We will start by constructing a useful graph to use as the input.

First, how big is 1
1 + 1

2 + 1
3 + · · ·+ 1

r ?

This is the “r -th Harmonic number” It is ln(r) + O(1). (You can
find a proof in CLR) So it is Θ(log(r)).

Now, how big is r
1 + r

2 + r
3 + · · ·+ r

r ? Θ(r log r).

Finally, how big is b r
1c+ b r

2c+ b r
3c+ · · ·+ b r

r c? Also Θ(r log r).

Our graph will be a bipartite graph B with vertex sets L and R.
|L| = r and R = R1 ∪ R2 ∪ · · · ∪ Rr where |Ri | = b r

i c.

Each vertex in Ri will connect to exactly i vertices in L. Each
vertex in L will connect to at most one vertex in Ri .

68 / 95

We will start by constructing a useful graph to use as the input.

First, how big is 1
1 + 1

2 + 1
3 + · · ·+ 1

r ?

This is the “r -th Harmonic number” It is ln(r) + O(1). (You can
find a proof in CLR) So it is Θ(log(r)).

Now, how big is r
1 + r

2 + r
3 + · · ·+ r

r ? Θ(r log r).

Finally, how big is b r
1c+ b r

2c+ b r
3c+ · · ·+ b r

r c? Also Θ(r log r).

Our graph will be a bipartite graph B with vertex sets L and R.
|L| = r and R = R1 ∪ R2 ∪ · · · ∪ Rr where |Ri | = b r

i c.

Each vertex in Ri will connect to exactly i vertices in L. Each
vertex in L will connect to at most one vertex in Ri .

68 / 95

We will start by constructing a useful graph to use as the input.

First, how big is 1
1 + 1

2 + 1
3 + · · ·+ 1

r ?

This is the “r -th Harmonic number” It is ln(r) + O(1). (You can
find a proof in CLR) So it is Θ(log(r)).

Now, how big is r
1 + r

2 + r
3 + · · ·+ r

r ? Θ(r log r).

Finally, how big is b r
1c+ b r

2c+ b r
3c+ · · ·+ b r

r c? Also Θ(r log r).

Our graph will be a bipartite graph B with vertex sets L and R.
|L| = r and R = R1 ∪ R2 ∪ · · · ∪ Rr where |Ri | = b r

i c.

Each vertex in Ri will connect to exactly i vertices in L. Each
vertex in L will connect to at most one vertex in Ri .

68 / 95

We will start by constructing a useful graph to use as the input.

First, how big is 1
1 + 1

2 + 1
3 + · · ·+ 1

r ?

This is the “r -th Harmonic number” It is ln(r) + O(1). (You can
find a proof in CLR) So it is Θ(log(r)).

Now, how big is r
1 + r

2 + r
3 + · · ·+ r

r ? Θ(r log r).

Finally, how big is b r
1c+ b r

2c+ b r
3c+ · · ·+ b r

r c? Also Θ(r log r).

Our graph will be a bipartite graph B with vertex sets L and R.
|L| = r and R = R1 ∪ R2 ∪ · · · ∪ Rr where |Ri | = b r

i c.

Each vertex in Ri will connect to exactly i vertices in L. Each
vertex in L will connect to at most one vertex in Ri .

68 / 95

We will start by constructing a useful graph to use as the input.

First, how big is 1
1 + 1

2 + 1
3 + · · ·+ 1

r ?

This is the “r -th Harmonic number” It is ln(r) + O(1). (You can
find a proof in CLR) So it is Θ(log(r)).

Now, how big is r
1 + r

2 + r
3 + · · ·+ r

r ? Θ(r log r).

Finally, how big is b r
1c+ b r

2c+ b r
3c+ · · ·+ b r

r c? Also Θ(r log r).

Our graph will be a bipartite graph B with vertex sets L and R.
|L| = r and R = R1 ∪ R2 ∪ · · · ∪ Rr where |Ri | = b r

i c.

Each vertex in Ri will connect to exactly i vertices in L. Each
vertex in L will connect to at most one vertex in Ri .

68 / 95

We will start by constructing a useful graph to use as the input.

