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Abstract
We first consider two decidable fragments of quantified
modal logic S5: the one-variable fragment Q1S5 and its ex-
tension S5ALCu that combines S5 and the description logic
ALC with the universal role. As neither of them enjoys
Craig interpolation or projective Beth definability, the exis-
tence of interpolants and explicit definitions of predicates—
which is crucial in many knowledge engineering tasks—does
not directly reduce to entailment. Our concern therefore
is the computational complexity of deciding whether (uni-
form) interpolants and definitions exist for given input for-
mulas, signatures and ontologies. We prove that interpolant
and definition existence in Q1S5 and S5ALCu is decidable in
CON2EXPTIME, being 2EXPTIME-hard, while uniform in-
terpolant existence is undecidable. Then we show that inter-
polant and definition existence in the one-variable fragment
Q1K of quantified modal logic K is nonelementary decidable,
while uniform interpolant existence is undecidable.

1 Introduction
Decidable fragments of first-order modal logics have been
a well-established KR formalism for many decades, e.g., in
the form of epistemic, temporal, or standpoint description
logics (Donini et al. 1998; Lutz, Wolter, and Zakharyaschev
2008; Artale et al. 2017; Álvarez, Rudolph, and Strass
2022), spatio-temporal logics (Kontchakov et al. 2007), and
logics of knowledge and belief (Belardinelli and Lomuscio
2009; Wang 2017; Liu et al. 2022; Wang, Wei, and Selig-
man 2022). While significant progress has been made in
understanding the computational complexity of entailment
in these ‘two-dimensional’ logics, little is known about the
algorithmic properties of logic-based support mechanisms
for engineering knowledge bases or specifications in these
logics. Important examples of relevant problems are:
(definition existence) Given a knowledge base (KB), a

predicate P , and a signature σ, is it possible to give a
definition of P in terms of σ-predicates modulo the KB?

(forgetting/uniform interpolants) Given a KB and a signa-
ture σ, is it possible to ‘forget σ’, i.e., find a new KB with-
out σ-predicates that says the same about non-σ-symbols
as the original KB?

(conservative extensions) Given a KB and a set of addi-
tional axioms, is it the case that the expanded KB does not
entail new relationships between the original predicates?

These and related problems have been studied extensively
for many KR formalisms (Eiter and Kern-Isberner 2019) in-
cluding propositional logic (Lang and Marquis 2008), an-
swer set programming (Gonçalves, Knorr, and Leite 2023),
and description logics (Konev et al. 2009; Botoeva et al.
2016) but investigating them for first-order modal logics
(FOMLs) poses particular challenges. In contrast to many
other KR formalisms, FOMLs used in KR typically do not
enjoy the Craig interpolation property (CIP) as |= φ → ψ
does not necessarily entail the existence of an interpolant
χ whose predicate symbols occur in both φ and ψ, with
|= φ → χ and |= χ → ψ. Nor do they enjoy the projective
Beth definability property (BDP) according to which im-
plicit definability of a predicate in a given signature (which
can be reduced to entailment) implies its explicit definability
as required in definition existence. Forgetting and conserva-
tive extensions in FOMLs become dependent on predicates
that do not occur in the original KB. In fact, Fine (1979)
showed that no FOML with constant domains (the standard
assumption in KR applications) between the basic quantified
modal logics K and S5 enjoys CIP or BDP.
Example 1 (based on (Fine 1979)). Interpreting □ as the
S5-modality ‘always’, let a KB contain the axioms

rep→ ♢∀x
(
inPower(x)→ □(rep→ ¬inPower(x))

)
,

¬rep→ □∃x
(
inPower(x) ∧□(¬rep→ inPower(x))

)
,

where rep stands for the proposition ‘replaceable’. Then rep
is true at a world w satisfying the KB iff there is a world w′

where all those who were in power at w lose it. Thus, rep is
implicitly defined via inPower. However, there is no explicit
definition of rep via inPower in FOML (see Example 8).

Fine’s example shows that CIP/BDP fail already in typ-
ical decidable fragments of FOML lying between the one-
variable fragment FOM1 and full FOML. Because of their
wide use, ‘repairing’ CIP/BDP has become a major re-
search challenge. For instance, it is shown in (Fitting 2002;
Areces, Blackburn, and Marx 2003) that by adding second-
order quantifiers or the machinery of hybrid logic construc-
tors to FOML, one obtains natural logics with CIP and BDP.
The price, however, is that these extensions are undecidable
even if applied to decidable fragments of FOML.

In this paper, we take a fundamentally different, non-
uniform approach. Instead of repairing CIP/BDP by enrich-
ing the language, we stay within its original boundaries and



explore if it is possible to check the existence of interpo-
lants/definitions even though the reduction to entailment via
CIP/BDP is blocked. We conjecture that, in real-world ap-
plications, interpolants and definitions often do exist, so the
failure of CIP/BDP will have a limited effect on the users.

We first focus on two decidable fragments of quantified
S5: its one-variable fragment Q1S5 illustrated in Example 1
and S5ALCu , the FOML obtained by combining S5 and the
description logic (DL) ALCu extending the basic DL ALC
with the universal role. In S5ALCu , we admit the applica-
tion of modal operators to concepts and concept inclusions
but not to roles, and so consider a typical monodic fragment
of FOML, in which modal operators are only applied to for-
mulas with at most one free variable (Hodkinson, Wolter,
and Zakharyaschev 2000; Wolter and Zakharyaschev 2001).
Q1S5 is a fragment of S5ALCu , and satisfiability is NEXP-
TIME-complete for both languages (Gabbay et al. 2003).

We chose S5 as our starting point as it is widely used
in Knowledge Representation, underpinning fundamental
modalities such as necessity and agents’ knowledge (Fagin
et al. 1995). Combined with DLs, it has also been proposed
as a logic of change interpreting□ as ‘always’ (Artale, Lutz,
and Toman 2007) and can naturally encode a rather ex-
pressive version of standpoint logic (Álvarez, Rudolph, and
Strass 2022); see Appendix B for details.
Example 2. In S5ALCu , we can encode different stand-
points si by concept names Si that hold everywhere in the
domain of any world conceivable by si. That C ⊑ D holds
according to si can then be represented as □(Si ⊓ C ⊑ D)
or□si(C ⊑ D) for short. Suppose that our KB,K, contains
the axioms
□(⊤ ⊑ S1 ⊔ S2),

□(KR ⊔ Databases ⊔ Verification ≡ CS ⊓ ∃uses.Logic),
□(Databases ⊔ Verification ⊑ ¬∃historicAreaOf.AI),
□s1(KR ≡ CS ⊓ ∃areaOf.AI ⊓ ∃uses.Logic),
□s2(KR ⊑ ∃historicAreaOf.AI),
□s2(∃areaOf.AI ⊑ ¬∃uses.Logic),

The first says that s1 and s2 cover all standpoints: if they
agree on something, then it is generally agreed. According
to the next two, it is generally agreed that the areas of CS that
use Logic are KR, Databases and Verification, while Verifi-
cation and Databases are not historic areas of AI. The last
three express the si’s diverging views on KR. Then
KR ≡ CS⊓∃uses.Logic⊓(∃areaOf.AI⊔∃historicAreaOf.AI)
is entailed by K, and so explicitly defines KR modulo K
without referring to Si, KR, Databases, and Verification. ⊣

Our main result is that interpolant and definition existence
in Q1S5 and S5ALCu is decidable in CON2EXPTIME, being
2EXPTIME-hard. The proof is based on novel ‘component-
wise’ bisimulations that replace standard FOML bisimula-
tions in our characterisation of interpolant/definition exis-
tence. For the upper bound, we show that there are bisimilar
models witnessing non-existence of interpolants/definitions
of double-exponential size. The proof is inspired by the re-
cent upper bound proofs of interpolant existence in the two-
variable first-order logic FO2 (Jung and Wolter 2021) but

requires a novel use of types. The lower bound proof com-
bines the interpolation counterexample of (Marx and Areces
1998), the exponential grid generation from (Hodkinson et
al. 2003; Göller, Jung, and Lohrey 2015), and the represen-
tation of exponentially space bounded ATMs from (Jung and
Wolter 2021). As a corollary we obtain a 2EXPTIME lower
bound for FO2 without equality, answering an open question
of (Jung and Wolter 2021).

We then consider uniform interpolant existence and con-
servative extension and show that both problems are unde-
cidable for Q1S5 and S5ALCu . The proof extends a reduc-
tion proving undecidability of conservative extensions for
FO2 (with and without equality) from (Jung et al. 2017). As
a corollary of our proof, we obtain that uniform interpolant
existence is undecidable for FO2 (with and without equal-
ity), settling an open problem from (Jung et al. 2017).

Finally, we consider the one-variable fragment Q1K of
quantified K and prove a non-elementary upper bound for
interpolant/definition existence using the fact that Q1K has
finitely many non-equivalent formulas of bounded modal
depth. To our surprise, conservative extensions and uniform
interpolant existence are still undecidable in Q1K, which is
proved by adapting the undecidability proof for Q1S5.

Related Work on Interpolant Existence. Except for work
on linear temporal logic LTL by (Henkell 1988; Henkell
et al. 2010; Place and Zeitoun 2016), the non-uniform ap-
proach to Craig interpolants has only very recently been
studied by (Jung and Wolter 2021) for the guarded and two-
variable fragment, by (Artale et al. 2021; Jung, Mazzullo,
and Wolter 2022) for classical DLs, and by (Benedikt et al.
2016; Fortin, Konev, and Wolter 2022) for Horn logics. The
non-uniform investigation of uniform interpolants started
with complexity results by (Lutz, Seylan, and Wolter 2012;
Lutz and Wolter 2011) and upper bounds on their size
in (Nikitina and Rudolph 2014). The practical computa-
tion of uniform interpolants is an active research area for
many years (Konev, Walther, and Wolter 2009; Koopmann
and Schmidt 2015; Zhao and Schmidt 2016), see (Zhao et
al. 2018; Koopmann 2020) for recent system descriptions.

Omitted proofs, definitions, and constructions can be
found in the Appendix.

2 Preliminaries
Logics. The formulas of the one-variable fragment FOM1 of
first-order modal logic are built from unary predicate sym-
bols p ∈ P in a countably-infinite set P and a single vari-
able x using ⊤, ¬, ∧, ∃x, and the possibility operator ♢ via
which the other Booleans, ∀x, and the necessity operator □
are standardly definable. A signature is any finite set σ ⊆ P;
the signature sig(φ) of a formula φ comprises the predicate
symbols in φ. If sig(φ) ⊆ σ, we call φ a σ-formula. By
sub(φ) we denote the closure under single negation of the
set of subformulas of φ, and by |φ| the cardinality of sub(φ).

We interpret FOM1 in (Kripke) models with constant do-
mains of the form M = (W,R,D, I), where W ̸= ∅ is a
set of worlds, R ⊆ W ×W an accessibility relation on W ,
D ̸= ∅ an (FO-)domain of M, and I(w), for each w ∈W , is
an interpretation of the p ∈ P over D, that is, pI(w) ⊆ D.



The truth-relation M, w, d |= φ, for any w ∈ W , d ∈ D
and FOM1-formula φ, is defined inductively by taking
– M, w, d |= p(x) iff d ∈ pI(w), for p ∈ P ,
– M, w, d |= ∃xφ iff there is d′ ∈ D with M, w, d′ |= φ,
– M, w, d |= ♢φ iff there is w′ ∈ W with R(w,w′) and

M, w′, d |= φ,
and the standard clauses for ⊤, ¬, ∧. If φ is a sentence
(i.e., every occurrence of x in φ is in the scope of ∃), then
M, w, d |= φ iff M, w, d′ |= φ, for any d, d′ ∈ D, and so
we can omit d and write M, w |= φ. In a similar way, we
can use M, d |= ψ if every p in ψ is in the scope of ♢.

The set of formulas φ with M, w, d |= φ, for all M, w, d,
is denoted by Q1K; it is the FOM1-extension of the modal
logic K. Those φ that are true everywhere in all models M
with R = W ×W comprise Q1S5, the FOM1-extension of
the modal logic S5. Let L be one of these two logics.

A knowledge base (KB), K, is any finite set of sentences.
We say that K (locally) entails φ in L and write K |=L φ
if M, w |= K implies M, w, d |= φ, for any L-model M
and any w and d in it. Shortening ∅ |=L φ to |=L φ (i.e.,
φ ∈ L), we note that K |=L φ iff |=L (

∧
ψ∈K ψ → φ),

which reduces KB-entailment in L to L-validity which is
known to be CONEXPTIME-complete (Marx 1999).
Bisimulations. Given two models M = (W,R,D, I)
with w, d and M′ = (W ′, R′, D′, I ′) with w′, d′, we write
M, w, d ≡σ M′, w′, d′, for a signature σ, if the same σ-
formulas are true at w, d in M and at w′, d′ in M′. We
characterise ≡σ using bisimulations. Namely, a relation

β ⊆ (W ×D)× (W ′ ×D′)

is called a σ-bisimulation between models M and M′ if the
following conditions hold for all ((w, d), (w′, d′)) ∈ β and
p ∈ σ:
(a) M, w, d |= p iff M′, w′, d′ |= p;
(w) if (w, v) ∈ R, then there is v′ such that (w′, v′) ∈ R′

and ((v, d), (v′, d′)) ∈ β, and the other way round;
(d) for every e ∈ D, there is e′ ∈ D′ such that
((w, e), (w′, e′)) ∈ β, and the other way round.
We say that M, w, d and M′, w′, d′ are σ-bisimilar and

write M, w, d ∼σ M′, w′, d′ if there is a σ-bisimulation
β ∋ ((w, d), (w′, d′)) between M and M′. The next char-
acterisation is proved in a standard way using ω-saturated
models (Chang and Keisler 1998; Goranko and Otto 2007):
Lemma 3. For any signature σ and any ω-saturated models
M with w, d and M′ with w′, d′, we have:

M, w, d ≡σ M′, w′, d′ iff M, w, d ∼σ M′, w′, d′.

The direction from right to left holds for arbitrary models.

Modal products and succinct notation. As observed by
(Wajsberg 1933), S5 is a notational variant of the one-
variable fragment FO1 of FO: just drop x from ∃x and p(x)
in FO1-formulas, treating ∃ as a possibility operator and
p as a propositional variable. The same operation trans-
forms FOM1-formulas into more succinct bimodal formu-
las with ♢ interpreted over the (W,R) ‘dimension’ and ∃

over the (D,D × D) ‘dimension’. This way we view the
FOM1-extensions of S5 and K as two-dimensional products
of modal logics: S5× S5 and K× S5. The former is known
to be the ‘equality and substitution-free’ fragment of two-
variable FO-logic FO2 (Gabbay et al. 2003); the latter is
embedded into FO by the standard translation ∗:

p∗ = q(z, x), (¬φ)∗ = ¬φ∗, (φ ∧ ψ)∗ = φ∗ ∧ ψ∗,

(∃φ)∗ = ∃xφ∗, (♢φ)∗ = ∃y (R(z, y) ∧ φ∗{y/z}),

where y is a fresh variable not occurring in φ∗ and {y/z}
means a substitution of y in place of z.

From now on, we write FOM1-formulas as bimodal ones:
for example, ∃□p instead of ∃x□p(x). By a formula we
mean an FOM1-formula unless indicated otherwise; a logic,
L, is one of Q1S5 and Q1K, again unless stated otherwise.

3 Main Notions and Characterisations
We now introduce the main notions studied in this paper and
provide their model-theoretic characterisations.
Craig interpolants. A formula χ is an interpolant of for-
mulas φ and ψ in a logic L if sig(χ) ⊆ sig(φ) ∩ sig(ψ),
|=L φ → χ and |=L χ→ ψ. L enjoys the Craig interpo-
lation property (CIP) if an interpolant for φ and ψ exists
whenever |=L φ → ψ. One of our main concerns here
is the interpolant existence problem (IEP) for L: decide if
given φ and ψ have an interpolant in L. For logics with CIP,
IEP reduces to entailment, and so is not interesting. This is
the case for many logics including propositional S5 and K,
but not for FOMLs with constant domain between Q1K and
Q1S5 (Fine 1979; Marx and Areces 1998).
Explicit definitions. Given formulas φ, ψ and a signature
σ, an explicit σ-definition of ψ modulo φ in L is a σ-formula
χ with |=L φ → (ψ ↔ χ). The explicit σ-definition ex-
istence problem (EDEP) for L is to decide, given φ, ψ and
σ, whether there exists an explicit σ-definition of ψ mod-
ulo φ in L. EDEP reduces trivially to entailment for logics
enjoying the projective Beth definability property (BDP) ac-
cording to which ψ is explicitly σ-definable modulo φ in
L iff it is implicitly σ-definable modulo φ in the sense that
{φ,φ′} |=L ψ ↔ ψ′, where φ′, ψ′ result from φ,ψ by uni-
formly replacing all non-σ-symbols with fresh ones. Again,
many logics including S5 and K enjoy BDP while FOMLs
with constant domains between Q1K and Q1S5 do not.

Note that, in typical KR applications, φ in our formula-
tion of EDEP corresponds to a KB K and ψ is a predicate
p. Then the problem whether there exists an explicit σ-
definition of p moduloK is the problem of deciding whether
there is χ with sig(χ) ⊆ σ and K |=L ∀x(p(x) ↔ χ(x)).
This problem trivially translates to EDEP using our discus-
sion of KBs above. In more detail, this view of EDEP is
discussed in Section 6 in the context of S5ALCu .

IEP and EDEP are closely related (Gabbay and Maksi-
mova 2005). In this paper, we only require the following:
Theorem 4. For any L ∈ {Q1S5,Q1K}, EDEP for L and
IEP for L are polynomially reducible to each other.

The proof, given in Appendix C, is based on a characteri-
sation of IEP and EDEP using bisimulations.



Lemma 3 together with the fact that FOM1 is a fragment
of FO are used to obtain, again in a standard way, the fol-
lowing criterion of interpolant existence. We call formulas φ
and ψ σ-bisimulation consistent in L if there exist L-models
M with w, d and M′ with w′, d′ such that M, w, d |= φ,
M′, w′, d′ |= ψ and M, w, d ∼σ M′, w′, d′.
Theorem 5. For any φ and ψ, the following are equivalent:
– there does not exist an interpolant of φ and ψ in L;
– φ, ¬ψ are sig(φ) ∩ sig(ψ)-bisimulation consistent in L.

Proof. Suppose φ and ψ do not have an interpolant in L
and σ = sig(φ)∩sig(ψ). Consider the set Ξ of σ-formulas χ
with |=L φ → χ. By compactness, we have an ω-saturated
model M of L with w and d such that M, w, d |= χ, for all
χ ∈ Ξ, and M, w, d |= ¬ψ. Take the set Ξ′ of σ-formulas
χ with M, w, d |= χ and an ω-saturated model M′ with
M′, w′, d′ |= Ξ′ and M′, w′, d′ |= φ, for some w′ and d′.
Then M, w, d ≡σ M′, w′, d′, and so M, w, d ∼σ M′, w′, d′

by Lemma 3. The converse implication is straightforward.⊣

Example 6. For every n < ω, Marx and Areces (1998)
constructed FOM1-formulas φ and ψ with |=Q1S5 φ → ψ
and sig(φ) ∩ sig(ψ) = {e} that have no interpolant in the
n-variable QnS5. For n = 1, φ and ψ look as follows:

φ = p0 ∧ ♢∃(p1 ∧ ♢∃p2) ∧
□∀

[
(e↔ p0 ∨ p1 ∨ p2) ∧

∧
i ̸=j(pi → ¬pj) ∧∧

i

(
pi → □(e→ pi) ∧ ∀(e→ pi)

)]
,

ψ = □∀(e↔ b0 ∨ b1)→
♢∃

(
b0 ∧ ♢(¬e ∧ ∃b0)

)
∨ ♢∃

(
b1 ∧ ♢(¬e ∧ ∃b1)

)
.

