Message-Passing Computing

Basics of M essage-Passing Programming

Programming Options
Programming a message-passing multicomputer can be achieved by

1. Designing a special parallel programming language

2. Extending the syntax/reserved words of an existing sequentia high-level languageto
handle message passing

3. Using an existing sequential high-level language and providing alibrary of externa
procedures for message passing

Here, we will concentrate upon the third option.

Necessary to say explicitly what processes are to be executed, when to pass messages
between concurrent processes, and what to pass in the messages.

Two primary methods are needed in this form of a message-passing system:

1. A method of creating separate processes for execution on different computers

2. A method of sending and receiving messages

49

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Single Program Multiple Data (SPM D) model

Different processes are merged into one program.

Within the program are control statementsthat will customize the code; i.e. select different
parts for each process.

Source
file

ﬁompi leto suN
processor

Executables

Figure2.1 Single program, multiple data
Processor O Processorn- 1 operation.

50

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Multiple Program Multiple Data (M PM D)
M odel

Completely separate and different program is written for different processors.

The master-slave approach is usually taken whereby a single processor executes a master
program (the master process) and other processes are started from within the master
process.

Starting these processes is relatively expensive in computational effort.

An example of alibrary call for dynamic process creation might be of the form

spawn(narme_of _process);

which immediately starts another process, and both the calling process and the called pro-
cess proceed together:

Process 1

. Start execution
spawn() ; —| of process 2 Process 2

Time

\ \ i /
' . Figure2.2 Spawning aprocess.

51

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

M essage-Passing Routines

Basic Send and Receive Routines

Often have the form
send(&, destination_id);
in the source process and the call

recv(&y, source_id);
in the destination process, to send the data x in the source process to y in the destination

process:

Movement '

send(&x, 2); A of data :
: \-recv(&y, 1); _ .
: . Figure2.3 Passing a message between
. ' processes using send() andrecv()
N N—_ " librarycalls.

52

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Routines that actually return when the message transfer has been compl eted.

Synchronous M essage Passing

Do not need message buffer storage. A synchronous send routine could wait until the
compl ete message can be accepted by the receiving process before sending the message.

A synchronous receive routine will wait until the message it is expecting arrives.

Synchronous routines intrinsically perform two actions. They transfer data and they syn-
chronize processes.

Suggest some form of signaling, such as athree-way protocol:

Time

Time

<

/

Suspend
process

Both processes
continue

Both processes
continue

Process 1

]

Request to send

Process 2

send();

Acknowledgment

A

\

_recv();

-

Message

(& Whensend() occursbeforer ecv()

Process 1

]

Request to send

Process 2

()

recv();

J

sen(:i(); <

\

Yy

[

Message

Acknowledgment

(b) Whenr ecv() occursbeforesend()

Suspend
process

Figure2.4 Synchronoussend() andrecv() library calls using athree-way protocol.

53

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Blocking and Nonblocking M essage Passing

Blocking - has been used to describe routines that do not return until the transfer is com-
pleted.

The routines are “blocked” from continuing.
In that sense, the terms synchronous and blocking were synonymous.

Non-blocking - has been used to describe routines that return whether or not the message
had been received.

The terms blocking and nonblocking redefined in systems such as MPI:

M PI Definitions of Blocking and Non-Blocking

Blocking - return after their local actions complete, though the message transfer may not
have been compl eted.

Non-blocking - return immediately. Assumed that the data storage being used for the
transfer is not modified by the subsequent statements prior to the data storage being used
for the transfer, and it iseft to the programmer to ensure this.

54

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

How message-passing routinescan retur n befor ethemessage
transfer has been completed

Generaly, amessage buffer is needed between the source and destination to hold message:

Process 1 Process 2
. : Message buffer
Time send(); ——>[Eﬂ\ !
Continue : *reC\'/()-
. AV Read
process : ! message buffer
Y N— N—

Figure2.5 Using amessage buffer.

Message buffer is used to hold messages being sent prior to being accepted by recv() .
For areceive routine, the message has to have been received if we want the message.

If recv() isreached beforesend() , the message buffer will be empty andrecv() waitsfor
the message.

For a send routine, once the local actions have been completed and the message is safely
on itsway, the process can continue with subsequent work.

In thisway, using such send routines can decrease the overall execution time.

In practice, buffers can only be of finite length and a point could be reached when the send
routine is held up because all the available buffer space has been exhausted.

It may be necessary to know at some point if the message has actually been received, which
will require additional message passing.

55

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

M essage Selection

So far, we have described messages being sent to a specified destination process from a
specified source process.

Wide Card - A specia symbol or number to allow the destination to accept messages
from any source.

