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Message-Passing Computing

Basics of Message-Passing Programming

Programming Options

Programming a message-passing multicomputer can be achieved by

1. Designing a special parallel programming language

2. Extending the syntax/reserved words of an existing sequential high-level language to
handle message passing

3. Using an existing sequential high-level language and providing a library of external
procedures for message passing

Here, we will concentrate upon the third option.

Necessary to say explicitly what processes are to be executed, when to pass messages
between concurrent processes, and what to pass in the messages.

Two primary methods are needed in this form of a message-passing system:

1. A method of creating separate processes for execution on different computers

2. A method of sending and receiving messages
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Source
file

Executables

Processor 0 Processor n − 1
Figure 2.1 Single program, multiple data 
operation.

Compile to suit
processor

Single Program Multiple Data (SPMD) model

Different processes are merged into one program.

Within the program are control statements that will customize the code; i.e. select different
parts for each process.
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Process 1

Process 2spawn();

Figure 2.2 Spawning a process.

Time

Start execution
of process 2

 Multiple Program Multiple Data (MPMD) 
Model

Completely separate and different program is written for different processors.

The master-slave approach is usually taken whereby a single processor executes a master
program (the master process) and other processes are started from within the master
process.

Starting these processes is relatively expensive in computational effort.

An example of a library call for dynamic process creation might be of the form

spawn(name_of_process);

which immediately starts another process, and both the calling process and the called pro-

cess proceed together:
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Figure 2.3 Passing a message between 
processes using send() and recv() 
library calls.

Process 1 Process 2

send(&x, 2);

recv(&y, 1);

x y

Movement
of data

Message-Passing Routines

Basic Send and Receive Routines

Often have the form

send(&x, destination_id);

in the source process and the call

recv(&y, source_id);

in the destination process, to send the data x in the source process to y in the destination

process:
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Figure 2.4 Synchronous send() and recv() library calls using a three-way protocol.
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(b) When recv() occurs before send()
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Synchronous Message Passing

Routines that actually return when the message transfer has been completed. 

Do not need message buffer storage. A synchronous send routine could wait until the
complete message can be accepted by the receiving process before sending the message. 

A synchronous receive routine will wait until the message it is expecting arrives. 

Synchronous routines intrinsically perform two actions: They transfer data and they syn-
chronize processes.

Suggest some form of signaling, such as a three-way protocol:
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Blocking and Nonblocking Message Passing

Blocking - has been used to describe routines that do not return until the transfer is com-
pleted.

The routines are “blocked” from continuing.

In that sense, the terms synchronous and blocking were synonymous.

Non-blocking - has been used to describe routines that return whether or not the message
had been received.

The terms blocking and nonblocking redefined in systems such as MPI:

MPI Definitions of Blocking and Non-Blocking

Blocking - return after their local actions complete, though the message transfer may not
have been completed.

Non-blocking - return immediately. Assumed that the data storage being used for the
transfer is not modified by the subsequent statements prior to the data storage being used
for the transfer, and it is left to the programmer to ensure this.
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Message buffer is used to hold messages being sent prior to being accepted by recv(). 

For a receive routine, the message has to have been received if we want the message.

If recv() is reached before send(), the message buffer will be empty and recv() waits for
the message.

For a send routine, once the local actions have been completed and the message is safely
on its way, the process can continue with subsequent work.

In this way, using such send routines can decrease the overall execution time.

In practice, buffers can only be of finite length and a point could be reached when the send
routine is held up because all the available buffer space has been exhausted.

It may be necessary to know at some point if the message has actually been received, which
will require additional message passing.

Figure 2.5 Using a message buffer.

Process 1 Process 2

send();

recv();

Message buffer

Read
message buffer

Continue
process

Time

How message-passing routines can return before the message 
transfer has been completed

Generally, a message buffer is needed between the source and destination to hold message:
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Message Selection

So far, we have described messages being sent to a specified destination process from a
specified source process.

Wide Card - A special symbol or number to allow the destination to accept messages
from any source.

Message Tag

Used to differentiate between different types of messages being sent.