To see that φ, ¬ψ are {e}-bisimulation consistent in Q1S5,
take the models M1 and M2 below with M1, u0, d0 |= φ
and M2, v0, c0 |= ¬ψ. (In our pictures, the possible worlds
are always shown along the horizontal axis and the domain
elements along the vertical one, giving points of the form
(w, d).) The relation β connecting each e-point in M1 with
each e-point in M2, and similarly for ¬e-points, is an {e}-
bisimulation and

(
(u0, d0), (v0, c0)

)
∈ β.

u0

e p0

u1 u2

W1

e p1

D1 e
p2

d0

d1

d2

M1

v0

e b0
W2

v1

D2 e
b1

c0

c1
M2

Similarly to Theorem 5 we obtain the following criterion
of explicit definition existence:
Theorem 7. For any φ, ψ, σ, the following are equivalent:
– there is no explicit σ-definition of ψ modulo φ in L;
– φ ∧ ψ and φ ∧ ¬ψ are σ-bisimulation consistent in L.

Example 8. Let φ be the conjunction of the two KB ax-
ioms from Example 1, σ = {inPower}, and let ψ = rep.1

1As our FOM1 has no 0-ary predicates, the proposition rep is
given as ∀x rep(x) assuming that |=L ∀x rep(x) ∨ ∀x¬rep(x).

Then the second condition of Theorem 7 holds for the Q1S5-
models shown below, in which (w, d) in M is bisimilar to
(w′, d′) in M′ iff (w, d) and (w′, d′) agree on σ. It follows
that rep has no definition via inPower modulo φ in Q1S5. ⊣

M′

inPower

φ

rep

inPower

inPower

rep

inPower

rep

inPower inPower

rep

rep

rep
M

inPower

φ rep

inPowerrep

We next define conservative extensions, an important no-
tion in the context of ontology modules and modularisa-
tion (Grau et al. 2008; Botoeva et al. 2016).
Conservative extensions. Given formulas φ and ψ, we call
φ an L-conservative extension of ψ if (a) |=L φ → ψ and
(b) |=L φ → χ implies |=L ψ → χ, for any χ with
sig(χ) ⊆ sig(ψ). In typical KR applications, ψ is given
by a KB K and φ is obtained by adding fresh axioms to
K. (The translation of our results to the language of KBs is
obvious.) The next example shows that this notion of con-
servative extension is syntax-dependent in the sense that it is
not robust under the addition of fresh predicates.
Example 9. For the formulas
φ = rep ∧ ♢∀

(
inPower→ □(rep→ ¬inPower)

)
,

ψ=□∀(♢inPower ∧ ♢¬inPower ∧ ∃inPower ∧ ∃¬inPower)
φ∧ψ is a conservative extension of ψ in Q1S5 (as all models
of ψ are {inPower}-bisimilar to M in Example 8). Now, let
ψ′ = ψ ∧ (p ∨ ¬p), for a fresh proposition p. Then φ ∧ ψ′

is not a conservative extension of ψ′ as witnessed by the
formula χ = ¬

(
p ∧□∃(inPower ∧□(p→ inPower))

)
. ⊣

If in the previous definition we require (b) to hold for
all χ with sig(χ) ∩ sig(φ) ⊆ sig(ψ), then φ is called a
strong L-conservative extension of ψ. As observed by (Jung
et al. 2017), the difference between conservative and strong
conservative extensions is closely related to the failure of
CIP: if L enjoys CIP, then L-conservative extensions coin-
cide with strong L-conservative extensions. The problem
of deciding whether a given φ is a (strong) conservative
extension of a given ψ will be referred to as (S)CEP. The
study of the complexity of (S)CEP for DLs and modal log-
ics started with (Ghilardi, Lutz, and Wolter 2006) and (Ghi-
lardi et al. 2006); see (Botoeva et al. 2019; Jung, Lutz, and
Marcinkowski 2022) for more recent work.
Uniform interpolants. Given a formula φ and a signature
σ, we call a formula ψ a σ-uniform interpolant of φ in L if
sig(ψ) = σ and φ is a strong L-conservative extension of ψ.

A logic L has the uniform interpolation property (UIP) if,
for any φ and σ, there is a σ-uniform interpolant of φ in L.
UIP entails CIP but not the other way round. For example,
modal logic S4 and ALCu enjoy CIP but not UIP (Ghilardi
and Zawadowski 1995; Lutz and Wolter 2011). This leads
to the uniform interpolant existence problem (UIEP): given
φ and σ, decide whether φ has a uniform σ-interpolant in L.
Uniform interpolants are closely related to forgetting intro-
duced by (Lin and Reiter 1994). In this case, one often drops
the requirement that the conservative extension is strong.



4 Deciding IEP and EDEP for Q1S5

In this section, we first give a simpler—yet equivalent—
definition of bisimulation between Q1S5-models and then
use it to show that, when checking bisimulation consistency
in Q1S5, it is enough to look for bisimilar models of double-
exponential size in the size of the given formulas.

As R =W ×W in any Q1S5-model M = (W,R,D, I),
we drop R and write simply M = (W,D, I). Given a sig-
nature σ and (w, d) ∈ W × D, the literal σ-type ℓσM(w, d)
of (w, d) in M is the set

{p ∈ σ |M, w, d |= p} ∪ {¬p | p ∈ σ, M, w, d ̸|= p}.

A pair (β1,β2) of relations β1 ⊆W×W ′ and β2 ⊆ D×D′

is called a σ-S5-bisimulation between M = (W,D, I) and
M′ = (W ′, D′, I ′) when the following conditions hold:

(s51) if (w,w′) ∈ β1 then, for any d ∈ D, there is d′ ∈ D′

such that (d, d′) ∈ β2 and ℓσM(w, d) = ℓσM′(w′, d′), and
the other way round;

(s52) if (d, d′) ∈ β2 then, for any w ∈W , there is w′ ∈W ′

such that (w,w′) ∈ β1 and ℓσM(w, d) = ℓσM′(w′, d′), and
the other way round.

We say that M, w, d and M′, w′, d′ are σ-S5-bisimilar and
write M, w, d ∼S5

σ M′, w′, d′ if there is a σ-S5-bisimulation
(β1,β2) with (w,w′) ∈ β1, (d, d′) ∈ β2 and ℓσM(w, d) =
ℓσM′(w′, d′). Note that in this case we have dom(β1) = W ,
ran(β1) =W ′, dom(β2) = D, and ran(β2) = D′.

Theorem 10. M, w, d ∼S5
σ M′, w′, d′ if and only if

M, w, d ∼σ M′, w′, d′.

Proof. If M, w, d ∼S5
σ M′, w′, d′ is witnessed by

(β1,β2), then β defined by setting ((v, e), (v′, e′)) ∈ β iff
(v, v′) ∈ β1, (e, e′) ∈ β2 and ℓσM(v, e) = ℓσM′(v′, e′) satis-
fies (a), (w) and (d). Conversely, if M, w, d ∼σ M′, w′, d′

is witnessed by β, then (β1,β2) below satisfies (s51), (s52)

β1 = {(v, v′) | ∃e, e′ ((v, e), (v′, e′)) ∈ S},
β2 = {(e, e′) | ∃v, v′ (v, e), (v′, e) ∈ S},

(w,w′) ∈ β1, (d, d′) ∈ β2, and ℓσM(w, d) = ℓσM′(w′, d′).⊣

In this section, we only deal with σ-S5-bisimulations, and
so omit explicit S5 from the relevant notations. We write
M1, w1 ∼σ M2, w2 if there is a σ-bisimulation (β1,β2)
with (w1, w2) ∈ β1. By (s51), M1, w1 ∼σ M2, w2 en-
tails that the interpretations I1(w1) in M1 and I2(w2) in M2

are globally σ-bisimilar in the sense that, for any d1 ∈ D1,
there exists d2 ∈ D2 satisfying the same p ∈ σ in I1(w1)
and I2(w2), and the other way round. Similarly, we write
M1, d1 ∼σ M2, d2 if there is a σ-bisimulation (β1,β2)
with (d1, d2) ∈ β2. We omit M1 and M2 and write simply
(w1, d1) ∼σ (w2, d2), w1 ∼σ w2, d1 ∼σ d2 if understood.

Observe that σ-bisimulations between the same models
are preserved under set-theoretic union: if Γ is a set of σ-
bisimulations, then (

⋃
(β1,β2)∈Γ β1,

⋃
(β1,β2)∈Γ β2) is a σ-

bisimulation too. It follows that (β1,β2) defined by taking
(w1, w2) ∈ β1 if w1 ∼σ w2 and (d1, d2) ∈ β2 if d1 ∼σ d2
is the maximal σ-bisimulation between the given models.

Example 11. Consider M1, M2, and σ = {e} from Ex-
ample 6. Then (W1 × W1, D1 × D1) is a σ-bisimulation
between M1 and M1 witnessing (ui, di) ∼σ (uj , dj) and
(uk, dl) ∼σ (um, dn), for i, j, k, l,m, n ∈ {0, 1, 2}, k ̸= l,
m ̸= n. The pair (W1 ×W2, D1 ×D2) is a σ-bisimulation
between M1 and M2 witnessing (ui, di) ∼σ (vj , cj) and
(uk, dl) ∼σ (vm, cn), for i, k, l ∈ {0, 1, 2}, k ̸= l, and
j,m, n ∈ {0, 1}, m ̸= n (cf. β in Example 6).

We now use σ-bisimulations to develop an algorithm de-
ciding IEP for Q1S5 in CON2EXPTIME. Suppose we want
to check whether φ and ψ have an interpolant in Q1S5. By
Theorem 5, this is not the case iff there are Q1S5-models M1

with w1, d1 and M2 with w2, d2 such that M1, w1, d1 |= φ,
M2, w2, d2 ̸|= ψ, and M1, w1, d1 ∼σ M2, w2, d2. We are
going to show that if such Mi do exist, they can be chosen
to be of double-exponential size in |φ| and |ψ|.

Fix φ, ψ and σ = sig(φ)∩ sig(ψ). Denote by sub∃(φ,ψ)
the closure under single negation of the set of formulas of
the form ∃ξ in sub(φ,ψ) = sub(φ) ∪ sub(ψ). The world-
type of w ∈W in a model M = (W,D, I) is defined as

wtM(w) = {ρ ∈ sub∃(φ,ψ) |M, w |= ρ}.
A world-type, wt, in M is the world-type of some w ∈W .

Similarly, let sub♢(φ,ψ) be the closure under single nega-
tion of the set of formulas of the form ♢ξ in sub(φ,ψ). The
domain-type of d ∈ D in M is the set

dtM(d) = {ρ ∈ sub♢(φ,ψ) |M, d |= ρ}.
A domain-type, dt, in M is the domain-type of some d ∈ D.

The full type of (w, d) ∈W ×D in M is the set

ftM(w, d) = {ρ ∈ sub(φ,ψ) |M, w, d |= ρ}.
A full type, ft, in M is the full type of some (w, d) in M.

The main result of this section generalises the following
construction that shows how, given any Q1S5-model M sat-
isfying a formula φ, we can construct from the world and
domain types in M a model M′ satisfying φ and having ex-
ponential size in |φ|. Intuitively, as a first approximation,
we could start by taking the worlds W ′ (domain D′) in M′

to comprise all the world- (domain-) types in M. But then
we might have w,w′ and d, d′ with wtM(w) = wtM(w′),
dtM(d) = dtM(d′) and different truth-values of some vari-
ables p at (w, d) and (w′, d′) in M. To deal with this issue,
we introduce, as shown in the example below, sufficiently
many copies of each world- and domain-type so that we can
accommodate all possible truth-values in M of the p in φ.
Example 12. Let M, w, d |= φ, for M = (W,D, I), and
let n be the number of full types in M (over sub(φ)) and
[n] = {1, . . . , n}. Define D′ to be a set that contains n
distinct copies of each dt in M over sub♢(φ), denoting the
kth copy by dtk. For any wt and dt in M, let πwt,dt be
a function from [n] onto the set of full types ft in M with
wt = ft∩sub∃(φ) and dt = ft∩sub♢(φ). Let Π be a smallest
set of sequences π of such πwt,dt for which the following
condition holds: for any ft = ftM(u, e) and k ∈ [n], there
exists π ∈ Π with πwtM(u),dtM(e)(k) = ft. We then set
W ′ = {wtπM(u) | u ∈W, π ∈ Π}, treating each wtπM(u) as
a fresh π-copy of wtM(u). As |Π| ≤ n2, both |W ′| and |D′|



are exponential in |φ|. Define a model M′ = (W ′, D′, I ′)

by taking M′,wtπ, dtk |= p iff p ∈ πwt,dt(k). One can
show by induction that M′,wtπ, dtk |= ρ iff ρ ∈ πwt,dt(k),
for any ρ ∈ sub(φ); see Appendix E.1 for details. ⊣

We now introduce more complex ‘data structures’ that al-
low us to extend the construction above from satisfiability
to σ-bisimulation consistency. Let Mi = (Wi, Di, Ii), for
i = 1, 2, be two Q1S5-models with pairwise disjointWi and
Di. For any w ∈W1 ∪W2 and i ∈ {1, 2}, we set

Ti(w) = {wtMi(v) | v ∈Wi, v ∼σ w} (1)

and call wm(w) = (T1(w), T2(w)) the world mosaic of w
in M1,M2. The pair wpi(w) = (wtMi(w),wm(w)), for
w ∈ Wi, is called the i-world point of w in M1, M2. A
world mosaic, wm, and an i-world point, wpi, in M1, M2

are defined as the world mosaic and i-world point of some
w ∈W1 ∪W2 in M1, M2 (in the latter case, w ∈Wi).

Similarly, for any d ∈ D1 ∪D2 and i ∈ {1, 2}, we set

Si(d) = {dtMi
(e) | e ∈ Di, e ∼σ d} (2)

and call dm(d) = (S1(d), S2(d)) the domain mosaic of d in
M1, M2. If d ∈ Di, the pair dpi(d) = (dtMi

(d), dm(d))
is called the i-domain point of d in M1, M2. A domain
mosaic, dm, and an i-domain point, dpi, in M1, M2 are
defined as the domain mosaic and i-domain point of some
d ∈ D1 ∪D2. As follows from the definitions and Lemma 3
coupled with Theorem 10,

(wm) u ∼σ v implies wm(u) = wm(v),

(dm) d ∼σ e implies dm(d) = dm(e).

Observe that the number of distinct wpi and dpi is at most
double-exponential in |φ| and |ψ|.
Example 13. (a) Consider models M1 and M2 from Ex-
ample 6, σ = {e} and τ = {e,p0,p1,p2, b0, b1}. Then
wtM1

(ui) and dtM2
(ci) contain, respectively, the sets

{∃(pi ∧ e)} ∪ {∃¬p | p ∈ τ} ∪ {¬∃pj | j ̸= i},
{♢(pi ∧ e)} ∪ {♢¬p | p ∈ τ} ∪ {¬♢pj | j ̸= i}.

From the σ-bisimulations shown in Example 11 we obtain
wm(u0) = wm(u1) = wm(u2) = wm(v0) = wm(v1),
and so M1,M2 have only one world mosaic: wm =
({wtM1(ui) | i = 0, 1, 2}, {wtM2(vi) | i = 0, 1}).
M1 has three distinct 1-world points (wtM1(ui),wm), for
i = 0, 1, 2; M2 has two 2-world points. Similarly, M1, M2

define one domain mosaic, M1 has three distinct 1-domain
points and M2 has two 2-domain points.

(b) It can happen that non-bisimilar domain elements give
the same domain-point. Consider the models M1 and M2

below and suppose that sub♢(φ,ψ) has no formulas with ∃

M1

d
a a

d′
a

M2

e
a a

e′
p a p

p

in the scope of ♢, σ = {a} and sig(φ,ψ) = {a,p}.
Then dtM1

(d) = dtM1
(d′) but d ̸∼σ d′ as ♢(a ∧ ∃¬a)

is true at d and false at d′; likewise, dtM2
(e) = dtM2

(e′)

but e ̸∼σ e′. Since d ∼σ e and d′ ∼σ e′, we have
dm(d) = ({dtM1(d)}, {dtM2(e)}) = dm(e), dm(d′) =
({dtM1

(d′)}, {dtM2
(e′)}) = dm(e′), dp1(d) = dp1(d

′),
and dp2(e) = dp2(e

′). ⊣
Suppose M1, w1, d1 ∼σ M2, w2, d2, M1, w1, d1 |= φ

and M2, w2, d2 ̸|= ψ. We construct M′
i = (W ′

i , D
′
i, I

′
i),

i = 1, 2, witnessing σ-bisimulation consistency of φ and ¬ψ
and having at most double-exponential size in |φ| and |ψ|.
Intuitively, W ′

i and D′
i consist of copies of the i-world and,

respectively, i-domain points in M1, M2 rather than copies
of the world- and domain-types as in Example 12. Then
we obtain the required σ-bisimulation (β1,β2) by including
in β1 and β2 exactly those 1/2-world and, respectively, 1/2-
domain points that share the same world and domain mosaic.

Let n be the number of full types over sub(φ,ψ) and let
[n] = {1, . . . , n}. For i = 1, 2, we set

D′
i = {dp

k
i | dpi an i-domain point in M1, M2, k ∈ [n]},

treating dpki as the kth copy of dpi and assuming all of the
copies to be distinct. Next, we define W ′

i , i = 1, 2, using
surjective functions of the form

πwpi,dpi : [n]→ {ftMi
(w, d) | (w, d) ∈Wi ×Di,

wpi = wpi(w), dpi = dpi(d)}.

Observe that, for any wpi = (wt,wm), dpi = (dt, dm),
and k ∈ [n], we have wt = πwpi,dpi(k) ∩ sub∃(φ,ψ) and
dt = πwpi,dpi(k) ∩ sub♢(φ,ψ).

Let Π be a smallest set of sequences π of πwpi,dpi such
that, for any ft = ftMi(w, d), wpi = wpi(w), dpi = dpi(d)
with (w, d) in Mi and any k ∈ [n], there is π ∈ Π with
πwpi,dpi(k) = ft. Clearly, |Π| ≤ n2. Then we set

W ′
i = {wpπi | wpi an i-world point in M1, M2, π ∈ Π},

treating wpπi as a fresh π-copy of wpi. Clearly, both |D′
i|

and |W ′
i | are double-exponential in |φ|, |ψ|. Finally, we set

M′
i,wp

π
i , dp

k
i |= p iff p ∈ πwpi,dpi(k) (3)

and define β1 ⊆ W ′
1 ×W ′

2 and β2 ⊆ D′
1 × D′

2 by taking
β1(wp

π1

1 ,wpπ
2

2 ) iff wm1 = wm2, where wpi = (wti,wmi),
for i = 1, 2; and β2(dp

k1
1 , dp

k2
2 ) iff dm1 = dm2, where

dpi = (dti, dmi), for i = 1, 2.

Lemma 14. (i) M′
i,wp

π
i , dp

k
i |= ρ iff ρ ∈ πwpi,dpi(k),

for every ρ ∈ sub(φ,ψ). (ii) The pair (β1,β2) is a σ-
bisimulation between M′

1 and M′
2.

The construction and lemmas above yield the following:

Theorem 15. Any formulas φ and ψ are sig(φ) ∩ sig(ψ)-
bisimulation consistent in Q1S5 iff there are witnessing
Q1S5-models of size double-exponential in |φ| and |ψ|.

Theorems 15, 5 and 4 give the upper bound of

Theorem 16. (i) Both IEP and EDEP for Q1S5 are decid-
able in CON2EXPTIME.
(ii) IEP and EDEP for Q1S5 are both 2EXPTIME-hard.



Note that the lower bound results hold even if we want to
decide, for any FOM1-formulas φ and ψ, whether an inter-
polant or an explicit definition exists not only in Q1S5 but in
any finite-variable fragment of quantified S5.

The lower bounds are established in Appendix E.2. Here,
we only comment on the intuition behind the proof. Given
a 2n-space bounded alternating Turing Machine M and an
input word a of length n, we construct in polytime formulas
φ and ψ such that |=Q1S5 φ→ ψ and M accepts a iff φ, ¬ψ
are σ-bisimulation consistent, where σ = sig(φ) ∩ sig(ψ).