Message Tag
Used to differentiate between different types of messages being sent.

Example

To send a message, x, with message tag 5 from a source process, 1, to a destination
process, 2, and assign to y, we might have

send(&x, 2, 5);
in the source process and
recv(&y, 1, 5);
in the destination process. The message tag is carried within the message.
If special type matching is not required, a wild card message tag is used, so that the

recv() will match with any send() .

More powerful message selection mechanism is needed to differentiate between
messages being sent between library routines and those being passed between user pro-
cesses. This mechanism will be developed later.

56

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Broadcast

Sending the same message to all the processes concerned with the problem.

Multicast - sending the same message to a defined group of processes.

Process 0 Process 1 Processn- 1

(dat a \ (dat a \ (dat a \

C—
Action

I

bcas't : bcas't : bcas't :
o t() t() t()

Figure2.6 Broadcast operation.

Process O isidentified as the root process within the broadcast parameters. Theroot process
holds the data to be broadcast in buf .

Figure 2.6 shows each process executing the samebcast () routine, whichisconvenient for
the SPMD model in which each process has the same program. It also shows the root
receiving the data, but this depends upon the message-passing system.

Alternative arrangement - for the source to execute a broadcast routine and destination
processes to execute regular message-passing receive routines.

Broadcast action does not occur until al the processes have executed their broadcast
routine, and the broadcast operation will have the effect of synchronizing the processes.

S7

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Scatter

Sending each element of an array of datain the root to a separate process.

The contents of the ith location of the array is sent to the ith process.

Process 0 Process 1
[data \ [data \
|0
Action | — |
buf
scatt'er(); scatt'er();
Code . :

Figure2.7 Scatter operation.

Common startup requirement.

Processn- 1

[data \

L »[]

scatt'er();

58

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Gather

Having one process collect individual values from a set of processes.

Gather is essentially the opposite of scatter.

The data from the ith processis received by the root process and placed in the ith location
of array set aside to receive the data.

Process 0 Process 1 Processn- 1
(dat a \ (dat a \ (dat a \
— 1 d 4+— 14
Action |
buf
gat hér(); gat hér(); gat hér();
Code ; ; ;

Figure2.8 Gather operation.

Normally used after some computation has been done by these processes.

59

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Reduce

Gather operation combined with a specified arithmetic or logical operation.

Example, the values could be gathered and then added together by the root:

Process 0 Process 1
[data \ [data \
O— |
Action
buf | [Je—] _//
reduce ; reduce ;
Code ce() ce()

Figure2.9 Reduce operation (addition).

Processn- 1

[data \

%

60

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Using Workstation Clusters

Software Tools

PVM (Parallel Virtual Machine) - Perhaps the first widely adopted attempt at using a
workstation cluster as a multicomputer platform developed by Oak Ridge National Labo-
ratories.

Provides for a software environment for message passing between homogeneous or heter-
ogeneous computers and has a collection of library routines that the user can employ with
C or FORTRAN programs.

Available at no charge.

MPI (Message Passing I nterface) - standard devel oped by group of academics and indus-
trial partnersto foster more widespread use and portability.

Several free implementations exist

61

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

PVM

The programmer decomposes the problem into separate programs. Each program iswritten
in C (or Fortran) and compiled to run on specific types of computersin the network.

The set of computers used on a problem first must be defined prior to running the programs.

The most convenient way of doing thisis by creating alist of the names of the computers
available in ahostfile. The hostfile is then read by PVM.

The routing of messages between computers is done by PVM daemon processes installed
by PVM on the computers that form the virtual machine:

Workstation

Application
program
(executable)
Messages
sent through
Workstation network
~ Workstation
PVM \
daemon
[T
Application
program dPVM
(executable) aemon
Application
program
(executable)

Figure2.10 Message passing between workstations using PVM.

62

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Number of Processes Greater Than Number of

Workstation
PVM
daemon
Messages
sent through
Workstation network
PVM
daemon \Workstation
PVM
daemon ‘\
Application
program
(executable)

Figure2.11 Multiple processes alocated to each processor (workstation).

63

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Basic M essage-Passing Routines

All PVM send routines are nonblocking (or asynchronous in PVM terminology) while
PVM receive routines can be either blocking (synchronous) or nonblocking.

The key operations of sending and receiving data are done through message buffers.

PVM uses amessage tag (msgt ag), attached to a message to differentiate between types of
messages being sent. Both message tag and source wild cards are available.

pvm psend()and pvm precv()

If the databeing sent isalist of items of the same datatype, the PVM routinespvm psend()
and pvm precv() can be used.