Example

To send a message, x, with message tag 5 from a source process, 1, to a destination
process, 2, and assign to y, we might have

send(&x, 2, 5);

in the source process and

recv(&y, 1, 5);

in the destination process. The message tag is carried within the message.

If special type matching is not required, a wild card message tag is used, so that the
recv() will match with any send().

More powerful message selection mechanism is needed to differentiate between
messages being sent between library routines and those being passed between user pro-
cesses. This mechanism will be developed later.
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Figure 2.6 Broadcast operation.

Process 0 Process n − 1Process 1

Action

Code

Broadcast

Sending the same message to all the processes concerned with the problem.

Multicast - sending the same message to a defined group of processes. 

Process 0 is identified as the root process within the broadcast parameters. The root process
holds the data to be broadcast in buf.

Figure 2.6 shows each process executing the same bcast() routine, which is convenient for
the SPMD model in which each process has the same program. It also shows the root
receiving the data, but this depends upon the message-passing system.

Alternative arrangement - for the source to execute a broadcast routine and destination
processes to execute regular message-passing receive routines.

Broadcast action does not occur until all the processes have executed their broadcast
routine, and the broadcast operation will have the effect of synchronizing the processes.
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scatter();

buf

scatter();

data

scatter();
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Figure 2.7 Scatter operation.

Process 0 Process n − 1Process 1

Action

Code

Scatter 

Sending each element of an array of data in the root to a separate process.

The contents of the ith location of the array is sent to the ith process.

Common startup requirement.
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Figure 2.8 Gather operation.
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Process 0 Process n − 1Process 1

Action

Code

Gather 

Having one process collect individual values from a set of processes.

Gather is essentially the opposite of scatter.

The data from the ith process is received by the root process and placed in the ith location
of array set aside to receive the data.

Normally used after some computation has been done by these processes.
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Figure 2.9 Reduce operation (addition).
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Process 0 Process n − 1Process 1

+

Action

Code

Reduce

Gather operation combined with a specified arithmetic or logical operation.

Example, the values could be gathered and then added together by the root:
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Using Workstation Clusters

Software Tools

PVM (Parallel Virtual Machine) - Perhaps the first widely adopted attempt at using a
workstation cluster as a multicomputer platform developed by Oak Ridge National Labo-
ratories.

Provides for a software environment for message passing between homogeneous or heter-
ogeneous computers and has a collection of library routines that the user can employ with
C or FORTRAN programs.

Available at no charge.

MPI (Message Passing Interface) - standard developed by group of academics and indus-
trial partnersto foster more widespread use and portability.

Several free implementations exist
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Figure 2.10 Message passing between workstations using PVM.
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The programmer decomposes the problem into separate programs. Each program is written
in C (or Fortran) and compiled to run on specific types of computers in the network. 

The set of computers used on a problem first must be defined prior to running the programs. 

The most convenient way of doing this is by creating a list of the names of the computers
available in a hostfile. The hostfile is then read by PVM. 

The routing of messages between computers is done by PVM daemon processes installed
by PVM on the computers that form the virtual machine:
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Figure 2.11 Multiple processes allocated to each processor (workstation).
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Figure 2.12 pvm_psend() and pvm_precv() system calls.

Process 1 Process 2

pvm_psend();

pvm_precv();Continue
process

Wait for message

Pack

Send bufferArray Array to
holding
data

receive
data

Basic Message-Passing Routines

All PVM send routines are nonblocking (or asynchronous in PVM terminology) while
PVM receive routines can be either blocking (synchronous) or nonblocking.

The key operations of sending and receiving data are done through message buffers.

PVM uses a message tag (msgtag), attached to a message to differentiate between types of
messages being sent. Both message tag and source wild cards are available.

pvm_psend() and pvm_precv()

If the data being sent is a list of items of the same data type, the PVM routines pvm_psend()

and pvm_precv() can be used.