One aspect of our construction is similar to that of (Ar-
tale et al. 2021; Jung and Wolter 2021): we also represent
accepting computation-trees as binary trees whose nodes are
coloured by predicates in σ. However, unlike the formalisms
in the cited work, Q1S5 cannot express the uniqueness of
properties, and so the remaining ideas are novel. One part of
φ ‘grows’ 2n-many copies of σ-coloured binary trees, using
a technique from 2D propositional modal logic (Hodkinson
et al. 2003; Göller, Jung, and Lohrey 2015). Another part of
φ colours the tree-nodes with non-σ-symbols to ensure that,
in the mth tree, for each m < 2n, the content of the mth
tape-cell is properly changing during the computation. Then
we use ideas from Example 6 to make sure that the gener-
ated 2n-many trees are all σ-bisimilar, and so represent the
same accepting computation-tree.

The following corollary is also proved in Appendix E.2:
Corollary 17. IEP and EDEP for FO2 without equality are
both 2EXPTIME-hard.

5 (S)CEP and UIEP in Q1S5: Undecidability
We now turn to the (strong) conservative extension and uni-
form interpolant existence problems, which, in contrast to
interpolant existence, turn out to be undecidable.
Theorem 18. (i) (S)CEP in Q1S5 is undecidable.

(ii) UIEP in Q1S5 is undecidable.
The undecidability proof for CEP is by adapting an unde-

cidability proof for CEP of FO2 in (Jung et al. 2017). The
main new idea is the generation of arbitrary large binary
trees within Q1S5-models that can then be forced to be grids
in case one does not have a (strong) conservative extension.
The undecidability proof for UIEP merges a counterexample
to UIP with the formulas constructed to prove undecidability
of CEP. Here we provide the counterexample to UIP, details
of the proofs are given in Appendix F.
Example 19. Let σ = {a,p1,p2} and

φ0 = □∀
(
a→ ♢(p1 ∧ b)

)
∧□∀

(
p1 ∧ b→ ∃(p2 ∧ b)

)
∧

□∀
(
p2 ∧ b→ ♢(p1 ∧ b)

)
.

To show that a ∧ φ0 has no σ-uniform interpolant in Q1S5,
for every positive r < ω, we define a formula χr inductively
by taking χ0 = ⊤ and χr+1 = p1 ∧ ∃(p2 ∧ ♢χr). Then
|=Q1S5 a ∧ φ0 → ♢χr for all r > 0. Thus, if ϱ were a σ-
uniform interpolant of a ∧ φ0, then |=Q1S5 ϱ→ ♢χr would
follow for all r > 0. Consider a model Mr = (Wr, Dr, Ir)
withWr = Dr = {0, . . . , r−1}, in which a is true at (0, 0),
p1 at (k, k − 1), and p2 at (k, k), for 0 < k < r, as illus-
trated in the picture below.

0
0

a

1

p1

2
W3

1
p2

p1

D3

2 p2

M3 M3, 0, 0 |= χ2

M3, 0, 0 ̸|= χ3

Then Mr, 0, 0 ̸|= ♢χr, for any r > 0, and so Mr, 0, 0 ̸|= ϱ.
On the other hand, Mr, 0, 0 |= ♢χr′ for all r′ < r. Now
consider the ultraproduct

∏
U Mr with a non-principal ul-

trafilter U on ω \ {0}. As each ♢χr′ is true at (0, 0) in
almost all Mr, it follows from the properties of ultraprod-
ucts (Chang and Keisler 1998) that, for a suitable 0 and all
r > 0, we have

∏
U Mr, 0, 0 |= a ∧ ¬ϱ ∧ ♢χr. One can

interpret b in
∏
U Mr so that M, 0, 0 |= φ0 for the resulting

model M. Then M |= a∧φ0 ∧¬ϱ, contrary to the fact that
|=Q1S5 a∧φ0 → ϱ for any uniform interpolant ϱ of a∧φ0.
Remark 20. Example 19 can be translated into FO2 to prove
that the latter does not have UIP. It can then be merged with
the proof of undecidability of CEP in FO2 from (Jung et
al. 2017)—in the same way as we combined Example 19
with the undecidability proof for UIEP in Q1S5—to show
that UIEP is undecidable in FO2 (with and without =). The
latter problem has so far remained open.

6 Modal Description Logic S5ALCu

Next, we extend the results of Sections 4, 5 to the descrip-
tion modal logic S5ALCu , where ALCu is the basic descrip-
tion logic ALC with the universal role (Baader et al. 2017),
which is a notational variant of multimodal K with the uni-
versal modality (and can be regarded as a fragment of FO2).

The concepts of S5ALCu are constructed from concept
names A ∈ C, role names R ∈ R, for some countably-
infinite and disjoint sets C and R, and a distinguished uni-
versal role U ∈ R by means of the following grammar:

C,D := A | ⊤ | C ⊓D | ¬C | ∃R.C | ∃U.C | ♢C.

A signature σ is any finite set of concept and role names.
The signature sig(C) of a concept C comprises the concept
and role names in C. We interpret S5ALCu in models M =
(W,∆, I), where I(w) is an interpretation of the concept
and role names at each world w ∈ W over domain ∆ ̸= ∅:
AI(w) ⊆ ∆, RI(w) ⊆ ∆ × ∆, and U I(w) = ∆ × ∆. The
truth-relation M, w, d |= C is defined by taking
– M, w, d |= ⊤, M, w, d |= A iff d ∈ AI(w),

– M, w, d |= ∃R.C iff there is (d, d′) ∈ RI(w) such that
M, w, d′ |= C,

– M, w, d |= ♢C iff there is w′ ∈W with M, w′, d |= C,
and standard clauses for Boolean ⊓, ¬. We sometimes use
more conventional CI(w) = {d ∈ ∆ |M, w, d |= C}, writ-
ing M, w |= C ⊑ D if CI(w) ⊆ DI(w), and |= C ⊑ D if
M, w |= C ⊑ D for all M and w. The problem of decid-
ing if |= C ⊑ D, for given C and D, is CONEXPTIME-
complete (Gabbay et al. 2003).

Typical applications of description logics use reason-
ing modulo ontologies—finite sets O of concept inclusions



(CIs) C ′ ⊑ D′ regarded as axioms—by takingO |= C ⊑ D
iff whenever M, w |= α for all α ∈ O then M, w |= C ⊑ D.
Reasoning modulo ontologies is reducible to the ontology-
free case by the following equivalence: O |= C ⊑ D iff
|= ⊤ ⊑⊔C′⊑D′∈O∃U.(C ′ ⊓ ¬D′) ⊔ ∀U.(¬C ⊔D).

An interpolant for C ⊑ D in S5ALCu is a concept E such
that sig(E) ⊆ sig(C) ∩ sig(D), |= C ⊑ E, and |= E ⊑ D.
The IEP for S5ALCu is to decide whether a given concept in-
clusionC ⊑ D has an interpolant in S5ALCu . The following
related problems can easily be reduced to IEP in polytime:
(IEP modulo ontologies) Given an ontologyO, a signature
σ, and a CI C ⊑ D, does there exist a σ-concept E such
that O |= C ⊑ E and O |= E ⊑ D?

(ontology interpolant existence, OIEP) Given an ontol-
ogy O, a signature σ, and a CI C ⊑ D, is there an ontol-
ogy O′ with sig(O′) ⊆ σ, O |= O′, and O′ |= C ⊑ D?

(EDEP modulo ontologies) Given an ontology O, a signa-
ture σ, and a concept name A, does there exist a concept
C such that sig(C) ⊆ σ and O |= A ≡ C?

(See Example 2 for an illustration.) Explicit definitions
have been proposed for query rewriting in ontology-based
data access (Franconi, Kerhet, and Ngo 2013; Toman and
Weddell 2021), developing and maintaining ontology align-
ments (Geleta, Payne, and Tamma 2016), and ontology engi-
neering (ten Cate et al. 2006). IEP is fundamental for robust
modularisations and decompositions of ontologies (Konev
et al. 2009; Botoeva et al. 2016).

Our main result in this section is the following:
Theorem 21. IEP, EDEP (modulo ontologies), and OIEP
are decidable in CON2EXPTIME, being 2EXPTIME-hard.

The detailed proof is given in Appendix G. Here, we only
formulate a model-theoretic characterisation of interpolant
existence in S5ALCu in terms of the following generalisation
of σ-bisimulations for Q1S5 from Section 4.

A σ-bisimulation between models Mi = (Wi,∆i, Ii),
i = 1, 2, is any triple (β1,β2,β) with β1 ⊆ W1 × W2,
β2 ⊆ ∆1 ×∆2, and β ⊆ (W1 ×∆1)× (W2 ×∆2) if
(w) for any (w1, w2) ∈ β1 and d1 ∈ ∆1, there is d2 ∈ ∆2

with ((w1, d1), (w2, d2)) ∈ β and similarly for d2 ∈ ∆2,
(d) for any (d1, d2) ∈ β2 and w1 ∈ W1, there is w2 ∈ W2

with ((w1, d1), (w2, d2)) ∈ β and similarly for w2 ∈W2,
(c) ((w1, d1), (w2, d2)) ∈ β implies both (w1, w2) ∈ β1

and (d1, d2) ∈ β2,
and the following hold for all ((w1, d1), (w2, d2)) ∈ β:
(a) M1, w1, d1 |= A iff M2, w2, d2 |= A, for all A ∈ σ;

(r) if (d1, e1) ∈ RI(w1) and R ∈ σ, then there is e2 ∈ ∆2

with (d2, e2) ∈ RI(w2) and ((w1, e1), (w2, e2)) ∈ β, and
the other way round.

The criterion below—in which σ-bisimulation consistency
is defined as in Section 3 with concepts C, D in place of
formulas φ, ψ—is an S5ALCu -analogue of Theorem 5:
Theorem 22. The following conditions are equivalent for
any concept inclusion C ⊑ D:
– there does not exist an interpolant for C ⊑ D in S5ALCu ;

– C and ¬D are sig(C) ∩ sig(D)-bisimulation consistent.

We then extend the ‘filtration’ construction of Section 4
from Q1S5 to S5ALCu . In contrast to Q1S5, we now have
to deal with non-trivial σ-bisimulations between the respec-
tive ALC-models I(w1) and I(w2) (satisfying conditions
(a) and (r)). To this end we introduce full mosaics (sets of
full types realised in σ-bisimilar pairs (w, d)) and full points
(full mosaics with a distinguished full type). The range of
the surjections π used to construct W ′ and D′ then consists
of full points rather than full types. This provides us with the
data structure to define σ-bisimilarALC-models I(w) when
required. This construction establishes an upper bound on
the size of models witnessing bisimulation consistency:

Theorem 23. Any concepts C and D do not have an inter-
polant in S5ALCu iff there are witnessing S5ALCu -models of
size double-exponential in |C| and |D|.

This result gives the upper bound of Theorem 21. The
lower one follows from Theorem 16 (ii) as, treating FOM1-
formulas φ, ψ as role-free S5ALCu -concepts and using The-
orems 5 and 22, one can readily show that φ and ψ have an
interpolant in Q1S5 iff they have an interpolant in S5ALCu .

The (strong) conservative extension problem, (S)CEP, and
the uniform interpolant existence problem, UIEP, in S5ALCu

are defined in the obvious way. Using the same argument
as for interpolation, the undecidability of (S)CEP and UIEP
in S5ALCu follows directly from the undecidability of both
problems for Q1S5. Note that, for the component logics—
propositional S5 and ALCu—CEP is CONEXPTIME and
2EXPTIME-complete, respectively (Ghilardi et al. 2006;
Jung et al. 2017).

7 Quantified Modal Logic Q1K
Finally, we consider the one-variable quantified modal logic
Q1K. By the modal depth md(φ) of a FOM1-formula φ we
mean the maximal number of nestings of ♢ in φ; if φ has no
modal operators, then md(φ) = 0. Formulas of modal depth
k can be characterised using a finitary version of bisimula-
tions, called k-bisimulations, defined below.

For a signature σ and two models M = (W,R,D, I) and
M′ = (W ′, R′, D′, I ′), a sequence β0, . . . ,βk of relations
βi ⊆ (W ×D)× (W ′×D′) is a σ-k-bisimulation between
M and M′ if the following conditions hold for all p ∈ σ and
((w, d), (w′, d′)) ∈ βi: (a), (d) from Section 2 as well as

(w′) if i > 0, (w, v) ∈ R, then there is v′ with (w′, v′) ∈ R′

and ((v, d), (v′, d′)) ∈ βi−1, and the other way round.

We say that M, w, d and M′, w′, d′ are σ-k-bisimilar and
write M, w, d ∼kσ M′, w′, d′ if there is a σ-k-bisimulation
β0, . . . ,βk with βk ∋ ((w, d), (w′, d′)) between M and
M′. We write M, w, d ≡kσ M′, w′, d′ when M, w, d |= φ
iff M′, w′, d′ |= φ, for every σ-formula φ with md(φ) ≤ k.

We can define formulas τkM,σ , generalising the character-
istic formulas of (Goranko and Otto 2007), that describe ev-
ery model M up to σ-k-bisimulations in the sense that the
following equivalences hold (see Appendix H for details):

Lemma 24. For any models M with w, d and N with v, e,
and any k < ω, the following conditions are equivalent:



(i) N, v, e ≡kσ M, w, d;
(ii) N, v, e |= τkM,σ(w, d);

(iii) N, v, e ∼kσ M, w, d.

Intuitively, τkM,σ(w, d) is the strongest formula of modal
depth k that is true at w, d in M. For any formula φ with
md(φ) ≤ k, we now set

∃∼σ,kφ =
∨

M,w,d|=φ

τkM,σ(w, d).

Thus, for any N, v, e, we have N, v, e |= ∃∼σ,kφ iff there
is M, w, d with M, w, d |= φ and N, v, e ∼kσ M, w, d, i.e.,
∃∼σ,k is an existential depth restricted bisimulation quan-
tifier (D’Agostino and Lenzi 2006; French 2006). Clearly,
|=Q1K φ→ ∃∼σ,kφ.

Theorem 25. The following conditions are equivalent, for
any formula ψ with md(ψ) = k′ and n = max {k, k′}:
(a) there is χ such that sig(χ) ⊆ σ, |=Q1K φ → χ, and
|=Q1K χ→ ψ;

(b) |=Q1K ∃∼σ,nφ→ ψ.

Proof. (a)⇒ (b) If ̸|=Q1K ∃∼σ,nφ→ ψ, there is M, w, d
with M, w, d |= ∃∼σ,nφ and M, w, d |= ¬ψ. By the def-
inition of ∃∼σ,nφ, we then have M, w, d |= τnM′,σ(w

′, d′)

and M′, w′, d′ |= φ, for some model M′, w′, d′. By
Lemma 24, M′, w′, d′ ∼nσ M, w, d. Using a standard un-
folding argument, we may assume that (W,R) in M and
(W ′, R′) in M′ are tree-shaped with respective roots w,w′.
As φ and ψ have modal depth ≤ n, we may also assume
that the depth of (W,R) and (W ′, R′) is ≤ n. But then
M′, w′, d′ ∼σ M, w, d, contrary to (a). The implication
(b)⇒ (a) is trivial. ⊣

We do not know whether ∃∼σ,kφ is equivalent to a for-
mula whose size can be bounded by an elementary function
in |σ|, |φ|, k. For pure ALC, it is indeed equivalent to an
exponential-size concept (ten Cate et al. 2006).

Condition (b) in Theorem 25 gives an obvious non-
elementary algorithm for checking whether given formulas
have an interpolant in Q1K. Thus, by Theorem 4, we obtain:

Theorem 26. IEP and EDEP for Q1K are decidable in non-
elementary time.

The proof above seems to give a hint that UIEP for Q1K
might also be decidable as (an analogue of) ∃∼σ,kφ of modal
depth md(φ) is a uniform interpolant of any propositional
modal formula φ in K (Visser 1996). The next example il-
lustrates why this is not the case for ‘two-dimensional’ Q1K.

Example 27. Suppose σ = {a, b},

φ = ∀
(
(a↔ b↔ h) ∧ (h↔ □h↔ ♢h)

)
∧ ♢∀(b↔ h),

ψ = ∀(a↔ □□a↔ ♢♢a) ∧□♢⊤ → ♢∀(b↔ ♢a).

One can check (see Appendix H) that |=Q1K φ→ ψ.
However, ̸|=Q1K ∃∼σ,1φ → ψ as, for M and M′

below, M, w, d |= φ and M′, w′, d′ ̸|= ψ but
M, w, d ∼1

σ M′, w′, d′. ⊣

M

d

w

a
b

h

h

b

h b

M′

d′

w′

a
b

b

b

b

a

a

In fact, by adapting the undecidability proof for Q1S5 we
prove the following:

Theorem 28. (i) (S)CEP for Q1K is undecidable.
(ii) UIEP for Q1K is undecidable.

8 Outlook
Craig interpolation and Beth definability have been stud-
ied for essentially all logical systems, let alone those ap-
plied in KR, AI, verification and databases. In fact, one
of the first questions typically asked about a logic L of in-
terest is whether L has interpolants for all valid implica-
tions φ → ψ. Some L enjoy this property, while others
miss it. This paper and preceding (Jung and Wolter 2021;
Artale et al. 2021) open a new, non-uniform perspective on
interpolation/definability for the latter type of L by regard-
ing formulas φ and ψ as input (say, coming from an appli-
cation) and deciding whether they have an interpolant in L.

In the context of first-order modal logics, challenging
open questions that arise from this work are: What is the
tight complexity of IEP for Q1S5 and S5ALCu? Is the non-
elementary upper bound for IEP in Q1K optimal? Is IEP
decidable for KALCu? More generally, what happens if we
replace S5 and K by other standard modal logics, e.g., S4,
multimodal S5, or the linear temporal logic LTL, and/or use
in place ofALCu other DLs or other decidable fragments of
FO such as the guarded or two-variable fragment?

A different line of research is computing interpolants.
For logics with CIP, this is typically done using resolu-
tion, tableau, or sequent calculi. A more recent approach
is based on type-elimination known from complexity proofs
for modal and guarded logics (Benedikt, ten Cate, and Van-
den Boom 2016; ten Cate 2022). While no attempt has yet
been made to use traditional methods for computing inter-
polants in logics without CIP, type elimination has been
adapted to ALC with role inclusions (Artale et al. 2020)
that does not have CIP. Rather than eliminating types, one
eliminates pairs of sets of types—i.e., mosaics in our proofs
above. The question whether these proofs can be turned into
an algorithm computing interpolants in, say, Q1S5 is non-
trivial and open. More generally, one can try to develop
calculi for the consequence relation ‘φ |= ψ iff there are
no sig(φ) ∩ sig(ψ)-bisimilar models satisfying φ and ¬ψ’
and use them to compute interpolants; see (Barwise and van
Benthem 1999) for a model-theoretic account of such con-
sequence relations for infinitary logics without CIP.
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Appendix

A Connections with FO2

The atoms of FO2 are of the form x= y, p(x, y), p(y, x),
p(x, x), p(y, y) for some binary predicate symbol p ∈ P .2
A signature is any finite set σ ⊆ P . FO2-formulas are
built up from atoms using ¬,∧,∃x,∃y. We consider two
proper fragments of FO2: in the equality-free fragment, we
do not have atoms of the form x= y, and in the equality-
and substitution-free fragment, the only available atoms are
of the form p(y, x). We interpret FO2-formulas in usual
FO-models of the form A = (AA,pA)p∈P , where AA is
a nonempty set and pA ⊆ AA ×AA, for each p ∈ P .

Now, fix some signature σ. We connect two FO-models
A,B with three different kinds of σ-bisimulations, depend-
ing on the chosen fragment L of FO2, as follows. Given
L, let LitL(σ) denote the set of available literals for p ∈ σ
(atoms and negated atoms) in L. Given A and a, a′ ∈ AA,
we define

ℓ
L(σ)
A (a, a′) =

{
ℓ ∈ LitL(σ) | A |= ℓ[a/y, a′/x]

}
.