First, how big is 1
1 + 1

2 + 1
3 + · · ·+ 1

r ?

This is the “r -th Harmonic number” It is ln(r) + O(1). (You can
find a proof in CLR) So it is Θ(log(r)).

Now, how big is r
1 + r

2 + r
3 + · · ·+ r

r ? Θ(r log r).

Finally, how big is b r
1c+ b r

2c+ b r
3c+ · · ·+ b r

r c? Also Θ(r log r).

Our graph will be a bipartite graph B with vertex sets L and R.
|L| = r and R = R1 ∪ R2 ∪ · · · ∪ Rr where |Ri | = b r

i c.

Each vertex in Ri will connect to exactly i vertices in L. Each
vertex in L will connect to at most one vertex in Ri .

68 / 95

We will start by constructing a useful graph to use as the input.

First, how big is 1
1 + 1

2 + 1
3 + · · ·+ 1

r ?

This is the “r -th Harmonic number” It is ln(r) + O(1). (You can
find a proof in CLR) So it is Θ(log(r)).

Now, how big is r
1 + r

2 + r
3 + · · ·+ r

r ? Θ(r log r).

Finally, how big is b r
1c+ b r

2c+ b r
3c+ · · ·+ b r

r c? Also Θ(r log r).

Our graph will be a bipartite graph B with vertex sets L and R.
|L| = r and R = R1 ∪ R2 ∪ · · · ∪ Rr where |Ri | = b r

i c.

Each vertex in Ri will connect to exactly i vertices in L. Each
vertex in L will connect to at most one vertex in Ri .

68 / 95

We will start by constructing a useful graph to use as the input.

First, how big is 1
1 + 1

2 + 1
3 + · · ·+ 1

r ?

This is the “r -th Harmonic number” It is ln(r) + O(1). (You can
find a proof in CLR) So it is Θ(log(r)).

Now, how big is r
1 + r

2 + r
3 + · · ·+ r

r ? Θ(r log r).

Finally, how big is b r
1c+ b r

2c+ b r
3c+ · · ·+ b r

r c? Also Θ(r log r).

Our graph will be a bipartite graph B with vertex sets L and R.
|L| = r and R = R1 ∪ R2 ∪ · · · ∪ Rr where |Ri | = b r

i c.

Each vertex in Ri will connect to exactly i vertices in L. Each
vertex in L will connect to at most one vertex in Ri .

68 / 95

R
6

R
7

R
8

R
9

R
10

L

R R R R R
1 2 3 4 5

Now v(B,R) = Θ(r log(r)) and v∗(B) ≤ v(B,L) = r , so the
performance ratio of R with respect to the instance B is

v(B,R)

v∗(B)
= Θ(log(r)).

Note that the algorithm could choose R as its output.

69 / 95

R
6

R
7

R
8

R
9

R
10

L

R R R R R
1 2 3 4 5

Now v(B,R) = Θ(r log(r)) and v∗(B) ≤ v(B,L) = r , so the
performance ratio of R with respect to the instance B is

v(B,R)

v∗(B)
= Θ(log(r)).

Note that the algorithm could choose R as its output.

69 / 95

Better greedy algorithm
How do we achieve a better ratio than this?

Let us try the obvious strategy of modifying the Algorithm
GREEDY1 to be less arbitrary in its choice of vertices to be
included in the cover. A natural modification is to repeatedly
choose vertices which are incident to the largest number of
currently uncovered edges.

GREEDY2 (G)
C ← ∅
while E 6= ∅

Pick a vertex v ∈ V of
maximum degree in the current graph

C ← C ∪ {v}
E ← E \ {e′ ∈ E : v ∼ e′}

return C

70 / 95

Algorithm analysis

On input B, GREEDY2 could also output R as a vertex cover!

Vertices in L have degree at most r . The algorithm could
choose vertices from Rr at the very first stage.

After this, vertices in L have degree at most r − 1 so the
algorithm could choose vertices from Rr−1.

In general, it would choose the highest degree vertices from R
at each stage.

71 / 95

Could this be an improvement?