A parameter inpvm psend() pointsto an array of datain the source process to be sent, and
aparameter in pvm precv() pointsto where to store the received data:

Process 1 Process 2
Array Send buffer Array to
holding / \ receive
data ! ' data
pvm psend(); I
Continue ' ' . .
vm precv() ;| Wait form e
Drocess pvm_p : 0) essag

Figure2.12 pvm psend() and pvm precv() systemcdls.

Full list of parameters for pym psend() and pvm precv():
pvm psend(int dest_tid, int nmsgtag, char *buf, int len, int datatype)

pvm precv(int source_tid, int nsgtag, char *buf, int |len, int datatype)

64

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Sending Data Composed of Various Types

The data has to be packed into a PVM send buffer prior to sending the data. The receiving
process must unpack its receive message buffer according to the format in which it was
packed.

Specific packing and unpacking routines for each datatype

The basic message-passing routines for packed messages are pvm send() (nonblocking),
pvm recv() (blocking), and pvm nrecv() (nonblocking).

eceive
buffer

Process 1 Process 2
pvm.init send() \ / x—/ \
s I:I} -
pvm pki nt(&x buffer) mm—
pvm pkstr(...&s :I\ !
pvm pkfl oat (... &y) >\ :
pvm send(process 2 ..); /Message oVt r ecv(process 1 L)
?/pvm_upki nt(...& .);
| Recei {pvm_upkstr(..&),

pvm_ upkfl oat (... &y

.) Y

Figure2.13 PVM packing messages, sending, and unpacking.

65

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Broadcast, M ulticast, Scatter, Gather, and
Reduce

In PVM, broadcast, scatter, gather, and reduce operations (pvm bcast (), pvm scatter (),
pvm gat her (), and pvm reduce(), respectively) are used with a group of processes after
the group is formed.

A process joins the named group by calling pvm j oi ngr oup() .

The pvm bcast (), when called, would send a message to each member of the named
group.

Similarly, pvm gat her () would collect values from each member of the named group.
The PVM multicast operation, pvm ncast (), iSnot agroup operation. It is generally used

to send the contents of the send buffer to each of a set of processes that are defined in a
task_| Darray (but not to itself even if it isnamed in the array).

66

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

i ncl ude <stdio. h> M aster
ti ncl ude <stdlib. h>

i ncl ude <pvn8. h>

tdef i ne SLAVE “spsuni

tfdefi ne PRCC 10

tfdef i ne NELEM 1000

frin() {

int nytid,tids[PROC;

int n = NELEM nproc = PRCC,

int no, i, who, msgtype; Slave

i nt data][NELEM, resul t [PROC], t ot =0; . .

char fn[255]; #i ncl ude <stdio. h>
FI LE *f p; #i ncl ude “ pVI’TB. h”
myti d=pvm nytid();/*Enrol |l in PVM */ #define PROC 10

#defi ne NELEM 1000
* Start Slave Tasks */

no= min() {
pvm spawn(SLAVE, (char**)0,0,“*, nproc, tids); int nytid,
if (no < nproc) { int tids[PROC];
printf(“Trouble spawning slaves \n”); tnt n, ne, 1, negtype;
for (i=0; i<no; i++) pvmkill(tids[i]); !nt X, nproc, naster;
pvmexit(); exit(1); int data[NELEM, sum

mytid = pvm.nytid();
* Open Input File and Initialize Data */

strcpy(fn, getenv(“HOVE")): /* Receive data from master */

strcat(fn,”/pvnB/src/rand_data.txt”); msgtype = 0O; _

if ((fp = fopen(fn,”r”)) == NULL) { pvmrecv(-1, nsgtype); _
printf(“Can’t open input file %\n", fn); pvm_ upki nt (&nproc, 1, 1);
exit(1); pvm upkint(tids, nproc, 1);

pvm_ upki nt (&, 1, 1);

for(i=0;i<n;i++)fscanf(fp,” %", &data[i]); pvm upkint (data, n, 1);
/* Determine ny tid */

for (i=0; i<nproc; i++)
if(nytid==tids[i])
{me = i;break;}

* Broadcast data To sl aves*/
pvm_ i ni t send(PvnDat aDef aul t) ;
msgtype = O;
pvm pki nt (&nproc, 1, 1);
pvm pkint(tids, nproc, 1);
pvm pkint(&n, 1, 1);
pvm pki nt(data, n, 1);
pvm ntast(tids, nproc, nsgtag);

Broadcast data /* Add my portion OF data */
X = n/nproc;
low = ne * x;

high = low + Xx;
for(i =1low i < high; i++)
* Get results from Sl aves*/ sum += data[i];

msgtype = 5;

for (i=0; i<nproc; i++){
pvmrecv(-1, msgtype);
pvm_upki nt (&who, 1, 1);
pvm_ upki nt (& esul t[who], 1, 1);
printf(“% from%\n”,result[who], who);