A relation β ⊆ (AA × AA) × (BB × BB) is a σ-
bisimulation between A and B in L if the following hold,
for all

(
(a, a′), (b, b′)

)
∈ β:

1. ℓL(σ)
A (a, a′) = ℓ

L(σ)
B (b, b′);

2. for every a′′ ∈ AA there is b′′ ∈ BB such that(
(a, a′′), (b, b′′)

)
∈ β, and the other way round;

3. for every a′′ ∈ AA there is b′′ ∈ BB such that(
(a′′, a′), (b′′, b′)

)
∈ β, and the other way round.

If
(
(a, a′), (b, b′)

)
∈ β for some β as above, then we say

that A, a, a′ and B, b, b′ are σ-bisimilar in L.
Given FO-models A,B and a, a′ ∈ AA, b, b′ ∈ BB, we

write A, a, a′ ≡L(σ) B, b, b′ whenever A |= φ[a/y, a′/x]
iff B |= φ[b/y, b′/x] hold for all L(σ)-formulas φ. Then
we have the following well-known equivalence, for any pair
A,B of saturated models:

A, a, a′ ≡L(σ) B, b, b
′ iff A, a, a′ and B, b, b′ are

σ-bisimilar in L.

Clearly, if A, a, a′ and B, b, b′ are σ-bisimilar in FO2, then
they are σ-bisimilar in the equality-free fragment, and if they
are σ-bisimilar in the equality-free fragment, then they are
σ-bisimilar in the equality- and substitution-free fragment.

2It is shown in (Grädel, Kolaitis, and Vardi 1997) that, in FO2,
one can replace relations of arbitrary arity by binary relations as
far the complexity of satisfiability is concerned. This has been ex-
tended to bisimulation consistency in (Jung and Wolter 2021). We
therefore consider FO2 with binary relations only.

However, as the models below show, the converse directions
do not always hold.

A1

p p

p p

p p

A2

p p

p

p p

A3

p

p

Here, A1 and A3 are {p}-bisimilar in the equality- and
substitution-free fragment of FO2, but not in the equality-
free fragment: ∀x∀y

(
p(x, y) ↔ p(y, x)

)
∧ ∀xp(x, x) is

true in A3, while it is not true in A1. A2 and A3 are
{p}-bisimilar in the equality-free fragment, but not in FO2:
∀x∀y

(
p(x, y)→ x= y

)
is true in A3, while it is not true in

A2.
Next, we discuss connections between Q1S5 and the

above three fragments of FO2. With a slight abuse of no-
tation, we consider the predicate symbols in P (and thus in
any signature σ) as unary symbols when dealing with FOM1

and binary ones when dealing with (fragments of) FO2. We
translate each FOM1-formula φ to an FO2-formula φ† by
taking

p(x)† = p(y, x)

(¬φ)† = ¬φ†

(φ ∧ ψ)† = φ† ∧ ψ†

(♢φ)† = ∃yφ†

(∃φ)† = ∃xφ†

Observe that the image of this translation is in the equality-
and substitution-free fragment of FO2. It is easy to show the
following:

Lemma 29. For all FOM1-formulas φ, ψ and FOM1-
signature σ,

(i) |=Q1S5 φ iff |=FO2 φ†;

(ii) φ, ψ are σ-bisimulation consistent in Q1S5 iff φ†,
ψ† are σ-bisimulation consistent in the equality- and
substitution-free fragment of FO2.

Proof. It is straightforward, using the following observa-
tions (a) and (b):
(a) FO-models for the equality- and substitution-free

fragment of FO2 and square Q1S5-models (W,D, I) (where
|W | = |D|) are in one-to-one correspondence in the follow-
ing sense.

• For every FO-model A, take the square Q1S5-model
MA = (AA, AA, I) where, for all a, b ∈ AA and p ∈ P ,
b ∈ pI(a) iff (a, b) ∈ pA. Then we have

MA, a, b |= φ iff A |= φ†[a/y, b/x].

• For every square Q1S5-model M = (W,D, I) and ev-
ery bijection f : D → W , take the FO-model AM,f =
(D,pAM,f ) where, for all a, b ∈ D and p ∈ P , (a, b) ∈
pAM,f iff b ∈ pI(f(a)). Then we have

M, f(a), b |= φ iff AM,f |= φ†[a/y, b/x]. (4)



(b) For all Q1S5-models M, w, d there exist a square
Q1S5-model M′, w′, d′ such that M, w, d and M′, w′, d′

are bisimilar in Q1S5 (see e.g. (Gabbay et al. 2003,
Prop.3.12)). ⊣

B Encoding of Standpoints
We give a few more details regarding an encoding of a ver-
sion of standpoint logic based on ALCu without individ-
ual names into S5ALCu . We refer the reader to (Álvarez,
Rudolph, and Strass 2022) for a detailed introduction to
standpoint logic.

In standpoint logic one constructs standpoint expressions
e from a set of primitive standpoints s1, . . . , sn and the uni-
versal standpoint ∗ using Boolean operators. For ALCu-
concepts C,D and standpoint expression e the formula
□e(C ⊑ D) then states that C ⊑ D is true according to
e and the concept □eC applies to all individuals that are
a member of C according to standpoint e. In more detail,
one interprets the above expressions in standpoint structures
S = (∆,Π, σ, γ), where ∆ is a non-empty set, the do-
main of S, Π is a non-empty set of precisifications, σ is
a function mapping every si to a set σ(si) ⊆ Π, and γ
is a function mapping every π ∈ Π to a DL-interpretation
γ(π) with domain ∆. Set σ(∗) = Π and interpret Boolean
combinations of primitive standpoints as expected by setting
σ(e1 ∧ e2) = σ(e1) ∩ σ(e2) and σ(¬e) = Π \ σ(e). Then
we set for π ∈ Π and d ∈ ∆

– S, π |= C(d) if d ∈ Cγ(π) for C an ALCu-concept;
– S, π |= C ⊓D(d) if S, π |= C(d) and S, π |= D(d);
– S, π |= ¬C(d) if S, π ̸|= C(d);
– S, π |= □eC(d) if S, π′ |= C(d) for all π′ ∈ σ(e);
– S, π |= ∃R.C(d) if there exists f with (d, f) ∈ Rγ(π)

and S, π |= C(f);
– S, π |= ∃U.C(d) if there exists f ∈ ∆ with S, π |=
C(f).

Also set
– S, π |= □e(C ⊑ D) if S, π |= □e∀U.(¬C ⊔D)(d), for

some (equivalently all) d ∈ ∆.
We set S |= □e(C ⊑ D) if S, π |= □e(C ⊑ D) for some
(equivalently all) π ∈ Π. Call formulas of the form□e(C ⊑
D) standpoint inclusions and set, for a set O of standpoint
inclusions and a standpoint inclusion □e(C ⊑ D), O |=S
□e(C ⊑ D) if for all standpoint structures S the following
holds: if S |= α for all α ∈ O, then S |= □e(C ⊑ D).

We encode standpoint logic in S5ALCu in a natural and
straightforward way. First take concept names S1, . . . , Sn
representing primitive standpoints. We take the axioms

αi = □∀U.(∃U.Si ↔ ∀U.Si)
which entail that Si behaves like a proposition (a 0-ary pred-
icate). Any standpoint expression e then corresponds to a
Boolean combination e† of the Si (with ∗ encoded as ⊤).

To translate any standpoint inclusion α = □e(C ⊑ D)
into an S5ALCu -inclusion α† it then only remains to set

α† = (⊤ ⊑ □∀U.(¬(e† ⊓ C†) ⊔D†)),

where C†, D† are obtained from C,D by replacing, recur-
sively, any occurrence of a □gF by □∀(¬g† ⊔ F †).

The following reduction can be proved by induction:

Theorem 30. The following conditions are equivalent for
any set O of standpoint inclusions and standpoint inclusion
α:

1. O |=S α;
2. {δ† | δ ∈ O} ∪ {αi | i ≤ n} |=S5ALCu α†.

C Proofs for Section 3
Theorem 4. EDEP and IEP are polynomial time reducible
to each other.

Proof. EDEP is polynomially reducible to IEP by a stan-
dard trick (Gabbay and Maksimova 2005): a formula ψ has
an explicit σ-definition modulo φ in L iff the formulas φ∧ψ
and φσ → ψσ have an interpolant in L, where φσ , ψσ are
obtained by replacing each variable p /∈ σ with a fresh vari-
able pσ . Indeed, any σ-formula χwith |=L φ→ (ψ ↔ χ) is
an interpolant of φ∧ψ and φσ → ψσ in L. Conversely, any
interpolant of φ∧ψ and φσ → ψσ is an explicit σ-definition
of ψ modulo φ in L.

For the other reduction, we observe first that the decision
problem for L is polynomially reducible to EDEP because,
for ψ = p /∈ sig(φ) and σ = ∅, we have |=L ¬φ iff there
is an explicit σ-definition of ψ modulo φ in L. Then we use
Theorems 5 and 7 to show that formulas φ, ψ have an inter-
polant in L iff |=L φ → ψ and there is a sig(φ) ∩ sig(ψ)-
definition of ψ modulo ψ → φ in L. Indeed, it suffices to
observe that, for any L-models M with w, d and M′ with
w′, d′, we have M, w, d |= φ and M′, w′, d′ |= ¬ψ iff
M, w, d |= (ψ → φ)∧ψ and M′, w′, d′ |= (ψ → φ)∧¬ψ.⊣

D Proof for Example 9
For the formulas

φ = rep ∧ ♢∀
(
inPower→ □(rep→ ¬inPower)

)
,

ψ = □∀(♢inPower ∧ ♢¬inPower ∧ ∃inPower ∧ ∃¬inPower)

φ ∧ ψ is a conservative extension of ψ in Q1S5. Condition
(a) of the definition of conservative extension is trivial. To
show (b), suppose |=Q1S5 φ ∧ ψ → χ, for some χ such that
sig(χ) ⊆ {inPower} = σ. We need to prove |=Q1S5 ψ → χ.
Suppose ψ is true somewhere in a Q1S5-model N. By the
definition of ψ, it is true everywhere in N. Consider the
relation β that connects each inPower-point in N with each
inPower-point in M from Example 8, and each ¬inPower-
point in N with each ¬inPower-point in M. It follows from
the definition of ψ and the structure of M that β is a σ-
bisimulation between N and M. The reader can check that
M, w |= φ ∧ ψ, and so M, w, d |= χ and M, w, e |= χ. As
β is a σ-bisimulation, we obtain that χ is true everywhere in
N, establishing (b).

Now, let ψ′ = ψ∧(p∨¬p), for a fresh proposition p. Then
φ ∧ ψ′ is not a conservative extension of ψ′ as witnessed by
the formula χ below

χ = ¬
(
p ∧□∃(inPower ∧□(p→ inPower))

)
.



Indeed, we have |=Q1S5 φ ∧ ψ′ → χ. For suppose M, w |=
φ∧ψ′, and so w |= rep. Then, by φ, there is a world u with
u |= ∀(inPower → □(rep → ¬inPower)). By ψ′, there
is a domain element d with u, d |= inPower, from which
w, d |= ¬inPower. Moreover, this is the case for all d with
u, d |= inPower.

Now, if w |= ¬p, we have w |= χ. So assume w |= p.
Then u ̸|= ∃(inPower ∧ □(p → inPower)) because if we
had u, d′ |= inPower for some d′, then w, d′ |= ¬inPower,
which is a contradiction. Thus, we obtain w |= χ, which
proves |=Q1S5 φ ∧ ψ′ → χ.

On the other hand, in the Q1S5-model shown in the pic-
ture below, ψ′ is true at w while χ is false, and so ̸|=Q1S5

ψ′ ∧ ψ′ → χ.

d

w
p

inPower

inPower
p

inPower

inPower

p

inPower

E Proofs for Section 4
E.1 Upper bounds
Theorem 10 M, w, d ∼S5

σ M′, w′, d′ if and only if
M, w, d ∼σ M′, w′, d′.

Proof. (⇒) Suppose M, w, d ∼S5
σ M′, w′, d′ is witnessed

by (β1,β2). Define β by setting ((v, e), (v′, e′)) ∈ β iff
(v, v′) ∈ β1, (e, e′) ∈ β2 and ℓσM(v, e) = ℓσM′(v′, e′). It
follows that ((w, d), (w′, d′)) ∈ β. We show that β satis-
fies (a), (w) and (d). Let ((v, e), (v′, e′)) ∈ β. The first
of them follows from ℓσM(v, e) = ℓσM′(v′, e′). To show
(w), take any v ∈ W . As (e, e′) ∈ β2, there is v′ with
(v, v′) ∈ β1 and ℓσM(v, e) = ℓσM′(v′, e′) by (s52), from
which (v, e), (v′, e′) ∈ β. The converse implication of (w)
is symmetric. Finally, take any c ∈ D. By (s51), there is
c′ with (c, c′) ∈ β2 and ℓσM(v, c) = ℓσM′(v′, c′). This and a
symmetric argument establish (d).
(⇐) Let M, w, d ∼σ M′, w′, d′ be witnessed by β. Set

β1 = {(v, v′) | ∃e, e′ ((v, e), (v′, e′)) ∈ S},
β2 = {(e, e′) | ∃v, v′ (v, e), (v′, e) ∈ S}.

Then (w,w′) ∈ β1, (d, d′) ∈ β2, ℓσM(w, d) = ℓσM′(w′, d′).
To show (s51), suppose (v, v′) ∈ β1 and c ∈ D. Then
there are e, e′ with ((v, e), (v′, e′)) ∈ β, and so, by (d),
there is c′ with ((v, c), (v′, c′)) ∈ β, and so (c, c′) ∈ β2
and ℓσM(v, c) = ℓσM′(v′, c′). Condition (s52) is proved simi-
larly using (w). ⊣
Example 12 Let M, w, d |= φ, for M = (W,D, I), and
let n be the number of full types in M (over sub(φ)) and
[n] = {1, . . . , n}. Define D′ to be a set that contains n
distinct copies of each dt in M over sub♢(φ), denoting the
kth copy by dtk. For any wt and dt in M, let πwt,dt be a
function from [n] onto the set of full types ft in M with wt =
ft ∩ sub∃(φ) and dt = ft ∩ sub♢(φ). Let Π be the smallest

set of sequences π of such πwt,dt satisfying the following
condition: for any ft = ftM(u, e) and k ∈ [n], there is π ∈
Π with πwtM(u),dtM(e)(k) = ft. Set W ′ = {wtπM(u) | u ∈
W, π ∈ Π}, treating each wtπM(u) as a fresh π-copy of
wtM(u). As |Π| ≤ n2, both |W ′| and |D′| are exponential
in |φ|. Define an Q1S5-model M′ = (W ′, D′, I ′) by taking
M′,wtπ, dtk |= p iff p ∈ πwt,dt(k). We show by induction
that M′,wtπ, dtk |= ρ iff ρ ∈ πwt,dt(k), for any ρ ∈ sub(φ).
The basis and the Booleans are straightforward.

Case ρ = ∃ξ. If wtπ, dtk |= ρ, there is dt′k
′

with
wtπ, dt′k

′
|= ξ. By IH, ξ ∈ πwt,dt′(k′), so ρ ∈ πwt,dt′(k′)

and ρ ∈ wt, whence ρ ∈ πwt,dt(k). Conversely, let ρ ∈
πwt,dt(k) = ftM(u, e). Then there is e′ with M, u, e′ |= ξ,
and so ξ ∈ ft(u, e′). Let dt′ = dtM(e′). As πwt,dt′ is
surjective, there is k′ with πwt,dt′(k

′) = ft(u, e′), and so
ξ ∈ πwt,dt′(k′). By IH, wtπ, dt′k

′
|= ξ, and so wtπ, dtk |= ρ.

Case ρ = ♢ξ. If wtπ, dtk |= ρ, there exists wt′π
′

with
wt′π

′
, dtk |= ξ. By IH, ξ ∈ π′

wt′,dt(k), so ♢ξ ∈ π′
wt′,dt(k)

and ρ ∈ dt, whence ρ ∈ πwt,dt(k). Conversely, if ρ ∈
πwt,dt(k) = ftM(u, e), there is u′ with M, u′, e |= ξ.
Let wt′ = wtM(u′). By the choice of Π, it has π′ with
π′
wt′,dt(k) = ftM(u′, e). Then ξ ∈ π′

wt′,dt(k), so wt′π
′
, dt |=

ξ by IH and wtπ, dt |= ♢ξ. ⊣

Lemma 14 (i) For every ρ ∈ sub(φ,ψ),

M′
i,wp

π
i , dp

k
i |= ρ iff ρ ∈ πwpi,dpi(k).

Proof. The proof is by induction on the construction of ρ,
with the basis given by (3). For the induction step, suppose
first that ρ = ∃ξ. If M′

i,wp
π
i , dp

k
i |= ρ, then there is dp′k

′

i

such that M′
i,wp

π
i , dp

′k′
i |= ξ. By IH, ξ ∈ πwpi,dp′i(k

′) and
∃ξ ∈ πwpi,dp′i(k

′). Then ∃ξ ∈ wt for wpi = (wt,wm), and
so ρ ∈ πwpi,dpi(k). Conversely, suppose ρ ∈ πwpi,dpi(k),
where πwpi,dpi(k) = ftMi(w, d) with wpi = wpi(w) and
dpi = dpi(d). Then there is d′ with Mi, w, d

′ |= ξ. Let
dp′i = dpi(d

′). As πwpi,dpi is surjective, there is k′ with
ξ ∈ πwpi,dp′i(k

′). By IH, M′
i,wp

π
i , dp

′k′
i |= ξ. It follows

that M′
i,wp

π
i , dp

k
i |= ρ.

Next, let ρ = ♢ξ. Suppose M′
i,wp

π
i , dp

k
i |= ρ. Then

there is wp′π
′

i with M′
i,wp

′π′

i , dpki |= ξ. By IH, ξ ∈
π′
wp′i,dpi

(k) and ♢ξ ∈ π′
wp′i,dpi

(k). Then ♢ξ ∈ dt for
dpi = (dt, dm). It follows that ρ ∈ πwpi,dpi(k). Conversely,
let ρ ∈ πwpi,dpi(k) = ftMi(w, d) with wpi = wpi(w)
and dpi = dpi(d). Then there is w′ with Mi, w

′, d |=
ξ. By the choice of Π, there exists π′ ∈ Π such that
π′
wp′i,dpi

(k) = ftMi
(w′, d), where wp′i = wpi(w

′). Then

ξ ∈ π′
wp′i,dpi

(k), and so M′
i,wp

′π′

i , dpi |= ξ by IH, whence
M′
i,wp

π
i , dpi |= ♢ξ.

The induction step for the Booleans is straightforward. ⊣

Lemma 14 (ii) The pair (β1,β2) is a σ-bisimulation be-
tween M′

1 and M′
2.

Proof. To check (s51), suppose β1(wp
π1

1 ,wpπ
2

2 ) with
wpi = (wti,wmi), for i = 1, 2, so wm1 = wm2. Take



any dpk11 ∈ D′
1 with dp1 = (dt1, dm1). Our aim is to find

dpk22 ∈ D′
2 with dp2 = (dt2, dm2) such that dm1 = dm2

and p ∈ π1
wp1,dp1

(k1) iff p ∈ π2
wp2,dp2

(k2), for every p ∈ σ.
Suppose π1

wp1,dp1
(k1) = ftM1

(u, d), for some (u, d) ∈
W1 × D1. Then wp1 = wp1(u) = (wtM1

(u),wm(u)),
wm1 = wm(u) = (T1(u), T2(u)), and dp1 = dp1(d) =
(dtM1

(d), dm(d)) and dm1 = dm(d) = (S1(d), S2(d)). As
wm1 = wm2, we also have wt2 ∈ T2(u), and so there is
v ∈W2 with u ∼σ v and wp2 = (wtM2(v),wm(v)).