GREEDY1 (G)
C ← ∅
while E 6= ∅

Pick any edge e ∈ E and any endpoint v of e
C ← C ∪ {v}
E ← E \ {e′ ∈ E : v ∼ e′}

return C

GREEDYBOTH (G)
C ← ∅
while E 6= ∅

Pick any edge e = (u, v) ∈ E
C ← C ∪ {u, v}
E ← E \ {e′ ∈ E : e ∼ e′}

return C

72 / 95

GREEDYBOTH is a 2-approximation algorithm.

1. It computes a vertex cover.

2. Let j be the number of edges e that are examined by the
algorithm. These edges are not adjacent, so v∗(G) ≥ j . On the
other hand, v(G,GREEDYBOTH(G)) ≤ 2j

So the performance ratio is at most 2j/j = 2.

73 / 95

Another way to look at the algorithm

GREEDYBOTH (G)
C ← ∅
while E 6= ∅

Pick any edge e = (u, v) ∈ E
C ← C ∪ {u, v}
E ← E \ {e′ ∈ E : e ∼ e′}

return C

LOCALRATIO (G)
For all vertices v , w(v)← 1
While there exists an edge (u, v)

such that min(w(u),w(v)) = 1
w(u)← w(u)− 1
w(v)← w(v)− 1

Return C = {v | w(v) = 0}

1. LOCALRATIO returns
a vertex cover.

2. Each edge (u, v)
that we consider con-
tributes at least one to
v∗(G) and at most two
to v(G,LocalRatio(G)).

74 / 95

Another way to look at the algorithm

GREEDYBOTH (G)
C ← ∅
while E 6= ∅

Pick any edge e = (u, v) ∈ E
C ← C ∪ {u, v}
E ← E \ {e′ ∈ E : e ∼ e′}

return C

LOCALRATIO (G)
For all vertices v , w(v)← 1
While there exists an edge (u, v)

such that min(w(u),w(v)) = 1
w(u)← w(u)− 1
w(v)← w(v)− 1

Return C = {v | w(v) = 0}

1. LOCALRATIO returns
a vertex cover.

2. Each edge (u, v)
that we consider con-
tributes at least one to
v∗(G) and at most two
to v(G,LocalRatio(G)).

74 / 95

Another way to look at the algorithm

GREEDYBOTH (G)
C ← ∅
while E 6= ∅

Pick any edge e = (u, v) ∈ E
C ← C ∪ {u, v}
E ← E \ {e′ ∈ E : e ∼ e′}

return C

LOCALRATIO (G)
For all vertices v , w(v)← 1
While there exists an edge (u, v)

such that min(w(u),w(v)) = 1
w(u)← w(u)− 1
w(v)← w(v)− 1

Return C = {v | w(v) = 0}

1. LOCALRATIO returns
a vertex cover.

2. Each edge (u, v)
that we consider con-
tributes at least one to
v∗(G) and at most two
to v(G,LocalRatio(G)).

74 / 95

Can you think of a graph G on which the this algorithm really
does no better than a factor of 2?

How about n non-intersecting edges.

75 / 95

Can you think of a graph G on which the this algorithm really
does no better than a factor of 2?

How about n non-intersecting edges.

75 / 95

It is an important open problem whether there is a 2− ε
approximation algorithm for vertex cover for any positive
constant ε.

76 / 95

A generalisation of the problem

An Instance G ∈ I is an (undirected) graph in which each
vertex u has a nonnegative weight w(u).

For every G ∈ I, S(G) is the set of vertex covers U of G.

The value v(G,U) is
∑

v∈U w(v).

goal = min.

77 / 95

LOCALRATIO (G)
While there exists an edge (u, v) such that min(w(u),w(v)) > 0

Let ε = min(w(u),w(v))
w(u)← w(u)− ε
w(v)← w(v)− ε

Return C = {v | w(v) = 0}

It is obvious that this algorithm returns a vertex cover.

Let (ui , vi) be the i ’th edge considered, with
εi = min(w(ui),w(vi)). Suppose r edges are considered in all.

Then v(G, LOCAL RATIO(G)) ≤ 2ε1 + 2ε2 + · · ·+ 2εr .