A parameter in pvm_psend() points to an array of data in the source process to be sent, and

a parameter in pvm_precv() points to where to store the received data:

Full list of parameters for pvm_psend() and pvm_precv():

pvm_psend(int dest_tid, int msgtag, char *buf, int len, int datatype)

pvm_precv(int source_tid, int msgtag, char *buf, int len, int datatype)
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pvm_pkint( … &x …);
pvm_pkstr( … &s …);
pvm_pkfloat( … &y …);
pvm_send(process_2 … ); pvm_recv(process_1 …);

pvm_upkint( … &x …);
pvm_upkstr( … &s …);
pvm_upkfloat(… &y … );

Send

Receive
buffer

buffer

x
s
y

Process_1 Process_2

Figure 2.13 PVM packing messages, sending, and unpacking.

Message

pvm_initsend();

Sending Data Composed of Various Types 

The data has to be packed into a PVM send buffer prior to sending the data. The receiving
process must unpack its receive message buffer according to the format in which it was
packed.

Specific packing and unpacking routines for each datatype

The basic message-passing routines for packed messages are pvm_send() (nonblocking),
pvm_recv() (blocking), and pvm_nrecv() (nonblocking).
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Broadcast, Multicast, Scatter, Gather, and 
Reduce

In PVM, broadcast, scatter, gather, and reduce operations (pvm_bcast(), pvm_scatter(),
pvm_gather(), and pvm_reduce(), respectively) are used with a group of processes after
the group is formed.

A process joins the named group by calling pvm_joingroup().

The pvm_bcast(), when called, would send a message to each member of the named
group.

Similarly, pvm_gather() would collect values from each member of the named group.

The PVM multicast operation, pvm_mcast(), is not a group operation. It is generally used
to send the contents of the send buffer to each of a set of processes that are defined in a
task_ID array (but not to itself even if it is named in the array).
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Figure 2.14 Sample PVM program.

#include <stdio.h>
#include <stdlib.h>
#include <pvm3.h>
#define SLAVE “spsum”
#define PROC 10
#define NELEM 1000
main() {

int mytid,tids[PROC];
int n = NELEM, nproc = PROC;
int no, i, who, msgtype;
int data[NELEM],result[PROC],tot=0;
char fn[255];
FILE *fp;
mytid=pvm_mytid();/*Enroll in PVM */

/* Start Slave Tasks */
no=
 pvm_spawn(SLAVE,(char**)0,0,““,nproc,tids);
if (no < nproc) {

printf(“Trouble spawning slaves \n”);
for (i=0; i<no; i++) pvm_kill(tids[i]);
pvm_exit(); exit(1);

}

/* Open Input File and Initialize Data */
strcpy(fn,getenv(“HOME”));
strcat(fn,”/pvm3/src/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {

printf(“Can’t open input file %s\n”,fn);
exit(1);

}
for(i=0;i<n;i++)fscanf(fp,”%d”,&data[i]);

/* Broadcast data To slaves*/
pvm_initsend(PvmDataDefault);
msgtype = 0;
pvm_pkint(&nproc, 1, 1);
pvm_pkint(tids, nproc, 1);
pvm_pkint(&n, 1, 1);
pvm_pkint(data, n, 1);
pvm_mcast(tids, nproc, msgtag);

/* Get results from Slaves*/
msgtype = 5;
for (i=0; i<nproc; i++){ 

pvm_recv(-1, msgtype);
pvm_upkint(&who, 1, 1);
pvm_upkint(&result[who], 1, 1);
printf(“%d from %d\n”,result[who],who);

}

/* Compute global sum */
for (i=0; i<nproc; i++) tot += result[i];
printf (“The total is %d.\n\n”, tot);

  pvm_exit(); /* Program finished. Exit PVM */
  return(0);

#include <stdio.h>
#include “pvm3.h”
#define PROC 10
#define NELEM 1000

main() {
int mytid;
int tids[PROC];
int n, me, i, msgtype;
int x, nproc, master;
int data[NELEM], sum;

mytid = pvm_mytid();

/* Receive data from master */
msgtype = 0;
pvm_recv(-1, msgtype);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&n, 1, 1);
pvm_upkint(data, n, 1);

/* Determine my tid */
for (i=0; i<nproc; i++)

if(mytid==tids[i])
{me = i;break;}

/* Add my portion Of data */
x = n/nproc;
low = me * x;
high = low + x;
for(i = low; i < high; i++)

sum += data[i];

/* Send result to master */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_pkint(&sum, 1, 1);
msgtype = 5;
master = pvm_parent();
pvm_send(master, msgtype);

/* Exit PVM */
pvm_exit(); 
return(0);

}

Master

Slave

Broadcast data

Receive results
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MPI

MPI is a “standard” that has implementations. MPI has a large number of routines (over
120 and growing)

Process Creation and Execution

Creating and starting MPI processes is purposely not defined in the MPI standard and will
depend upon the implementation.