Now, by (s51) for Mi, i = 1, 2, there is e ∈ D2

such that d ∼σ e and ℓσM1
(u, d) = ℓσM2

(v, e). By (dm),
dm(d) = dm(e). As all functions πwpi,dpi are surjective,
there exists k2 ∈ [n] with π2

wp2,dp2
(k2) = ftM2

(v, e), which
implies that p ∈ π1

wp1,dp1
(k1) iff p ∈ π2

wp2,dp2
(k2), for every

p ∈ σ.

wpπ2
2 dpk22

wpπ1
1 dpk11

ft(v, e)

ft(u, d)

σ σ

v e

u d

σ σ

To check (s52), let β2(dp
k1
1 , dp

k2
2 ) with dpi = (dti, dmi),

for i = 1, 2, so dm1 = dm2. Take any wpπ
1

1 ∈ W ′
1

with wp1 = (wt1,wm1). We need to find wpπ
2

2 ∈ W ′
2

with wp2 = (wt2,wm2) such that wm1 = wm2 and p ∈
π1
wp1,dp1

(k1) iff p ∈ π2
wp2,dp2

(k2), for every p ∈ σ.
Let π1

wp1,dp1
(k1) = ftM1

(u, d), for some (u, d) ∈
W1 × D1. Then wp1 = wp1(u) = (wtM1

(u),wm(u)),
wm1 = wm(u) = (T1(u), T2(u)), and dp1 = dp1(d) =
(dtM1(d), dm(d)) and dm1 = dm(d) = (S1(d), S2(d)).

There exists e ∈ D2 such that e ∼σ d and dp2 =
(dtM2

(e), dm(e)). By (s52) for Mi, i = 1, 2, there is
v ∈W2 with u ∼σ v and ℓσM1

(u, d) = ℓσM2
(v, e). By (wm),

we have wm(u) = wm(v). By the choice of Π, there is
π2 ∈ Π such that π2

wp2,dp2
(k2) = ftM2

(v, e), which implies
that p ∈ π1

wp1,dp1
(k1) iff p ∈ π2

wp2,dp2
(k2), for all p ∈ σ. ⊣

Theorem 15 Any formulas φ and ψ are sig(φ) ∩ sig(ψ)-
bisimulation consistent in Q1S5 iff there are witnessing
Q1S5-models of size double-exponential in |φ| and |ψ|.

Proof. Let M1, w1, d1 ∼σ M2, w2, d2, M1, w1, d1 |= φ,
M2, w2, d2 ̸|= ψ, and let σ = sig(φ) ∩ sig(ψ). Con-
sider the models M′

1, M′
2 with σ-bisimulation (β1,β2). For

i = 1, 2, let wpi = wpi(wi) = (wtMi
(wi),wm(wi)) and

let dpi = dpi(di) = (dtMi(di), dm(wi)). By the choice
of Π, we have πi with πiwpi,dpi(1) = ftMi(wi, di). Then

M′
1,wp

π1

1 , dp11 |= φ and M′
2,wp

π2

2 , dp12 ̸|= ψ by Lemma 14
(i). Since w1 ∼σ w2 and d1 ∼σ d2, (wm) and (dm) imply
wm(w1) = wm(w2) and dm(d1) = dm(d2). By Lemma 14
(ii), (wpπ

1

1 ,wpπ
2

2 ) ∈ β1 and (dpπ
1

1 , dpπ
2

2 ) ∈ β2, and so
M′

1,wp
π1

1 , dp11 ∼σ M′
2,wp

π2

2 , dp12. ⊣

Now, Theorems 15, 4 and 5 give the upper bound of

Theorem 16 (i) Both IEP and EDEP for Q1S5 are decidable
in CON2EXPTIME.

Note that, as explained in Section A above, the upper
bound result of Theorem 16 (i) for Q1S5 (or equivalently,
for the equality- and substitution-free fragment of FO2) does
not directly follow from the upper bound result for FO2

in (Jung and Wolter 2021) (though can also be proved by
using a simplified version of the proof in (Jung and Wolter
2021)).

E.2 Lower bounds
Theorem 16 (ii) IEP and EDEP for Q1S5 are both
2EXPTIME-hard.

Proof. We reduce the word problem for languages recog-
nised by exponentially space bounded alternating Turing
machines (ATMs). It is well-known that there are 2n-
space bounded ATMs for which the recognised language is
2EXPTIME-hard (Chandra, Kozen, and Stockmeyer 1981).

A 2n-space bounded ATM is a tuple M = (Q, q0,Γ,∆),
whose set Q of states is partitioned to ∀-states and ∃-states,
with the initial state q0 being a ∀-state; Γ is the tape alphabet
containing the blank symbol ♭; and

∆: Q× Γ→ P
(
Q× Γ× {L,R}

)
is the transition function such that |∆(q, a)| is always either
0 or 2, and ∀-states and ∃-states alternate on every compu-
tation path. ∀- and ∃-configurations are represented by 2n-
long sequences of symbols from Γ ∪ (Q× Γ), with a single
symbol in the sequence being from Q× Γ.

Similarly to (Jung and Wolter 2021), we use the follow-
ing (slightly non-standard) acceptance condition. An ac-
cepting computation-tree is an infinite tree of configurations
such that ∀-configurations always have 2 children, and ∃-
configurations always have 1 child (marked by 0 or 1). We
say that M accepts an input word a = (a0, a1, . . . , an−1)
if there is an accepting computation-tree with the configura-
tion

cinit =
(
(q0, a0), a1, . . . , an−1, ♭, . . . , ♭

)
at its root. Note that, starting from the standard ATM ac-
ceptance condition defined via accepting states, this can be
achieved by assuming that the 2n-space bounded ATM ter-
minates on every input and then modifying it to enter an
infinite loop from the accepting state.

Given a 2n-space bounded ATM M and an input word a
of length n, we will construct in polytime formulas φ and ψ
such that

1. |=Q1S5 φ→ ψ, and
2. M accepts a iff φ, ¬ψ are σ-bisimulation consistent,

where σ = sig(φ) ∩ sig(ψ).
By Theorems 4 and 5, it follows that both IEP and EDEP are
2EXPTIME-hard for Q1S5.

One aspect of our construction is similar to that of (Ar-
tale et al. 2021; Jung and Wolter 2021): we also represent
accepting computation-trees as binary trees whose nodes are
coloured by predicates in σ. However, unlike the formalisms
in the cited work, Q1S5 cannot express the uniqueness of
properties, and so the remaining ideas are novel. One part of



φ ‘grows’ 2n-many copies of σ-coloured binary trees, using
a technique from 2D propositional modal logic (Hodkinson
et al. 2003; Göller, Jung, and Lohrey 2015). Another part of
φ colours the tree-nodes with non-σ-symbols to ensure that,
in the mth tree, for each m < 2n, the content of the mth
tape-cell is properly changing during the computation. Then
we use ideas from Example 6 to make sure that the gener-
ated 2n-many trees are all σ-bisimilar, and so represent the
same accepting computation-tree.

We begin with defining the conjuncts (5)–(38) of φ. We
will use three counters, B, U and V , each counting modulo
2n and implemented using 2n-many unary predicate sym-
bols: hA0 , . . . ,h

A
n−1, vA0 , . . . ,v

A
n−1 for A ∈ {B,U, V }. We

write equA for
∧
i<n(h

A
i ↔ vAi ), and write [A=m] for

m < 2n, if equA holds and the hA- and vA-sequences rep-
resent m in binary. We use notation [A<m] and [A ̸=m]

similarly. We write succA for expressing that ‘hA-value =
vA-value+1 (mod 2n)’:∨

i<n

(
hAi ∧ ¬vAi ∧

∧
j<i

(¬hAj ∧ vAj ) ∧
∧

i<j<n

(hAj ↔ vAj )
)

∨
∧
i<n

(¬hAi ∧ vAi ).

We express, for A ∈ {B,U, V }, that the hA-predicates are
‘modally-stable’ and the vA-predicates are ‘FO-stable’:

□∀
∧
i<n

(
(hAi → □h

A
i ) ∧ (¬hAi → □¬h

A
i )

)
, (5)

□∀
∧
i<n

(
(vAi → ∀vAi ) ∧ (¬vAi → ∀¬vAi )

)
. (6)

We use the B-counter to generate 2n-many ‘special’ equB-
points ‘coloured’ by a fresh predicate r for the root-node
of the trees representing the computation. The succB-points
used in generating the r-points will be marked by a fresh
predicate nB (for ‘next B’):

[B=0] ∧ r, (7)

□∀
(
r ∧ [B ̸=2n − 1]→ ∃nB

)
, (8)

□∀(nB → ♢r), (9)

□∀(r → equB), (10)

□∀(nB → succB). (11)

Then, at each r-point, we ‘grow’ an infinite binary rooted
tree that we will use to represent the accepting computation-
tree of M on a as follows. The binary tree is divided into
2n-long ‘linear’ levels (where each node has one child only):
each linear 2n-long subpath within such a level represents a
configuration. In addition, the infinite binary tree is branch-
ing to two at the last node of the linear subpath represent-
ing each ∀-configuration (see more details in the proof of
Lemma 32 below).

We grow this infinite binary tree with the help of the U -
counter. Nodes of this infinite ‘U -tree’ are marked by a
fresh predicate t, and the succU -points used in generating
the t-points will be marked by a fresh predicate nU . First,

we generate a computation-tree ‘skeleton’ of alternating ∀-
and ∃-levels, and with appropriate branching. We use fresh
predicates q∀ and qi∃, i = 0, 1, to mark the levels, and
an additional predicate z to enforce two different children
at ∀-levels. Given any formula χ, we write next(χ) for
∀
(
nU → □(t → χ)

)
. We add the following conjuncts,

for i = 0, 1:

□∀
(
r → [U =0] ∧ q∀ ∧ t

)
, (12)

□∀(t→ ∃nU ), (13)

□∀(nU → ♢t), (14)

□∀(t→ equU ), (15)

□∀(nU → succU ), (16)

□∀
(
t ∧ [U ̸=2n − 1] ∧ q∀ → next(q∀)

)
, (17)

□∀
(
t ∧ [U ̸=2n − 1] ∧ qi∃ → next(qi∃)

)
, (18)

□∀
(
t ∧ [U =2n − 1] ∧ q∀

→ ∃(nU ∧ z) ∧ ∃(nU ∧ ¬z)
)
, (19)

□∀
(
t ∧ [U =2n − 1] ∧ q∀ → next(q0

∃ ∨ q1
∃)
)
, (20)

□∀
(
t ∧ [U =2n − 1] ∧ qi∃ → next(q∀)

)
. (21)

Next, for each γ ∈ Γ ∪ (Q × Γ), we introduce a fresh
predicate sγ . We initialise the computation on input a =
(a0, a1, . . . , an−1), where ai ̸= ♭ for i < n:

□∀
(
r → s(q0,a0)

∧ next(sa1 ∧ . . . next(san−1 ∧ next(s♭)) . . .)
)
, (22)

□∀
(
t ∧ s♭ ∧ [U ̸=2n − 1]→ next(s♭)

)
. (23)

Next, we ensure that the subsequent configurations are prop-
erly represented. Using the V -counter, we ensure that, for
each m < 2n, the U -tree that is grown at the mth r-point
properly describes the ‘evolution’ of themth tape-cell’s con-
tent during the accepting computation. We begin with ensur-
ing that the V -counter increases along the U -counter, and
with initialising it as 2n − 1 −m of the value m of the B-
counter:

□∀(t→ equV ), (24)

□∀(nU → succV ), (25)

□∀
[
r →

∧
i<n

(
(hBi ↔ ¬h

V
i ) ∧ (vBi ↔ ¬vVi )

)]
. (26)

Below we enforce the proper evolution of the ‘middle’ sec-
tion of the 2n-long tape (when 0 < m < 2n − 1), the two
missing cells at the beginning and the end of the tape can be
handled similarly.

In order to do this, we represent the transition function ∆
of M by two partial functions

fi :
(
Γ ∪ (Q× Γ)

)3 → (
Γ ∪ (Q× Γ)

)
, for i = 0, 1,

giving the next content of the middle-cell for each triple of
cells. We ensure that the domain of the fi is proper by tak-
ing, for all (q, a) with |∆(q, a)| = 0, the conjunct

□∀¬s(q,a). (27)



For each γ = (γ0, γ1, γ2) ∈
(
Γ ∪ (Q × Γ)

)3
in the domain

of any of the fi, we write cellsγ for

sγ0 ∧ ∃
[
nU ∧ ♢

(
t ∧

(
sγ1 ∧ ∃(nU ∧ ♢sγ2)

))]
.

In addition to the sγ variables, for some γ ∈ Γ ∪ (Q × Γ),
we will use additional variables s0γ , s1γ , and s+γ , and have
the conjuncts, for i = 0, 1 and γ in the domain of any of the
fi:

□∀
(
t ∧ [V =2n − 1] ∧ [U < 2n − 2] ∧ cellsγ ∧ q∀

→ next(s0f0(γ) ∧ s1f1(γ))
)
, (28)

□∀
(
t ∧ [V =2n − 1] ∧ [U < 2n − 2] ∧ cellsγ ∧ qi∃

→ next(sifi(γ))
)
, (29)

□∀
(
t ∧ [U ̸=2n − 1] ∧ siγ → next(siγ)

)
, (30)

□∀
(
t ∧ [U =2n − 1] ∧ q∀ ∧ s0γ →

∀
(
nU ∧ z → □(t→ s+γ )

))
, (31)

□∀
(
t ∧ [U =2n − 1] ∧ q∀ ∧ s1γ →

∀
(
nU ∧ ¬z → □(t→ s+γ )

))
, (32)

□∀
(
t ∧ [U =2n − 1] ∧ qi∃ ∧ siγ → next(s+γ )

)
, (33)

□∀
(
t ∧ [V ̸=2n − 1] ∧ s+γ → next(s+γ )

)
, (34)

□∀
(
t ∧ [V =2n − 1] ∧ s+γ → next(sγ)

)
. (35)

Finally, we introduce a fresh predicate e that will ‘interact’
with the formula ψ. We add conjuncts to φ ensuring that
each of the generated U -trees stays within the ‘B-domain’
of its root r-point (meaning every node of these trees is an
e-point having the same B-value):

□∀(t ∨ nU → e), (36)

□∀(e→ equB), (37)

□∀
∧
i<n

(
e ∧ vBi → □(e→ vBi )

)
. (38)

By this, we have completed the definition of φ.
Next, using the second formula of Example 6, we define

the formula ψ such that sig(φ) ∩ sig(ψ) is the set

σ =
{
e, r,nU , z, t, q∀, q

0
∃, q

1
∃
}
∪
{
sγ | γ ∈ Γ∪ (Q×Γ)

}
.

We let

ψ = χ ∧□∀(e↔ b0 ∨ b1)→
♢∃

(
b0∧♢(¬e∧∃b0)

)
∨♢∃

(
b1∧♢(¬e∧∃b1)

)
,

where χ =
∧

p∈σ \{e}(p → p) and b0, b1 are fresh predi-
cates.
Lemma 31. If n > 1 then |=Q1S5 φ→ ψ.

Proof. Suppose M, w0, d0 |= φ ∧ □∀(e ↔ b0 ∨
b1) for some model M = (W,D, I). Then, by (7)–
(11), we have at least 2n> 3 different r-points (w0, d0),
. . . , (w2n−1, d2n−1) in W × D, with the respective B-
values 0, . . . , 2n− 1. As r-points are also e-points by (12)

and (36), the pigeonhole principle implies that there are
i ̸= j < 2n−1, k ∈ {0, 1} such that M, wi, di |= bk and
M, wj , dj |= bk. Then M, wj , di |= ¬e by (38), and so
M, w0, d0 |= ψ. ⊣

Lemma 32. If M accepts a then φ, ¬ψ are σ-bisimulation
consistent.

Proof. Let T = (T, S0, S1, q∀, q
0
∃, q

1
∃, sγ)γ∈Γ∪(Q×Γ) be

the infinite binary tree-shaped FO-structure with root r ∈ T
and binary predicates S0, S1, that represents the accepting
computation-tree of M on a as discussed after formula (11)
above, that is, configurations are represented by subpaths
of 2n-many nodes linked by S0. Every node of the 2n-
long subpath representing a ∀-configuration is coloured by
q∀. The last node representing a ∀-configuration has one
Si-child, for each of i = 0, 1, where the representations of
the two subsequent ∃-configurations start. For i = 0, 1, if
it is the i-child of an ∃-configuration c that is present in the
computation-tree, then every node of the 2n-long subpath
representing c is coloured by qi∃ (see Fig. 1 for an exam-
ple). The last node representing an ∃-configuration has one
S0-child, where the representation of the next configuration
starts. Nodes representing a configuration are also coloured
with sγ for the corresponding symbol γ from Γ ∪ (Q× Γ).

We begin by defining a model M = (W,D, I) making φ
true. Take 2·2n many disjoint copiesWm andDm,m < 2n,
of T and let W =

⋃
m<2n Wm and D =

⋃
m<2n Dm. For

each m < 2n and t ∈ T , let wtm and dtm denote the copy
of t in Wm and Dm, respectively. We define I first for the
symbols in σ. For allm < 2n, t ∈ T and p ∈ {q∀, q

0
∃, q

1
∃}∪

{sγ | γ ∈ Γ ∪ (Q× Γ)}, we let

eI(w
t
m) = {dt

′

m | t′ ∈ T}, (39)

rI(w
t
m) =

{
{dtm}, if t = r,
∅, otherwise,

(40)

(nU )I(w
t
m) = {dt

′

m | S0(t, t
′) or S1(t, t

′)}, (41)

zI(w
t
m) = {dt

′

m | S0(t, t
′)}, (42)

tI(w
t
m) = {dtm}, (43)

pI(w
t
m) =

{
{dtm}, if p(t) holds in T,
∅, otherwise.

(44)

Next, we define I for the symbols not in σ. The hBi - and
vBi -predicates, for i < n, set up a binary counter counting
from 0 to 2n− 1 on pairs (wr0, d

r
0), . . . , (w

r
2n−1, d

r
2n−1) in

such a way that they are
– stable within each Wm ×Dm, m < 2n: if M, wrm, d

r
m |=

hBi then M, w, d |= hBi for all w ∈ Wm, d ∈ Dm; if
M, wrm, d

r
m |= vBi then M, w, d |= vBi for all w ∈ Wm,

d ∈ Dm;
– the hBi -predicates are modally-stable: if M, w, d |= hBi

for some w ∈ W and d ∈ D then M, w′, d |= hBi for all
w′ ∈W ;

– the vBi -predicates are FO-stable: if M, w, d |= vBi for
some w ∈ W and d ∈ D then M, w, d′ |= vBi for all
d′ ∈ D.
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Figure 1: Representing accepting computation-trees.

We let, for all m < 2n and t ∈ T ,

(nB)I(w
t
m) =

{
{dtm+1}, if m < 2n− 1 and t = r,
∅, otherwise.

For each m < 2n, the hUi - and vUi -predicates, for i < n,
set up a binary counter counting from 0 modulo 2n infinitely
along the levels of the tree T, on pairs of the form (wtm, d

t
m),

for t ∈ T . The hUi -predicates are modally-stable, while the
vUi -predicates are FO-stable, in the above sense.

Then, for each m < 2n, the modally-stable hVi - and the
FO-stable vVi -predicates set up a binary counter counting
from 2n−1−mmodulo 2n infinitely along the levels of the
tree T, on pairs of the form (wtm, d

t
m), for t ∈ T . Also, we

extend the FO-structure T to T+
m by adding unary predicates

s0γ , s1γ , s+γ , for γ ∈ Γ∪ (Q×Γ), see Fig. 2. For all m < 2n,
t ∈ T , p ∈ {s0γ , s1γ , s+γ | γ ∈ Γ ∪ (Q× Γ)}, we let

pI(w
t
m) =

{
{dtm}, if p(t) holds in T+

m,
∅, otherwise.

It is readily checked that M, wr0, d
r
0 |= φ.