/* Send result to master */
] pvm_i ni t send(PvnDat aDef aul t) ;
Receive results pvm pki nt (&e, 1, 1);
pvm pkint (&um 1, 1);
msgtype = 5;
master = pvm parent();
pvm send(mast er, nsgtype);

* Conmput e gl obal sum */

for (i=0; i<nproc; i++) tot +=result[i]; [* Exit PVM */

printf (“The total is %l.\n\n", tot); pvmexit();
return(0);
pvmexit(); /* Programfinished. Exit PVM */ }
return(0);
Figure2.14 Sample PVM program. 67

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

M Pl

MPI is a“standard” that has implementations. MPI has a large number of routines (over
120 and growing)

Process Creation and Execution

Creating and starting MPI processesis purposely not defined in the MPI standard and will
depend upon the implementation.

A significant difference from PVM isthat only static process creation is supported in M P

version 1. This means that all the processes must be defined prior to execution and started
together. Use the SPMD model of computation.

Communicators
Defines the scope of a communication operation.
Processes have ranks associated with the communicator.

Initially, all processes are enrolled in a “universe” called MPI _coww WORLD, and each
process is given a unique rank, anumber from Oton - 1, where there are n processes.

Other communicators can be established for groups of processes.

68

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Using the SPM D Computational M odel

To facilitate this within a single program, statements need to be inserted to select which
portions of the code will be executed by each processor.

Hence, the SPMD model does not preclude a master-slave approach, just that both the
master code and the slave code must be in the same program:

mai n (int argc, char *argv[])

{
MPI I nit(&argc, &argv);

MPI _Comm r ank(MPI _COVM WORLD, &myr ank) ; /* find process rank */

if (nyrank == 0)
master();

el se
sl ave();

i\/PI _Finalize();
}

wheremast er () andsl ave() areproceduresto be executed by the master processand slave
process, respectively.

69

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Global and Local Variables

Any global declarations of variables will be duplicated in each process.

Variables that are not to be duplicated will need to be declared within code only executed
by that process.

For example,

MPI _Comm rank(MPI _COWM WORLD, &nyrank);/* find process rank */

if (nyrank == 0) { /* process 0 actions/local variables */
int x, vy;

} else if (myrank == 1) { /* process 1 actions/local variables */
int x, vy;

Here, x andy in process 0 are different local variablesfromx andy in process 1.

70

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Unsafe Communication Environment

lib()

lib()

In this figure, process 0 wishes to send a message to process 1, but there is also message
passing between library routines as shown.

Even though each send/r ecv pair has matching source and destination, incorrect message

passing occurs.

Process 0
DestirPion
send(.., 1, .)

"N

N,

Process 1

' Source

N recv(0,.);

.

(a) Intended behavior

Process 0

send(- 1)\

N,

e Ny

Process 1

B recv(0,.);

.

(b) Possible behavior

Figure2.15 Unsafe message passing with libraries.

lib()

lib()

The use of wild cards makes incorrect operation or deadlock even more likely.

Suppose that in one process a nonbl ocking receive haswild cardsin both the tag and source
fields. A pair of other processes call library routines that require message passing.

Thefirst send in thislibrary routine may match with the non-blocking receive that is using

wild cards, causing erroneous actions.

71

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Solution

Communicators - used in MPI for al point-to-point and collective MPI message-passing
communications.

A communicator isacommunication domain that defines a set of processesthat are allowed
to communicate between themselves.

In this way, the communication domain of the library can be separated from that of a user
program.

Each process has a rank within the communicator, an integer from Oto n - 1, where there
are N processes.

Communicator Types

I ntracommunicator - for communicating within a group
I ntercommunicator - for communication between groups.

A group is used to define a collection of processes for these purposes. A process has a
unique rank in a group (an integer from 0 to m - 1, where there are m processes in the

group).
A process could be amember of more than one group.

Default intracommunicator - MPI _COMM WORLD, exists asthefirst communicator for all the
processes existing in the application.

New communicators are created based upon existing communicators. A set of MPI routines
exists for forming communicators from existing communicators (and groups from existing

groups).

72

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Point-to-Point Communication

Message tags are present, and wild cards can be used in place of thetag (M1 _ANY_TAG) and
in place of the source in receive routines (MPI _ANY_SOURCE).

PVM style packing and unpacking datais generally avoided by the use of an MPI datatype
being defined in the send/receive parameters together with the source or destination of the

message.
Blocking Routines

Return when they arelocally complete - when the location used to hold the message can be
used again or altered without affecting the message being sent.

A blocking send will send the message and return. This does not mean that the message has
been received, just that the process is free to move on without adversely affecting the

message.

A blocking receive routine will also return when it is locally complete, which in this case
means that the message has been received into the destination location and the destination
location can be read.

The general format of parameters of the blocking send is

MPI _Send(buf, count, datatype, dest, tag, com)

Address of Datatype of Message tag
send buffer each item
Number of items Rank of destination ~ Communicator
to send process

The general format of parameters of the blocking receiveis

MPl _Recv(buf, count, datatype, src, tag, conm status)

| \

Address of Datatype of Message tag Status after operation
receive buffer each item
Maximum number Rank of source Communicator
of itemsto receive process

73

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Example
To send an integer x from process 0 to process 1,

MPlI _Comm r ank(MPI _COVM WORLD, &nyrank) ; /* find process rank */
if (myrank == 0) {
int x;

MPI _Send(&x, 1, MPI_INT, 1, nmsgtag, MPI_COVM WORLD);
} else if (nyrank == 1) {
int x;
MPl _Recv(&x, 1, MPI_INT, 0, msgtag, MPI_COWM WORLD, status);

74

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Nonblocking Routines

A nonblocking routine returns immediately; that is, allows the next statement to execute,
whether or not the routineislocally complete.

Nonblocking send - Pl _I send() , where | refersto the word immediate, will return even
before the source location is safe to be altered.

Nonblocking receive- MPI _I recv(), will return even if there is no message to accept.

Formats

MPI _I send(buf, count, datatype, dest, tag, comm request)
MPI _Irecv(buf, count, datatype, source, tag, conmm request)

Completion can be detected by separate routines, MPI _Wai t () and MPI _Test ().
MPI _Wai t () waitsuntil the operation has actually completed and will return then.

MPI _Test () returns immediately with a flag set indicating whether the operation has
completed at that time.

These routines need to know whether the particular operation has completed, which is
determined by accessing ther equest parameter.

Example

To send an integer x from process 0 to process 1 and allow process 0 to continue,

MPlI _Comm r ank(MPI _COVM WORLD, &nyrank); /* find process rank */
if (myrank == 0) {
int x;
MPl _Isend(&x, 1, MPI _INT, 1, nmsgtag, MPI_COVM WORLD, reql);
conpute();

MPl Wit (reql, status);
} else if (nyrank == 1) {
int x;
MPI _Recv(&x, 0, MPI_INT, 1, msgtag, MPI_COWM WORLD, status);

75

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Send Communication M odes

Four communication modes that define the send/receive protocol.

Standard M ode Send,

It is not assumed that the corresponding receive routine has started. The amount of buffer-
ing, if any, isimplementation dependent and not defined by MPI.

If buffering is provided, the send could complete before the receive is reached.
Buffered Mode

Send may start and return before a matching receive. It is necessary to provide specific
buffer space in the application for this mode.

Buffer space is supplied to the system via the MPI routine MPI _Buf fer _attach() and
removed with MPI _Buf f er _det ach() .

Synchronous M ode

Send and receive can start before each other but can only complete together.

Ready Mode

Send can only start if the matching receive has already been reached, otherwise an error will
occur. The ready mode must be used with care to avoid erroneous operation.

Each of the four modes can be applied to both blocking and nonblocking send routines.
Only the standard mode is available for the blocking and nonblocking receive routines.

Any type of send routine can be used with any type of receive routine.

76

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Collective Communication

Involves a set of processes.

The processes are those defined by an intra-communicator.

Message tags are not present.

Broadcast and Scatter Routines

The principal collective operations operating upon data are

WPl _Bcast () - Broadcast fromroot to all other processes

MPI _Gat her () - Gather values for group of processes

MPI _Scatter() - Scatters buffer in parts to group of processes

MPI _Alltoall () - Sends data fromall processes to all processes

MPI _Reduce() - Conbi ne values on all processes to single value

MPI _Reduce_scatter()- Conbi ne values and scatter results

MPI _Scan() - Conmpute prefix reductions of data on processes
Example

To gather items from the group of processes into process 0, using dynamically alocated
memory in the root process, we might use

int data[10]; /*data to be gathered from processes*/
MPI _Comm rank(MPI _COWM WORLD, &myr ank) ; /[* find rank */
if (nyrank == 0) {
MPI _Comm si ze(MPI _COVM WORLD, &grp_size); /*find group size*/
buf = (int *)malloc(grp_size*10*sizeof(int)); /*allocate nmenmory*/

}
MPl _Gat her (dat a, 10, MPl _I NT, buf , gr p_si ze*10, MPl _I NT, 0, MPI _COVMM WORLD) ;

Note that MPI _Gat her () gathersfrom all processes, including the root.