A significant difference from PVM is that only static process creation is supported in MPI
version 1. This means that all the processes must be defined prior to execution and started
together. Use the SPMD model of computation. 

Communicators

Defines the scope of a communication operation.

Processes have ranks associated with the communicator.

Initially, all processes are enrolled in a “universe” called MPI_COMM_WORLD, and each
process is given a unique rank, a number from 0 to n − 1, where there are n processes. 

Other communicators can be established for groups of processes.
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Using the SPMD Computational Model

To facilitate this within a single program, statements need to be inserted to select which
portions of the code will be executed by each processor.

Hence, the SPMD model does not preclude a master-slave approach, just that both the
master code and the slave code must be in the same program:

main (int argc, char *argv[])

{

MPI_Init(&argc, &argv);

.

.

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find process rank */

if (myrank == 0)

master();

else

slave();

.

.

MPI_Finalize();

}

where master() and slave() are procedures to be executed by the master process and slave
process, respectively. 
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Global and Local Variables

Any global declarations of variables will be duplicated in each process.

Variables that are not to be duplicated will need to be declared within code only executed
by that process.

For example,

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);/* find process rank */

if (myrank == 0) { /* process 0 actions/local variables */

int x, y;

.

.

} else if (myrank == 1) { /* process 1 actions/local variables */

int x, y;

.

.

}

Here, x and y in process 0 are different local variables from x and y in process 1.
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Figure 2.15 Unsafe message passing with libraries.
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In this figure, process 0 wishes to send a message to process 1, but there is also message
passing between library routines as shown.

Even though each send/recv pair has matching source and destination, incorrect message
passing occurs.

The use of wild cards makes incorrect operation or deadlock even more likely.

Suppose that in one process a nonblocking receive has wild cards in both the tag and source
fields. A pair of other processes call library routines that require message passing.

The first send in this library routine may match with the non-blocking receive that is using
wild cards, causing erroneous actions.
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Solution

Communicators - used in MPI for all point-to-point and collective MPI message-passing
communications.

A communicator is a communication domain that defines a set of processes that are allowed
to communicate between themselves.

In this way, the communication domain of the library can be separated from that of a user
program.

Each process has a rank within the communicator, an integer from 0 to n − 1, where there
are n processes.

Communicator Types

Intracommunicator - for communicating within a group

Intercommunicator - for communication between groups. 

A group is used to define a collection of processes for these purposes. A process has a
unique rank in a group (an integer from 0 to m − 1, where there are m processes in the
group).

A process could be a member of more than one group. 

Default intracommunicator - MPI_COMM_WORLD, exists as the first communicator for all the
processes existing in the application.

New communicators are created based upon existing communicators. A set of MPI routines
exists for forming communicators from existing communicators (and groups from existing
groups). 



73
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Point-to-Point Communication

Message tags are present, and wild cards can be used in place of the tag (MPI_ANY_TAG) and
in place of the source in receive routines (MPI_ANY_SOURCE).

PVM style packing and unpacking data is generally avoided by the use of an MPI datatype
being defined in the send/receive parameters together with the source or destination of the
message. 

Blocking Routines

Return when they are locally complete - when the location used to hold the message can be
used again or altered without affecting the message being sent.

A blocking send will send the message and return. This does not mean that the message has
been received, just that the process is free to move on without adversely affecting the
message.

A blocking receive routine will also return when it is locally complete, which in this case
means that the message has been received into the destination location and the destination
location can be read.