Also, v∗(G) ≥ ε1 + ε2 + · · ·+ εr .

So LOCALRATIO is a 2-approximation algorithm.

78 / 95

LOCALRATIO (G)
While there exists an edge (u, v) such that min(w(u),w(v)) > 0

Let ε = min(w(u),w(v))
w(u)← w(u)− ε
w(v)← w(v)− ε

Return C = {v | w(v) = 0}

It is obvious that this algorithm returns a vertex cover.

Let (ui , vi) be the i ’th edge considered, with
εi = min(w(ui),w(vi)). Suppose r edges are considered in all.

Then v(G, LOCAL RATIO(G)) ≤ 2ε1 + 2ε2 + · · ·+ 2εr .

Also, v∗(G) ≥ ε1 + ε2 + · · ·+ εr .

So LOCALRATIO is a 2-approximation algorithm.

78 / 95

LOCALRATIO (G)
While there exists an edge (u, v) such that min(w(u),w(v)) > 0

Let ε = min(w(u),w(v))
w(u)← w(u)− ε
w(v)← w(v)− ε

Return C = {v | w(v) = 0}

It is obvious that this algorithm returns a vertex cover.

Let (ui , vi) be the i ’th edge considered, with
εi = min(w(ui),w(vi)). Suppose r edges are considered in all.

Then v(G, LOCAL RATIO(G)) ≤ 2ε1 + 2ε2 + · · ·+ 2εr .

Also, v∗(G) ≥ ε1 + ε2 + · · ·+ εr .

So LOCALRATIO is a 2-approximation algorithm.

78 / 95

LOCALRATIO (G)
While there exists an edge (u, v) such that min(w(u),w(v)) > 0

Let ε = min(w(u),w(v))
w(u)← w(u)− ε
w(v)← w(v)− ε

Return C = {v | w(v) = 0}

It is obvious that this algorithm returns a vertex cover.

Let (ui , vi) be the i ’th edge considered, with
εi = min(w(ui),w(vi)). Suppose r edges are considered in all.

Then v(G, LOCAL RATIO(G)) ≤ 2ε1 + 2ε2 + · · ·+ 2εr .

Also, v∗(G) ≥ ε1 + ε2 + · · ·+ εr .

So LOCALRATIO is a 2-approximation algorithm.

78 / 95

An important example: Maximum Satisfiability

Instance: Set C of disjunctive clauses on a set of variables V

Solution: A truth assignment f : V → {true, false}.

The value v(C, f) is the number of clauses in C which are
satisfied by f .

Example:

C = {(¬y1 ∨ ¬x1 ∨ y1), (¬y1 ∨ x1 ∨ ¬y2), (¬y1 ∨ x1 ∨ y2)}.

v∗(C) = 3.

79 / 95

An important example: Maximum Satisfiability

Instance: Set C of disjunctive clauses on a set of variables V

Solution: A truth assignment f : V → {true, false}.

The value v(C, f) is the number of clauses in C which are
satisfied by f .

Example:

C = {(¬y1 ∨ ¬x1 ∨ y1), (¬y1 ∨ x1 ∨ ¬y2), (¬y1 ∨ x1 ∨ y2)}.

v∗(C) = 3.

79 / 95

An important example: Maximum Satisfiability

Instance: Set C of disjunctive clauses on a set of variables V

Solution: A truth assignment f : V → {true, false}.

The value v(C, f) is the number of clauses in C which are
satisfied by f .

Example:

C = {(¬y1 ∨ ¬x1 ∨ y1), (¬y1 ∨ x1 ∨ ¬y2), (¬y1 ∨ x1 ∨ y2)}.

v∗(C) = 3.

79 / 95

Let c = |C|. We showed in the NP-completeness section that it
is NP-hard to decide whether an instance C has a solution with
value c (a solution that satisfies all clauses), so the optimisation
problem is NP-hard.

80 / 95

Maximum satisfiability is 2-approximable.

Before we give a deterministic approximation algorithm for
Maximum Satisfiability, let’s look at the performance ratio of a
simple randomised algorithm.