Barrier

Asin al message-passing systems, MPI provides a means of synchronizing processes by
stopping each one until they all have reached a specific “barrier” call.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen O Prentice Hall, 1999

#i ncl ude “npi.h”

#i ncl ude <stdio. h>
#i ncl ude <math. h>
#defi ne MAXSI ZE 1000

void main(int argc, char *argv)

{

/*

/*

int myid, nunprocs;

int datal MAXSI ZE], i, x, low, high, myresult, result;
char fn[255];

char *fp;

MPI _I ni t (&argc, &argv);
MPI _Comm si ze(MPI _COVM WORLD, &unpr ocs) ;
MPI _Comm r ank(MPI _COVM WORLD, &nyi d) ;

if (myid == 0) { /* Open input file and initialize data */
strcpy(fn,getenv(“HOWE"));
strcat(fn,”/MPl/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {
printf(“Can’t open the input file: %\n\n”, fn);
exit(1);
}
for(i = 0; i < MAXSIZE; i++) fscanf(fp,"%l", &data[i]);
}

/* broadcast data */
MPl _Bcast (data, MAXSIZE, MPI _INT, 0, MPI _COVM WORLD);

Add ny portion O data */
X = n/nproc;
low = nyid * x;
high = low + x;
for(i = 1low i < high; i++)
nyresult += data[i];
printf(“l got % from%\n”, nyresult, nyid);

Conput e gl obal sum */
MPl _Reduce(&nyresult, & esult, 1, MPI_INT, MPI_SUM 0, MPI_COVW WORLD);
if (myid == 0) printf(“The sumis %.\n", result);

MPI _Finalize();

Figure2.16 Sample MPI program.

78

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Pseudocode Constructs

We shall use a pseudocode for describing algorithms. Our pseudocode will omit the clutter
of parameters that are secondary to understanding the operation.

To send the message consisting of aninteger x and afloat y, from the process called nast er
to the process called sl ave, assigning to a and b, we simply write in the master process

send(&x, &Y, Psjaye):
and in the slave process
recv(&a, &b, Ppgster):
where x and a are declared asintegersand y and b are declared asfloats. The integer x will

be copied to a, and the float y copied to b.

Where appropriate, the ith process will be given the notation P, , and atag may be present
that would follow the source or destination name; i.e.,

send(&x, P,, data_tag);
sends x to process 2, with the message tag dat a_t ag.

The most common form of basic message-passing routines needed in our pseudo- code is
thelocally blocking send() andrecv(), which will be written as given.

In many instances, the locally blocking versions are sufficient.
Other forms will be differentiated with prefixes; i.e.,

ssend(&dat al, Pgestination): /* Synchronous send */

79

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Evaluating Parallel Programs

Par allel Execution Time

Theparallel executiontime, t,,, iscomposed of two parts: acomputation part, say teomp, and
acommunication part, say teomm; i-€.,

th = teomp * teomm

The computation time can be estimated in asimilar way to that of a sequential algorithm.

Communication Time

AS afirst approximation, we will use

tcomm = tstartup + Ndata

where tgatyp IS the startup time, sometimes called the message latency. Thisis essentially
the time to send a message with no data. The startup time is assumed to be a constant.

Theterm ty44 1S the transmission time to send one data word, also assumed a constant, and
there are n data words.

Equation isillustrated below:

Time

Startup time

Figure2.17 Theoretica communication
Number of dataitems (n) time.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

| mportant Note on I nter pretation of Equations

Many assumptionsin the analysis (see textbook). Only intended to give a starting point to
how an algorithm might perform in practice.

The parallel execution time, t,, will be normalized to be measured in units of an arithmetic
operation, which of course will depend upon the computer system.

We might find that the computation requiresm computational steps so that

tcomp =M

Since we are measuring time in units of computational steps, the communication time has
to be measured in the same way.

We will not differentiate between sending an integer and sending a real number, or other
formats. All are assumed to require the same time.

Suppose q messages are sent, each containing n dataitems. We have

teomm = CI(tstartup + Ntgeta)

Both the startup and data transmission times, tg1p and tgae are measured in computar
tional steps, so that we can add teomp and teomm together to obtain the parallel execution
time, t,.

P

81

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

L atency Hiding

A way to ameliorate the situation of significant message communication timesisto overlap
the communication with subsequent computations.

The nonblocking send routines are provided particularly to enable latency hiding.
Latency hiding can aso be achieved by mapping multiple processes on a processor and use
a time-sharing facility that switches for one process to another when the first process is

stalled because of incomplete message passing or otherwise.

Relies upon an efficient method of switching from one process to another. Threads offer an
efficient mechanism.