The general format of parameters of the blocking send is

The general format of parameters of the blocking receive is

MPI_Send(buf, count, datatype, dest, tag, comm)

Address of

Number of items

Datatype of

Rank of destination

Message tag

Communicator

send buffer

to send

each item

process

MPI_Recv(buf, count, datatype, src, tag, comm, status)

Address of

Maximum number

Datatype of

Rank of source

Message tag

Communicator

receive buffer

of items to receive

each item

process

Status after operation
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Example

To send an integer x from process 0 to process 1,

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find process rank */

if (myrank == 0) {

int x;

MPI_Send(&x, 1, MPI_INT, 1, msgtag, MPI_COMM_WORLD);

} else if (myrank == 1) {

int x;

MPI_Recv(&x, 1, MPI_INT, 0, msgtag, MPI_COMM_WORLD, status);

}
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Nonblocking Routines

A nonblocking routine returns immediately; that is, allows the next statement to execute,
whether or not the routine is locally complete.

Nonblocking send - MPI_Isend(), where I refers to the word immediate, will return even
before the source location is safe to be altered.

Nonblocking receive - MPI_Irecv(), will return even if there is no message to accept.

Formats

MPI_Isend(buf, count, datatype, dest, tag, comm, request)

MPI_Irecv(buf, count, datatype, source, tag, comm, request)

Completion can be detected by separate routines, MPI_Wait() and MPI_Test().

MPI_Wait() waits until the operation has actually completed and will return then.

MPI_Test() returns immediately with a flag set indicating whether the operation has
completed at that time.

These routines need to know whether the particular operation has completed, which is
determined by accessing the request parameter.

Example

To send an integer x from process 0 to process 1 and allow process 0 to continue,

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find process rank */

if (myrank == 0) {

int x;

MPI_Isend(&x, 1, MPI_INT, 1, msgtag, MPI_COMM_WORLD, req1);

compute();

MPI_Wait(req1, status);

} else if (myrank == 1) {

int x;

MPI_Recv(&x, 0, MPI_INT, 1, msgtag, MPI_COMM_WORLD, status);

}
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Send Communication Modes

Four communication modes that define the send/receive protocol. 

Standard Mode Send, 

It is not assumed that the corresponding receive routine has started. The amount of buffer-
ing, if any, is implementation dependent and not defined by MPI.

If buffering is provided, the send could complete before the receive is reached.

Buffered Mode

Send may start and return before a matching receive. It is necessary to provide specific
buffer space in the application for this mode.

Buffer space is supplied to the system via the MPI routine MPI_Buffer_attach() and
removed with MPI_Buffer_detach().

Synchronous Mode

Send and receive can start before each other but can only complete together.

Ready Mode

Send can only start if the matching receive has already been reached, otherwise an error will
occur. The ready mode must be used with care to avoid erroneous operation.

Each of the four modes can be applied to both blocking and nonblocking send routines.

Only the standard mode is available for the blocking and nonblocking receive routines.

Any type of send routine can be used with any type of receive routine.
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Collective Communication

Involves a set of processes.

The processes are those defined by an intra-communicator.

Message tags are not present.

Broadcast and Scatter Routines

The principal collective operations operating upon data are

MPI_Bcast() - Broadcast from root to all other processes

MPI_Gather() - Gather values for group of processes

MPI_Scatter() - Scatters buffer in parts to group of processes

MPI_Alltoall() - Sends data from all processes to all processes

MPI_Reduce() - Combine values on all processes to single value

MPI_Reduce_scatter()- Combine values and scatter results

MPI_Scan() - Compute prefix reductions of data on processes

Example
To gather items from the group of processes into process 0, using dynamically allocated
memory in the root process, we might use

int data[10]; /*data to be gathered from processes*/

.

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */

if (myrank == 0) {

MPI_Comm_size(MPI_COMM_WORLD, &grp_size); /*find group size*/

buf = (int *)malloc(grp_size*10*sizeof(int)); /*allocate memory*/

}

MPI_Gather(data,10,MPI_INT,buf,grp_size*10,MPI_INT,0, MPI_COMM_WORLD);

Note that MPI_Gather() gathers from all processes, including the root. 

Barrier

As in all message-passing systems, MPI provides a means of synchronizing processes by
stopping each one until they all have reached a specific “barrier” call.
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Figure 2.16 Sample MPI program.