Algorithm RS (for “Randomised Satisfiability”): For each
variable v ∈ V , flip a fair coin. With probability 1/2, set
f (v) = true. Otherwise, set f (v) = false.

Clearly, v∗(C) ≤ c.

What about v(C,RS(C))? This is now a random variable.

This means that v(C,RS(C)) is a function of the coin-flips that
arise when RS(C) is run.

81 / 95

Maximum satisfiability is 2-approximable.

Before we give a deterministic approximation algorithm for
Maximum Satisfiability, let’s look at the performance ratio of a
simple randomised algorithm.

Algorithm RS (for “Randomised Satisfiability”): For each
variable v ∈ V , flip a fair coin. With probability 1/2, set
f (v) = true. Otherwise, set f (v) = false.

Clearly, v∗(C) ≤ c.

What about v(C,RS(C))? This is now a random variable.

This means that v(C,RS(C)) is a function of the coin-flips that
arise when RS(C) is run.

81 / 95

Maximum satisfiability is 2-approximable.

Before we give a deterministic approximation algorithm for
Maximum Satisfiability, let’s look at the performance ratio of a
simple randomised algorithm.

Algorithm RS (for “Randomised Satisfiability”): For each
variable v ∈ V , flip a fair coin. With probability 1/2, set
f (v) = true. Otherwise, set f (v) = false.

Clearly, v∗(C) ≤ c.

What about v(C,RS(C))? This is now a random variable.

This means that v(C,RS(C)) is a function of the coin-flips that
arise when RS(C) is run.

81 / 95

Maximum satisfiability is 2-approximable.

Before we give a deterministic approximation algorithm for
Maximum Satisfiability, let’s look at the performance ratio of a
simple randomised algorithm.

Algorithm RS (for “Randomised Satisfiability”): For each
variable v ∈ V , flip a fair coin. With probability 1/2, set
f (v) = true. Otherwise, set f (v) = false.

Clearly, v∗(C) ≤ c.

What about v(C,RS(C))? This is now a random variable.

This means that v(C,RS(C)) is a function of the coin-flips that
arise when RS(C) is run.

81 / 95

Maximum satisfiability is 2-approximable.

Before we give a deterministic approximation algorithm for
Maximum Satisfiability, let’s look at the performance ratio of a
simple randomised algorithm.

Algorithm RS (for “Randomised Satisfiability”): For each
variable v ∈ V , flip a fair coin. With probability 1/2, set
f (v) = true. Otherwise, set f (v) = false.

Clearly, v∗(C) ≤ c.

What about v(C,RS(C))? This is now a random variable.

This means that v(C,RS(C)) is a function of the coin-flips that
arise when RS(C) is run.

81 / 95

Let n = |v |.

For any sequence of values {f1, . . . , fn} from {true, false},

v(C,RS(C))(f1, . . . , fn) is the number of clauses in C that are
satisfied when the first coin-flip has value f1, the second
coin-flip has value f2, and so on.

The expected value of the solution produced by the algorithm is
given by

E [v(C,RS(C))] =
∑

f1,...,fn

Pr(f1, . . . , fn)v(C,RS(C))(f1, . . . , fn),

where Pr(f1, . . . , fn) denotes the probability that the outcome of
the coin flips is f1, . . . , fn.

82 / 95

Let n = |v |.

For any sequence of values {f1, . . . , fn} from {true, false},

v(C,RS(C))(f1, . . . , fn) is the number of clauses in C that are
satisfied when the first coin-flip has value f1, the second
coin-flip has value f2, and so on.

The expected value of the solution produced by the algorithm is
given by

E [v(C,RS(C))] =
∑

f1,...,fn

Pr(f1, . . . , fn)v(C,RS(C))(f1, . . . , fn),

where Pr(f1, . . . , fn) denotes the probability that the outcome of
the coin flips is f1, . . . , fn.

82 / 95

Let n = |v |.

For any sequence of values {f1, . . . , fn} from {true, false},

v(C,RS(C))(f1, . . . , fn) is the number of clauses in C that are
satisfied when the first coin-flip has value f1, the second
coin-flip has value f2, and so on.