82

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Time Complexity

As with sequential computations, a parallel algorithm can be evaluated through the use of
time complexity (notably the O notation — “order of magnitude,” big-oh).

Start with an estimate of the number of the computational steps, considering all arithmetic
and logical operations to be equal and ignoring other aspects of the computation such as
computational tests.

An expression of the number of computational stepsisderived, often interms of the number
of dataitems being handled by the algorithm.

Example

Suppose an algorithm, A1, requires 4x% + 2x + 12 computational steps for x data items.

Aswe increase the number of dataitems, the total number of operations will depend more
and more upon the term 4x2. Thefirst term will “dominate” the other terms, and eventually
the other terms will be insignificant. The growth of the function in this example is polyno-
mial.

Another algorithm, A2, for the same problem might require 5 log x + 200 computational
steps.In the function 5 log x + 200, the first term will eventually dominate the other term,
which can be ignored, and we only need to compare the dominating terms. The growth of
function log x is logarithmic.

For a sufficiently large x, logarithmic growth will be less than polynomial growth.

We can capture growth patterns in the O notation (big-oh). Algorithm A1 has a big-oh of
O(x?). Algorithm A2 has a big-oh of O(logX).

83

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Formal Definition

The O notation

f(x) = O(g(x)) if and only if there exists positive constants, ¢ and Xg, such that
0 £ f(x) £ cg(x) for al x3 xg

where f(x) and g(x) are functions of x.

For example, if f(x) = 4x% + 2x + 12, the constant ¢ = 6 would work with the formal defini-
tion to establish that f(x) = O(x?), since 0 < 4x% + 2x + 12 £ 6x% for x3 3.

Unfortunately, the formal definition also leads to alternative functions for g(x) that will
also satisfy the definition. Normally, we would use the function that grows the least for

9(x)-
Q notation - upper bound

f(x) = Q(g(x)) if and only if there exists positive constants ¢4, C,, and Xy such that
0 £ c19(x) £ f(x) £ cog(x) for al x3 Xg.

If f(x) = Q(g(X)), it is clear that f(x) = O(g(X)) isalso true.
Whnotation - lower bound

f(x) =Wg(x)) if and only if there exists positive constants ¢ and Xy such that
0 £ cg(x) £ f(x) for al x3 Xg.

It follows from this definition that f(x) = 4x% + 2x + 12 = W(X?)

We can read O() as “grows at most asfast as” and W) as “grows at least asfast as.”

The Wnotation can be used to indicate the best case situation.

For example, the execution time of a sorting algorithm often depends upon the original
order of the numbersto be sorted. It may bethat it requires at least n log n steps, but could

require n? steps for n numbers depending upon the order of the numbers. This would be
indicated by atime complexity of W(n log n) and O(n?).

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

c,0(X) = 6x2
160

140 f(x) = 4x% + 2x + 12
120 -

100 -
80
60 c19(X) = 232
40

20

Figure2.18 Growth of function f(x) = 4x% + 2x + 12.

85

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Time Complexity of a Parallel Algorithm

If we use time complexity analysis, which hides lower terms, t.oynm Will have atime com-
plexity of O(n).

The time complexity of t, will be the sum of the complexity of the computation and the
communication.

Example

Suppose we were to add n numbers on two computers, where each computer adds n/2 numbers
together, and the numbers are initially al held by the first computer. The second computer
submits its result to the first computer for adding the two partial sums together. This problem
has several phases:

Computer 1 sends n/2 numbers to computer 2.

Both computers add n/2 numbers simultaneously.

Computer 2 sendsiits partial result back to computer 1.
Computer 1 adds the partial sumsto produce the final result.

AwbdPE

As in most paralel algorithms, there is computation and communication, which we will
generally consider separately:

Computation (for steps 2 and 4):
tomp=N/2+1
Communication (for steps 1 and 3):

teomm = (tstartup + V2tgeta) + (tstartup * tdata) = 2startup + (W2 + Digata

The computational complexity is O(n). The communication complexity is O(n). The overall
time complexity is O(n).

86

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Cost-Optimal Algorithms

Acost-optimal (or work-efficient or processor-time optimality) algorithm is one in which
the cost to solve a problem is proportional to the execution time on a single processor
system (using the fastest known sequential algorithm); i.e.,

Cost =t," n =k’ t

wherek is a constant.

Given time complexity analysis, we can say that a paralel algorithm is cost-optimal
algorithm if

(Parallel time complexity) ~ (number of processors) = sequential time complexity

Example

Suppose the best known sequential algorithm for a problem has time complexity of O(nlogn).
A parallel algorithm for the same problem that uses n processes and has a time complexity of
O(log n) is cost optimal, whereas a paralel algorithm that uses n° processors and has time
complexity of O(1) is not cost optimal.

87

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Time Complexity of Broadcast/Gather
Broadcast on a Hyper cube Networ k

Consider athree-dimensional hypercube.

To broadcast from node 000 to every other node, 001, 010, 011, 100, 101, 110 and 111, an
efficient algorithm is

Node Node

lststep: 000 ® 001

2ndstep: 000 ® 010
001 ® 011
3rdstep: 000 ® 100
001 ® 101
010 ® 110
011 ® 111
111
* 100
. 3rd step
|
_- e 2nd step 011

: Pad : .
- / -

Figure2.19 Broadcast in athree-dimensiona hypercube.

The time complexity for a hypercube system will be O(log n), using this algorithm, which
isoptimal because the diameter of a hypercube network islog n. It is necessary at least to
use this number of links in the broadcast to reach the furthest node.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Step 1) Message

@
Step 2
Co)) (o)
3@3 ’ ’ 1 ‘
() (o) () (o) () (o) (o)

Figure2.20 Broadcast as atree construction.

89

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Gather on a Hypercube Networ k

The reverse algorithm can be used to gather data from al nodes to, say, node 000; i.e., for a
three-dimensional hypercube,

Node Node

1ststep: 100 ® 000
101 ® 001
110 ® 010
111 ® 011
ondstep: 010 ® 000
011 ® 001
3rdstep: 001 ® 000

In the case of gather, the messages become longer asthe datais gathered, and hence the time
complexity isincreased over O(log n).

90

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Broadcast on a M esh Networ k

Send message across the top row and down each column as the message reaches the top
node of that column.

Steps
@ @ ©)

Figure2.21 Broadcast in amesh.

Requires2(n - 1) stepsor O(n) onan n” n mesh, again an optimal algorithm in terms of
number of steps because the diameter of a mesh without wrapround is given by 2(n- 1

91

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Broadcast on a Workstation Cluster

Broadcast on a single Ethernet connection can be done using a single message that is read
by all the destinations on the network simultaneously

Message

Figure2.22 Broadcast on an Ethernet
Source Destinations network.

92

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

N destinations Figure2.23 1-to-N fan-out broadcast.

93

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Source

Sequential message issue

Figure2.24 1-to-N fan-out broadcast on a
Destinations tree structure.

94

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Debugging and Evaluating Parallel Programs

Writing aparallel program or, more accurately, getting aparallel program to work properly
can be a significant intellectual challenge.

Visualization Tools

Programs can be watched asthey are executed in a space-time diagram (or process-time di-
agram):

Process 1
Process 2
Process 3
Time "
- Computing
|:| Waiting
|:| M essage-passing system routine
— Message

Figure2.25 Space-time diagram of a paralel program.
PVM has avisualization tool called XPVM.

Implementations of visualization tools are available for MPI. An example is the Upshot
program visualization system.

95

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Debugging Strategies

Geist et al. (19944) suggest athree-step approach to debugging message-passing programs.

1. If possible, run the program as a single process and debug as a normal sequential
program.

2. Execute the program using two to four multitasked processes on a single computer.
Now examine actions such as checking that messages are indeed being sent to the
correct places. It is very common to make mistakes with message tags and have
messages sent to the wrong places.

3. Execute the program using the same two to four processes but now across severa
computers. This step helps find problems that are caused by network delays related
to synchronization and timing.

96

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Evaluating Programs Empirically

Measuring Execution Time

To measure the execution time between point L1 and point L2 in the code, we might have a
construction such as

L1: tine(&1l); /* start timer */
L2: tine(&2); /* stop tiner */
el apsed_tine = difftine(t2, tl1); /[* elapsed_time =t2 - tl1 */

printf(“Elapsed time = %. 2f seconds”, elapsed_tine);

MPI providesthe routine Pl _w i me() for returning time (in seconds).
Communication Time by the Ping-Pong M ethod

One process, say Py, is made to send a message to another process, say P;. Immediately
upon receiving the message, P; sends the message back to Py,

Po

L1: tine(&1l);
send(&, Pq);
recv(é&x, Pq);

L2: tine(&2);
el apsed_time = 0.5 * difftine(t2, t1);
printf(“Elapsed time = %. 2f seconds”, elapsed_tine);

Py

recv(&x, Pg);
send(&, Pp);

97

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

Profiling

A profile of aprogram is a histogram or graph showing the time spent on different parts of
the program:

1 1 1 1
~

Number of repetitions or time

T T T T
1 2 3 4 5 6 7 8 9 10

Statement number or regions of program Figure2.26 Program profile.

98

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1999