#include “mpi.h”
#include <stdio.h>
#include <math.h>
#define MAXSIZE 1000

void main(int argc, char *argv)
{

int myid, numprocs;
int data[MAXSIZE], i, x, low, high, myresult, result;
char fn[255];
char *fp;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0) { /* Open input file and initialize data */
strcpy(fn,getenv(“HOME”));
strcat(fn,”/MPI/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {

printf(“Can’t open the input file: %s\n\n”, fn);
exit(1);

}
for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, &data[i]);

}

/* broadcast data */
MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD);

/* Add my portion Of data */
x = n/nproc;
low = myid * x;
high = low + x;
for(i = low; i < high; i++)

myresult += data[i];
printf(“I got %d from %d\n”, myresult, myid);

/* Compute global sum */
MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0) printf(“The sum is %d.\n”, result);

MPI_Finalize();
}
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Pseudocode Constructs

We shall use a pseudocode for describing algorithms. Our pseudocode will omit the clutter
of parameters that are secondary to understanding the operation.

To send the message consisting of an integer x and a float y, from the process called master
to the process called slave, assigning to a and b, we simply write in the master process

send(&x, &y, Pslave);

and in the slave process

recv(&a, &b, Pmaster);

where x and a are declared as integers and y and b are declared as floats. The integer x will
be copied to a, and the float y copied to b. 

Where appropriate, the ith process will be given the notation Pi, and a tag may be present
that would follow the source or destination name; i.e.,

send(&x, P2, data_tag);

sends x to process 2, with the message tag data_tag.

The most common form of basic message-passing routines needed in our pseudo- code is
the locally blocking send() and recv(), which will be written as given.

In many instances, the locally blocking versions are sufficient.

Other forms will be differentiated with prefixes; i.e.,

ssend(&data1, Pdestination); /* Synchronous send */
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Number of data items (n)

Startup time

Figure 2.17 Theoretical communication 
time.

Evaluating Parallel Programs

Parallel Execution Time

The parallel execution time, tp, is composed of two parts: a computation part, say tcomp, and
a communication part, say tcomm; i.e.,

tp = tcomp + tcomm

The computation time can be estimated in a similar way to that of a sequential algorithm.

Communication Time 

AS a first approximation, we will use

tcomm = tstartup + ntdata

where tstartup is the startup time, sometimes called the message latency. This is essentially
the time to send a message with no data. The startup time is assumed to be a constant.

The term tdata is the transmission time to send one data word, also assumed a constant, and
there are n data words.

Equation is illustrated below:
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Important Note on Interpretation of Equations

Many assumptions in the analysis (see textbook). Only intended to give a starting point to
how an algorithm might perform in practice.

The parallel execution time, tp, will be normalized to be measured in units of an arithmetic
operation, which of course will depend upon the computer system.

We might find that the computation requires m computational steps so that

tcomp = m

Since we are measuring time in units of computational steps, the communication time has
to be measured in the same way.

We will not differentiate between sending an integer and sending a real number, or other
formats. All are assumed to require the same time. 

Suppose q messages are sent, each containing n data items. We have

tcomm = q(tstartup + ntdata)

Both the startup and data transmission times, tstartup and tdata, are measured in computa-
tional steps, so that we can add tcomp and tcomm together to obtain the parallel execution
time, tp.
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Latency Hiding

A way to ameliorate the situation of significant message communication times is to overlap
the communication with subsequent computations.

The nonblocking send routines are provided particularly to enable latency hiding.

Latency hiding can also be achieved by mapping multiple processes on a processor and use
a time-sharing facility that switches for one process to another when the first process is
stalled because of incomplete message passing or otherwise.

Relies upon an efficient method of switching from one process to another. Threads offer an
efficient mechanism.



83
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Time Complexity

As with sequential computations, a parallel algorithm can be evaluated through the use of
time complexity (notably the Ο notation — “order of magnitude,” big-oh).

Start with an estimate of the number of the computational steps, considering all arithmetic
and logical operations to be equal and ignoring other aspects of the computation such as
computational tests.

An expression of the number of computational steps is derived, often in terms of the number
of data items being handled by the algorithm.