The expected value of the solution produced by the algorithm is
given by

E [v(C,RS(C))] =
∑

f1,...,fn

Pr(f1, . . . , fn)v(C,RS(C))(f1, . . . , fn),

where Pr(f1, . . . , fn) denotes the probability that the outcome of
the coin flips is f1, . . . , fn.

82 / 95

That may look complicated, but it isn’t!

Let Ci be a random variable which is 1 if the i th clause is
satisfied, and is 0 otherwise.

Ci is a function of the coin-flips. That means that, given a
sequence of values f1, . . . , fn, Ci(f1, . . . , fn) is either 0 or 1.

Now, Pr(Ci = 1) ≥ 1
2 since the probability that the coin-flip

sequence satisfies the first literal in ci is exactly 1
2 . Thus,

E [Ci] ≥ 1
2 .

83 / 95

That may look complicated, but it isn’t!

Let Ci be a random variable which is 1 if the i th clause is
satisfied, and is 0 otherwise.

Ci is a function of the coin-flips. That means that, given a
sequence of values f1, . . . , fn, Ci(f1, . . . , fn) is either 0 or 1.

Now, Pr(Ci = 1) ≥ 1
2 since the probability that the coin-flip

sequence satisfies the first literal in ci is exactly 1
2 . Thus,

E [Ci] ≥ 1
2 .

83 / 95

That may look complicated, but it isn’t!

Let Ci be a random variable which is 1 if the i th clause is
satisfied, and is 0 otherwise.

Ci is a function of the coin-flips. That means that, given a
sequence of values f1, . . . , fn, Ci(f1, . . . , fn) is either 0 or 1.

Now, Pr(Ci = 1) ≥ 1
2 since the probability that the coin-flip

sequence satisfies the first literal in ci is exactly 1
2 . Thus,

E [Ci] ≥ 1
2 .

83 / 95

That may look complicated, but it isn’t!

Let Ci be a random variable which is 1 if the i th clause is
satisfied, and is 0 otherwise.

Ci is a function of the coin-flips. That means that, given a
sequence of values f1, . . . , fn, Ci(f1, . . . , fn) is either 0 or 1.

Now, Pr(Ci = 1) ≥ 1
2 since the probability that the coin-flip

sequence satisfies the first literal in ci is exactly 1
2 . Thus,

E [Ci] ≥ 1
2 .

83 / 95

Now v(C,RS(C)) = C1 + · · ·+ Cc so

E [v(C,RS(C))] = E [C1] + · · ·+ E [Cc] ≥ c
2
.

Thus, the expected performance ratio is

v∗(C)

E [v(C,RS(C))]
≤ c

c/2
= 2.

84 / 95

Now v(C,RS(C)) = C1 + · · ·+ Cc so

E [v(C,RS(C))] = E [C1] + · · ·+ E [Cc] ≥ c
2
.

Thus, the expected performance ratio is

v∗(C)

E [v(C,RS(C))]
≤ c

c/2
= 2.

84 / 95

Now v(C,RS(C)) = C1 + · · ·+ Cc so

E [v(C,RS(C))] = E [C1] + · · ·+ E [Cc] ≥ c
2
.

Thus, the expected performance ratio is

v∗(C)

E [v(C,RS(C))]
≤ c

c/2
= 2.

84 / 95

A deterministic 2-approximation

Now, let’s give a deterministic 2-approximation algorithm for
Maximum Satisfiability.

85 / 95

DS (C,V)
For all v ∈ V , f (v)← true
While C 6= ∅

Let ` be a literal that occurs in the max number of clauses in C
Let v be the variable so that ` = v or ` = ¬v
If ` = v

f (v)← true
Remove the literal ¬v from every clause in C

Else
f (v)← false
remove the literal v from every clause in C

Remove from C any clauses containing `
Remove from C any empty clauses

Algorithm DS runs in polynomial time. It is a greedy algorithm.

86 / 95

DS (C,V)
For all v ∈ V , f (v)← true
While C 6= ∅

Let ` be a literal that occurs in the max number of clauses in C
Let v be the variable so that ` = v or ` = ¬v
If ` = v

f (v)← true
Remove the literal ¬v from every clause in C

Else
f (v)← false
remove the literal v from every clause in C

Remove from C any clauses containing `
Remove from C any empty clauses

Algorithm DS runs in polynomial time. It is a greedy algorithm.

86 / 95

DS (C,V)
For all v ∈ V , f (v)← true
While C 6= ∅

Let ` be a literal that occurs in the max number of clauses in C
Let v be the variable so that ` = v or ` = ¬v
If ` = v

f (v)← true
Remove the literal ¬v from every clause in C

Else
f (v)← false
remove the literal v from every clause in C

Remove from C any clauses containing `
Remove from C any empty clauses

Algorithm DS runs in polynomial time. It is a greedy algorithm.

86 / 95

To show that algorithm DS is a 2-approximation, we will show
by induction on n = |V | that v(DS(C,V)) ≥ c/2.

Then

the performance ratio is

v∗(C)

v(C,DS(C))
≤ c

c/2
= 2.

The base case is n = 1.

87 / 95

To show that algorithm DS is a 2-approximation, we will show
by induction on n = |V | that v(DS(C,V)) ≥ c/2.

Then

the performance ratio is

v∗(C)

v(C,DS(C))
≤ c

c/2
= 2.

The base case is n = 1.

87 / 95

To show that algorithm DS is a 2-approximation, we will show
by induction on n = |V | that v(DS(C,V)) ≥ c/2.

Then

the performance ratio is

v∗(C)

v(C,DS(C))
≤ c

c/2
= 2.

The base case is n = 1.

87 / 95

For the inductive step, consider an instance (C,V) with
n = |V | > 1.

Let c1 be the number of clauses in which ` occurs and c2 be the
number of clauses in which ¬` occurs. Since ` is chosen,
c1 ≥ c2.

The algorithm sets f (v) so as to satisfy the c1 clauses.

It then considers an instance with n − 1 variables and at least
c − c1 − c2 clauses.

By the inductive hypothesis, at least (c− c1− c2)/2 of these will
be satisfied, so the total number of satisfied clauses is at least

c1 +
c − c1 − c2

2
=

c + c1 − c2

2
≥ c

2
.

88 / 95

Approximation Complexity Classes

Recall that an optimisation problem P = (I,S,v, goal) is in NPO
if the following holds.

(1) The set I of instances is recognizable in polynomial time.

(2) There is a polynomial q so that, for every instance x ∈ I
and any feasible solution y ∈ S(x), we have |y | ≤ q(|x |). Also,
it is decidable in polynomial time whether y ∈ S(x).

(3) v(x , y) is computable in polynomial time.

89 / 95

APX is the class of all NPO problems P such that, for some
fixed r ≥ 1, there exists a polynomial-time r -approximation
algorithm for P.

We have shown that several problems are in APX:

Planar Vertex Colouring (performance ratio 5/3 since at
most 5 colour are used and at least 3 are required
(otherwise we solve the problem optimally))

Edge Colouring (performance ratio at (∆ + 1)/∆ ≤ 3/2).

Multiprocessor Scheduling (performance ratio 3/2)

Minimum Vertex Cover (performance ratio 2)

Maximum Satisfiability (performance ratio 2)

90 / 95

Two other NPO problems that we have considered are

Minimum Bin Packing

Maximum Clique.

Minimum Bin Packing is in APX (see section 2.2.2). It can be
shown that Maximum Clique is not in APX unless P=NP (see
the supplementary notes).

91 / 95

An NPO problem that is unlikely to be in APX

Minimum Travelling Salesperson (MinTSP)

Instance: Set of cities C = {c1, . . . , cn}. For each pair (ci , cj)

of cities, a non-negative integer D(i , j), which is the distance
between them.

Solution: A tour of the cities. That is, a permutation {ci1 , . . . , cin}

Value: (
n−1∑
k=1

D(ik , ik+1)

)
+ D(in, i1).

We will show that if MinTSP is in APX then P=NP.

92 / 95

An NPO problem that is unlikely to be in APX

Minimum Travelling Salesperson (MinTSP)

Instance: Set of cities C = {c1, . . . , cn}. For each pair (ci , cj)

of cities, a non-negative integer D(i , j), which is the distance
between them.

Solution: A tour of the cities. That is, a permutation {ci1 , . . . , cin}

Value: (
n−1∑
k=1

D(ik , ik+1)

)
+ D(in, i1).

We will show that if MinTSP is in APX then P=NP.

92 / 95

You learned in Comp202 that the following problem is
NP-complete.

Hamiltonian Circuit

Input: A directed graph G = (V ,E).

Question: Is there a circuit that passes exactly once through
every vertex.

Suppose for contradiction that A is an r -approximation
algorithm for MinTSP.

Here is how to use A to solve Hamiltonian Circuit.

Given G = (V ,E), let n = |V |. Construct a MinTSP instance
(C,D) by setting C = V (so the cities are the vertices of G). If
(vi , vj) ∈ E then set D(i , j) = 1. Otherwise, set D(i , j) = 1 + nr .

93 / 95

You learned in Comp202 that the following problem is
NP-complete.

Hamiltonian Circuit

Input: A directed graph G = (V ,E).

Question: Is there a circuit that passes exactly once through
every vertex.

Suppose for contradiction that A is an r -approximation
algorithm for MinTSP.

Here is how to use A to solve Hamiltonian Circuit.

Given G = (V ,E), let n = |V |. Construct a MinTSP instance
(C,D) by setting C = V (so the cities are the vertices of G). If
(vi , vj) ∈ E then set D(i , j) = 1. Otherwise, set D(i , j) = 1 + nr .

93 / 95

You learned in Comp202 that the following problem is
NP-complete.

Hamiltonian Circuit

Input: A directed graph G = (V ,E).

Question: Is there a circuit that passes exactly once through
every vertex.

Suppose for contradiction that A is an r -approximation
algorithm for MinTSP.

Here is how to use A to solve Hamiltonian Circuit.

Given G = (V ,E), let n = |V |. Construct a MinTSP instance
(C,D) by setting C = V (so the cities are the vertices of G). If
(vi , vj) ∈ E then set D(i , j) = 1. Otherwise, set D(i , j) = 1 + nr .

93 / 95

You learned in Comp202 that the following problem is
NP-complete.

Hamiltonian Circuit

Input: A directed graph G = (V ,E).

Question: Is there a circuit that passes exactly once through
every vertex.

Suppose for contradiction that A is an r -approximation
algorithm for MinTSP.

Here is how to use A to solve Hamiltonian Circuit.

Given G = (V ,E), let n = |V |. Construct a MinTSP instance
(C,D) by setting C = V (so the cities are the vertices of G). If
(vi , vj) ∈ E then set D(i , j) = 1. Otherwise, set D(i , j) = 1 + nr .

93 / 95

Note that a Hamiltonian Circuit of G is a solution to the MinTSP
instance (C,D) with value n.

Any other solution to the MinTSP intsance (C,D) uses at least
one non-edge of G, so it has value at least
(n − 1) + (1 + nr) = nr + n.

If G has a Hamiltonian Circuit, then v∗(C,D) = n. Since A is an
r -approximation algorithm, v((C,D),A(C,D)) ≤ nr .

If G has no Hamiltonian Circuit, then
v((C,D),A(C,D)) ≥ nr + 1.

94 / 95

Note that a Hamiltonian Circuit of G is a solution to the MinTSP
instance (C,D) with value n.

Any other solution to the MinTSP intsance (C,D) uses at least
one non-edge of G, so it has value at least
(n − 1) + (1 + nr) = nr + n.

If G has a Hamiltonian Circuit, then v∗(C,D) = n. Since A is an
r -approximation algorithm, v((C,D),A(C,D)) ≤ nr .

If G has no Hamiltonian Circuit, then
v((C,D),A(C,D)) ≥ nr + 1.

94 / 95

So MinTSP is not in APX unless P=NP.'

&

$

%

NPO

'

&

$

%

APX

MinTSP

Planar Vertex Colouring

Edge Colouring

Multiprocessor Scheduling

Min Vertex Cover

Max Satisfiability

Min Bin Packing

95 / 95