Next, we define a model M̂ = (Ŵ , D̂, Î) making¬ψ true.
We take 2 · 2 disjoint copies Ŵ0, Ŵ1 and D̂0, D̂1 of T and
let Ŵ = Ŵ0 ∪ Ŵ1 and D̂ = D̂0 ∪ D̂1. For each k < 2 and
t ∈ T , let ŵtm and d̂tm denote the copy of t in Ŵk and D̂k,
respectively. Now, for symbols in σ we define Î similarly
to I in (39)–(44) above. For symbols not in σ the only ones
with non-empty Î-extensions are the bi, for i < 2: For all
i, k < 2, t ∈ T, we let

b
Î(ŵt

k)
i =

{
{d̂t′i | t′ ∈ T}, if k = i,
∅, otherwise.

It is readily checked that M̂, ŵr0, d̂
r
0 |= ¬ψ.
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e
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Ŵ0 Ŵ1

r

r

e, b0
T

e, b1
T

Finally, we define a relation β ⊆ (W ×D) × (Ŵ × D̂)

by taking, for any w, d, ŵ, d̂,
(
(w, d), (ŵ, d̂)

)
∈ β iff there

exist t, t′ ∈ T , m,m′ < 2n, k, k′ < 2 such that w = wtm,
d = dt

′

m′ , ŵ = ŵtk, d̂ = d̂t
′

k′ , and m = m′ iff k = k′. It is
not hard to show that β is a σ-bisimulation between M and
M̂ with

(
(wr0, d

r
0), (ŵ

r
0, d̂

r
0)
)
∈ β. ⊣
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Figure 2: Passing information from one configuration to the next.
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Figure 3: Enforcing 2n σ-bisimilar trees.

Lemma 33. If n > 1 and φ, ¬ψ are σ-bisimulation consis-
tent, then M accepts a.

Proof. Let M, w0, d0 and M′, w′
0, d

′
0 be models such that

M, w0, d0 |= φ, M′, w′
0, d

′
0 |= ¬ψ, and M, w0, d0 ∼σ

M′, w′
0, d

′
0. Let (w0, d0), . . . , (w2n−1, d2n−1) be subse-

quent r-points in M generated by (7)–(11), with the re-
spective B-values 0, . . . , 2n− 1. By (12) and (36), we have
M, wi, di |= e, for i < 2n. We claim that for all i, j < 2n

there exist wij , dij such that

M, wij , dij |= [B= i], (45)
M, wij , dij ∼σ M, wj , dj . (46)

Indeed, to begin with, there exist w′
i, d

′
i such that

M, wi, di ∼σ M′, w′
i, d

′
i, and so M′, w′

i, d
′
i |= e. Let k <

2n and k ̸= i, j. As the B-values of (wi, di) and (wk, dk)
are different, M, wk, di |= ¬e follows by (37). Thus, there
exist w′

k, d
′
k such that M′, w′

k, d
′
i |= ¬e, M′, w′

k, d
′
k |=

e, and M, wk, dk ∼σ M′, w′
k, d

′
k. Similarly, there exist

w′
j , d

′
j such that M′, w′

j , d
′
k |= ¬e, M′, w′

j , d
′
j |= e, and

M, wj , dj ∼σ M′, w′
j , d

′
j , see Fig. 3.

As M′, w′
0, d

′
0 |= ¬ψ, we have M′, w′

i, d
′
i |= bs for

s = 0 or s = 1. Suppose s = 0 (the other case is
similar). It follows from ¬ψ that M′, w′

k, d
′
k |= b1 and

M′, w′
j , d

′
j |= b0. Then M′, w′

j , d
′
i |= e again follows from

¬ψ. As M, wi, di ∼σ M′, w′
i, d

′
i, there are wij , dij such

that M, wij , di |= e, M, wij , dij |= e, and M, wij , dij ∼σ
M′, w′

j , d
′
j Therefore, M, wij , dij ∼σ M, wj , dj , and so

(46) holds. We also have M, wij , dij |= equB by (37), and
so (45) follows from (38) and (6).

In particular, (45) and (46) imply that, for each m < 2n,
there exist w+

m, d
+
m such that M, w+

m, d
+
m |= [B=m] and

M, w+
m, d

+
m ∼σ M, w0, d0. Take the U -tree T0 grown

from (w0, d0) by (12)–(21). Then it has a σ-bisimilar copy
T′
m grown from each (w+

m, d
+
m). Choose a computation-

tree ‘skeleton’ from T0 determined by its qi∃ labels. As
e, r, z,nU , t, q∀, q

i
∃ ∈ σ, the formulas (22)–(35) imply that

the sγ labels in T′
m properly describe the ‘evolution’ of the

mth tape-cell’s content via the chosen ‘skeleton’. As all sγ
are in σ, using its sγ labels and (27), we can extract an ac-
cepting computation-tree from T0 (with all tape-cell con-
tents evolving properly). ⊣



This completes the proof of Theorem 16. ⊣
Next, we show that the lower bound results of Theo-

rem 16 (ii) hold even if we want to decide, for any FOM1-
formulas φ, ψ, whether an interpolant (or an explicit def-
inition) exists not only in Q1S5, but in any finite-variable
fragment of quantified S5. More precisely, we claim that,
for any n, ℓ < ω with 2n > ℓ+1, given a 2n-space bounded
ATM M and an input word a of length n, there exist poly-
time FOM1-formulas φ and ψℓ such that

1. |=Q1S5 φ→ ψℓ, and
2. M accepts a iff φ, ¬ψℓ are σ-bisimulation consistent

in the ℓ-variable fragment of quantified S5, where σ =
sig(φ) ∩ sig(ψℓ).

Indeed, φ is like above and ψℓ is similar to ψ = ψ1 above:
we just divide e not to two but ℓ+ 1 parts, using fresh vari-
ables b0, . . . , bℓ. Then the proof that these work is similar
to the proof above.

Corollary 17. IEP and EDEP for FO2 without equality are
both 2EXPTIME-hard.

Proof. For the equality- and substitution-free frag-
ment of FO2, this is now a straightforward consequence of
Lemma 29: We can simply use the †-translations of the for-
mulas used in the proof of Theorem 16 (ii). In order to
prove Corollary 17 for the equality-free fragment, we need
an additional step: We need to show that there are suitable
bijections between the FO- and modal domains of each of
the two (square) Q1S5-models constructed in the proof of
Lemma 32 such that the resulting FO-models are not only
σ-bisimilar in the equality- and substitution-free fragment of
FO2, but they are also σ-bisimilar in the equality-free frag-
ment. In fact, we claim that they are σ-bisimilar in full FO2,
and so Corollary 17 can be considered as a generalisation of
the lower bound result in (Jung and Wolter 2021).

To this end, take the σ-bisimulation β in Q1S5 between
the Q1S5-models M = (W,D, I) and M̂ = (Ŵ , D̂, Î) de-
fined in the proof of Lemma 32. Now define a bijection
f : D → W by taking f(dtm) = wtm for all m < 2n,
t ∈ T , and a bijection f̂ : D̂ → Ŵ by taking f̂(d̂tk) = ŵtk
for all k < 2, t ∈ T . Using that (i) the respective re-
strictions of the FO-models AM,f to Dm and AM̂,f̂ to D̂k

are σ-isomorphic for any m < 2n, k < 2, and (ii) for all
p ∈ σ we have AM,f ̸|= p[y/dtm, x/d

t′

m′ ] if m ̸= m′, and
AM̂,f̂ ̸|= p[y/d̂tk, x/d̂

t′

k′ ] if k ̸= k′, it is straightforward to
see that the relation

βf,f̂ =
{(

(a, b), (â, b̂)
)
∈ (D ×D)× (D̂ × D̂) |(

(f(a), b), f̂(â), b̂)
)
∈ β

}
is a σ-bisimulation between AM,f and AM̂,f̂ in FO2. ⊣

F Proofs for Section 5
Theorem 18 (i) (S)CEP in Q1S5 is undecidable.

Proof. The proof is by reduction of the following unde-
cidable tiling problem. By a tiling system we mean a tuple

T = (T,H, V,o, z↑, z→), where T is a finite set of tiles
with o, z↑, z→ ∈ T , and H,V ⊆ T × T are horizontal and
vertical matching relations. We say that T has a solution
if there exists a triple (n,m, τ), where 0 < n,m < ω and
τ : {0, . . . , n − 1} × {0, . . . ,m − 1} → T , such that the
following hold, for all i < n and j < m:

(t1) if i < n− 1 then (τ(i, j), τ(i+ 1, j)) ∈ H;

(t2) if j < m− 1 then (τ(i, j), τ(i, j + 1)) ∈ V ;

(t3) τ(i, j) = o iff i = j = 0;

(t4) τ(i, j) = z→ iff i = n − 1, and τ(i, j) = z↑ iff j =
m− 1.

The reader can easily show by reduction of the halting prob-
lem for Turing machines that it is undecidable whether a
given tiling system has a solution; cf. (van Emde Boas
1997).

For any tiling system T = (T,H, V,o, z↑, z→), we show
how to construct in polytime formulas φ and ψ such that T
has a solution iff φ ∧ ψ is not a (strong) conservative ex-
tension of φ. For any model M = (W,D, I), we mark the
points on the finite grid to be tiled by a predicate g, that is,
we let

gM = {(w, d) ∈W ×D | d ∈ gI(w)}.

Then we define the intended ‘horizontal’ and ‘vertical’
neighbour relations RM

h and RM
v on the grid by setting

RM
h =

{(
(w, d), (w′, d′)

)
∈ gM × gM |

(w′, d) |= x, (w, d) |= ¬z→}
, (47)

RM
v =

{(
(w, d), (w′, d′)

)
∈ gM × gM |

(w, d′) |= y, (w, d) |= ¬z↑}. (48)

We set, for any formula χ,

♢hχ = g ∧ ¬z→ ∧ ♢
(
x ∧ ∃(g ∧ χ)

)
,

♢vχ = g ∧ ¬z↑ ∧ ∃
(
y ∧ ♢(g ∧ χ)

)
,

and □hχ = ¬♢h¬χ, □vχ = ¬♢v¬χ. Now φ uses the
following conjuncts to generate the grid:

o ∧ g

□∀
(
g ∧ ¬(z↑ ∧ z→)→ ♢x

)
□∀(x→ ∃g)
□∀(g ∧ ¬z↑ → ∃y) (49)
□∀(y → ♢g). (50)

Next, we regard each tile t ∈ T as a fresh predicate, and we
add the following conjuncts to φ, expressing the constraints



for the tiles:

□∀(g ∧ ¬♢h⊤ → z→) (51)

□∀(g ↔
∨
t∈T

t) (52)

□∀
∧
t ̸=t′

(t→ ¬t′) (53)

□∀
(
t→ □h

∨
(t,t′)∈H

t′
)

(54)

□∀
(
t→ □v

∨
(t,t′)∈V

t′
)

(55)

□∀(g → ¬♢ho ∧ ¬♢vo) (56)

□∀
(
(z→ → □vz→) ∧ (♢vz

→ → z→)
)

(57)

□∀
(
(z↑ → □hz↑) ∧ (♢hz

↑ → z↑)
)

(58)

Let σ = sig(φ) = {g,x,y} ∪ {t | t ∈ T}.
Note that we have not yet forced RM

h , R
M
v to form a grid-

like structure on gM-points. We say that a gM-point (w, d)
is confluent if, for every RM

h -successor (wh, dh) and every
RM
v -successor (wv, dv) of (w, d), there is (w′, d′) that is

both an RM
v -successor of (wh, dh) and an RM

h -successor
of (wv, dv). Forcing the grid to be finite and confluence
of all grid-points are achieved using the formula ψ, which
contains two additional predicates, q and s, behaving like
second-order variables over grid-points. We set

ψ = q ∧□∀
(
q → ♢hq ∨ ♢vq ∨ (♢v□hs ∧ ♢h□v¬s)

)
.

It is readily seen that whenever M, w0, d0 |= φ, for some
model M, then the following are equivalent:
(c1) M′, w0, d0 |= ψ, for some model M′ = (W,D, I ′)

with I ′ the same as I on all predicates save possibly q
and s (we call such an M′ a variant of M);

(c2) M contains an infinite RM
h ∪ RM

v -path starting at
(w0, d0) or a non-confluent gM-point accessible from
(w0, d0) via an RM

h ∪RM
v -path.

Lemma 34. If T has a solution, then φ ∧ ψ is not a conser-
vative extension of φ.

Proof. Suppose (n,m, τ) is a solution to T. We enumer-
ate the points of the n ×m-grid starting from the first hor-
izontal row (0, 0), . . . (n − 1, 0), then continuing with the
second row (0, 1), . . . , (n − 1, 1), and so on. We define a
model N = (W,D, J) with W = D = {0, . . . , nm − 1}
that represents this enumeration as follows (remember that
o, z↑, z→ ∈ T , z↑ marks the tiles of last row, and z→ marks
the tiles of the last column). For all k < nm and t ∈ T ,

gJ(k) = {k} (59)

xJ(k) =

{ {k − 1}, if k > 0,
∅, otherwise,

(60)

yJ(k) =

{ {k + n}, if k < nm− n,
∅, otherwise,

(61)

tJ(k) =

{ {k}, if k = jn+ i and τ(i, j) = t,
∅, otherwise.

(62)
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Figure 4: The model N.

For n = m = 3, the model N (without tiles other than
o, z→, z↑) and the relationsRN

h ,RN
v are illustrated in Fig. 4.

It is easy to check that N, 0, 0 |= φ and N′, 0, 0 |= ¬ψ,
for any variant N′ of N.

We construct a formula χ with sig(χ) = σ such that
|=Q1S5 ψ ∧ φ → ¬χ but ̸|=Q1S5 φ → ¬χ, which means
that φ ∧ ψ is not a (strong) conservative extension of φ. In-
tuitively, the formula χ characterises the model N at (0, 0).
First, for every (i, j) ∈W ×D, we construct a formula φi,j
such that, for all (i′, j′) ∈W ×D,

N, i′, j′ |= φi,j iff (i′, j′) = (i, j). (63)

For instance, we can set inductively

φ0,0 = o,

φi+1,i+1 = g ∧ ∃(x ∧ ♢φi,i),
φi,j = ∃φi,i ∧ ♢φj,j , for i ̸= j.

Now let

χi,j = φi,j ∧
∧

p∈σ, N,i,j|=p

p ∧
∧

p∈σ, N,i,j|=¬p

¬p, (64)

and let χ be the conjunction of

χ0,0, (65)
□∀(χi,i → □hχi+1,i+1), for i < nm− 1, (66)
□∀(χi,i → □vχi+n,i+n), for i < nm− n, (67)
□∀(χi,i → ♢χj,i), for i, j < nm, (68)
□∀(χi,i → ∃χi,j), for i, j < nm, (69)
□∀(♢χl,i ∧ ∃χi,j → χi,i), for i, j, l < nm. (70)



Using (73), it is easy to see that N, 0, 0 |= χ, and so φ ∧
χ is satisfiable, i.e., ̸|=Q1S5 φ → ¬χ. Now suppose that
M is any model such that M, w0, d0 |= φ ∧ χ for some
w0, d0. Using the equivalence (c1) ⇔ (c2) above, we show
that M, w0, d0 |= ¬ψ, which implies |=Q1S5 ψ ∧ φ→ ¬χ.

To begin with, by (47), (48), the definition of N, and
(64)–(67), there cannot exist an infinite RM

h ∪ RM
v -chain.

Now suppose there is an RM
h ∪ RM

v -chain from (w0, d0)
to some node (w, d) with an RM

h -successor (w1, d1) and
RM
v -successor (w2, d2). Then M, w, d |= χi,i for some i,

M, w1, d1 |= χi+1,i+1 and M, w2, d2 |= χi+n,i+n, by (65)–
(67). By (68) and (69), there exist d′1 with M, w1, d

′
1 |=

χi+1,i+n+1, and w′
2 with M, w′

2, d2 |= χi+n+1,i+n. By
(70), M, w′

2, d
′
1 |= χi+n+1,i+n+1. Moreover, as by (64),

z↑ is not a conjunct of χi+1,i+1, and z→ is not a conjunct
of χi+n,i+n, we have that y is a conjunct of χi+1,i+n+1,
and x is a conjunct of χi+n+1,i+n. Thus, by (47) and (48),
((w1, d1), (w

′
2, d

′
1)) ∈ RM

v and ((w2, d2)(w
′
2, d

′
1)) ∈ RM

h ,
and so (w, d) is confluent. ⊣

We say that a formula α is a model conservative exten-
sion of a formula β if |=L α → β and, for any model
M, w, d with M, w, d |= β, there exists a model M′ with
M′, w, d |= α, which coincides with M except for the inter-
pretation of the predicates in sig(α)\ sig(β). Clearly, if α is
a model conservative extension of β, then α is also a strong
conservative extension of β. Thus, if φ ∧ ψ in our proof is
not a conservative extension of φ, then φ∧ψ is not a model
conservative extension of φ.
Lemma 35. If φ ∧ ψ is not a conservative extension of φ,
then T has a solution.

Proof. Consider a model M = (W,D, I) such that
M, w, d |= φ but M′, w, d |= ¬ψ in any variant M′ of
M. Using the equivalence (c1) ⇔ (c2), one can easily find
within M a finite grid-shaped (with respect to RM

h and RM
v )

submodel, which gives a solution to T.
For instance, we can start by taking an RM

h -path of gM-
points

(w, d) = (w0
0, d

0
0)R

M
h (w0

1, d
0
1)R

M
h . . . RM

h (w0
n−1, d

0
n−1),

for some n > 0, that ends with the first point (w0
n−1, d

0
n−1)

such that M, w0
n−1, d

0
n−1 |= z→. Such a path must exist by

¬(c2) and (51). The chosen points (w0
i , d

0
i ) form the first

row of the required grid.
Next, observe that □∀(g ∧ ¬♢v⊤ → z↑) follows from

(49) and (50). So, similarly to the above, by ¬(c2) we can
take an RM

v -path

(w0
0, d

0
0)R

M
v (w1

0, d
1
0)R

M
v . . . RM

h (wm−1
0 , dm−1

0 ),

for some m > 0, that ends with the first point
(wm−1

0 , dm−1
0 ) such that M, wm−1

0 , dm−1
0 |= z↑. It forms

the first column of the grid. By ¬(c2) again, the point
(w0

0, d
0
0) is confluent, and so we find (w1

1, d
1
1) with

(w0
1, d

0
1)R

M
v (w1

1, d
1
1) and (w1

0, d
1
0)R

M
h (w1

1, d
1
1).

Similarly, we find the remaining gM-points (wji , d
j
i ) for the

whole n ×m-grid. By (52) and (53), each (wji , d
j
i ) makes

exactly one tile t ∈ T true. By (54) and (55), the matching
conditions of (t1) and (t2) are satisfied. By (56), we have
(t3). Finally, (t4) is satisfied by (57) and (58). ⊣

This completes the proof of Theorem 18 (i). ⊣
Theorem 18 (ii) UIEP in Q1S5 is undecidable.
Proof. We prove the undecidability using a combination

of the proof of Theorem 18 (i) and Example 19. Take T,
φ, and ψ from the proof of Theorem 18 (i). Using fresh
predicates a, b,p1,p2, and φ0 from Example 19, set

φ′ = φ ∧ (p1 → p1) ∧ (p2 → p2),

ψ′ = (ψ ∨ a) ∧ φ0.

Let σ = sig(φ′). We show that it is undecidable whether
there exists a σ-uniform interpolant of φ′ ∧ ψ′ in Q1S5.
Lemma 36. If there is no σ-uniform interpolant of φ′ ∧ ψ′

in Q1S5, then T has a solution.

Proof. As the assumption implies that φ′ ∧ ψ′ is not a
model conservative extension of φ′, the proof is a straight-
forward variant of the proof of Lemma 35. Consider a model
M = (W,D, I) with M, w, d |= φ′ but M′, w, d |= ¬ψ′

in any variant M′ of M obtained by interpreting the pred-
icates q, s,a, b. In particular, if a and b are both inter-
preted as ∅ in all worlds, then M′, w, d |= φ0, and so
M′, w, d |= ¬ψ follows. But this case is considered in the
proof of Lemma 35. ⊣

Lemma 37. If T has a solution, then there is no σ-uniform
interpolant of φ′ ∧ ψ′ in Q1S5.

Proof. Assume that (n,m, τ) is a solution to T. Take the
formulas χ and χs constructed in the proof of Lemma 34
and in Example 19, respectively. As it was shown, we have
|=Q1S5 φ ∧ ψ → ¬χ and |=Q1S5 a ∧ φ0 → χs for all s > 0.
Thus, |=Q1S5 φ

′ ∧ ψ′ → (χ→ χs) for all s > 0. Therefore,
if ϱ were a uniform interpolant of φ′ ∧ ψ′, then

|=Q1S5 ϱ→ (χ→ ♢χs) for all s > 0 (71)

would follow.
On the other hand, we combine N = (W,D, J) from the

proof of Lemma 34 with the models Ms = (Ws, Ds, Is)
constructed in Example 19. For every s ≥ nm, we define a
model Ns = (Ws, Ds, Js) as follows. For every k < s, we
let

pJs(k) =


pJ(k), if k < nm and p ∈ sig(φ),

pIs(k), if p ∈ {a,p1,p2},
∅, otherwise.

As shown in the proof of Lemma 34, N, 0, 0 |= φ ∧ χ,
so we have Ns, 0, 0 |= φ′ ∧ χ. As it was shown in Ex-
ample 19 that Ms, 0, 0 ̸|= χs for all s > 0, we have
Ns, 0, 0 ̸|= χs for all s ≥ nm. So it follows from (71)
that Ns, 0, 0 |= ¬ϱ. Note that also Ns, 0, 0 |= χs′ for all
s > s′ ≥ nm. Now consider the ultraproduct

∏
U Ns with

a non-principal ultrafilter U on ω \ {0, . . . , nm − 1}. As
each χs′ is true in almost all Ns, 0, 0, it follows from the
properties of ultraproducts (Chang and Keisler 1998) that



∏
U Ns, 0, 0 |= a ∧ ¬ϱ ∧ χs′ for all s′ > 0, for a suitable 0.

But then one can interpret b in
∏
U Ns so that N, 0, 0 |= φ0

for the resulting model N. Then N, 0, 0 |= a∧φ0 ∧φ′ ∧¬ϱ
and so N, 0, 0 |= φ′ ∧ ψ′ ∧ ¬ϱ. As |=Q1S5 φ

′ ∧ ψ′ → ϱ
should hold for a uniform interpolant ϱ of φ′ ∧ ψ′, we have
derived a contradiction. ⊣

This completes the proof of Theorem 18 (ii). ⊣

We give the example announced in Remark 20 showing
that FO2 does not have the UIP. Let σ = {A,R, P} and

φ0 = ∀x(A(x)→ ∃y(R(x, y) ∧B(y) ∧ P (y)) ∧
∀x(B(x) ∧ P (x)→ ∃y(R(x, y) ∧B(y) ∧ P (y))).

ThenA(x)∧φ0 has no σ-uniform interpolant in FO2, which
can be shown similarly to the proof in Example 19.

G Proofs for Section 6
We start by providing polytime reductions of interpolant ex-
istence problems relative to ontologies to IEP. For an ontol-
ogy O, define a concept Oc by setting

Oc =
∧

C⊑D∈O

∀U.(¬C ⊔D)

Recall that IEP modulo ontologies is defined as follows.
Given an ontology O, a signature σ, and a CI C ⊑ D,
does there exist a σ-concept E such that O |= C ⊑ E and
O |= E ⊑ D? For the reduction, assume O, a signature σ,
and a CI C ⊑ D are given. Then the following conditions
are equivalent:

– there exists a σ-interpolant for Oc ⊓ C ⊑ ¬Oc ⊔D;

– there exists a σ-concept E such that O |= C ⊑ E and
O |= E ⊑ D.

Next recall that ontology interpolant existence is defined
as follows. Given an ontology O, a signature σ, and a CI
C ⊑ D, is there an ontologyO′ with sig(O′) ⊆ σ,O |= O′,
andO′ |= C ⊑ D? For the reduction, assumeO, a signature
σ, and a CI C ⊑ D are given. Then the following conditions
are equivalent:

– there exists a σ-interpolant for Oc ⊑ ¬C ⊔D;

– there is an ontology O′ with sig(O′) ⊆ σ, O |= O′, and
O′ |= C ⊑ D.

Finally recall that DEP modulo ontologies is defined as
follows. Given an ontology O, a signature σ, and a con-
cept name A, does there exist a σ-concept C such that
O |= A ≡ C? We reduce this problem to IEP modulo on-
tologies. Assume an ontology O, a signature σ, and a con-
cept name A are given. Then letO be the resulting ontology
if all symbols X not in σ are replaced by fresh symbols X ′.
Then the following conditions are equivalent:

– there exists a σ-concept C such that O ∪ O′ |= A ⊑ C
and O ∪O′ |= C ⊑ A′;

– there exists a σ-concept C such that O |= A ≡ C.

We next analyse bisimulations for S5ALCu . We write
M1, w1, d2 ∼σ M2, w2, d2 to say that there is a σ-
bisimulation (β1,β2,β) between M1 and M2 for which
((w1, d1), (w2, d2)) ∈ β; M1, w1 ∼σ M2, w2 says that
there is a σ-bisimulation (β1,β2,β) with (w1, w2) ∈ β1;
and M1, d1 ∼σ M2, d2 that there is (β1,β2,β) with
(d1, d2) ∈ β2. The usage of M1, w1, d1 ≡σ M2, w2, d2,
M1, w1 ≡σ M2, w2, and M1, w1 ≡σ M2, w2 is as in Sec-
tion 2 but for any σ-concepts and those of the form ∃U.C
and ♢C, respectively.

Lemma 38. For any saturated S5ALCu -models M1 with
w1, d1 and M2 with w2, d2, we have

– M1, w1, d1≡σM2, w2, d2 iff M1, w1, d1∼σM2, w2, d2,
– M1, w1 ≡σ M2, w2 iff M1, w1 ∼σ M2, w2,
– M1, d1 ≡σ M2, d2 iff M1, d1 ∼σ M2d2.

The implication (⇒) holds for arbitrary models.

Proof. The proof of (⇐) is by a straightforward induc-
tion on the construction of concepts C, using (a) for concept
names, (r) for ∃R.C, (c) and (w) for ∃U.C, and (c) and (d)
for ♢C.

For (⇒), we define β1, β2, and β via ≡σ in the obvious
way. Then we observe that M1, w1, d1 ≡σ M2, w2, d2 im-
plies M1, w1 ∼σ M2, w2 and M1, d1 ≡σ M2, d2. Hence
we obtain (c). We obtain (w) and (d) using saturatedness;
(a) is trivial and (r) follows again from saturatedness. ⊣

We now extend the ‘filtration’ construction of Section 4
from Q1S5 to S5ALCu to establish an upper bound on the
size of models witnessing bisimulation consistency.

Theorem 23 Any concepts C and D do not have an inter-
polant in S5ALCu iff there are witnessing S5ALCu -models of
size double-exponential in |C| and |D|.

Proof. Given concepts C and D, we define the sets
sub(C,D), sub♢(C,D), and sub∃(C,D) as in Section 4 re-
garding ∃U as the S5ALCu -counterpart of ∃ in Q1S5. The
world-type wtM(w) of w ∈ W in M = (W,∆, I), the
domain-type dtM(d) of d ∈ ∆, and the full type ftM(w, d)
of (w, d) in M are also defined as in Section 4. Ob-
serve that we have wtM(w) = ftM(w, d)wt and dtM(d) =
ftM(w, d)dt, where

ftM(w, d)wt = sub∃(C,D) ∩ ftM(w, d),

ftM(w, d)dt = sub♢(C,D) ∩ ftM(w, d).

Now, suppose that Mi = (Wi,∆i, Ii), for i = 1, 2, have
pairwise disjoint Wi and ∆i, M1, w1, d1 ∼σ M2, w2, d2,
for σ = sig(C) ∩ sig(D), with M1, w1, d1 |= C, and
M2, w2, d2 ̸|= D. For w ∈ W1 ∪ W2, we define the
world mosaic wm(w) = (T1(w), T2(w)) by (1) and the i-
world point wpi(w) = (wtMi(w),wm(w)) of w in M1,
M2. Using (2) with ∆i in place of Di, we define the do-
main mosaic dm(d) = (S1(d), S2(d)) and i-domain point
dpi(d) = (dtMi

(d), dm(d)) of d ∈ ∆1 ∪ ∆2 in M1, M2.
Then, for (w, d) ∈ (W1 ×∆1) ∪ (W2 ×∆2), we set

Fi(w, d) = {ftMi
(v, e) | (v, e) ∈Wi×∆i, (v, e) ∼σ (w, d)}



calling fm(w, d) = (F1(w, d), F2(w, d)) the full mosaic and
fpi(w, d) = (ftMi(w, d), fm(w, d)) the i-full point of (w, d)
in M1, M2. Given fm = (F1, F2), we set

fmwt = ({ftwt | ft ∈ F1}, {ftwt | ft ∈ F2}),
fmdt = ({ftdt | ft ∈ F1}, {ftdt | ft ∈ F2}).

Lemma 39. Suppose fm = fm(w, d), wm = wm(w), and
dm = dm(d). Then fmwt = wm and fmdt = dm.

Proof. The inclusions wm ⊆ fmwt and dm ⊆ fmdt follow
from (w) and (d). Indeed, suppose wm = (T1(w), T2(w)),
wt ∈ Ti(w), and fm = (F1(w, d), F2(w, d)). By definition,
there exists v ∈ Wi with v ∼σ w such that wt = wtMi

(v).
By (w), there exists e ∈ ∆i with (w, d) ∼σ (v, e). But then
ftMi

(v, e) ∈ Fi(w, d) and ftMi
(v, e)wt = wt, as required.

The second claim is proved in the same way using (d).
The converse inclusions fmwt ⊆ wm and fmdt ⊆ dm fol-

low from (c). To see this, let fm = (F1(w, d), F2(w, d)),
wm = (T1(w), T2(w)), and dm = (S1(d), S2(d)). Let
ft ∈ Fi(w, d). Then there are (v, e) ∈ Wi × ∆i with
(v, e) ∼σ (w, d). Therefore, by (c), v ∼σ w and e ∼σ d,
and so wt ∈ Ti(w) and dt ∈ Si(d), as required. ⊣

As in Section 4, we construct models M′
1 = (W ′

1,∆
′
1, I

′
1)

and M′
2 = (W ′

2,∆
′
2, I

′
2) from copies of i-world points wpi

and i-domain points dpi in M1, M2. When defining them,
we use the following notation:

CM′
i = {(w, d) | d ∈ CI

′
i(w)},

RM′
i = {((w, d), (w, d′)) | (d, d′) |= RI

′
i(w)}.

Let n = m1×m2, where m1 and m2 are the number of full
types and, respectively, full mosaics over sub(C,D) in M1,
M2. For i = 1, 2, we set

∆′
i = {dp

k
i | dpi an i-domain point in M1,M2, k ∈ [n]}.

For an i-world point wpi and an i-domain point dpi, let

Liwpi,dpi = {fpi(w, d) | wpi = wpi(w), dpi = dpi(d),

(w, d) ∈Wi ×∆i}.

We define W ′
i using surjective functions

πwpi,dpi : [n]→ Liwpi,dpi .

Let Π be a smallest set of sequences π = (πwpi,dpi) such
that, for any fpi = fpi(w, d) = (ftMi

(w, d), fm(w, d)),
wpi = wpi(w), and dpi = dpi(d) with (w, d) ∈ Mi and
any k ∈ [n], there is π ∈ Π with πwpi,dpi(k) = fpi. Now let

W ′
i = {wpπi | wpi an i-world point in M1,M2 and π ∈ Π}.

Note that |∆′
i| and |W ′

i | are double-exponential in |C|, |D|.
It remains to define the extensions of concept and role names
in M′

1 and M′
2. For the former, we set

(wpπi , dp
k
i ) ∈ AM′

i iff A ∈ ft for πwpi,dpi(k) = (ft, fm).

The definition of RM′
i is more involved. Call a pair ft1, ft2

R-coherent if ∃R.C ∈ ft1 whenever C ∈ ft2, for all

∃R.E ∈ sub(C,D), and call ft1, ft2 R-witnessing if they are
R-coherent and ftwt1 = ftwt2 . For full mosaics fm = (F1, F2)
and fm′ = (F ′

1, F
′
2) and a role R ∈ σ, we set fm ⪯R fm′ if

there exist functions fi : Fi → F ′
i , i = 1, 2, such that, for

all ft ∈ Fi, the pair ft, fi(ft) is R-witnessing. Now suppose
that πwpi,dpi(k) = (ft, fm) and πwpi,dp′i(k

′) = (ft′, fm′). For
R ∈ σ, we set

((wpπi , dp
k
i ), (wp

pi
i , dp

k′

i )) ∈ RM′
i iff

fm ⪯R fm′ and ft, ft′ is R-witnessing. (72)

For R /∈ σ, we omit the condition fm ⪯R fm′ from (72).

Lemma 40. Let E ∈ sub(C,D). Then (wpπi , dp
k
i ) ∈ EM′

i

iff E ∈ ft, for πwpi,dpi(k) = (ft, fm).

Proof. The proof is by induction on the construction of
E. The basis of induction follows from the definition, and
the inductive step for the Booleans is trivial.

Let E = ∃U.E′. Suppose first (wpπi , dp
k
i ) ∈ EM′

i and

πwpi,dpi(k) = (ft, fm). By definition, there exists dp′i
k′ with

(wpπi , dp
′
i
k′

) ∈ E′M′
i . By IH, E′ ∈ ft′ for πwpi,dp′i(k

′) =

(ft′, fm′). Then ∃U.E′ ∈ ft′, and so ∃U.E′ ∈ ft′
wt. As

ftwt = ft′
wt, we obtain E ∈ ft, as required. Conversely, let

E = ∃U.E′ ∈ ft, for πwpi,dpi(k) = (ft, fm). Take (w, d)
with ft = ft(w, d) and fm = fm(w, d). By definition, there
is d′ with E′ ∈ ft′ for ft′ = ft(w, d′). Let dp′i = dpi(d

′)
and fm′ = fm(w, d′). As πwpi,dp′i is surjective, there is
k′ with πwpi,dp′i(k

′) = (ft′, fm′). Then, by IH, we obtain

(wpπi , dp
′k′
i ) ∈ E′M′

i , and so (wpπi , dp
k
i ) ∈ EM′

i .
Let E = ♢E′. Suppose first (wpπi , dp

k
i ) ∈ EM′

i . Let
πwpi,dpi(k) = (ft, fm) and dpi = (dt, dm). By definition,
there is wp′π

′

i with (wp′π
′

i , dpki ) ∈ E′M′
i . By IH, E′ ∈ ft′

for π′
wp′i,dpi

(k) = (ft′, fm′). By definition, ♢E′ ∈ ft′, and

so ♢E′ ∈ ft′
dt

= dt. But then, again by definition, E ∈ ft,
as required.

Conversely, let E = ♢E′ ∈ ft for πwpi,dpi(k) = (ft, fm).
Take (w, d) with ft = ft(w, d) and fm = fm(w, d). By
definition, there is w′ with E′ ∈ ft′ for ft′ = ft(w′, d). Let
wp′i = wpi(w

′) and fm′ = fm(w′, d). Then there is π′ with
π′
wp′i,dpi

(k) = (ft′, fm′). By IH, (wp′π
′

i , dpki ) ∈ E′M′
i , and

so (wpπi , dp
k
i ) ∈ EM′

i .
Let E = ∃R.E′. Suppose that (wpπi , dp

k
i ) ∈ EM′

i

and R ∈ σ. Let πwpi,dpi(k) = (ft, fm). By definition,
there exists dp′k

′

i with ((wpπi , dp
k
i )(wp

π
i , dp

′k′
i )) ∈ RM′

i and
(wpπi , dp

′k′
i ) ∈ E′M′

i . By IH, E′ ∈ ft′ for πwpi,dp′i(k
′) =

(ft′, fm′). By the definition of RM′
i , we obtain that ft, ft′

are R-coherent. But then E ∈ ft, as required. The case
(wpπi , dp

k
i ) ∈ EM′

i and R ̸∈ σ is similar.
Conversely, let E = ∃R.E′ ∈ ft for πwpi,dpi(k) =

(ft, fm). Take (w, d) with ft = ft(w, d) and fm = fm(w, d).
By definition, there exists e with E′ ∈ ft′ for ft′ = ft(w, e)
and ((w, d), (w, e)) ∈ RMi . Let dp′i = dpi(e) and fm′ =
fm(w, e). Assume first that R ∈ σ. We define functions fj ,
j = 1, 2 witnessing fm ⪯R fm′.



Suppose ft ∈ Fj , where fm = (F1, F2). Then we
find (w′, d′) ∼σ (w, d) with ft = ft(w′, d′). By (r),
(w, d), (w, e) ∈ RM′

i and (w′, d′) ∼σ (w, d) give us e′ with
(w′, d′), (w′, e′) ∈ RM′

i and (w, e) ∼σ (w′, e′). Let ft′ =
ft(w′, e′). We define the required fj by taking fj(ft) = (ft′).

Since πwpi,dp′i is surjective, there exists k′ such that

πwpi,dp′i(k
′) = (ft′, fm′). By IH, (wpπi , dp

′k′
i ) ∈ E′M′

i . By

the definition of RM′
i , ((wpπi , dp

k
i ), (wp

π
i , dp

′k′
i )) ∈ RM′

i ,

so (wpπi , dp
k
i ) ∈ EM′

i . The case R ̸∈ σ is similar. ⊣

We define relations β1 ⊆W ′
1 ×W ′

2, β2 ⊆ ∆′
1 ×∆′

2, and
β ⊆ (W ′

1 ×∆′
1)× (W ′

2 ×∆′
2) by taking

– ((wt,wm)π, (wt′,wm′)π
′
) ∈ β1 iff wm = wm′;

– ((dt, dm)k, (dt′, dm′)k
′
) ∈ β2 iff dm = dm′;

– ((wpπi , dp
k
i ), (wp

′
i
π′
, dp′i

k′

)) ∈ β iff wpi = (wt,wm),
wp′i = (wt′,wm′), dpi = (dt, dm), and dp′i = (dt′, dm′)
with wm = wm′, dm = dm′, fm = fm′, and
πwpi,dpi(k) = (ft, fm) and π′

wp′i,dp
′
i
(k′) = (ft′, fm′).

Lemma 41. The triple (β1,β2,β) is a σ-bisimulation be-
tween M′

1 and M′
2.

Proof. We show that (β1,β2,β) satisfies conditions (w),
(d), (c, (r), and (r).

(w) Suppose ((wt,wm)π, (wt′,wm′)π
′
) ∈ β1 and

(dt, dm)k ∈ ∆′
i. We need to find (dt′, dm′)k

′
such that

((wt,wm)π, (dt, dm)k), ((wt′,wm′)π
′
, (dt′, dm′)k

′
)) ∈ β.

We have wm = wm′ and set (ft, fm) = πwt,wm,dt,dm(k).
Assume fm = (F1, F2). By Lemma 39, there exists ft′ ∈ Fi
with ft′

wt
= wt′. As the component π′

wt′,wm,ft′dt,dm
of π′ is

surjective, there exists k′ ∈ [n] such that

π′
wt′,wm,ft′dt,dm

(k′) = (ft′, fm).

Then (ft′
dt
, dm)k

′
is as required; see the picture below.

(wt′,wm)π
′

(ft′
dt
, dm)k

′

(wt,wm)π (dt, dm)k

(ft′, fm)

(ft, fm)

β1 β

(d) Suppose that ((dt, dm)k, (dt′, dm′)k
′
) ∈ β2 and

(wt,wm)π ∈W ′
i . We need to construct (wt′,wm′)π

′
with

((wt,wm)π, (dt, dm)k), ((wt′,wm′)π
′
, (dt′, dm′)k

′
)) ∈ β.

We have dm = dm′ and set (ft, fm) = πwt,wm,dt,dm(k). As-
sume fm = (F1, F2). By Lemma 39, there exists ft′ ∈ Fi
with ft′

dt
= dt′. By the construction of Π, there exists π′

such that, for the component π′
wt′wt,wm,ft′,dm of π′, we have

π′
wt′wt,wm,ft′,dm(k

′) = (ft′, fm).

Then (ft′
wt
,wm)π

′
is as required; see the picture below.

(dt′, dm)k
′

(ft′
wt
,wm)π

′

(dt, dm)k (wt,wm)π

(ft′, fm)

(ft, fm)

β2 β

Condition (c) follows from the definition of β1, β2, β; and
condition (a) follows from the definition of β.

(r) Suppose R ∈ σ, β contains

(((wt0,wm)π
0

, (dt0, dm)k0), ((wt1,wm)π
1

, (dt1, dm)k1)))

and RMi contains

((wt0,wm)π
0

, (dt0, dm)k0), ((wt0,wm)π
0

, (dt2, dm2)
k2)).

Let (ft, fm) = π0
wt0,wm,dt0,dm

(k0). Then there exists ft1
such that (ft1, fm) = π1

wt1,wm,dt1,dm
(k1). Moreover, for

(ft2, fm2) = π0
wt0,wm,dt2,dm2

(k2), we have

– fm ⪯R fm2 and

– we may assume that fi(ft) = ft2, for the function fi wit-
nessing fm ⪯R fm2.

Then (fi(ft1)
dt, dm2)

k3 with k3 ∈ [n] such that

π1
wt1,wm,fi(ft1)dt,dm2

(k3) = (fi(ft1), fm2)

is as required; see the picture below.

(wt0,wm)π
0

(dt0, dm)k0

(dt2, dm2)
k2

ft, fm

⪯R, fi

ft2, fm2

(f
t,
fm
)

(ft
2 , fm

2 )

R (wt1,wm)π
1

(dt1, dm)k1

(fi(ft1)
dt, dm2)

k3

ft1, fm

⪯R

fi(ft1), fm2

(f
t 1
, f
m
)

(f
i (ft

1 ), fm
2 )

R

β

β

This completes the proof of the lemma. ⊣

Theorem 23 follows. ⊣



H Proofs for Section 7
We now define inductively formulas that describe models up
to σ-k-bisimulations. For M = (W,R,D, I) and σ, let

t0M,σ(w, d) =
∧
{p ∈ σ |M, w, d |= p} ∧∧
{¬p | p ∈ σ, M, w, d ̸|= p},

τ0M,σ(w, d) = t0M,σ(w, d) ∧∧
e∈D
∃t0M,σ(w, e) ∧ ∀

∨
e∈D

t0M,σ(w, e),

and let τk+1
M,σ(w, d) be a conjunction of the formulas below:

t0M,σ(w, d) ∧
∧

(w,v)∈R

♢τkM,σ(v, d) ∧□
∨

(w,v)∈R

τkM,σ(v, d),∧
e∈D
∃
(
t0M(w, e) ∧

∧
(w,v)∈R

♢τkM(v, e) ∧□
∨

(w,v)∈R

τkM(v, e)
)
,

∀
∨
e∈D

(
t0M(w, e) ∧

∧
(w,v)∈R

♢τkM(v, e) ∧□
∨

(w,v)∈R

τkM(v, e)
)
.

The following lemma says that τkM,σ(w, d) is the strongest
formula of modal depth k that is true at w, d in M:

Lemma 24. Suppose models M with w, d and N with v, e
and k < ω are given. Then the following conditions are
equivalent:

1. N, v, e ≡kσ M, w, d;
2. N, v, e |= τkM,σ(w, d);

3. N, v, e ∼kσ M, w, d.
Proof. The proof is by induction over k. For k = 0

the equivalences hold by definition. Assume the equiva-
lences have been shown for k. For “1. ⇒ 2.” assume that
N, v, e ≡k+1

σ M, w, d. Obviously M, w, d |= τk+1
M,σ(w, d)

and τk+1
M,σ(w, d) has modal depth k + 1. Hence N, v, e |=

τk+1
M,σ(w, d), as required. “2. ⇒ 3.” Assume N, v, e |=
τk+1
M,σ(w, d). Then define βi for i ≤ k + 1 by taking

βi =
{(

(v′, e′), (w′, d′)
)
| N, v′, e′ |= τ iM,σ(w

′, d′)
}
.

It is readily seen that β0, . . . ,βk+1 is a σ-(k + 1)-
bisimulation. Hence N, v, e ∼k+1

σ M, w, d. “3.⇒ 1.” holds
by definition of σ-k-bisimulations. ⊣

Example 27 Suppose σ = {a, b} = sig(ψ) and

φ = ∀(a↔ b↔ h) ∧ ∀(h↔ □h↔ ♢h) ∧ ♢∀(b↔ h),

ψ = ∀(a↔ □□a↔ ♢♢a) ∧□♢⊤ → ♢∀(b↔ ♢a).

Intuitively, φ at a world w says (using the ‘help’ predicate
h) that there is an R-successor v such that, for every e, we
have v, e |= b iff w, e |= b. The premise of ψ at w says two
things: first, at distance 2 R-successors u of w, for every
e, we have u, e |= a iff w, e |= a; and second, every R-
successor of w, in particular v, also has an R-successor u.
These conditions imply that, for every e, we have v, e |= b
iff u, e |= a, and so we obtain |=Q1K φ→ ψ.

On the other hand, ̸|=Q1K ∃∼σ,1φ → ψ because, for
the models M and M′ below, we have M, w, d |= φ
and M′, w′, d′ ̸|= ψ but M, w, d ∼1

σ M′, w′, d′ (a σ-1-
bisimulation connects all points in the roots w and w′ that
agree on σ, and all points in the depth 1 worlds that agree on
σ).

M

d

w

a
b

h

h

b

h b

M′

d′

w′

a
b

b

b

b

a

a

Theorem 28 (i) (S)CEP in Q1K is undecidable.

Proof. We modify the undecidability proof for Q1S5: for
any tiling system T, we show how to construct in polytime
formulas φ and ψ such that T has a solution iff φ ∧ ψ is not
a (strong) conservative extension of φ.

Let T = (T,H, V,o, z↑, z→) be a tiling system. To prove
undecidability of strong conservative extensions we work
with models M = (W,R,D, I) of modal depth 1 having
a root r ∈ W and R-successors W ′ = W \ {r} of r. We
encode the finite grid to be tiled on W ′ × D in essentially
the same way as previously on the whole W × D. In par-
ticular, gM ⊆ W ′ × D and RM

h , R
M
v ⊆ gM × gM are

defined as in (47) and (48) before. We cannot, however, de-
fine the modalities ♢hχ and ♢vχ using FOM1-formulas, as
we cannot directly refer from (w, d) to (w′, d) in our model
M. Instead, we have to ‘speak about’ RM

h and RM
v from

the viewpoint of points of the form (r, d), for the root r of
(W,R). For instance, □∀(χ1 → ♢hχ2) is expressed using

∀
[
♢(g ∧ χ1 ∧ ¬z→)→ ♢

(
x ∧ ∃(g ∧ χ2)

)]
and □∀(χ1 → ♢vχ2) using

∀
[
♢
(
y ∧ ∃(g ∧ χ1 ∧ ¬z↑)

)
→ ♢(g ∧ χ2)

]
.

We now define the new formula φ in detail. The following
conjuncts generate the grid:

♢(o ∧ g),

∀
[
♢
(
g ∧ ¬(z↑ ∧ z→)

)
→ ♢x

]
,

□∀(x→ ∃g),
□∀(g ∧ ¬z↑ → ∃y),
∀(♢y → ♢g).

The constraints on the tiles are expressed by the following



conjuncts:

∀
(
♢g ∧ ¬♢x→ □(g → z→)

)
,

□∀(g ↔
∨
t∈T

t),

□∀
∧
t ̸=t′

(t→ ¬t′),

∀
[
♢(t ∧ ¬z→)→ □

(
x→ ∀(g →

∨
(t,t′)∈H

t′)
)]
,

∀
[
♢
(
y ∧ ∃(t ∧ ¬z↑)

)
→ □(g →

∨
(t,t′)∈V

t′)
]
,

∀
(
♢(y ∧ ∃z→)→ □(g → z→)

)
,

∀
[
♢z→ → □

(
y → ∀(g → z→)

)]
,

∀
[
♢z↑ → □

(
x→ ∀(g → z↑)

)]
,

∀
(
♢(x ∧ ∃z↑)→ □(g → z↑)

)
.

Finally, we take a fresh predicate p0 and add the conjunct
p0 → p0 to φ.

We now aim to construct a formula ψ for which, as pre-
viously, the equivalence (c1) ⇔ (c2) holds. This is slightly
more involved, as we cannot directly express case distinc-
tions using disjunction and nested ‘modalities’. We require
auxiliary predicates to achieve this: we use ah to encode
that q is true in an Rh-successor of a q-node, av to encode
that q is true in an Rv-successor of a q-node, and b′, b′′ are
used to encode that a q-node is not confluent. In detail, ψ
starts with the conjunct

♢(g ∧ q).

Next we add a conjunct making a case distinction between
ah, av , and b′:

□∀
(
q → (¬z→ ∧ ah) ∨ (¬z↑ ∧ ∃(y ∧ av))

∨ (¬z→ ∧ ¬z↑ ∧ ∃(y ∧ b′))
)
.

The next two conjuncts state the consequences of ah and av ,
respectively:

∀
[
♢(q ∧ ah)→ ♢

(
x ∧ ∃(g ∧ q)

)]
,

∀
[
♢
(
y ∧ ∃(q ∧ av)

)
→ ♢(g ∧ q)

]
.

The next conjunct forces s to be true in the horizontal suc-
cessors of a vertical successor:

∀
[
♢(y ∧ ∃b′)→ □

(
x→ ∀(g → s)

)]
.

Finally, the following formulas force ¬s in the horizontal
successors of a vertical successor:

∀
[
♢(q ∧ b′)→ ♢

(
x ∧ ∀(y → b′′)

)]
,

∀
(
♢(y ∧ b′′)→ □(g → ¬s)

)
.

It is not difficult to show that the equivalence (c1) ⇔ (c2)
holds for φ and ψ.
Lemma 42. If T has a solution, then φ ∧ ψ is not a conser-
vative extension of φ.

Proof. The proof is obtained by modifying the proof
of Lemma 34. To begin with, we modify the model N =
(W,D, J) defined in that proof by adding a root world to W
from where every other world is accessible in one R-step.
More precisely, we define a new model N = (W,R,D, J)
as follows. We let D = W ′ = {0, . . . , nm − 1}, W =
W ′ ∪ {r}, R = {(r, w) | w ∈ W ′}, and J is defined by
(59)–(62), plus having pJ(r) = ∅ for p ∈ {g,x,y}∪T , and
p
J(w)
0 = ∅ for all w ∈W .
It is straightforward to check that N, r, 0 |= φ and

N, r, 0 |= ¬ψ. First, we show that φ ∧ ψ is not a strong
conservative extension of φ. We construct a formula χ with
sig(χ) ∩ sig(ψ) ⊆ sig(φ) such that φ ∧ χ is satisfiable but
|=Q1S5 φ ∧ χ → ¬ψ. It then follows that φ ∧ ψ is not a
strong conservative extension of φ. The formula χ provides
a description of the model N at (r, 0). We take, for every
(i, j) ∈ W × D, a fresh predicate pi,j and extend N to N′

by setting, for all (i′, j′) ∈W ×D,

N′, i′, j′ |= pi,j iff (i′, j′) = (i, j). (73)

Now let σ′ = sig(φ) ∪ {pi,j | (i, j) ∈W ×D}, and set

χi,j =
∧

p∈σ′, N,i,j|=p

p ∧
∧

p∈σ′, N,i,j|=¬p

¬p. (74)

Let χ be the conjunction of of the following formulas:

χr,0 ∧□(o ∧ g → χ0,0), (75)

∀
[
♢χi,i → □

(
x→ (χi+1,i ∧ ∀(g → χi+1,i+1)

)]
,

for i < nm− 1, (76)

∀
[
♢(y ∧ ∃χi,i)→ □(y → χi,i+n) ∧□(g → χi+n,i+n)

]
,

for i < nm− n, (77)
□∀(χi,i → ∃χi,j), for i, j < nm, (78)
∀(♢χi,i → ♢χj,i), for i, j < nm, (79)
∀(♢χi,j → χr,j), for i, j < nm, (80)

∀
(
χr,j → □(∃χl,k → χl,j)

)
, for j, k, l < nm. (81)

It is easy to see that N′, r, 0 |= χ, and so φ ∧ χ is sat-
isfiable. Now suppose that M is any model such that
M, w0, d0 |= φ ∧ χ for some w0, d0. We show that
M, w0, d0 |= ¬ψ. Observe that if

(
(w, d), (w′, d′)

)
∈ RM

h

and M, w, d |= χi,i, then M, w′, d′ |= χi+1,i+1, by (76),
and if

(
(w, d), (w′, d′)

)
∈ RM

v and M, w, d |= χi,i, then
M, w′, d′ |= χi+n,i+n, by (77). Hence, there cannot be an
infinite RM

h ∪RM
v -chain.

Now suppoae there is an RM
h ∪ RM

v -chain from (w0, d0)
to some node (w, d) which has an RM

h -successor (w1, d1)
and RM

v -successor (w2, d2). Then M, w, d |= χi,i for some
i, M, w1, d1 |= χi+1,i+1 and M, w2, d2 |= χi+n,i+n, by
(75)–(77).

There exist d′1 with M, w1, d
′
1 |= χi+1,i+n+1, and w′

2
with M, w′

2, d2 |= χi+n+1,i+n, by (78) and (79). Then
M, w0, d

′ |= χr,i+n+1 by (80). By (81) for l = j = i+n+1
and k = i + n, we obtain M, w′

2, d
′
1 |= χi+n+1,i+n+1.

Moreover, as z↑ is not a conjunct of χi+1,i+1, and z→ is



not a conjunct of χi+n,i+n, we have that y is a conjunct
of χi+1,i+n+1, and x is a conjunct of χi+n+1,i+n. Thus,(
(w1, d1), (w

′
2, d

′
1)
)
∈ RM

v and
(
(w2, d2)(w

′
2, d

′
1)
)
∈ RM

h ,
and so (w, d) is confluent.

We next aim to prove that φ ∧ ψ is not a (necessarily
strong) conservative extension of φ. In this case, we are not
allowed to use the fresh predicates pi,j in the formula χ to
achieve (73). We instead will use the predicate p0 ∈ sig(φ)
to uniquely characterise the points of N. Take a bijection f
from {0, . . . , n− 1} × {0, . . . ,m− 1} to {0, . . . , nm− 1}
and set, for all (i, j) ∈W ×D:

φi,j = ♢
f(i,j)+1p0, φr,j = ¬∃g∧♢φ0,j , for i, j < nm.

Modify the model N = (W,R,D, J) constructed above to
N+ = (W+, R+, D, J+) by adding an nm-long R-chain
to each leaf i < nm of (W,R), and define p

J+(w)
0 for each

w ∈ W+ \ W such that we still have, for all ‘old’ points
(i′, j′) ∈W ×D, the analogue of (73):

N+, i′, j′ |= φi,j iff (i′, j′) = (i, j).

Now let σ− = sig(φ)\{p0} and set, for all (i, j) ∈W ×D,

χ′
i,j = φi,j ∧

∧
p∈σ−, N,i,j|=p

p ∧
∧

p∈σ−, N,i,j|=¬p

¬p.

Finaly, define χ′ with sig(χ′) ⊆ sig(φ) by replacing χi,j in
the conjuncts (75)–(81) by χ′

i,j . ⊣

Lemma 43. If φ ∧ ψ is not a model conservative extension
of φ, then T has a solution.

Proof. Consider a model M = (W,R,D, I) such that
M, w, d |= φ but M′, w, d |= ¬ψ in any extension M′ of
M obtained by interpreting the predicates q, s. Similarly, to
the proof of Lemma 35, by using the equivalence (c1) ⇔
(c2), one can easily find within M a finite grid-shaped (with
respect to RM

h and RM
v ) submodel, which gives a solution

to T. ⊣
This complete the proof of Theorem 28 (i). ⊣
We next consider uniform interpolants. We modify Ex-

ample 19 so that it can be used for Q1K.
Example 44. Let φ0 be the conjunction of

∀
(
♢a→ ♢(p1 ∧ b)

)
,

□∀
(
p1 ∧ b→ ∃(p2 ∧ b)

)
,

∀
(
♢(p2 ∧ b)→ ♢(p1 ∧ b)

)
,

and let σ = {a,p1,p2}. We show that there is no σ-uniform
interpolant of ♢a ∧ φ0 in Q1K.

For every s > 0, we define a formula χs as follows. Take
fresh predicates ah1 ,a

h
2 , . . . and av1,a

v
2, . . .. Intuitively, χs

says that s many steps of the p1,p2-ladder has been con-
structed by forcing ah1 , . . .a

h
s to be true ‘horizontally’ and

av1, . . .a
v
s to be true vertically in the corresponding steps. In

detail, we let

χ′
1 = ∀(♢a→ □ah1 ) ∧□∀(ah1 ∧ p1 → ∀av1),
χ1 = χ′

1 → ∃♢(p2 ∧ av1),

and for s > 0,
χ′
s+1 = χ′

s ∧ ∀
(
♢(avs ∧ p2)→ □ahs+1

)
∧□∀(ahs+1 ∧ p1 → ∀avs+1),

χs+1 = χ′
s+1 → ∃♢(p2 ∧ avs+1).

Then |=Q1K ♢a ∧ φ0 → χs for all s > 0. Thus, if ϱ were
a σ-uniform interpolant of ♢a ∧ φ0, then |=Q1K ϱ → χs
would follow, for all s > 0.

On the other hand, for s > 0, we modify the model
Ms = (Ws, Ds, Is) defined in Example 19 by adding a
root world to Ws from where every other world is acces-
sible in oneRs-step. More precisely, we define a new model
Ms = (Ws, Rs, Ds, Is) as follows. We let W ′

s = Ds =
{0, . . . , s− 1}, Ws =W ′

s ∪ {r}, Rs = {(r, w) | w ∈W ′
s},

and Is is defined by

aIs(k) =

{ {0}, if k = 0,
∅, otherwise;

(82)

p
Is(k)
1 =

{ {k − 1}, if k > 0,
∅, otherwise;

(83)

p
Is(k)
2 =

{ {k}, if k > 0,
∅, otherwise;

(84)

plus having pIs(r) = ∅ for

p ∈ {a,p1,p2,a
h
1 , . . . ,a

h
s ,a

v
1, . . . ,a

v
s}

and, for all 0 < i ≤ s and all k < s,
(ahi )

Is(k) = {i− 1},

(avi )
Is(k) =

{ {0, . . . , s− 1}, if 0 < k = i < s,
∅, otherwise.

Then, for every s > 0, Ms, r, 0 ̸|= χs and so Ms, r, 0 |= ¬ϱ.
Also, Ms, r, 0 |= χs′ for all s′ < s. Now consider the
ultraproduct

∏
U Ms with U a non-principal ultrafilter on

ω \ {0}. As each χs′ is true in almost all Ms, r, 0, it fol-
lows from the properties of ultraproducts (Chang and Keisler
1998) that

∏
U Ms, r, 0 |= ♢a∧¬ϱ∧ χs′ for all s′ > 0, for

some suitable r, 0. But then one can interpret b in
∏
U Ms

such that M, r, 0 |= φ0 for the resulting model M. Then
M |= ♢a∧φ0 ∧¬ϱ and as |=Q1K ♢a∧φ0 → ϱ should hold
for a uniform interpolant ϱ of ♢a ∧ φ0, we have derived a
contradiction.

Theorem 28 (ii) UIEP for Q1K is undecidable.
Proof. The proof is by combining the construction of

Theorem 28 and Example 44 in exactly the same way as
the construction of Theorem 18 and Example 19 were com-
bined in the proof of Theorem 18 (ii). ⊣
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