Example

Suppose an algorithm, A1, requires 4x2 + 2x + 12 computational steps for x data items.

As we increase the number of data items, the total number of operations will depend more
and more upon the term 4x2. The first term will “dominate” the other terms, and eventually
the other terms will be insignificant. The growth of the function in this example is polyno-
mial.

Another algorithm, A2, for the same problem might require 5 log x + 200 computational
steps.In the function 5 log x + 200, the first term will eventually dominate the other term,
which can be ignored, and we only need to compare the dominating terms. The growth of
function log x is logarithmic. 

For a sufficiently large x, logarithmic growth will be less than polynomial growth.

We can capture growth patterns in the Ο notation (big-oh). Algorithm A1 has a big-oh of
Ο(x2). Algorithm A2 has a big-oh of Ο(log x). 
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Formal Definition

The Ο notation

f(x) = Ο(g(x)) if and only if there exists positive constants, c and x0, such that
0 ≤ f(x) ≤ cg(x) for all x ≥ x0

where f(x) and g(x) are functions of x.

For example, if f(x) = 4x2 + 2x + 12, the constant c = 6 would work with the formal defini-
tion to establish that f(x) = O(x2), since 0 < 4x2 + 2x + 12 ≤ 6x2 for x ≥ 3.

Unfortunately, the formal definition also leads to alternative functions for g(x) that will
also satisfy the definition. Normally, we would use the function that grows the least for
g(x).

Θ notation - upper bound

f(x) = Θ(g(x)) if and only if there exists positive constants c1, c2, and x0 such that
0 ≤ c1g(x) ≤ f(x) ≤ c2g(x) for all x ≥ x0. 

If f(x) = Θ(g(x)), it is clear that f(x) = Ο(g(x)) is also true. 

Ω notation - lower bound

f(x) = Ω(g(x)) if and only if there exists positive constants c and x0 such that
0 ≤ cg(x) ≤ f(x) for all x ≥ x0.

It follows from this definition that f(x) = 4x2 + 2x + 12 = Ω(x2)

We can read Ο() as “grows at most as fast as” and Ω() as “grows at least as fast as.” 

The Ω notation can be used to indicate the best case situation.

For example, the execution time of a sorting algorithm often depends upon the original
order of the numbers to be sorted. It may be that it requires at least n log n steps, but could
require n2 steps for n numbers depending upon the order of the numbers. This would be
indicated by a time complexity of Ω(n log n) and Ο(n2).
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Figure 2.18 Growth of function f(x) = 4x2 + 2x + 12.
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Time Complexity of a Parallel Algorithm
I

If we use time complexity analysis, which hides lower terms, tcomm will have a time com-
plexity of Ο(n).

The time complexity of tp will be the sum of the complexity of the computation and the
communication.

Example

Suppose we were to add n numbers on two computers, where each computer adds n/2 numbers
together, and the numbers are initially all held by the first computer. The second computer
submits its result to the first computer for adding the two partial sums together. This problem
has several phases:

1. Computer 1 sends n/2 numbers to computer 2.
2. Both computers add n/2 numbers simultaneously.
3. Computer 2 sends its partial result back to computer 1.
4. Computer 1 adds the partial sums to produce the final result.

As in most parallel algorithms, there is computation and communication, which we will
generally consider separately:

Computation (for steps 2 and 4):

tcomp = n/2 + 1

Communication (for steps 1 and 3):

tcomm = (tstartup + n/2tdata) + (tstartup + tdata) = 2tstartup + (n/2 + 1)tdata 

The computational complexity is Ο(n). The communication complexity is Ο(n). The overall
time complexity is Ο(n).
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Cost-Optimal Algorithms

Acost-optimal (or work-efficient or processor-time optimality) algorithm is one in which
the cost to solve a problem is proportional to the execution time on a single processor
system (using the fastest known sequential algorithm); i.e.,

where k is a constant.

Given time complexity analysis, we can say that a parallel algorithm is cost-optimal
algorithm if

(Parallel time complexity) × (number of processors) = sequential time complexity

Example

Suppose the best known sequential algorithm for a problem has time complexity of Ο(n log n).
A parallel algorithm for the same problem that uses n processes and has a time complexity of
Ο(log n) is cost optimal, whereas a parallel algorithm that uses n2 processors and has time
complexity of Ο(1) is not cost optimal.

Cost t p n× k ts×= =



88
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1999

Figure 2.19 Broadcast in a three-dimensional hypercube.
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Time Complexity of Broadcast/Gather
Broadcast on a Hypercube Network

Consider a three-dimensional hypercube.

To broadcast from node 000 to every other node, 001, 010, 011, 100, 101, 110 and 111, an
efficient algorithm is

Node Node

1st step: 000 → 001

2nd step: 000 → 010
001 → 011

3rd step: 000 → 100
001 → 101
010 → 110
011 → 111

The time complexity for a hypercube system will be Ο(log n), using this algorithm, which
is optimal because the diameter of a hypercube network is log n. It is necessary at least to
use this number of links in the broadcast to reach the furthest node.
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Figure 2.20 Broadcast as a tree construction.
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Gather on a Hypercube Network

The reverse algorithm can be used to gather data from all nodes to, say, node 000; i.e., for a
three-dimensional hypercube,

Node Node

1st step: 100 → 000
101 → 001
110 → 010
111 → 011

2nd step: 010 → 000
011 → 001

3rd step: 001 → 000

In the case of gather, the messages become longer as the data is gathered, and hence the time
complexity is increased over Ο(log n).
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Figure 2.21 Broadcast in a mesh.
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Broadcast on a Mesh Network

Send message across the top row and down each column as the message reaches the top
node of that column.

 Requires 2(n − 1) steps or Ο(n) on an n × n mesh, again an optimal algorithm in terms of
number of steps because the diameter of a mesh without wrapround is given by 2(n − 1
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Source Destinations

Message

Figure 2.22 Broadcast on an Ethernet 
network.

Broadcast on a Workstation Cluster

Broadcast on a single Ethernet connection can be done using a single message that is read
by all the destinations on the network simultaneously
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Figure 2.23 1-to-N fan-out broadcast.
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Figure 2.24 1-to-N fan-out broadcast on a 
tree structure.
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Figure 2.25 Space-time diagram of a parallel program.

Debugging and Evaluating Parallel Programs

Writing a parallel program or, more accurately, getting a parallel program to work properly
can be a significant intellectual challenge.

Visualization Tools

Programs can be watched as they are executed in a space-time diagram (or process-time di-
agram):

PVM has a visualization tool called XPVM.

Implementations of visualization tools are available for MPI. An example is the Upshot
program visualization system.
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Debugging Strategies

Geist et al. (1994a) suggest a three-step approach to debugging message-passing programs:

1. If possible, run the program as a single process and debug as a normal sequential
program.

2. Execute the program using two to four multitasked processes on a single computer.
Now examine actions such as checking that messages are indeed being sent to the
correct places. It is very common to make mistakes with message tags and have
messages sent to the wrong places.

3. Execute the program using the same two to four processes but now across several
computers. This step helps find problems that are caused by network delays related
to synchronization and timing.
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Evaluating Programs Empirically

Measuring Execution Time

To measure the execution time between point L1 and point L2 in the code, we might have a
construction such as

.

L1: time(&t1); /* start timer */

.

.

L2: time(&t2); /* stop timer */

.

elapsed_time = difftime(t2, t1); /* elapsed_time = t2 - t1 */

printf(“Elapsed time = %5.2f seconds”, elapsed_time);

MPI provides the routine MPI_Wtime() for returning time (in seconds).

Communication Time by the Ping-Pong Method

One process, say P0, is made to send a message to another process, say P1. Immediately
upon receiving the message, P1 sends the message back to P0. 

P0
.

L1: time(&t1);

send(&x, P1);

recv(&x, P1);

L2: time(&t2);

elapsed_time = 0.5 * difftime(t2, t1);

printf(“Elapsed time = %5.2f seconds”, elapsed_time);

.

P1
.

recv(&x, P0);

send(&x, P0);

.
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Figure 2.26 Program profile.

Profiling

A profile of a program is a histogram or graph showing the time spent on different parts of
the program:


