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Abstract

We show that the vast majority of extensions of the descrip-
tion logic EL do not enjoy the Craig interpolation nor the
projective Beth definability property. This is the case, for ex-
ample, for EL with nominals, EL with the universal role, EL
with a role inclusion of the form r ◦ s ⊑ s, and for ELI.
It follows in particular that the existence of an explicit defi-
nition of a concept or individual name cannot be reduced to
subsumption checking via implicit definability. We show that
nevertheless the existence of interpolants and explicit defini-
tions can be decided in polynomial time for standard tractable
extensions of EL (such as EL++) and in EXPTIME for ELI
and various extensions. It follows that these existence prob-
lems are not harder than subsumption which is in sharp con-
trast to the situation for expressive DLs. We also obtain tight
bounds for the size of interpolants and explicit definitions and
the complexity of computing them: single exponential for
tractable standard extensions of EL and double exponential
for ELI and extensions. We close with a discussion of Horn-
DLs such as Horn-ALCI.

1 Introduction
The projective Beth definability property (PBDP) of a de-
scription logic (DL) L states that a concept or individual
name is explicitly definable under an L-ontology O by an
L-concept using symbols from a signature Σ of concept,
role, and individual names if, and only if, it is implic-
itly definable using Σ under O. The importance of the
PBDP for DL research stems from the fact that it provides
a polynomial time reduction of the problem to decide the
existence of an explicit definition to the well understood
problem of subsumption checking. The existence of ex-
plicit definitions is important for numerous knowledge en-
gineering tasks and applications of description logic on-
tologies, for example, the extraction of equivalent acyclic
TBoxes from ontologies (ten Cate et al. 2006; ten Cate,
Franconi, and Seylan 2013), the computation of referring
expressions (or definite descriptions) for individuals (Artale
et al. 2021b), the equivalent rewriting of ontology-mediated
queries into concepts (Seylan, Franconi, and de Bruijn 2009;
Lutz, Seylan, and Wolter 2019; Toman and Weddell 2021),
the construction of alignments between ontologies (Geleta,
Payne, and Tamma 2016), and the decomposition of ontolo-
gies (Konev et al. 2010).

The PBDP is often investigated in tandem with the Craig
interpolation property (CIP) which states that if an L-
concept is subsumed by another L-concept under some L-
ontology then one finds an interpolating L-concept using the
shared symbols of the two input concepts only. In fact, the
CIP implies the PBDP and the interpolants obtained using
the CIP can serve as explicit definitions.

Many standard Boolean DLs such as ALC, ALCI, and
ALCQI enjoy the CIP and PBDP and sophisticated algo-
rithms for computing interpolants and explicit definitions
have been developed (ten Cate, Franconi, and Seylan 2013).
Important exceptions are the extensions of any of the above
DLs with nominals and/or role hierarchies. In fact, it has re-
cently been shown that the problem of deciding the existence
of an interpolant/explicit definition becomes 2EXPTIME-
complete for ALCO (ALC with nominals) and for ALCH
(ALC with role hierarchies). This result is in sharp con-
trast to the EXPTIME-completeness of the same problem
for ALC itself inherited from the EXPTIME-completeness
of subsumption under ALC-ontologies (Artale et al. 2021a).

Our aim in this article is threefold: (1) determine which
members of the EL-family of DLs enjoy the CIP/PBDP; (2)
investigate the complexity of deciding the existence of inter-
polants/explicit definitions for those that do not enjoy it; and
(3) establish tight bounds on the size of interpolants/explicit
definitions and the complexity of computing them.

In what follows we discuss our main results. It has been
shown in (Konev et al. 2010; Lutz, Seylan, and Wolter 2019)
already that EL and EL with role hierarchies enjoy the CIP
and PBDP. Rather surprisingly, it turns out that none of the
remaining standard DLs in the EL-family enjoy the CIP nor
the PBDP.

Theorem 1. The following DLs do not enjoy the CIP nor
PBDP:

1. EL with the universal role,

2. EL with nominals,

3. EL with a single role inclusion r ◦ s ⊑ s,

4. EL with role hierarchies and a transitive role,

5. the extension ELI of EL with inverse roles.

In Points 2 to 5, the CIP/PBDP also fails if the universal role
can occur in interpolants/explicit definitions.



Theorem 1 also has interesting consequences that are not
explicitly stated. For instance, it follows that neither the DL
EL++ introduced in (Baader, Brandt, and Lutz 2005) nor the
extension of ELI with any combination of nominals, role hi-
erarchies, or transitive roles enjoy the CIP/PBDP. With the
exception of the failure of the CIP/PBDP for EL with nom-
inals (without the universal role in interpolants/explicit def-
initions) (Artale et al. 2021b), our results are new.

It follows from Theorem 1 that the behaviour of exten-
sions of EL is fundamentally different from extensions of
ALC: adding role hierarchies to ALC does not preserve
the CIP/PBDP (Konev et al. 2009) but it does for EL; on
the other hand, adding the universal role or inverse roles to
ALC preserves the CIP/PBDP (ten Cate, Franconi, and Sey-
lan 2013) but it does not for EL.

Theorem 1 leaves open the behaviour of a few natural DLs
between EL and its extension with arbitrary role inclusions.
For instance, what happens if one only adds transitive roles
or, more generally, role inclusions using a single role name
only? To cover these cases we show a general result that im-
plies that these DLs enjoy the CIP and PBDP. In particular,
it follows that in Point 4 of Theorem 1 the combination of
role hierarchies with a transitive role is necessary for failure
of the CIP/PBDP.

We next discuss our main result about tractable extensions
of EL.
Theorem 2. For EL and any extension with any combi-
nation of nominals, role inclusions, the universal role, or
⊥, the existence of interpolants and explicit definitions is in
PTIME. If an interpolant/explicit definition exists, then there
exists one of at most exponential size that can be computed
in exponential time. This bound is optimal.

It follows that for tractable extensions of EL the complex-
ity of deciding the existence of interpolants and explicit def-
initions does not depend on the CIP/PBDP, in sharp con-
trast to the behaviour of ALCO and ALCH. Moreover, the
proof shows how interpolants and explicit definitions can be
computed from the canonical models introduced in (Baader,
Brandt, and Lutz 2005), if they exist. It applies derivation
trees (first introduced in (Bienvenu, Lutz, and Wolter 2013)
for DLs without nominals and role hierarchies) to estimate
the size of interpolants and provide an exponential time al-
gorithm for computing them.
Theorem 3. For ELI and any extension with any combi-
nation of nominals, the universal role, or ⊥, the existence of
interpolants and explicit definitions is EXPTIME-complete.
If an interpolant/explicit definition exists, then there exists
one of at most double exponential size that can be computed
in double exponential time. This bound is optimal.

The proof of Theorem 3 shows how an interpolant or ex-
plicit definition can be extracted from a (potentially infinite)
tree-shaped canonical model. The EXPTIME complexity
bound is proved using an encoding as an emptiness prob-
lem for tree automata that also uses derivation trees. It does
not seem possible to obtain tight bounds on the size of inter-
polants using derivation trees; instead we generalize transfer
sequences for this purpose (also first introduced in (Bien-
venu, Lutz, and Wolter 2013)).

In the final section, we consider expressive Horn-DLs
such as Horn-ALCI. We first observe that Theorem 3
also holds for Horn-ALCI and extensions with nominals
and the universal role, provided one asks for interpolants
and explicit definitions in ELI (and extensions with nom-
inals and the universal role, respectively). If one admits
expressive Horn-concepts as interpolants or explicit defini-
tions, then sometimes interpolants and explicit definitions
exist that previously did not exist. We show that neverthe-
less the CIP/PBDP also fail in this case for DLs including
Horn-ALC, ELI, and Horn-ALCI.

Detailed proofs are given in the arxiv version of this arti-
cle.

2 Related Work
The CIP and PBDP have been investigated extensively
in databases, with applications to query rewriting under
views and query compilation (Toman and Weddell 2011;
Benedikt et al. 2016). The computation of explicit defini-
tions under Horn ontologies can be seen as an instance of
query reformulation under constraints (Deutsch, Popa, and
Tannen 2006) which has been a major research topic for
many years. The Chase and Backchase approach that is
central to this research closely resembles our use of canon-
ical models. We do not assume, however, that the chase
terminates. In (Benedikt et al. 2016; 2017), it is shown
that the reformulation of CQs into CQs under tgds can be
reduced to entailment using Lyndon interpolation of first-
order logic. By linking reformulation into CQs and defin-
ability using concepts, this approach can potentially be used
to obtain alternative proofs of complexity upper bounds for
the existence of interpolants and explicit definitions in our
languages. Also relevant is the investigation of interpola-
tion in basic modal logic (Maksimova and Gabbay 2005)
and hybrid modal logic (Areces, Blackburn, and Marx 2001;
ten Cate 2005).

The main aim of this article is to investigate explicit de-
finability of concept and individual names under ontolo-
gies. We have therefore chosen a definition of the CIP and
interpolants that generalizes the projective Beth definabil-
ity property and explicit definability in a natural and use-
ful way, following (ten Cate, Franconi, and Seylan 2013).
There are, however, other notions of Craig interpolation
that are of interest. Of particular importance for mod-
ularity and various other purposes is the following ver-
sion: if O is an ontology and C ⊑ D an inclusion such
that O |= C ⊑ D, then there exists an ontology O′ in
the shared signature of O and C ⊑ D such that O |=
O′ |= C ⊑ D. This property has been considered for
EL and various extensions in (Sofronie-Stokkermans 2008;
Konev et al. 2010). Currently, it is unknown whether there
exists any interesting relationship between this version of the
CIP and the version we investigate in this article.

Craig interpolants should not be confused with uniform
interpolants (or forgetting) (Lutz, Seylan, and Wolter 2012;
Lutz and Wolter 2011; Nikitina and Rudolph 2014; Koop-
mann and Schmidt 2015). Uniform interpolants generalize
Craig interpolants in the sense that a uniform interpolant is



an interpolant for a fixed antecedent and any formula im-
plied by the antecedent and sharing with it a fixed set of
symbols.

Interpolant and explicit definition existence have only re-
cently been investigated for logics that do not enjoy the CIP
or PBDP. Extending work on Boolean DLs we discussed al-
ready, it is shown that they become harder than validity also
in the guarded and two-variable fragment (Jung and Wolter
2021). The interpolant existence problem for linear temporal
logic LTL is considered in (Place and Zeitoun 2016). In the
context of referring expressions, explicit definition existence
is investigated in (Artale et al. 2021b), see also (Borgida,
Toman, and Weddell 2016).

3 Preliminaries
Let NC, NR, and NI be disjoint and countably infinite sets of
concept, role, and individual names. A role is a role name
r or an inverse role r−, with r a role name. Nominals take
the form {a}, where a is an individual name. The universal
role is denoted by u. ELIOu-concepts C are defined by the
following syntax rule:

C,C ′ ::= ⊤ | A | {a} | C ⊓ C ′ | ∃r.C
where A ranges over concept names, a over individual
names, and r over roles (including the universal role). Frag-
ments of ELIOu are defined as usual. For example, ELI-
concepts are ELIOu-concepts without nominals and the
universal role, and EL-concepts are ELI-concepts without
inverse roles. Given any of the DLs L introduced above,
an L-concept inclusion (L-CI) takes the form C ⊑ D with
C,D L-concepts. An L-ontology O is a finite set of L-CIs.

We also consider ontologies with role inclusions (RIs), ex-
pressions of the form r1 ◦· · ·◦rn ⊑ r with r1, . . . , rn, r role
names. An ELOu-ontology with RIs is called an ELROu-
ontology. A set of RIs is a role hierarchy if all its RIs are of
the form r ⊑ s with r, s role names.

A signature Σ is a set of concept, role, and individual
names, uniformly referred to as (non-logical) symbols. We
follow common practice and do not regard the universal role
u as a non-logical symbol as its interpretation is fixed. We
use sig(X) to denote the set of symbols used in any syntactic
object X such as a concept or an ontology. If L is a DL and
Σ a signature, then an L(Σ)-concept C is an L-concept with
sig(C) ⊆ Σ. The size ||X|| of a syntactic object X is the
number of symbols needed to write it down.

The semantics of DLs is given in terms of interpreta-
tions I = (∆I , ·I), where ∆I is a non-empty set (the
domain) and ·I is the interpretation function, assigning to
each A ∈ NC a set AI ⊆ ∆I , to each r ∈ NR a relation
rI ⊆ ∆I × ∆I , and to each a ∈ NI an element aI ∈ ∆I .
The interpretation CI ⊆ ∆I of a concept C in I is defined
as usual, see (Baader et al. 2017). An interpretation I satis-
fies a CI C ⊑ D if CI ⊆ DI and an RI r1 ◦ · · · ◦ rn ⊑ r if
rI1 ◦ · · · ◦ rIn ⊆ rI . We say that I is a model of an ontology
O if it satisfies all inclusions in it. If α is a CI or RI, we write
O |= α if all models of O satisfy α. We write O |= C ≡ D
if O |= C ⊑ D and O |= D ⊑ C.

An ontology is in normal form if its CIs are of the form
⊤ ⊑ A, A1 ⊓A2 ⊑ B, A ⊑ {a}, {a} ⊑ A,

and
A ⊑ ∃r.B, ∃r.B ⊑ A

where A,A1, A2, B are concept names, r is a role or the
universal role, and a is an individual name. It is well known
that for any ELIOu-ontology O with or without RIs one
can construct in polynomial time a conservative extension
O′ using the same constructors as O that is in normal form.

L(Σ)-concepts can be characterized using L(Σ)-
simulations which we define next. Let I and J be
interpretations. A relation S ⊆ ∆I × ∆J is called an
ELO(Σ)-simulation between I and J if the following
conditions hold:

1. if d ∈ AI and (d, e) ∈ S, then e ∈ AJ , for all A ∈
NC ∩ Σ;

2. if d = aI and (d, e) ∈ S, then e = aJ , for all a ∈ NI∩Σ;
3. if (d, d′) ∈ rI and (d, e) ∈ S, then there exists e′ with

(e, e′) ∈ rJ and (d′, e′) ∈ S, for all r ∈ NR ∩ Σ.
S is called an ELOu(Σ)-simulation if ∆I is the domain of
S and an ELIO(Σ)-simulation if Condition 3 also holds for
inverse roles from Σ. Condition 2 is dropped if L does not
use nominals. We write (I, d) ⪯L,Σ (J , e) if there exists an
L(Σ)-simulation S between I and J with (d, e) ∈ S. We
write (I, d) ≤L,Σ (J , e) if d ∈ CI implies e ∈ CJ for
all L(Σ)-concepts C. The following characterization is well
known (Lutz and Wolter 2010; Lutz, Piro, and Wolter 2011).
Lemma 1. Let L ∈ {EL, ELu, ELO, ELOu, ELI, ELIu}.
Then (I, d) ⪯L,Σ (J , e) implies (I, d) ≤L,Σ (J , e). The
converse direction holds if J is finite.

4 Craig Interpolation Property and
Projective Beth Definability Property

We introduce the Craig interpolation property (CIP) as de-
fined in (ten Cate, Franconi, and Seylan 2013) and the pro-
jective Beth definability property (PBDP) and prove Theo-
rem 1 from the introduction to this article. We observe that
the CIP implies the PBDP, but lack a proof of the converse
direction. Nevertheless, all DLs considered in this paper en-
joying the PBDP also enjoy the CIP.

Set sig(O, C) = sig(O)∪sig(C), for any ontology O and
conceptC. Let O1,O2 be L-ontologies and letC1, C2 be L-
concepts. Then an L-concept D is called an L-interpolant1

for C1 ⊑ C2 under O1,O2 if
• sig(D) ⊆ sig(O1, C1) ∩ sig(O2, C2);
• O1 ∪ O2 |= C1 ⊑ D;
• O1 ∪ O2 |= D ⊑ C2.
Definition 1. A DL L has the Craig interpolation property
(CIP) if for any L-ontologies O1,O2 and L-conceptsC1, C2

such that O1∪O2 |= C1 ⊑ C2 there exists an L-interpolant
for C1 ⊑ C2 under O1,O2.

1Important variations of this definition are to drop O2 in Point 2
and O1 in Point 3, respectively, or to consider only one ontology
O = O1 = O2 and regard the signature Σ of the interpolant as an
input given independently from O, C1, C2. This has an effect on
the CIP, but our results on interpolant computation and existence
are not affected.



We next define the relevant definability notions. Let O be
an ontology and A a concept name. Let Σ ⊆ sig(O) be a
signature. An L(Σ)-conceptC is an explicit L(Σ)-definition
of A under O if O |= A ≡ C. We call A explicitly definable
in L(Σ) under O if there is an explicit L(Σ)-definition of A
under O. The Σ-reduct I|Σ of an interpretation I coincides
with I except that no symbol that is not in Σ is interpreted
in I|Σ. A concept A is called implicitly definable using Σ
under O if the Σ-reduct of any model I of O determines
the set AI ; in other words, if I and J are both models of
O such that I|Σ = J|Σ, then AI = AJ . It is easy to see
that implicit definability can be reformulated as a standard
reasoning problem as follows: a concept name A ̸∈ Σ is
implicitly definable using Σ under O iff O∪OΣ |= A ≡ A′,
where OΣ is obtained from O by replacing every symbol X
not in Σ (including A) uniformly by a fresh symbol X ′.
Definition 2. A DL L has the projective Beth definable prop-
erty (PBDP) if for any L-ontology O, concept name A, and
signature Σ ⊆ sig(O) the following holds: if A is implic-
itly definable using Σ under O, then A is explicitly L(Σ)-
definable under O.
Remark 1. The CIP implies the PBDP. To see this, assume
that an L-ontology O, concept name A and a signature Σ
are given, and that A is implicitly definable from Σ under
O. Then O ∪OΣ |= A ≡ A′, with OΣ defined above. Take
an L-interpolant C for A ⊑ A′ under O,OΣ. Then C is an
explicit L(Σ)-definition of A under O.
Remark 2. The PBDP implies that implicitly definable
nominals are explicitly definable and that, more generally,
every implicitly definable concept C is explicitly definable.
This can be shown by adding A ≡ C to the ontology for a
fresh concept name A and asking for an explicit definition
of A in the extended ontology.
Remark 3. The CIP and PBDP are invariant under adding
⊥ (interpreted as the empty set) to the languages introduced
above. The straightforward proof is given in the appendix of
the full version.

We next prove that the majority of tractable extensions of
EL does not enjoy the CIP nor PBDP.

Theorem 1. The following DLs do not enjoy the CIP nor
PBDP:

1. EL with the universal role,
2. EL with nominals,
3. EL with a single role inclusion r ◦ s ⊑ s,
4. EL with role hierarchies and a transitive role,
5. EL with inverse roles.
In Points 2 to 5, the CIP/PBDP also fails if the universal role
can occur in interpolants/explicit definitions.

Proof. We first show that ELu does not enjoy the PBDP.
Point 1 then follows using Remark 1. We define an ELu-
ontology Ou, signature Σ, and concept name A such that A
is implicitly definable using Σ under Ou but not ELu(Σ)-
explicitly definable under Ou. Define Ou as the following
set of CIs:

A ⊑ B, D ⊓ ∃u.A ⊑ E, B ⊑ ∃r.C

C ⊑ D, B ⊓ ∃r.(C ⊓ E) ⊑ A,

and let Σ = {B,D,E, r}. We have Ou |= A ≡ B ⊓
∀r.(D → E),2 so A is implicitly definable using Σ under
Ou. The interpretations I and I ′ given in Figure 1 show that
A is not explicitly ELu(Σ)-definable under Ou. Indeed, I

a
A,B

b
C,D,E

a′
B

b′

D,E
b′′

C,D

Figure 1: Interpretations I (left) and I′ (right) used for Ou.

and I ′ are both models of Ou, a ∈ AI , a′ ̸∈ AI′
, and the

relation {(a, a′), (b, b′)} is a ELu(Σ)-simulation between I
and I ′. As ELu(Σ)-concepts are preserved under ELu(Σ)-
simulations (Lemma 1), if Ou |= A ≡ F for some ELu(Σ)-
concept F , then from a ∈ AI we obtain a ∈ F I . This
implies a′ ∈ F I′

, and so a′ ∈ AI′
. As a′ ̸∈ AI′

, we obtain
a contradiction.

We next prove Point 2. An example from (Artale et al.
2021b) shows that ELO does not enjoy the CIP/PBDP. Here
we show that ELO does not enjoy the CIP/PBDP, even if in-
terpolants/explicit defintions are from ELOu. Let On con-
tain the following CIs:

A ⊑ ∃r.(E ⊓ {c}), ⊤ ⊑ ∃s.(Q2 ⊓ ∃s.{c})
∃s.(Q1 ⊓Q2 ⊓ ∃s.{c}) ⊑ A, ∃s.E ⊑ Q1

and let Σ = {c, s,Q1}. Observe that A is implicitly de-
finable using Σ under On as On |= A ≡ ∀s.(∃s.{c} →
Q1). The relation {(a, a′), (b, b′), (c, c′)} is an ELOu(Σ)-
simulation between the interpretations I and I ′ defined in
Figure 2. Now we can apply the same argument as in Point 1
to show that A is not explicitly ELOu(Σ)-definable under
On.

a
A

c E,A, {c}b
A,Q2, Q1

a′

c′ {c}b′

Q1

b′′
Q2

s r

s

s
s

s

s

ss

s

s

Figure 2: Interpretations I (left) and I′ (right) used for On.

For Point 3, let Or contain
A ⊑ ∃r.E, E ⊑ ∃s.B, ∃s.B ⊑ A, r ◦ s ⊑ s,

and let Σ = {s, E}. Then A is implicitly definable using Σ
under Or since
Or |= ∀x(A(x) ↔ ∃y(E(y) ∧ ∀z(s(y, z) → s(x, z))).

We show that there does not exist any ELu(Σ)-explicit def-
inition of A under Or. The interpretations I and I ′ given

2Here and in what follows we use standard ALC syntax and
semantics and set C → D := ¬C ⊔D (Baader et al. 2017).



a
A

c
E,A

b
B

a′

c′
E,A

b′

c′′
E,A

b′′

B

s r

s
r

s

s

s
r

s

r

Figure 3: Interpretations I (left) and I′ (right) used for Or .

in Figure 3 are both models of Or, a ∈ AI , a′ ̸∈ AI′
, and

the relation {(a, a′), (b, b′), (c, c′)} is an ELu(Σ)-simulation
between I and I ′. One can now show in the same way as in
Point 1 that no ELu(Σ)-definition of A under Or exists.

Point 4 is shown in the appendix of the full version using
a modification of the ontology used for Point 3.

To prove Point 5, obtain an ELI-ontology Oi from Ou

defined above by replacing the second CI of Ou by D ⊓
∃r−.A ⊑ E. Let, as before, Σ = {B,D,E, r}. Then A
is implicitly definable from Σ under Oi (the same explicit
definition works), butA is not explicitly ELIu(Σ)-definable
under Oi (the same interpretations I and I ′ work).

We next discuss a general positive result on interpolation
and explicit definition existence that shows that Theorem 1 is
essentially optimal. A set R of RIs is safe for a signature Σ if
for each RI r1◦· · ·◦rn ⊑ r ∈ R, n ≥ 1, if {r1, . . . , rn, r}∩
Σ ̸= ∅ then {r1, . . . , rn, r} ⊆ Σ.

Theorem 4. Let O1,O2 be EL-ontologies with RIs, C1, C2

be EL-concepts, and set Σ = sig(O1, C1) ∩ sig(O2, C2).
Assume that the set of RIs in O1 ∪ O2 is safe for Σ and
O1∪O2 |= C1 ⊑ C2. Then an EL-interpolant for C1 ⊑ C2

under O1, O2 exists.

The proof technique is based on simulations and similar
to (Konev et al. 2010; Lutz, Seylan, and Wolter 2019). The-
orem 4 has a few interesting consequences. For instance,
EL with transitive roles enjoys both the CIP and PBDP since
transitivity is expressed by the role inclusion r◦r ⊑ r which
is safe for any signature (as it only uses a single role name).

5 Interpolant and Explicit Definition
Existence

We introduce interpolant and explicit definition existence as
decision problems and establish a polynomial time reduction
of the latter to the former. We then show that it suffices to
consider ontologies in normal form and that the addition of
⊥ does not affect the complexity of the decision problems.

Definition 3. Let L be a DL. Then L-interpolant existence
is the problem to decide for any L-ontologies O1,O2 and
L-concepts C1, C2 whether there exists an L-interpolant for
C1 ⊑ C2 under O1,O2.

Observe that interpolant existence reduces to checking
O1 ∪ O2 |= C1 ⊑ C2 for logics with the CIP but that this is
not the case for logics without the CIP.
Definition 4. Let L be a DL. Then L-explicit definition exis-
tence is the problem to decide for any L-ontology O, signa-
ture Σ, and concept nameAwhetherA is explicitly definable
in L(Σ) under O.
Remark 4. There is a polynomial time reduction of
L-explicit definition existence to L-interpolant existence.
Moreover, any algorithm computing L-interpolants also
computes L-explicit definitions and any bound on the size
of L-interpolants provides a bound on the size of L-explicit
definitions. The proof is similar to the proof of Remark 1.

We next observe that replacing the original ontologies by
a conservative extension preserves interpolants and explicit
definitions. Thus, it suffices to consider ontologies in normal
form and interpolants for inclusions between concept names.
Lemma 2. Let O1,O2 be ontologies andC1, C2 concepts in
any DL L considered in this paper. Then one can compute
in polynomial time L-ontologies O′

1,O′
2 in normal form and

with fresh concept names A,B such that an L-concept C is
an interpolant for C1 ⊑ C2 under O1,O2 iff it is an inter-
polant for A ⊑ B under O′

1,O′
2.

Proof. Let O′
1 and O′

2 be normal form conservative exten-
sions of O1 ∪ {A ≡ C} and, respectively, O2 ∪ {B ≡ D},
computed in polynomial time. One can show that O′

1 and
O′

2 are as required.

Remark 5. Assume that L is any of the DLs introduced
above and let L⊥ denote its extension with ⊥. Then
L-interpolant existence and L-explicit definition existence
can be reduced in polynomial time to L⊥-interpolant ex-
istence and L⊥-explicit definition existence, respectively.
The converse direction also holds modulo an oracle decid-
ing whether O |= C ⊑ ⊥.

6 Interpolant and Explicit Definition
Existence in Tractable EL Extensions

The aim of this section is to analyse interpolants and explicit
definitions for extensions of EL with any combination of
nominals, role inclusions, or the universal role. We show
the following result from the introduction.

Theorem 2. For EL and any extension with any combi-
nation of nominals, role inclusions, the universal role, or
⊥, the existence of interpolants and explicit definitions is in
PTIME. If an interpolant/explicit definition exists, then there
exists one of at most exponential size that can be computed
in exponential time. This bound is optimal.

Before we start with a sketch of the proof we give in-
structive examples showing that the exponential bound on
the size of explicit definitions is optimal.
Example 1. Variants of the following example have already
been used for various succinctness arguments in DL. Let
Ob = {A ⊑M ⊓ ∃r1.B1 ⊓ ∃r2.B1} ∪

{Bi ⊑ ∃r1.Bi+1 ⊓ ∃r2.Bi+1 | 1 ≤ i < n} ∪
{Bn ⊑ B, ∃r1.B ⊓ ∃r2.B ⊑ B,B ⊓M ⊑ A}



and Σ0 = {r1, r2, Bn,M}. A triggers a marker M and a
binary tree of depth n whose leafs are decorated with Bn.
Conversely, if Bn is true at all leafs of a binary tree of depth
n, then B is true at all nodes of the tree and B together
with M entail A at its root. Let, inductively, C0 := Bn

and Ci+1 = ∃r1.Ci ⊓ ∃r2.Ci, for 0 < i < n, and C =
M ⊓ Cn. Then C is the smallest explicit EL(Σ0)-definition
of A under Ob. Next let

Op = {ri ◦ ri ⊑ ri+1 | 0 ≤ i < n} ∪
{A ⊑ ∃r0.B,B ⊑ ∃r0.B, ∃rn.B ⊑ A}

and Σ1 = {r0, B}. Then ∃r2n0 .B is the smallest explicit
EL(Σ1)-definition of A under Op.

Observe that using Ob one enforces explicit definitions of
exponential size by generating a binary tree of linear depth
whereas using Op this is achieved by generating a path of
exponential length. The latter can only happen if role inclu-
sions are used in the ontology. One insight provided by the
exponential upper bound on the size of explicit definitions
in Theorem 2 is that the two examples cannot be combined
to enforce a binary tree of exponential depth.

To continue with the proof we introduce ABoxes as a
technical tool that allows us to move from interpretations
to (potentially incomplete) sets of facts and concepts. An
ABox A is a (possibly infinite) set of assertions of the form
A(x), r(x, y), {a}(x), and ⊤(x) with A ∈ NC, r ∈ NR,
a ∈ NI, and x, y individual variables (we call individuals
used in ABoxes variables to distinguish them from individ-
ual names used in nominals). We denote by ind(A) the set of
individual variables in A. A Σ-ABox is an ABox using sym-
bols from Σ only. Models of ABoxes are defined as usual.
We do not make the unique name assumption.

Every interpretation I defines an ABox AI by identify-
ing every d ∈ ∆I with a variable xd and taking A(xd)
if d ∈ AI , r(xc, xd) if (c, d) ∈ rI , {a}(xd) if aI = d.
Conversely, ABoxes A define interpretations in the obvious
way (by identifying variables x, y if {a}(x), {a}(y) ∈ A).
We associate with every ABox A a directed graph GA =
(ind(A),

⋃
r∈NR

{(x, y) | r(x, y) ∈ A}). Let Γ be a set of
individual names. Then A is ditree-shaped modulo Γ if af-
ter dropping some facts of the form r(x, y) with {a}(y) ∈ A
for some a ∈ Γ, it is ditree-shaped in the sense that GA is
acyclic and r(x, y) ∈ A and s(x, y) ∈ A imply r = s.
A pointed ABox is a pair A, x with x ∈ ind(A). Then
ELOu(Σ)-concepts correspond to pointed Σ-ABoxes A, x
such that A is ditree-shaped modulo NI ∩ Σ and ELO(Σ)-
concepts correspond to rooted pointed Σ-ABoxes A, x such
that A is ditree-shaped modulo NI ∩Σ, where A, x is called
rooted if for every y ∈ ind(A) there is a path from x to y in
GA. We write O,A |= C(x) if xI ∈ CI for every model I
of O and A.

Given an ELROu-ontology O in normal form and a con-
cept name A, one can construct in polynomial time the
canonical model IO,A of O and A using the approach intro-
duced in (Baader, Brandt, and Lutz 2005). More generally,
the canonical model IO,A for an ABox A and ontology O
can be constructed in polynomial time and is a model of both
O and A such that for any ELOu-concept C using symbols
from O only and any x ∈ ind(A),

(†) O,A |= C(x) iff x ∈ CIO,A ,
details are given in the appendix of the full version. We let
IO,A = IO,A with A = {A(ρA)}. Note that in (Baader,
Brandt, and Lutz 2005) the condition (†) is only stated for
subconcepts C of the ontology O, thus (†) requires a proof.
Example 2. The interpretations I defined in the proof of
Theorem 1 define canonical models IO,A with ρA = a for
the ontologies O ∈ {Ou,On,Or,Oi}. The interpretations
I ′ define canonical models IO,AΣ

O
with AΣ

O the Σ-reduct of
IO,A regarded as an ABox and ρA = a′.

The directed unfolding of a pointed Σ-ABox A, x into a
pointed Σ-ABox Au, x that is ditree-shaped modulo Σ ∩ NI

is defined in the standard way. In the rooted directed unfold-
ing, nodes that cannot be reached from x via role names are
dropped.

Assume now that O is in normal form and A a concept
name. Let AΣ

O,A be the Σ-reduct of the canonical model
IO,A, regarded as an ABox. Denote by AΣ,u

O,A, ρA the di-
rected unfolding of AΣ

O,A, ρA, by A↓Σ
O,A, ρA the sub-ABox

of AΣ
O,A rooted in ρA, and by A↓Σ,u

O,A , ρA its rooted directed
unfolding. Theorem 2 is a direct consequence of the follow-
ing characterization of interpolants.
Theorem 5. There exists a polynomial p such that the fol-
lowing conditions are equivalent for all ELROu-ontologies
O1,O2 in normal form, concept names A,B, and Σ =
sig(O1, A) ∩ sig(O2, B):

1. An ELOu-interpolant for A ⊑ B under O1,O2 exists;
2. O1 ∪ O2,AΣ

O1∪O2,A
|= B(ρA);

3. there exists a finite subset A of AΣ,u
O1∪O2,A

with
|ind(A)| ≤ 2p(||O1∪O2||) such that the ELOu-concept
corresponding to A, ρA is an ELOu-interpolant for A ⊑
B under O1,O2.

The same equivalences hold if in Points 1 to 3, ELOu is
replaced by ELO, AΣ

O1∪O2,A
by A↓Σ

O1∪O2,A
, and AΣ,u

O1∪O2,A

by A↓Σ,u
O1∪O2,A

.
In Point 3, A can be computed in exponential time, if it

exists.
Note that the polynomial time decidability of interpolant

existence follows from Point 2 of Theorem 5 (and the
tractability of ELROu (Baader, Brandt, and Lutz 2005)).
Example 3. Our proof of Theorem 2 can be regarded as
an application of Theorem 5: by Example 2, the interpre-
tations I and I ′ coincide with the canonical models IO,A

and IO,AΣ
O,A

and so ρA = a′ ̸∈ A
IO,AΣ

O,A is equivalent to

O,AΣ
O,A ̸|= A(ρA) (Point 2 in Theorem 5).

The following example illustrates the difference between
the existence of explicit definitions in ELO and ELOu and
thus the need for moving to the ABoxes A↓Σ

O,A, and A↓Σ,u
O,A if

one does not admit the universal role in explicit definitions.
Example 4. Let O = {A ⊑ {b}, A ⊑ ∃r.B,B ⊑ ∃s.A}
and let Σ = {b, B}. Then A is explicitly ELOu(Σ)-
definable under O since O |= A ≡ {b} ⊓ ∃u.B but A



is not explicitly ELO(Σ)-definable. Note that in this case
AΣ

O,A = {{b}(ρA), B(y)} but A↓Σ
O,A = {{b}(ρA)}.

We next sketch the proof idea for Theorem 5 for the case
with universal role in interpolants. We show “1. ⇒ 2.”,
observe that “3. ⇒ 1.” is trivial, and then sketch the proof
of “2. ⇒ 3.” and the exponential time algorithm computing
interpolants, details are provided in the appendix of the full
version. For “1. ⇒ 2.” assume that C is an ELOu(Σ)-
concept with (i) O1 ∪ O2 |= A ⊑ C and (ii) O1 ∪ O2 |=
C ⊑ B. By (†) and (i), AΣ

O1∪O2,A
|= C(ρA). But then by

(ii) O1 ∪ O2,AΣ
O1∪O2,A

|= B(ρA), as required.
If one does not impose a bound on the size of A in Point 3,

then one can prove “2. ⇒ 3.” using compactness and a
generalization of unraveling tolerance according to which
O1 ∪ O2,AΣ

O1∪O2,A
and O1 ∪ O2,AΣ,u

O1∪O2,A
entail the

same C(ρA) (Lutz and Wolter 2017; Hernich et al. 2020).
As we are interested in an exponential bound on the size
of A (and a deterministic exponential time algorithm com-
puting it) we require a more syntactic approach. Our proof
of “2. ⇒ 3.” is based on derivation trees which repre-
sent a derivation of a fact C(a) from an ontology O and
ABox A using a labeled tree. Our derivation trees general-
ize those introduced in (Bienvenu, Lutz, and Wolter 2013;
Baader et al. 2016) to languages with nominals and role in-
clusions. Reflecting the use of individual names and con-
cept names in the construction of the domain of the canon-
ical model (Baader, Brandt, and Lutz 2005), we assume
a ∈ ∆ := ind(A) ∪ ((NC ∪ NI) ∩ sig(O)) and C ∈ Θ :=
{⊤} ∪ (NC ∩ sig(O)) ∪ {{a} | a ∈ NI ∩ sig(O)}. Then a
derivation tree (T, V ) for (a,C) ∈ ∆×Θ is a tree T with a
labeling function V : T → ∆×Θ such that V (ε) = (a,C)
and (V, T ) satisfies rules stating under which conditions the
label of n is derived in one step from the labels of the suc-
cessors of n. To illustrate, the existence of successors n1, n2
of n with V (n1) = (a,C1) and V (n2) = (a,C2) justifies
V (n) = (a,C) if O |= C1 ⊓ C2 ⊑ C. The rules are given
in the appendix of the full version, we only discuss the rule
used to capture derivations using RIs: V (n) = (a1, C) is
justified if there are role names r2, . . . , r2k−2, r such that
(a2k, C

′) is a label of a successor of n, O |= ∃r.C ′ ⊑ C,
O |= r2 ◦ · · · ◦ r2k−2 ⊑ r, and the situation depicted
in Figure 4 holds, where the “dotted lines” stand for ‘ei-
ther ai = ai+1 or some (ai, {c}), (ai+1, {c}) with c ∈ NI

are labels of successors of n’, and r̂i stands for ‘either
r(ai, ai+1) ∈ A or some (ai, Ci) is a label of a succes-
sor of n and O |= Ci ⊑ ∃ri.{ai+1} if ai+1 ∈ NI and
O |= Ci ⊑ ∃ri.ai+1 if ai+1 ∈ NC’. Moreover, for all
ai ̸= a1, 1 ≤ i ≤ 2k, there exists a successor of n with label
(ai, D) for some D. The soundness of this rule should be
clear, completeness can be shown similarly to the analysis
of canonical models.

The length of the sequence a1, . . . , a2k can be expo-
nential (for instance, in Example 1 for the fact (ρA, A) in
Op,AΣ1

Op,A
). One can show, however, that its length can

be bounded without affecting completeness by 2q(||O||+||A||)

with q a polynomial. The following lemma summarizes the
main properties of derivation trees.

a1

a2

a4

a3

a5

a6 · · ·

· · · a2k−3

a2k−2

a2k
C′

a2k−1
r̂2

r̂4

r̂6

r̂2k−4

r̂2k−2

Figure 4: Rule for Role Inclusions.

Lemma 3. Let O be an ELROu-ontology in normal form
and A a finite sig(O)-ABox. Then

1. O,A |= A(x) if and only if there is a derivation tree
for A(x) in O,A. Moreover, if a derivation tree exists,
then there exists one of depth and outdegree bounded by
(||A||+ ||O||)× ||O|| which can be constructed in expo-
nential time in ||O||+ ||A||.

2. If (T, V ) is a derivation tree for A(x) in O,A of at most
exponential size, then one can construct in exponential
time (in ||A||+ ||O||) a derivation tree (T ′, V ′) for A(x)
in O,Au with Au the directed unfolding of A modulo
Σ = sig(A)∩NI and T ′ of the same depth as T and such
that the outdegree of T ′ does not exceed max {3, 3n} with
n the length of the longest chain a1 · · · an used in the rule
for RIs in the derivation tree (T, V ).

Proof. We sketch the idea. For Point 1, the bound on the
depth of derivation trees can be proved by observing that
one can assume (using a standard pumping argument) that
the labels of distinct nodes on a single path are distinct and
the bound on the outdegree can be proved by observing that
one can trivially assume that all successor nodes of a node
have distinct labels. For the construction of derivation trees,
let Fn denote the set of facts in ∆ × Θ for which there is a
derivation tree of depth at most n. Then one can construct
in exponential time derivation trees for all facts in any Fn,
n ≤ (||A||+||O||)×||O|| by starting with derivation trees of
depth 0 for members of F0, and then constructing derivation
trees of depth i+ 1 for members of Fi+1 using the trees for
members of F0, . . . , Fi. For Point 2, the transformation of
(T, V ) into (T ′, V ′) is by induction over rule application,
the only interesting step being the rule for RIs. Using the
ontology Op of Example 1 one can see that the exponential
blow-up of the outdegree is unavoidable.

We are now in the position to complete the sketch of
the proof of “2. ⇒ 3.” Assume that Point 2 holds. Then
O1 ∪ O2,AΣ

O1∪O2,A
|= B(ρA). By Point 1 of Lemma 3

we can construct a derivation tree (T, V ) for (ρA, B) in
O1 ∪ O2,AΣ

O1∪O2,A
of polynomial depth and outdegree in

exponential time. By Point 2 of Lemma 3 we can trans-
form (T, V ) into a derivation tree (T ′, V ′) for (ρA, B) in
O1 ∪ O2,AΣ,u

O1∪O2,A
in exponential time. Now let A be the

restriction of AΣ,u
O1∪O2,A

to all x ∈ ind(AΣ,u
O1∪O2,A

) which
occur in a label of V ′. Then (T ′, V ′) is also a derivation tree
for (ρA, B) in O1 ∪O2,A and so O1 ∪O2,A |= B(ρA). It
follows that the ELOu(Σ)-concept corresponding to A is an
interpolant for A ⊑ B under O1 ∪O2. Its size is at most ex-
ponential in ||O1∪O2|| since (T ′, V ′) is at most exponential
in ||O1 ∪ O2||+ ||AΣ

O1∪O2,A
||, and so also in ||O1 ∪ O2||.



7 Interpolant and Explicit Definition
Existence in ELI and Extensions

We analyze interpolants and explicit definitions for ELI and
its extensions with nominals and universal roles, and show
the following result from the introduction.

Theorem 3. For ELI and any extension with any combina-
tion of nominals, the universal role, or ⊥, the existence of
interpolants and explicit definitions is EXPTIME-complete.
If an interpolant/explicit definition exists, then there exists
one of at most double exponential size that can be computed
in double exponential time. This bound is optimal.

The double exponential lower bound on the size of ex-
plicit definitions and interpolants is shown in the appendix
of the full version. The proof is inspired by similar lower
bounds for the size of FO-rewritings and uniform inter-
polants (Lutz and Wolter 2010; Nikitina and Rudolph 2014).
To prove the remaining claims of Theorem 3, we lift Theo-
rem 5 to ELI. The main differences are that (1) we now
associate undirected graphs with ABoxes and also unfold
along inverse roles; (2) that canonical models become po-
tentially infinite but tree-shaped; (3) that therefore deciding
the new variant of Point 2 of Theorem 5 is not an instance
of standard entailment checking in ELI, instead we give a
reduction to emptiness checking for tree automata; and (4)
that to bound the size of A in Point 3, we employ transfer
sequences (and not derivation trees) to represent how facts
are derived.

In more detail, associate with every ABox A the undi-
rected graph Gu

A = (ind(A),
⋃

r∈NR
{{x, y} | r(x, y) ∈

A}). We say that A is tree-shaped if Gu
A is acyclic,

r(x, y) ∈ A and s(x, y) ∈ A imply r = s, and r(x, y) ∈ A
implies s(y, x) ̸∈ A for any s. A is tree-shaped modulo a
set Γ of individual names if after dropping some facts r(x, y)
with {a}(x) or {a}(y) ∈ A for some a ∈ Γ it is tree-shaped.
We observe that ELIOu(Σ)-concepts correspond to pointed
Σ-ABoxes A, x such that A is tree-shaped modulo NI ∩ Σ.
ELIO(Σ)-concepts correspond to weakly rooted pointed Σ-
ABoxes A, x such that A is tree-shaped modulo NI ∩ Σ,
where A, x is called weakly rooted if for every y ∈ ind(A)
there is a path from x to y in Gu

A.
For every ELIOu-ontology O and concept A there ex-

ists a (potentially infinite) pointed canonical model IO,A, ρA
such that the ABox AO,A corresponding to IO,A is tree-
shaped modulo NI ∩ sig(O). The property (†) used in the
context of canonical models for tractable extensions of EL
holds here as well. We also require the undirected unfold-
ing of a pointed Σ-ABox A, x into a pointed Σ-ABox A∗, x
which is tree-shaped modulo Σ ∩ NI. In the rooted undi-
rected unfolding, nodes that cannot be reached from x via
roles are dropped.

Assume now that O is in normal form and A a concept
name. Let AΣ

O,A be the Σ-reduct of the canonical model
IO,A, regarded as an ABox. Denote by AΣ,∗

O,A, ρA the undi-
rected unfolding of AΣ

O,A, ρA, by A↓wΣ
O,A , ρA the sub-ABox

of AΣ
O,A weakly rooted in ρA, and by A↓wΣ,∗

O,A , ρA its rooted
undirected unfolding. Then we lift Theorem 5 as follows.

Theorem 6. There exists a polynomial p such that the fol-
lowing conditions are equivalent for all ELIOu-ontologies
O1,O2 in normal form, concept names A,B, and Σ =
sig(O1, A) ∩ sig(O2, B):

1. An ELIOu-interpolant for A ⊑ B under O1,O2 exists;
2. O1 ∪ O2,AΣ

O1∪O2,A
|= B(ρA);

3. there exists a finite subset A of AΣ,∗
O1∪O2,A

with

|ind(A)| ≤ 22
p(||O1∪O2||)

such that the ELIOu-concept
corresponding to A, ρA is an ELIOu-interpolant for
A ⊑ B under O1,O2.

The same equivalences hold if in Points 1 to 3, ELIOu is re-
placed by ELIO, AΣ

O1∪O2,A
by A↓wΣ

O1∪O2,A
, and AΣ,∗

O1∪O2,A

by A↓wΣ,∗
O1∪O2,A

.
In Point 3, A can be computed in double exponential time,

if it exists.

We first sketch how tree automata are used to show that
Point 2 entails an exponential time upper bound for decid-
ing the existence of an interpolant. To this end we represent
finite prefix-closed subsets A of AΣ

O1∪O2,A
as trees and de-

sign

• a non-determistic tree automaton over finite trees (NTA),
A1, that accepts exactly those trees that represent prefix-
closed finite subsets of AΣ

O1∪O2,A
;

• a two-way alternating tree automaton over finite trees
(2ATA), A2, that accepts exactly those trees that represent
a pointed ABox A, ρ with O1 ∪ O2,A |= B(ρ).

Similar tree automata techniques have been used e.g. in
(Jung et al. 2020). A1 is constructed using the definition of
canonical models; its states are essentially types occuring in
the canonical model and it can be constructed in exponential
time. The 2ATA A2 tries to construct a derivation tree for
B(ρ) in O1 ∪O2,A, given as input a tree representing A, ρ.
It has polynomially many states, and can thus be turned into
an equivalent NTA with exponentially many states (Vardi
1998). By taking the intersection with A1, one can then
check in exponential time whether L(A1)∩L(A2) ̸= ∅, that
is, whether O1 ∪ O2,AΣ

O1∪O2,A
|= B(ρA).

We return to the proof of Theorem 6. The interesting im-
plication is “2. ⇒ 3.” and the double exponential computa-
tion of interpolants. In this case we use transfer sequences
to obtain a bound on the size of the subset A of AΣ,∗

O1∪O2,A

needed to deriveB(ρA) (we note that for ELI without nom-
inals one can also use the automata encoding above). Trans-
fer sequences describe how facts are derived in a tree-shaped
ABox and allow to determine when individuals a and b be-
have sufficiently similar so that the subtree rooted at a can
be replaced by the subtree rooted at b (Bienvenu, Lutz, and
Wolter 2013) without affecting a derivation. This technique
can be used to show that one can always choose a prefix
closed subset A of AΣ,∗

O1∪O2,A
of at most exponential depth.

This also implies that A can be obtained in double exponen-
tial time by constructing the canonical model up to depth
2q(||O1∪O2||) with q a polynomial.



8 Expressive Horn Description Logics
We address two questions regarding expressive Horn-DLs.
(1) Can our results for ELI and extensions be lifted to more
expressive Horn-DLs? (2) In the examples provided in the
proof of Theorem 1 we sometimes (for example, for ELu

and ELI) construct explicit Horn-DL definitions to show
implicit definability of concept names. Are Horn-DL con-
cepts always sufficient to obtain an explicit definition if an
implicit definition exists? We provide a positive answer to
(1) if one only admits ELIOu-concepts (or fragments) as
interpolants/explicit definitions and a negative answer to (2)
in the sense that ELI and various other Horn-DLs do not
enjoy the CIP/PBDP even if one admits Horn-DL concepts
as interpolants/explicit definitions.

We introduce expressive Horn DLs (Hustadt, Motik, and
Sattler 2005), presented here in the form proposed in (Lutz
and Wolter 2012). Horn-ALCIOu-concepts R and Horn-
ALCIOu-CIs L ⊑ R are defined by the syntax rules

R,R′ ::= ⊤ | ⊥ | A | ¬A | {a} | ¬{a} | R ⊓R′ | L→ R |
∃r.R | ∀r.R

L,L′ ::= ⊤ | ⊥ | A | L ⊓ L′ | L ⊔ L′ | ∃r.L

with A ranging over concept names, a over individual
names, and r over roles (including the universal role). As
usual, the fragment of Horn-ALCIOu without nominals
and the universal role is denoted by Horn-ALCI and Horn-
ALC denotes the fragment of Horn-ALCI without inverse
roles.
Theorem 7. Let (L,L′) be the pair (Horn-ALCI, ELI) or
the pair (Horn-ALCIOu, ELIOu). Then
• deciding the existence of an L′-interpolant for an L′-

CI C ⊑ D under L-ontologies O1,O2 is EXPTIME-
complete;

• deciding the existence of an explicit L′(Σ)-definition of
a concept name A under an L-ontology O is EXPTIME-
complete.

Moreover, if an L-interpolant/explicit definition exists, then
there exists one of at most double exponential size that can
be computed in double exponential time.

Theorem 7 follows from Theorem 3 and the fact that for
any L-ontology one can construct in polynomial time an L′-
ontology in normal form that is a conservative extension
of L (see (Bienvenu et al. 2016) for a similar result). We
next show that despite the fact that Horn-ALCI-concepts
sometimes provide explicit definitions if none exist in ELI
(proof of Theorem 1), they are not sufficient to prove the
CIP/PBDP.
Theorem 8. There exists an ontology O in Horn-ALC (and
in ELI), a signature Σ, and a concept name A such that A
is implicitly definable using Σ under O but does not have an
explicit Horn-ALCIu(Σ)-definition.

Proof. We modify the ontology used in the proof of Point 1
of Theorem 1. Let Σ = {B,D1, E, r, r1} and let O contain
B ⊓ ∃r.(C ⊓ E) ⊑ A and the following CIs:

A ⊑ B, B ⊑ ∀r.F, B ⊑ ∃r.C, C ⊑ F ⊓ ∀r1.D1,

a
A,B

b
C,E, F

r

c
F

r

d
D1,M

r1

e
D1

r1

f
M

r1

a′
B

b′
E,F

r

b′′
C,F

r

c′
F

r

d′

D1,M

r1

d′′

D1,M

r1

e′

D1

r1

f ′

M

r1

Figure 5: Interpretations I (left) and I′ (right).

F ⊑ ∃r1.D1 ⊓ ∃r1.M,

A ⊑ ∀r.((F ⊓ ∃r1.(D1 ⊓M)) → E) .

Intuitively, the final two CIs should be read as

F ⊑ ∃r1.D1

A ⊑ ∀r.((F ⊓ ∀r1.D1) → E)

and the concept name M is introduced to achieve this in a
projective way as the latter CI is not in Horn-ALCI.
A is implicitly definable using Σ under O since

O |= A ≡ B ⊓ ∀r.(∀r1.D1 → E).

To show that A is not explicitly Horn-ALCIu(Σ)-definable
under O consider the interpretations I and I ′ in Figure 5.
The claim follows from the facts that I and I ′ are models of
O, a ∈ AI , a′ ̸∈ AI′

, but a ∈ F I implies a′ ∈ F I′
holds

for every Horn-ALCIu(Σ)-concept F . The latter can be
proved by observing that there exists a Horn-ALCIu(Σ)-
simulation between I and I ′ (Jung et al. 2019) containing
({a}, a), we refer the reader to the appendix of the full ver-
sion. To obtain an example in ELI, it suffices to take a
conservative extension of O in ELI.

9 Discussion
For a few important extensions of EL/ELI the complex-
ity of interpolant and explicit definition existence remains
to be investigated. Examples include extensions of ELI
with role inclusions, and extensions of EL or ELI with
functional roles or more general number restrictions. It
would also be of interest to investigate interpolant existence
if Horn-concepts are admitted as interpolants (using, for ex-
ample, the games introduced in (Jung et al. 2019)). Fi-
nally, the question arises whether there exists at all a decid-
able Horn language extending, say, Horn-ALCI, with the
CIP/PBDP. We note that Horn-FO enjoys the CIP (Exercise
6.2.6 in (Chang and Keisler 1998)) but is undecidable and
that we show in the appendix of the full version that the
Horn fragment of the guarded fragment does not enjoy the
CIP/PBDP.
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A Further Prelimaries
We call an ontology O′ a conservative extension of an on-
tology O if O′ |= α for all α ∈ O and every model I of O
can be expanded to a model J of O′ by modifying the inter-
pretation of symbols in sig(O′)\sig(O). In other words, the
sig(O)-reducts of I and J coincide. The following result is
folklore (Baader, Brandt, and Lutz 2005).

Lemma 4. Let L be any DL from
EL, ELI, ELO, ELRO, ELIO or an extension with
the universal role, and let O be an L-ontology. Then one
can construct in polynomial time an L-ontology O′ in
normal form such that O′ is a conservative extension of O.

We next give a more detailed introduction to ABoxes
and how they relate to concepts. Recall that an ABox A
is a (possibly infinite) set of assertions of the form A(x),
r(x, y), {a}(x), and ⊤(x) with A ∈ NC, r ∈ NR, a ∈ NI,
and x, y individual variables. An ABox is factorized if
{a}(x), {a}(y) ∈ A imply x = y.

ABox assertions are interpreted in an interpretation I us-
ing a variable assignment v that maps individual variables
to elements of ∆I . Then I, v satisfies an assertion A(x) if
v(x) ∈ AI , r(x, y) if (v(x), v(y)) ∈ rI , {a}(x) if aI =
v(x), and ⊤(x) is always satisfied. I, v satisfies an ABox
if it satisfies all assertions in it. We write I |= A[x 7→ d]
if there exists an assignment v with v(x) = d such that I, v
satisfies A. We say that an assertion A0(x0) is entailed by
an ontology O and ABox A, in symbols O,A |= A0(x0),
if v(x) ∈ AI

0 for all models I of O and assignments v
such that I, v satisfy A. This is the standard notion of
entailment from a knowledge base consisting of an ontol-
ogy and an ABox. Deciding entailment is in PTIME for
the DLs between EL and EL++

u (Baader, Brandt, and Lutz
2005) and EXPTIME-complete for the DLs between ELI
and ELIOu (Baader et al. 2017).

Every interpretation I defines a factorized ABox AI by
identifying every d ∈ ∆I with a variable xd and taking
A(xd) if d ∈ AI , r(xc, xd) if (c, d) ∈ rI , {a}(xd) if
aI = d. Conversely, factorized ABoxes define interpreta-
tions in the obvious way.

The following lemma provides a formal description of the
relationship between ABoxes that are ditree-shaped modulo
some set of individual names and ELO-concepts.

Lemma 5. For any ELOu(Σ)-concept C one can construct
in polynomial time a pointed Σ-ABox A, x such that A is
ditree-shaped modulo NI∩Σ and d ∈ CI iff I |= A[x 7→ d],
for all interpretations I and d ∈ ∆I .

Conversely, for any pointed Σ-ABox A, x such that A is
a ditree-shaped ABox modulo Γ, one can construct in poly-
nomial time an ELOu(Σ)-concept C such that Γ = NI ∩ Σ
and d ∈ CI iff I |= AC [x 7→ d], for all interpretations I
and d ∈ ∆I .

The above also holds if one replaces ELOu(Σ)-concepts
by ELO(Σ)-concepts and requires the pointed ABoxes to be
rooted.

We define a canonical model IO,A0
for an ELROu-

ontology O in normal form and a concept name A0. This
has been done in (Baader, Brandt, and Lutz 2005), but as



we do not use canonical models for subsumption or instance
checking we give a succinct model-theoretic construction.

Assume O and A0 are given and O is in normal form.
Define an equivalence relation ∼ on the set of individual
names a in sig(O) by setting a ∼ b if O |= ∃u.A0 ⊓ {a} ⊑
{b}. Let [a] = {b ∈ sig(O) | a ∼ b} and set ∆I = {[a] |
a ∈ sig(O)}. Say that a concept name A is absorbed by
an individual name a if O |= ∃u.A0 ⊓ A ⊑ {a} and let ∆C

denote the set of concept namesA in O such that O |= A0 ⊑
∃u.A and A is not absorbed by any individual name.

Now let ∆IO,A0 = ∆I ∪∆C and let

AIO,A0 = {[a] ∈ ∆IO,A0 | O |= ∃u.A0 ⊓ {a} ⊑ A} ∪
{B ∈ ∆IO,A0 | O |= ∃u.A0 ⊓B ⊑ A}

aIO,A0 = [a]

rIO,A0 = {([a], [b]) ∈ ∆IO,A0 ×∆IO,A0 |
O |= ∃u.A0 ⊓ {a} ⊑ ∃r.{b}} ∪

{([a], B) ∈ ∆IO,A0 ×∆IO,A0 |
O |= ∃u.A0 ⊓ {a} ⊑ ∃r.B} ∪

{(B, [a]) ∈ ∆IO,A0 ×∆IO,A0 |
O |= ∃u.A0 ⊓B ⊑ ∃r.{a}} ∪

{(A,B) ∈ ∆IO,A0 ×∆IO,A0 |
O |= ∃u.A0 ⊓A ⊑ ∃r.B}

for every concept name A ∈ NC, a ∈ sig(O) ∩ NI, and
r ∈ NR. We often denote the nodes [a] and A by ρ[a] or, for
simplicity, ρa and, respectively, ρA. If A0 is absorbed by an
individual a we still often denote ρ[a] by ρA0

.

Lemma 6. The canonical model IO,A0
is a model of O and

for every model J of O and any d ∈ ∆J with d ∈ AJ
0 ,

(IO,A0 , ρA0) ⪯ELOu,Σ (J , d), where Σ is any signature.

Proof. We first show that IO,A0
is a model of O. It is

straightforward to show that IO,A0 satisfies the CIs of the
form ⊤ ⊑ A,A1 ⊓A2 ⊑ A, A ⊑ {a}, {a} ⊑ A.

Assume now that A ⊑ ∃r.B ∈ O and ρC ∈ AIO,A0

with C of the form a or A. We have O |= ∃u.A0 ⊑ ∃u.C,
O |= ∃u.A0 ⊓ C ⊑ A. Thus O |= ∃u.A0 ⊓ C ⊑ ∃r.B.
But then (ρC , ρB) ∈ rIO,A0 and ρB ∈ BIO,A0 . Thus ρC ∈
(∃r,B)IO,A0 , as required.

Assume now that ∃r.A ⊑ B ∈ O and ρC ∈ (∃r.A)IO,A0 .
Then there exists ρD such that (ρC , ρD) ∈ rIO,A0 and ρD ∈
AIO,A0 . Hence O |= ∃u.A0⊓C ⊑ ∃r.D and O |= ∃u.A0⊓
D ⊑ A. Thus, O |= ∃u.A0 ⊓ C ⊑ ∃r.A. Hence since
∃r.A ⊑ B ∈ O, O |= ∃u.A0 ⊓ C ⊑ B. But then ρC ∈
BIO,A0 , as required.

Finally, assume that r1 ◦· · ·◦rn ⊑ r ∈ O and (ρC , ρD) ∈
r
IO,A0
1 ◦ · · · ◦ rIO,A0

n . Then there are ρC0
, . . . , ρCn

with
(ρCi

, ρCi+1
) ∈ r

IO,A0
i+1 for all i < n, where C0 = C and

Cn = D. We obtain O |= ∃u.A0 ⊓ Ci ⊑ ∃ri+1.Ci+1 for
all i < n. Thus O |= ∃u.A0 ⊓ C ⊑ ∃r1 · · · ∃rn.D. Hence
O |= ∃u.A0 ⊓ C ⊑ ∃r.D. Hence (ρC , ρD) ∈ rIO,A0 , as
required.

Let J be a model of O with AJ
0 ̸= ∅. Define a relation

between ∆IO,A0 and ∆J as follows: for any ρC ∈ ∆IO,A0

and d ∈ ∆J , let (ρC , d) ∈ S if d ∈ CJ . One can now show
that this is well-defined and that for any ρC there exists a
d ∈ ∆J with (ρC , d) ∈ S. It is straightforward to show that
S is a ELOu(Σ)-simulation, as required.

The following observation is a consequence of Lemma 1
and Lemma 6.
Lemma 7. Let O be an ELROu-ontology in normal form,
A0 a concept name, and C an ELOu-concept. Then the
following conditions are equivalent:

1. ρA0
∈ CIO,A0 ;

2. O |= A0 ⊑ C.
Next assume that O and an ABox A are given. Assume

O is in normal form. Then one can construct in polynomial
time a canonical model IO,A of O that satisfies A via an
assignment vO,A. The details are straightforward, and we
only give the main properties of IO,A.
Lemma 8. Given an ELROu-ontology O in normal form
and an ABox A one can construct in polynomial time a
model IO,A of O and an assignment vO,A such that for all
x ∈ ind(A) and all ELOu-concepts C the following condi-
tions are equivalent:

1. vO,A(x) ∈ CIO,A ;
2. O,A |= C(x).

The following lemma provides a formal description of the
relationship between ABoxes that are tree-shaped modulo
some set of individual names and ELIO-concepts.
Lemma 9. For any ELIOu(Σ)-concept C one can con-
struct in polynomial time a pointed Σ-ABox A, x such that A
is tree-shaped modulo NI∩Σ and d ∈ CI iff I |= A[x 7→ d],
for all interpretations I and d ∈ ∆I .

Conversely, for any pointed Σ-ABox A, x such that A is
a tree-shaped ABox modulo Γ, one can construct in polyno-
mial time an ELIOu(Σ)-concept C such that Γ = NI ∩ Σ
and d ∈ CI iff I |= AC [x 7→ d], for all interpretations I
and d ∈ ∆I .

The above also holds if one replaces ELIOu(Σ)-
concepts by ELIO(Σ)-concepts and requires the pointed
ABoxes to be weakly rooted.

B Proof for Section 4
We start by proving Remark 3.

Proof of Remark 3. We have to show that the CIP and
PBDP are invariant under adding ⊥ (interpreted as the empty
set) to the languages introduced in this paper. Assume that L
is any such language and let L⊥ denote its extension with ⊥.
We claim that L enjoys the CIP/PBDP iff L⊥ does. We show
this for the CIP, the proof for the PBDP is similar. Assume
first that C ⊑ D and O1,O2 are a counterexample to the
CIP of L. Then they are also a counterexample to the CIP
of L⊥. Conversely, assume that C ⊑ D and O1,O2 are a
counterexample to the CIP of L⊥. We may assume that no
CI in O1 ∪O2 uses ⊥ in the concept on its left hand side (if
it does, the CI is redundant). Let B be a fresh concept name
and replace ⊥ by B in O1 and O2. Also add to Oi the CIs

∃r.B ⊑ B, B ⊑ A ⊓ ∃r.B



for all role names r in sig(Oi) and A ∈ sig(Oi). We also
let r range over inverse roles in sig(Oi) if L admits inverse
roles, the universal role if L admits the universal role, and
A over nominals in sig(Oi) if L admits nominals. Let O′

i
denote the resulting ontology. Then it is easy to see that
C ⊑ D and O′

1,O′
2 are a counterexample to the CIP of L.

We continue with a few comments and missing proofs for
Theorem 1.

Theorem 1. The following DLs do not enjoy the CIP nor
PBDP:

1. EL with the universal role,

2. EL with nominals,

3. EL with a single role inclusion r ◦ s ⊑ s,

4. EL with role hierarchies and a transitive role,

5. EL with inverse roles.
In Points 2 to 5, the CIP/PBDP also fails if the universal role
can occur in interpolants/explicit definitions.

Proof. We first supply a proof for Point 4. Let Ors contain

A ⊑ ∃s.E, E ⊑ ∃s1.B, ∃s2.B ⊑ A,

s1 ⊑ s, s ⊑ s2, s ◦ s ⊑ s,

and let Σ = {s1, s2, E}. Then A is implicitly definable
using Σ under Ors since

Ors |= ∀x(A(x) ↔ ∃y(E(y) ∧ ∀z(s1(y, z) → s2(x, z))).

In the same way as above, the interpretations I and I ′ given
in Figure 6 show that A has no ELu(Σ)-definition under
Ors.

a
A

c
E,A

b
B

a′

c′
E,A

b′

c′′
E,A

b′′

B

s, s2
s, s2

s1, s, s2
s, s2

s2
s2

s1, s, s2

s, s2
s, s2

s2

s1, s, s2
s, s2

I:

I ′:

Figure 6: Interpretations I and I′ used for Ors.

We next observe that Point 5 can easily be strength-
ened. The concept name A does not only have no ex-
plicit ELIu(Σ)-definition, but no such definition exists in

a
A,B

b
C,D,E

c

a′
B

b′

D,E
c′ c′′

C,D

Figure 7: Interpretations I (left) and I′ (right) for Oi.

the positive fragment of ALCIu. To see this, consider
the interpretations given in Figure 7. Observe that the
interpretations I, I ′ show that A is not definable under
Oi using any concept constructed from Σ using ⊓,⊔,∃,∀
since for any such concept F we have for (x, x′) ∈
{(a, a′), (b, b′), (c, c′), (c, c′′)} that x ∈ F I implies x′ ∈
F I . Of course, the interpretations I and I ′ given in Fig-
ure 7. also demonstrate that concepts with implicit defini-
tions in ELu may not have explicit definitions in positive
ALCu. The interpretations depicted in Figure 7 differ from
the interpretations constructed previously in that they are not
the canonical models. The nodes c and c′ are not enforced
by the ontology but are needed to ensure ∀r.E does not dis-
tinguish a and a′.

We defer the proof of Theorem 4 to the end of Section D
as we need the canonical model and ABox unfolding ma-
chinery developed in that section.

C Proofs for Section 5
We give a proof for Remark 5.

Proof of Remark 5. Assume that L is any DL introduced
in this paper and let L⊥ denote its extension with ⊥. The
polynomial time reductions of L-interpolant existence and
L-explicit definition existence to L⊥-interpolant existence
and L⊥-explicit definition existence, respectively, are triv-
ial. For the converse direction, we consider the CIP, the re-
duction for the PBDP is similar. The idea is the same as in
Remark 3. Assume that C ⊑ D and O1,O2 are in L⊥. If
O1 ∪ O2 |= C ⊑ ⊥, then an interpolant exists and we are
done. Assume O1 ∪O2 ̸|= C ⊑ ⊥. We may assume that no
CI in O1 ∪O2 uses ⊥ in the concept on its left hand side (if
it does, the CI is redundant). Now let B be a fresh concept
name and replace ⊥ by B in C, D, O1, and O2. Also add to
Oi the CIs

∃r.B ⊑ B, B ⊑ A ⊓ ∃r.B

for all role names r in sig(Oi) and A ∈ sig(Oi). We also
let r range over inverse roles in sig(Oi) if L admits inverse
roles, the universal role if L admits the universal role, and
A over nominals in sig(Oi) if L admits nominals. Let O′

i
denote the resulting ontology. Then there exists an L⊥-
interpolant for C ⊑ D under O1,O2 iff there exists an L-
interpolant for C ⊑ D under O′

1,O′
2.

D Proofs for Section 6
We first give a proof of the polynomial time decidability of
interpolant existence that has not been discussed in the main



paper. Then we provide the missing proofs from the main
paper.

The following complexity upper bound proof does not
provide an upper bound on the size of interpolants/explicit
definitions, but is more elementary than the one we sketched
in the main paper.

We start by proving a characterization for the existence of
interpolants using canonical models and simulations.

Lemma 10. Let O1,O2 be ELROu-ontologies in normal
form, A,B concept names, and L ∈ {ELO, ELOu}. Let
Σ = sig(O1, A) ∩ sig(O2, B). Then there does not exist
an L-interpolant for A ⊑ B under O1,O2 iff there exists a
model J of O1 ∪ O2 and d ∈ ∆J such that

1. d ̸∈ BJ ;
2. (IO1∪O2,A, ρA) ⪯L,Σ (J , d).

Proof. Assume an L-interpolant F exists, but there exists a
model J of O1 ∪ O2 and d ∈ ∆J satisfying the conditions
of the lemma. As O1 ∪ O2 |= A ⊑ F , by Lemma 6, we
obtain ρA ∈ F IO1∪O2,A . By Lemma 1, d ∈ FJ . We have
derived a contradiction to the condition that d ̸∈ BJ , J is a
model of O1 ∪ O2, and O1 ∪ O2 |= F ⊑ B.

Assume no L-interpolant exists. Let

Γ = {C ∈ L(Σ) | ρA ∈ CIO1∪O2,A}

By Lemma 7 and compactness, there exists a model J of
O1 ∪ O2 and d ∈ ∆J such that d ∈ CJ for all C ∈ Γ but
d ̸∈ BJ . We may assume that J is ω-saturated.3 Thus, by a
straightforward gneralization of Lemma 1 from finite to ω-
saturated interpretations, (IO1∪O2,A, ρA) ⪯L,Σ (J , d), and
J satisfies the conditions of the lemma.

The characterization provided in Lemma 10 can be
checked in polynomial time. Consider a fresh concept name
Xd for each d ∈ ∆I for I = IO1∪O2,A. We define the
ELOu(Σ) diagram D(I) of I as the ontology consisting of
the following CIs:

• Xd ⊑ A, for every A ∈ Σ and d ∈ AI ;

• XbI ⊑ {b}, for every b ∈ Σ;

• Xd ⊑ ∃r.Xd′ , for every r ∈ Σ and (d, d′) ∈ rI ;

• Xd ⊑ ∃u.Xd′ , for every d, d′ ∈ ∆I .

Denote by I|Σ the Σ-reduct of the interpretation I. Now
it is straightforward to show that there exists a model J of
O1 ∪O2 and d ∈ ∆J such that the conditions of Lemma 10
hold for L = ELOu iff O1 ∪ O2 ∪ D((IO1∪O2,A)|Σ) ̸|=
XρA

⊑ B. The latter condition can be checked in polyno-
mial time. If we aim at interpolants without the universal
role we simply remove the CIs of the final item from the
definition of D(I), denote the resulting set of inclusions by
D′(I) and have that there exists a model J of O1 ∪O2 and
d ∈ ∆J such that the conditions of Lemma 10 hold for
L = ELO iff O1 ∪ O2 ∪ D′((IO1∪O2,A)|Σ) ̸|= XρA

⊑ B.

3See (Chang and Keisler 1998) for an introduction to ω-
saturated interpretations and their properties.

Directed Unfolding of ABox. We give a precise definition
of the directed unfolding of an ABox. Let A be a factorized
Σ-ABox and Γ = NI∩Σ. The directed unfolding of A into a
ditree-shaped ABox Au modulo Γ is defined as follows. The
individuals of Au are the words w = x0r1 · · · rnxn with
r1, . . . , rn role names and x0, . . . xn ∈ ind(A) such that
{a}(xi) ̸∈ A for any i ̸= 0 and a ∈ Γ and ri+1(xi, xi+1) ∈
A for all i < n. We set tail(w) = xn and define

• A(w) ∈ Au if A(tail(w)) ∈ A, for A ∈ NC;

• r(w,wrx) ∈ Au if r(tail(w), x) ∈ A and r(w, x) ∈ Au

if {a}(x) ∈ A for some a ∈ Γ and r(tail(w), x) ∈ A, for
r ∈ NR;

• {a}(x) ∈ Au if {a}(x) ∈ A, for a ∈ Γ and x ∈ ind(A).

Derivation Trees. Fix an ELROu-ontology O in normal
form, a sig(O)-ABox A, and recall the definition of ∆ and
Θ. Let (a,C) ∈ ∆ × Θ. A derivation tree for the assertion
(a,C) in O,A is a finite ∆×Θ-labeled tree (T, V ), where T
is a set of nodes and V : T → ∆×Θ the labeling function,
such that

• V (ε) = (a,C);

• if V (n) = (a,C), then (i) a ∈ ind(A) and C = ⊤ or (ii)
C(a) ∈ A or (iii) a ∈ NI and C = {a} or

1. a = C = A for a concept nameA and n has a successor
n′ with V (n′) = (b, A); or

2. a = C = A for a concept nameA and n has a successor
n′ such that V (n′) = (b, C ′) and O |= C ′ ⊑ ∃u.A; or

3. n has successors n1, n2 with V (ni) = (a,Ci) for i =
1, 2 and and O |= C1 ⊓ C2 ⊑ C; or

4. n has successors n1, n2, n3 with V (n1) = (b, C),
V (n2) = (a, {c}), and V (n3) = (b, {c}); or

5. the conditions of the rule for RIs discussed in the main
paper hold: there are role names r2, . . . , r2k−2, r and
members a = a1, . . . , a2k of ∆ such that (a2k, C

′)
is a label of a successor of n, O |= ∃r.C ′ ⊑ C,
O |= r2 ◦ · · · ◦ r2k−2 ⊑ r, and the situation depicted
in Figure 4 holds, where the “dotted lines” stand for
‘either ai = ai+1 or some (ai, {c}), (ai+1, {c}) with
c ∈ NI are labels of successors of n’, and r̂i stands for
‘either r(ai, ai+1) ∈ A or some (ai, Ci) is a label of a
successor of n and O |= Ci ⊑ ∃ri.{ai+1} if ai+1 ∈ NI

and O |= Ci ⊑ ∃ri.ai+1 if ai+1 ∈ NC’. Moreover, for
all ai ̸= a, 1 < i ≤ 2k, there exists a successor of n
with label (ai, D) for some D; or

6. n has a successor n′ with V (n′) = (b, C ′) and O |=
∃u.C ′ ⊑ C.

The purpose of Conditions 1 and 2 is to establish that it fol-
lows from O and A that A is not empty. In this case (A,A)
is derived. The purpose of the remaining rules should be
clear.

Example 5. We use the ontology from Example 1. Recall
that

Op = {ri ◦ ri ⊑ ri+1 | 0 ≤ i < n} ∪
{A ⊑ ∃r0.B,B ⊑ ∃r0.B, ∃rn.B ⊑ A}



Then IOp,A is defined by setting

∆IOp,A = {ρA, y}
AIOp,A = {ρA}
BIOp,A = {y}

r
IOp,A

i = {(ρA, y), (y, y)}, for 0 ≤ i ≤ n.

Recall that Σ = {r0, B} and that ∃r2n0 .B is an explicit def-
inition of A using Σ under Op. Consider the ABox A|Σ
corresponding to the Σ-reduct of IOp,A. Then a deriva-
tion tree (T, V ) for (ρA, A) in Op,A|Σ is defined by set-
ting V (ε) = (ρA, A) and taking a single successor n of ε
with V (n) = (y,B). In the notation of Rule 5, we have
a1 = a2 = ρA and a3 = · · · = a2n = y. We use that
Op |= r2

n

0 ⊑ rn and Op |= ∃rn.B ⊑ A.
We next show Part 1 of Lemma 3.

Proof of Part 1 of Lemma 3. Let O be an ELROu-
ontology in normal form and A a finite sig(O)-ABox. As-
sume (x,A) with x ∈ ind(A) and A ∈ Θ is given. It is
straightforward to show by induction that if there is a deriva-
tion tree for (x,A) in O,A, then O,A |= A(x). We con-
struct a sequence of ABoxes A0,A1, . . . as follows. Define
A0 as the union of A and all assertions {a}(a) with a an
individual name in O and ⊤(x) with x ∈ ind(A). Let Ai+1

be obtained from Ai by applying one of the following rules:
1. if A(b) ∈ Ai, then add A(A) to Ai;
2. if C ′(b) ∈ Ai and O |= C ′ ⊑ ∃u.A, then add A(A) to

Ai;
3. if C1(a), C2(a) ∈ Ai and O |= C1 ⊓ C2 ⊑ C, then add
C(a) to Ai;

4. if C(b), {c}(a), {c}(b) ∈ Ai, then add C(a) to Ai;
5. if there is a sequence a1, . . . , a2k of elements of ∆ and

a sequence r2, r4, . . . , r2k−2 of role names such that a =
a1 and for every a2j+1 either a2j+1 = a2j+2 or there is
c with {c}(a2j+1), {c}(a2j+2) ∈ Ai such that for every
a2j :
• r2j(a2j , a2j+1) ∈ A; or
• a2j+1 ∈ NI ∩ sig(O) and there exists C2j ∈ (NC ∪
NI)∩ sig(O) such that C2j(a2j) ∈ Ai and O |= C2j ⊑
∃r2j .{a2j+1}; or

• a2j+1 ∈ NC ∩ sig(O) and there exists C2j ∈ (NC ∪
NI)∩ sig(O) such that C2j(a2j) ∈ Ai and O |= C2j ⊑
∃r2j .a2j+1

and there exist C ′ ∈ (NC ∪ NI) ∩ sig(O) and a role name
r such that C ′(a2k) ∈ Ai, O |= ∃r.C ′ ⊑ A, and O |=
r2 ◦ r4 ◦ . . . ◦ r2k−2 ⊑ r, then add A(a) to Ai.

6. if C ′(b) ∈ Ai and O |= ∃u.C ′ ⊑ C, then add C(a) to
Ai.

Note that the sequence is finite, and denote by A∗ the final
ABox.
Claim. There is a model I, v of A∗ and O such that for all
x ∈ ind(A) and A ∈ NC, v(x)I ∈ AI implies A(x) ∈ A∗.
Proof of the Claim. For all a, b ∈ ind(A∗), we write a ∼ b
if a = b or {c}(a), {c}(b) ∈ A∗ for some c. Notice that

due to Rule 4, a ∼ b implies C(a) ∈ A∗ if and only if
C(b) ∈ A∗. It follows that ∼ is an equivalence relation.
We let [a] denote the equivalence class of a. Start with an
interpretation I0 defined by:

∆I0 = ind(A∗)/∼
AI0 = {[a] | A(a) ∈ A∗}
aI0 = {[a]}
rI0 = {([a], [b]) | ∃a′ ∈ [a], b′ ∈ [b]. r(a′, b′) ∈ A∗} .

By definition, I0 satisfies all CIs in O that do not in-
volve role names or the universal role. We next extend I0
by adding pairs of the form ([a], [b]) with b ∈ NC ∪NI to the
interpretation of role names. In detail, if [a] ∈ ∆I0 and there
exist C ∈ NC ∪ NI with a ∈ CI0 and c ∈ NI with c ∈ [b]
such that O |= C ⊑ ∃r.{c}, then add ([a], [b]) to rI0 . Also,
if [a] ∈ ∆I0 and there exist C ∈ NC ∪ NI with a ∈ CI0

and A ∈ NC with A ∈ [b] such that O |= C ⊑ ∃r.A, then
add ([a], [b]) to rI0 . Finally, add any pair ([a], [b]) to rI0 if
there exists an RI r1 ◦ · · · ◦ rn ⊑ r that follows from O such
that ([a], [b]) is in relation r1 ◦ · · · ◦ rn under the updated
interpretations of r1, . . . , rn. This defines an interpretation
I. By Rule 2 all CIs of the form A ⊑ ∃r.B are satisfied in
I. By definition, all RIs in O are satisfied in I. By Rules 5
and 6, all CIs of the form ∃r.B ⊑ A are satisfied as well.
This finishes the proof of the claim.

Now suppose O,A |= A0(x0). By the Claim, we have
A0(x0) ∈ A∗. Since the six rules to construct A0,A1, . . .
are in one-to-one correspondence with Conditions (1)–(6)
from the definition of derivation trees, we can inductively
construct a derivation tree for A0(x0) in A w.r.t. O.

The remaining claims made in Part 1 of Lemma 3 have
been shown in the main paper already.

We next come to Part 2 of Lemma 3. The following ex-
ample illustrates how one can construct from a derivation
tree of A(x) in O,A a derivation tree in O,Au with Au the
directed unfolding of A. The derivation tree has the same
depth but the outdegree might be exponential.

Example 6. Recall the ontology Op and concept name A
from Example 5. We consider the Σ-reduct A|Σ of the ABox
A corresponding to the canonical model IOp,A. It is defined
by A|Σ = {r0(ρA, y), r0(y, y), B(y)}. The directed unfold-
ing Au

|Σ has individuals

ρA, ρAr0y, ρAr0yr0y, . . .

and the assertions

B(ρAr0y), B(ρAxr0yr0y), . . .

r0(ρA, ρAr0y), r0(ρAr0y, ρAr0yr0y), . . .

In a derivation tree (T ′, V ′) for A(ρ0) in Op,A|Σ we re-
quire that ε has 2n successors labeled with:

(ρAr0y,B), (ρAr0yr0y,B), . . . , (ρA(r0y)
2n, B).

We now give the general construction of the derivation
tree in the directed unfolding from a derivation tree in the
original ABox.



Proof of Part 2 of Lemma 3. Assume that (T, V ) is a
derivation tree for A(x) in O,A of at most exponential
size. We obtain a very similar derivation tree (T ′, V ′) for
A(x) in O,Au with Au the directed unfolding of A modulo
Σ = sig(A)∩NI. In fact, with the exception of Condition 5,
the construction is identical. For Condition 5, one poten-
tially has to introduce ”copies” of the nodes in T which cor-
respond to the fresh individuals introduced in the unfolded
ABox.

In the following construction of (T ′, V ′) the following
holds: if the label of n in (T, V ) is (a,C), then the label
of copies n′ of n in (T ′, V ′) takes the form (w,C) with
tail(w) = a. Moreover, if {b}(a) ∈ A for some b ∈ Σ ∩ NI

or a ∈ NI ∪ NC, then the label of n′ is identical to the label
of n. Note V ′ is a mapping form T ′ to ∆′ ×Θ with

∆′ = ind(Au) ∪ ((NC ∪ NI) ∩ sig(O))

In detail, we define (T ′, V ′) as follows from (T, V ), starting
with the root by setting V ′(ε) := V (ε) = (x,A).

Assume inductively thatm is a copy of n, V (n) = (a,C),
and V ′(m) = (w,C). To define the successors of m and
their labelings we consider the possible derivation steps for
(a,C) in O,A: (i) if a ∈ ind(A) and C = ⊤, then w ∈
ind(Au) and C = ⊤; (ii) if C(a) ∈ A, then C(w) ∈ Au;
(iii) if a ∈ NI and C = {a}, then V ′(m) = (a, {a}). We
next consider the cases 1 to 6:

1. a = C = A for a concept name A and n has a successor
n′ with V (n′) = (b, A): take a copy m′ of n′ as the only
successor of m and set V ′(m′) = (b, A).

2. a = C = A for a concept name A and n has a successor
n′ such that V (n′) = (b, C ′) and O |= C ′ ⊑ ∃u.A:
take a copy m′ of n′ as the only successor of m and set
V ′(m′) = (b, C).

3. n has successors n1, n2 with V (ni) = (a,Ci) and and
O |= C1 ⊓ C2 ⊑ C: take copies m1,m2 of n1, n2 as the
successors of m and set V ′(mi) = (w,Ci).

4. n has successors n1, n2, n3 with V (n1) = (b, C),
V (n2) = (a, {c}), and V (n3) = (b, {c}): take copies
m1,m2,m3 of n1, n2, n3 as successors of m and set
V (m1) = (b, C), V (m2) = (w, {c}), and V (m3) =
(b, {c}).

5. Suppose that n has successors such that the conditions
of Point 5 for derivation trees hold for r2, . . . , r2k−2, r
and members a = a1, . . . , a2k of ∆. We define the new
members b1, . . . , b2k of ∆′ and relevant successors of m
with labeling by induction. We set b1 = w. Assume that
b2i+1 has been defined and (b2i+1, D) is the label of a
copy of a successor of n with label (a2i+1, D).
Case 1. a2i+1 = a2i+2. Then we set b2i+2 := b2i+1.
Case 2. There exists c ∈ NI and successors n1, n2 of n
with V (n1) = (a2i+1, {c}) and V (n2) = (a2i+2, {c}).
Then we let b2i+2 := a2i+2 and we introduce copies
m1,m2 of n1, n2 with V ′(m1) = (b2i+1, {c}) and
V ′(m2) = (a2i+2, {c}).
Now assume that b2i has been defined and (b2i, D) is the
label of a copy of a successor of n with label (a2i, D).

Case 1. r2i(a2i, a2i+1) ∈ A and V (n′) = (a2i+1, D
′)

for some successor n′ of n. If {b}(a2i+1) ∈ A for
some b ∈ NI, then we set b2i+1 = a2i+1 and introduce
a copy m′ of n and set V ′(m′) = (a2i+1, D

′). Ob-
serve that r2i(b2i, a2i+1) ∈ Au. Otherwise (if no b with
{b}(a2i+1) ∈ A exists), we set b2i+1 = b2ir2ia2i+1 and
introduce a copy m′ of n′ and set V ′(m′) = (b2i+1, D

′).
Case 2. a2i+1 ∈ (NI∪NC)∩sig(O), V (n1) = (a2i+1, D

′)
for some successor n1 of n, and V (n2) = (a2i, F ) for
a successor n2 of n and O |= F ⊑ ∃r2i.a2i+1 (if
a2i+1 ∈ NC) or O |= F ⊑ ∃r2i.{a2i+1} (if a2i+1 ∈ NI),
respectively. Then we introduce copies m1,m2 of n1, n2
and set b2i+1 = a2i+1, V ′(m1) = (b2i+1, D

′), and
V ′(m2) = (b2i, F ).

6. n has a successor n′ with V (n′) = (b, C ′) and O |=
∃u.C ′ ⊑ C: then introduce a copy m′ of n′ and set
V ′(m′) = (b, C).

Then (T ′, V ′) is a derivation tree for A(x) in O,Au satisfy-
ing the conditions of the lemma.

The proof of “2. ⇒ 3.” of Theorem 5 is now as sketched
in the main paper. Note also that we can construct A in ex-
ponential time since we can construct the derivation tree for
B in AΣ

O1∪O2,A
in exponential time, then lift it to a deriva-

tion tree in its unfolding in exponential time, and from that
derivation tree obtain the individuals in the ABox A in ex-
ponential time.

A proof of the statement of Theorem 5 for interpolants
without the universal role is obtained from the proof above
in a straightforward way.

We conclude this section with a deferred proof of Theo-
rem 4.

Theorem 4. Let O1,O2 be EL-ontologies with RIs, C1, C2

be EL-concepts, and set Σ = sig(O1, C1) ∩ sig(O2, C2).
Assume that the set of RIs in O1 ∪ O2 is safe for Σ and
O1∪O2 |= C1 ⊑ C2. Then an EL-interpolant for C1 ⊑ C2

under O1, O2 exists.

Proof. For convenience of notation, we assume w.l.o.g., by
Lemma 2, that O1 and O2 are in normal form, A ∈ sig(O1),
B ∈ sig(O2) and {A,B} ∩ Σ = ∅. Suppose for a proof by
contradiction that O1∪O2 |= A ⊑ B but there exists no EL-
interpolant forA ⊑ B. Then O1∪O2,A↓Σ

O1∪O2,A
̸|= B(ρA).

Moreover, since the language under consideration contains
neither nominals nor the universal role, this strengthens to
O1 ∪ O2,AΣ

O1∪O2,A
̸|= B(ρA).

Let J0 be the canonical model of O1∪O2 and AΣ
O1∪O2,A

.
In what follows, we identify the domain of IΣ

O1∪O2,A
and

individuals of AΣ
O1∪O2,A

, and consider both to be subsets
of the domain of J0. By the properties of the canonical
model, we then have ρA /∈ BJ0 . Furthermore, as IO1∪O2,A

is a model for both O1 ∪ O2 and AΣ
O1∪O2,A

, there exists a
sig(O1 ∪O2)-simulation S between J0 and IO1∪O2,A such
that (x, x) ∈ S for all x ∈ ∆IO1∪O2,A .



∆Ji+1 = ∆Ji ,

AJi+1 = AJi , for all A ∈ NC,

rJi+1 = rJi ∪

(d1, dn+1)

∣∣∣∣∣∣
r1 ◦ · · · ◦ rn ⊑ r ∈ O1 ∪ O2

{d1, . . . , dn+1} ⊆ ∆Ji , (d1, dn+1) /∈ rJi

(dk, dk+1) ∈ rJi

k for all 1 ≤ k ≤ n


Figure 8: Definition of Ji+1.

Consider an interpretation J1 defined as follows:

∆J1 = ∆J0 ,

PJ1 = PJ0 ∪ P IO1∪O2,A , for all P ∈ (sig(O1) \ Σ),
PJ1 = PJ0 , for all P /∈ (sig(O1) \ Σ),

where P is a concept or role name. If J1 |= O1 ∪ O2 we
immediately derive a contradiction as we then have ρA ∈
AJ1 and ρA /∈ BJ1 , contradicting O1 ∪ O2 |= A ⊑ B.

• If O1 ∪ O2 does not contain RIs, as J0 and J1 are
identical on all elements except ∆IO1∪O2,A , for all
x ∈ ∆IO1∪O2,A the relation S is a sig(O1 ∪ O2)-
simulation between J1 and IO1∪O2,A. Conversely, the
embedding of IO1∪O2,A into J1 generates a simulation,
that is (IO1∪O2,A, x) ⪯EL,sig(O1) (J1, x) for all x ∈
∆IO1∪O2,A . By Lemma 1, for any sig(O1)-EL-concept
C and for all x ∈ ∆IO1∪O2,A we have x ∈ CJ1 if, and
only if x ∈ CIO1∪O2,A . Thus, J1 is a model of CIs in O1.
By construction J1 |= O2.

• Suppose that O1 ∪ O2 contains RIs. Since the interpreta-
tion J1 may not satisfy some RIs, we consider a sequence
of interpretations Ji obtained by extending the interpreta-
tions of roles in J1 to satisfy RIs. We give the construc-
tion of Ji+1, for i ≥ 1, in Figure 8.
A simple inductive argument shows that by the safety con-
dition and the fact that (d1, dn+1) /∈ rJi we have that
{r1, . . . , rn, r} ⊆ sig(O1).
Furthermore, we prove by induction that the relation S is
a sig(O1 ∪ O2)-simulation between Ji+1 and IO1∪O2,A.
For i = 1 this has been established above. For the in-
duction stop it suffices to consider r-successors of d1
in Ji+1, where r is from the definition of Ji+1 above.
By the induction hypothesis, S is a a sig(O1 ∪ O2)-
simulation between Ji and IO1∪O2,A. Then there ex-
ist {v2, . . . , vn+1} ⊆ ∆IO1∪O2,A with (dj+1, vj+1) ∈
S and (v1, vn+1) ∈ ri

IO1∪O2,A for j ∈ {1, . . . , n}.
As IO1∪O2,A is a model of O1, we have (v1, vn+1) ∈
rIO1∪O2,A and (dn+1, vn+1) ∈ S as required.
As EL canonical models defined in this paper are finite,
there exists N > 0 such that for all i > N , Ji = JN . It
can be seen that JN satisfies all RIs in O1 ∪ O2 and the
satisfaction of CIs is proved similarly to the case above.
Then JN is a model of O1 ∪ O2 with ρA ∈ AJN and
ρA /∈ BJN , contradicting O1 ∪ O2 |= A ⊑ B.

E Proofs for Section 7
The section is organized as follows. We first introduce
canonical models and derivation trees for ELIOu. We then
give the automata based proof of the EXPTIME upper bound
for interpolant existence. We then show the double expo-
nential lower bound on the size of explicit definitions, the
implication “2. ⇒ 3.” of Theorem 6, and that interpolants
can be computed in double exponential time.

Canonical Models. Assume O is an ELIOu ontology in
normal form and A a concept name with A ∈ sig(O). We
introduce the canonical model IO,A. Let sub(O) denote the
set of subconcepts of concepts in O, and denote by sub∃(O)
the set of ∃r.{a} with r or r− a role name in sig(O) and a ∈
sig(O). We may assume that ∃u.A ∈ sub(O). An O-type is
a subset τ of sub(O) ∪ sub∃(O) such that O |=

d
C∈τ C ⊑

C ′ implies C ′ ∈ τ for all concepts C ′ ∈ sub(O)∪ sub∃(O).
We sometimes identify τ and

d
C∈τ C. For a role r, we

write τ1 ⇝r τ2 if τ2 is a maximal (w.r.t. inclusion) O-type
such that O |= τ1 ⊑ ∃r.τ2. Note that the set of all O-types
and relation⇝r can be computed in exponential time.

For any concept name B, τB denotes the minimal O-type
containing B and ∃u.A. Similarly, for any individual a, τa
denotes the minimal O-type containing {a} and ∃u.A. Let
S = SC ∪ SN with SC = {τB | O |= A ⊑ ∃u.B} and
SN = {τa | a ∈ NI ∩ sig(O)}. The canonical model IO,A

of O and A is defined as follows:

∆IO,A = {τ0r1τ1 · · · rnτn | τ0 ∈ S, τ1, . . . , τn ̸∈ SN ,

r1, . . . , rn ∈ NR ∪ NR
−, τi ⇝ri+1

τi+1}
aIO,A = τa

BIO,A = {w | w ∈ ∆IO,A , B ∈ tail(w)}
rIO,A = {(w,wrτ) | w,wrτ ∈ ∆IO,A1} ∪

{(wr−τ, w) | w,wr−τ ∈ ∆IO,A1} ∪
{r(w, τa) | ∃r.{a} ∈ tail(w)} ∪
{r(τa, w) | ∃r−.{a} ∈ tail(w)}

We also use ρA to denote τA. The following properties of
canonical models can be proved in a standard way.

Lemma 11. For all ELIOu-ontologies O in normal form
and concept names A ∈ sig(O):

1. IO,A is a model of O;
2. for every model J of O and any d ∈ ∆J with d ∈ AJ ,

(IO,A, ρA) ⪯ELIOu,Σ (J , d);



3. for every ELIOu(sig(O))-concept C, O |= A ⊑ C if
and only if ρA ∈ CIO,A .

We use AO,A to denote the ABox associated with the
canonical model IO,A, and AΣ

O,A its Σ-reduct. We denote
the individuals xτa and xτB by xa and xB , respectively and
observe that xa = xb iff O |= {a} ⊓ ∃u.A ⊑ {b} and
xB = xa iff O |= B ⊓ ∃u.A ⊑ {a}.

Undirected Unfolding of an ABox. We give a precise def-
inition of the undirected unfolding of an ABox. Let A be a
Σ-ABox and Γ = NI∩Σ. The undirected unfolding of A into
a tree-shaped ABox A∗ modulo Γ is defined as follows. The
individuals of A∗ are the set of words w = x0r1 · · · rnxn
with r1, . . . , rn roles and x0, . . . xn ∈ ind(A) such that
{a}(xi) ̸∈ A for any i ̸= 0 and a ∈ Γ, and ri+1(xi, xi+1) ∈
A if ri+1 is a role name and r−i+1(xi+1, xi) ∈ A if ri+1 is
an inverse role, for all i < n. We set tail(w) = xn and let

• A(w) ∈ A∗ if A(tail(w)) ∈ A, for A ∈ NC;

• r(w,wrx) ∈ A∗ if r(tail(w), x) ∈ A and r(w, x) ∈ A∗

if {a}(x) ∈ A for some a ∈ Γ and r(tail(w), x) ∈ A, for
r ∈ NR;

• r(wr−x,w) ∈ A∗ if r(x, tail(w)) ∈ A and r(x,w) ∈ A∗

if {a}(x) ∈ A for some a ∈ Γ and r(x, tail(w)) ∈ A, for
r ∈ NR;

• {a}(x) ∈ A∗ if {a}(x) ∈ A, for a ∈ Γ and x ∈ ind(A).

Derivation Trees. Fix an ELIOu-ontology O in normal
form and an ABox A, x0 ∈ ind(A) and A0 ∈ NC. Let
Θ1 = ind(A) ∪ (NI ∩ sig(O)), and Θ2 = NC ∩ sig(O) ∪
{{a} | a ∈ NI ∩ sig(O)} ∪ {∃u.A | A ∈ NC ∩ sig(O)}.
A derivation tree for the assertion A0(x0) in O,A is a finite
Θ1 ×Θ2-labeled tree (T, V ), where T is a set of nodes and
V : T → Θ1 ×Θ2 the labeling function, such that:

• V (ε) = (x0, A0);

• If V (n) = (x,C) with x ∈ ind(A), then C(x) ∈ A or
O |= ⊤ ⊑ C or

1. n has successors n1, . . . , nk, k ≥ 1 with V (ni) =
(ai, Ci), such that ai = x or ai ∈ NI ∩ sig(O) for all i,
and defining C ′

i = Ci if ai = x, and C ′
i = ∃u.({ai} ⊓

Ci) otherwise, we have O |= C ′
1 ⊓ . . . ⊓ C ′

k ⊑ C; or
2. C = ∃u.A and n has a single successor n′ with
V (n′) = (y,∃u.A); or

3. n has a single successor n′ with V (n′) = (y,A) such
that r(x, y) ∈ A and O |= ∃r.A ⊑ C (where r is a role
name or an inverse role).

• If V (n) = (a,C) with a ∈ NI ∩ sig(O), then C = {a}
or:

4. There exists x ∈ ind(A) such that n has successors
n1, . . . , nk, k ≥ 1 with V (ni) = (ai, Ci) and ai = x
or ai ∈ NI ∩ sig(O) for all i, and, defining C ′

i = Ci if
ai = x, and C ′

i = ∃u.({ai} ⊓ Ci) otherwise, we have
O |= C ′

1 ⊓ . . . ⊓ C ′
k ⊑ ∃u.({a} ⊓ C).

Note that a special case of rule 1 is when n has two succes-
sors labeled (x, {a}) and (a,C), and a special case of rule 4
is when n has two successors labeled (x, {a}) and (x,C).

We now prove the analogue of Lemma 3 for ELIOu, ex-
cept not considering the size of derivation trees.

Lemma 12. Let O be an ELIOu-ontology in normal form
and A a finite sig(O)-ABox. Then

1. O,A |= A0(x0) if and only if there is a derivation tree
for A0(x0) in O,A.

2. If (T, V ) is a derivation tree for A0(x0) in O,A, then
one can construct a derivation tree (T ′, V ′) forA0(x0) in
O,A∗, with A∗ the undirected unfolding of A, and such
that T = T ′.

Proof. We start with the proof of Part 1. (⇐) is
straightforward. For (⇒), we construct a sequence of
ABoxes A0,A1, . . . generalized with assertions of the form
(∃u.A)(x). Take A0 = A ∪ {{a}(xa) | a ∈ NI ∩ sig(O)}
where the xa’s are fresh individual variables. Let Ai+1 be
obtained from Ai by applying one of the following rule,
where C is a concept of the form C ∈ NC or C = {a}
or C = ∃u.A, and x, y ∈ ind(Ai):

1. if C1(x1), . . . , Ck(xk) ∈ Ai, with xi = x or xi = xai

for some ai ∈ NI ∩ sig(O), and O |= C ′
1 ⊓ . . .⊓C ′

k ⊑ C,
where C ′

i = Ci if xi = x and C ′
i = ∃u.({ai} ⊓ Ci) if

x = xai
, then add C(x);

2. if (∃u.A)(y) ∈ Ai then add (∃u.A)(x);
3. if r(x, y), A(y) ∈ Ai and O |= ∃r.A ⊑ C, then

add C(x);
4. if C1(x1), . . . , Ck(xk) ∈ Ai, with xi = x or xi = xai

for some ai ∈ NI ∩ sig(O), and O |= C ′
1 ⊓ . . . ⊓ C ′

k ⊑
∃u.({a} ⊓ C), where C ′

i = Ci if xi = x and C ′
i =

∃u.({ai} ⊓ Ci) if x = xai
, then add C(xa).

Note that the sequence is finite, and denote by A∗ the final
ABox.
Claim. There is a model I, v of A∗ and O such that for all
x ∈ ind(A) and A ∈ NC, v(x)I ∈ AI implies A(x) ∈ A∗.
Proof of the Claim. For all x, y ∈ ind(A∗), we write x ∼ y
if {a}(x), {a}(y) ∈ A∗ for some a ∈ NI ∩ sig(O). Notice
that if {a}(x), {a}(y), C(x) ∈ A∗, then C(xa) ∈ A∗ by
rule 4, and C(y) ∈ A∗ by rule 1. Therefore, x ∼ y implies
C(x) ∈ A∗ if and only if C(y) ∈ A∗. In particular, ∼ is an
equivalence relation. We let [x] denote the equivalence class
of x. Start with an interpretation I0 defined by:

∆I0 = ind(A∗)/∼
AI0 = {[x] | A(x) ∈ A∗}
aI0 = [xa]

rI0 = {([x], [y]) | r(x, y) ∈ A∗} .

Let Cx denote the conjunction of all concepts of the form
C ∈ NC, C = {a}, C = ∃u.A, or C = ∃u.({a} ⊓ A) such
that A∗ |= C(x). Let Ix denote the canonical model for O
andCx rooted at [x]. Due to rule 1 and the universality of Ix,
for every concept name or nominal C, we have [x] ∈ CI0



if and only if [x] ∈ CIx . Similarly, because of rule 4, for
every a ∈ NI∩ sig(O), aIx ∈ CIx if and only if aI0 ∈ CI0 .

We can now define I as follows: ∆I is the disjoint union
of ∆I0 and all elements in domains ∆Ix \ ({[x]} ∪ {aIx |
a ∈ NI ∩ sig(O)}). Interpretations of concept names and
nominals are inherited from the I0 or Ix each element comes
from. Finally, rI is obtained by taking the union of rI0 and
all rIx after replacing edges to/from aIx with edges to/from
aI0 . It is clear that for the variable assignment v(x) = [x],
I0, v satisfies A∗, and thus so does I, v.

By rule 1, all concept inclusions of O of the form ⊤ ⊑ A,
A1 ⊓ A2 ⊑ B, A ⊑ {a} and {a} ⊑ A are satisfied by
I0. They are also satisfied by every Ix (since Ix is a model
of O), and thus by I. Now consider a concept inclusion
A ⊑ ∃r.B ∈ O, where r is a role name or an inverse role.
Recall that for every a and x, aI ∈ BI if and only if aIx ∈
BIx . Therefore, for all d ∈ ∆Ix , d ∈ (∃r.B)Ix implies
d ∈ (∃r.B)I . The case A ⊑ ∃u.B is similar. Since every
Ix satisfies A ⊑ ∃r.B, so does I. Similarly, every concept
inclusion ∃r.B ⊑ A ∈ O is satisfied in I: if the witness
pair for ∃r.B is part of I0, this follows from rule 3, and if
not, then it is part of some Ix, which is by definition a model
of O. For concept inclusions of the form ∃u.B ⊑ A ∈ O,
we can observe that if there exists some d′ ∈ ∆I such that
d′ ∈ BI , then (∃u.B) is in Cx for some x, i.e., by rule 2,
for all x.

Finally, for all x ∈ ind(A) and A ∈ NC, [x]I ∈ AI

implies [x]I0 ∈ AI0 , i.e., A(x) ∈ A∗. This concludes the
proof of the claim.

Now suppose O,A |= A0(x0). By the Claim, we have
A0(x0) ∈ A∗. Since the four rules to construct A0,A1, . . .
are in one-to-one correspondence with Conditions (1)–(4)
from the definition of derivation trees, we can inductively
construct a derivation tree for A0(x0) in A w.r.t. O. This
concludes the proof of Part 1.

The proof of Part 2 is similar to that of Lemma 3. We de-
fine (T, V ′) as follows from (T, V ), starting with the root
by setting V ′(ε) = V (ε) = (x0, A0). At each step, if
V (n) = (a,C) then V ′(n) = (w,C) for some w such that
tail(w) = a. To define the labelings of the successors of n,
we consider the possible derivation steps for (a,C) in A.

1. a = x ∈ ind(A), and n has successors n1, . . . , nk, k ≥ 1
with V (ni) = (ai, Ci), such that ai = x or ai ∈ NI ∩
sig(O) for all i, and defining C ′

i = Ci if ai = x, and
C ′

i = ∃u.({ai} ⊓ Ci) otherwise, we have O |= C ′
1 ⊓

. . . ⊓ C ′
k ⊑ C. Take V ′(ni) = (w,Ci) if xi = x, and

V ′(ni) = (ai, Ci) if ai ∈ NI ∩ sig(O).
2. C = ∃u.A and n has a single successor n′ with V (n′) =

(y,∃u.A). Take V ′(n′) = (y,∃u.A).
3. n has a single successor n′ with V (n′) = (y,A) such that
r(a, y) ∈ A and O |= ∃r.A ⊑ C (where r is a role name
or an inverse role). Take V ′(n′) = (wry,A).

4. a ∈ NI ∩ sig(O) and there exists x ∈ ind(A) such that n
has successors n1, . . . , nk, k ≥ 1 with V (ni) = (ai, Ci)
and ai = x or ai ∈ NI ∩ sig(O) for all i, and, defining
C ′

i = Ci if ai = x, and C ′
i = ∃u.({ai} ⊓ Ci) otherwise,

we have O |= C ′
1 ⊓ . . . ⊓ C ′

k ⊑ ∃u.({a} ⊓ C). Take
V ′(ni) = (x,Ci) if xi = x, and V ′(ni) = (ai, Ci) if
ai ∈ NI ∩ sig(O).

Then (T, V ′) is a derivation tree for A0(x0) in A∗ w.r.t. O.

Tree Automata. A tree is a non-empty set T ⊆ (N\{0})∗
closed under prefixes and such that n · (i + 1) ∈ T implies
n · i ∈ T . It is k-ary if T ⊆ {1, . . . , k}∗. The node ε
is the root of T . As a convention, we take n · 0 = n and
(n · i) · −1 = n. Note that ε · −1 is undefined. Given an
alphabet Θ, a Θ-labeled tree is a pair (T, L) consisting of a
tree T and a node-labeling function L : T → Θ.

A non-deterministic tree automaton (NTA) over finite k-
ary trees is a tuple A = (Q,Θ, I,∆), where Q is a set of
states, Θ is the input alphabet, I ⊆ Q is the set of initial
states, and ∆ ⊆ Q×Θ ×

⋃
0≤ℓ≤kQ

ℓ is the transition rela-
tion. A run of an NTA A = (Q,Θ, I,∆) over a k-ary input
(T, L) is a Q-labeled tree (T, r) such that for all x ∈ T with
children y1, . . . , yℓ, (r(w), L(w), r(y1), . . . , r(yℓ)) ∈ ∆. It
is accepting if r(ε) ∈ I . The language accepted by A, de-
noted L(A), is the set of all finite k-ary Θ-labeled trees over
which A has an accepting run.

A two-way alternating tree automaton over finite k-ary
trees (2ATA) is a tuple A = (Q,Θ, q0, δ) where Q is a finite
set of states, Θ is the input alphabet, q0 ∈ Q is the initial
state, and δ is a transition function. The transition function
δ maps every state q and input letter θ ∈ Θ to a positive
Boolean formula δ(q, θ) over the truth constants true and
false and transition atoms of the form (i, q) ∈ [k]×Q, where
[k] = {−1, 0, 1, . . . , k}. The semantics is given in terms of
runs. More precisely, let (T, L) be a finite k-ary Θ-labeled
tree and A = (Q,Θ, q0, δ) a 2ATA. An accepting run of A
over (T, L) is a (T ×Q)-labeled tree (Tr, r) such that:

1. r(ε) = (ε, q0), and

2. for all y ∈ Tr with r(y) = (x, q), there is a subset S ⊆
[k]×Q such that S |= δ(q, L(x)) and for every (i, q′) ∈ S,
there is some successor y′ of y in Tr with r(y) = (x·i, q′).

The language accepted by A, denoted L(A), is the set of
all finite k-ary Θ-labeled trees (T, L) for which there is an
accepting run.

From a 2ATA A, one can compute in exponential time an
NTA A′ whose number of states is exponential in the number
of states of A and such that L(A) = L(A′) (Vardi 1998).

Interpolant Existence. We now give the proof that Point 2
in Theorem 6 entails an exponential time upper bound for
deciding the existence of an interpolant. We focus on the
case of ELIOu. Let O1,O2 be ELIOu-ontologies in nor-
mal form, A,B ∈ NC, and Σ = sig(O1, A) ∩ sig(O2, B).
We can assume that A ∈ sig(O1) and B ∈ sig(O2).

As our proof relies on tree automata, let us first explain
how we represent ABoxes that are tree-shaped modulo NI ∩



Σ as trees over the alphabet 2Λ, where

Λ = NC ∩ Σ ∪
{{a} | a ∈ NI ∩ Σ} ∪
{r, r− | r ∈ NR ∩ Σ} ∪
{∃r.{a} | r ∈ NR ∩ Σ ∧ a ∈ NI ∩ Σ} ∪
{∃r−.{a} | r ∈ NR ∩ Σ ∧ a ∈ NI ∩ Σ} .

Intuitively, the nodes of the tree correspond to
the individual variables of the ABox; labels C ∈
NC, {a},∃r.{a},∃r−.{a} indicate concepts that hold at the
current node, while labels r or r− are used to indicate which
roles (if any) connect a node to its parent. Note that there
need not be such a label r or r−, so connected nodes in
the tree representation are not necessarily connected in the
ABox.

More precisely, we associate with every 2Λ-labeled tree
(T, L) the following ABox, where xa are fresh individual
variables:

A(T,L) = {⊤(x) | x ∈ T} ∪
{{a}(xa) | ∃x ∈ T : {a} ∈ L(x)} ∪
{{a}(x) | x ∈ T ∧ {a} ∈ L(x)} ∪
{B(x) | x ∈ T ∧B ∈ L(x)} ∪
{r(x, x · i) | x · i ∈ T ∧ r ∈ NR ∧ r ∈ L(x · i)} ∪
{r(x · i, x) | x · i ∈ T ∧ r ∈ NR ∧ r− ∈ L(x · i)} ∪
{r(x, xa) | x ∈ T ∧ ∃r.{a} ∈ L(x)} ∪
{r(xa, x) | x ∈ T ∧ ∃r−.{a} ∈ L(x)} .

Notice that A(T,L) is tree-shaped modulo NI ∩ Σ. Con-
versely, for every ABox A that is tree-shaped modulo NI∩Σ,
there exists a (not necessarily unique) tree (T, L) such that
A = A(T,L). In addition, if the degree of Gu

A is less than k,
then there exists a k-ary tree (T, L) such that A = A(T,L).
For instance, AΣ

O1∪O2,A
can be represented by a k-ary tree

for any k larger than the number of concept inclusions in
O1 ∪ O2.

We also denote by AΣ
(T,L) the Σ-reduct of A(T,L).

We describe below an NTA A1 with exponentially many
states accepting trees that represent prefix-closed finite sub-
sets of AΣ

O1∪O2,A
, and a 2-ATA A2 with polynomially many

states accepting trees (T, L) such that A(T,L) |= B(ε).
The existence of an interpolant then reduces to the non-
emptiness of L(A1) ∩ L(A2).

Definition of A1. We represent the canonical model for
O1 ∪ O2 and A by a tree with τA at the root of the tree,
other τ ∈ S inserted at arbitrary positions in the tree, and
τ0r1τ1 · · · rnτn below τ0r1τ1 · · · rn−1τn−1 if n > 0. We
want A1 to accept finite subsets of AΣ

O1∪O2,A
obtained by

keeping a prefix-closed finite subset of nodes, and possi-
bly removing some concepts and relations from the labels
(including all concepts and relations not in Σ). To do so,
the automaton will simply guess in its state the type of each
node, and check that all guesses are locally consistent by al-
lowing only transitions that match the definition of canonical

models. Concretely, the states of the automaton consist of a
pair of O-types, where state (τ, τ ′) should be interpreted as
the parent node having type τ and the current node type τ ′.

To keep the definition simple, the automaton also accepts
trees where, compared to the canonical model, some nodes
are duplicated (that is, we do not require that the node corre-
sponding to some τ ∈ ∆IO,A ∩ S is unique). This does not
change the set of concepts entailed at the root.

We take A1 = (Q1, 2
Λ, I1,∆1), where

• Q1 = (S ∪ {⊥}) × S, where S is the set of O-types
introduced in the definition of IO,A;

• I1 = {(⊥, τA)};

• For states q = (τ, τ ′), q1 = (τ1, τ
′
1), . . . , qℓ = (τℓ, τ

′
ℓ) ∈

Q1 and input letter α ⊆ Λ, (q, α, q1, . . . , qℓ) ∈ ∆1 if the
following conditions are satisfied, for all 1 ≤ i ≤ ℓ:

– the current state and label are consistent with the defi-
nition of the canonical model: for all r ∈ α, τ ⇝r τ

′;

– the set of concepts associated with α is a subset of the
O-type τ ′: α ∩ (sub(O) ∪ sub∃(O)) ⊆ τ ′;

– the current type τ ′ is stored in the state of all child
nodes: for all 1 ≤ i ≤ ℓ, τi = τ ′.

Note that A1 can be computed in exponential time.

Lemma 13. O1 ∪ O2,AΣ
O1∪O2,A

|= B(ρA) if and only if
there exists (T, L) ∈ L(A1) such that O1 ∪ O2,A(T,L) |=
B(ε), where ε is the root of (T, L).

Proof. The run of A1 on some (T, L) ∈ L(A1) can
be used to define a homomorphism from A(T,L), ε to
AΣ

O1∪O2,A
, ρA. Therefore, if O1 ∪ O2,A(T,L) |= B(ε)

then O1 ∪ O2,AΣ
O1∪O2,A

|= B(ρA). Conversely, if O1 ∪
O2,AΣ

O1∪O2,A
|= B(ρA) then there exists a finite subset

A of AΣ
O1∪O2,A

such that O1 ∪ O2,A |= B(ρA). Take as
(T, L) any finite prefix of an encoding of AΣ

O1∪O2,A
that

contains all nodes corresponding to individuals in A. Then
the labeling of (T, L) with the full types from the canon-
ical model defines an accepting run of A1 on (T, L), and
O1 ∪ O2,A(T,L) |= B(ε).

Definition of A2. The construction of A2 =
(Q2, 2

Λ, qB , δ2) relies on derivation trees. Intuitively,
runs of A2 on some (T, L) correspond to derivation trees



for B(ε) in O1 ∪ O2,A(T,L). The states of A2 are

Q2 = {qA′ | A′ ∈ NC ∩ sig(O1,O2)} ∪
{q{a} | a ∈ NI ∩ sig(O1,O2)} ∪
{q∃r.A′ , q∃r−.A′ | r ∈ NR ∩ sig(O1,O2),

A′ ∈ NC ∩ sig(O1,O2)} ∪
{q∃u.A′ | A′ ∈ NC ∩ sig(O1,O2)} ∪
{q∃u.({a}⊓A′) | a ∈ NI ∩ sig(O1,O2),

A′ ∈ NC ∩ sig(O1,O2)} ∪
{q∃u.({a}⊓{b}) | a, b ∈ NI ∩ sig(O1,O2)} ∪
{qr, qr− | r ∈ NR ∩ Σ} ∪
{q∃r.{a}, q∃r−.{a} | a ∈ NI ∩ sig(O1,O2),

r ∈ NR ∩ sig(O1,O2)} .

Intuitively, state qC is used to check that C is entailed at the
current node. States qr and q∃r.{a} are used to check the
label of the current node. The initial state is qB , as we are
trying to construct a derivation tree for B at the root.

Let us now define the transition relation. From a state qr
or q∃r.{a}, where r ∈ NR ∪ NR

− and a ∈ NI, the automaton
simply checks the current label:

δ2(qr, α) =

{
true if r ∈ α

false if r /∈ α

δ2(q∃r.{a}, α) =

{
true if ∃r.{a} ∈ α

false if ∃r.{a} /∈ α .

From a state q∃r.A′ , with r ∈ NR ∪ NR
− and A′ ∈ NC, the

automaton checks that the current node has an r-successor
from which there exists a run starting in qA′ . This r-
successor can be (i) the parent of the current node, i.e. there
is a run from qr− from the current node and a run from qA′

from the parent node, (ii) some i-th child of the current node,
i.e. there is a run from qr and one from qA′ from the i-th
child, or (iii) an individual a, i.e. there is a run from q∃r.{a}
and from q∃u.({a}⊓A′) from the current node:

δ2(q∃r.A′ , α) = (0, qr−) ∧ (−1, qA′) ∨∨
1≤i≤k

(i, qA′) ∧ (i, qr) ∨∨
a∈NI∩Γ

(0, q∃r.{a}) ∧ (0, q∃u.({a}⊓A′)) .

From a state q∃u.A′ , the automaton checks if (i) condition 1
from derivation trees can be applied, that is, there exist con-
cepts C1, . . . , Cn of the form B′, {a}, ∃u.({a} ⊓ B′) or
∃u.({a}⊓{b}) such that O1∪O2 |= C1⊓· · ·⊓Cn |= ∃u.A′

and there exists a run from each qCi from the current node,
or (ii) condition 2 from derivation trees can be applied,
which can be checked by propagating the search for a run
from q∃u.A′ to all neighbouring nodes, or (iii) condition 3
from derivation trees can be applied, that is, there exists r,B′

such that O1∪O2 |= ∃r.B′ ⊑ ∃u.A′ and the automaton has

a run from q∃r.B′ starting from the current node:

δ2(q∃u.A′ , α) =
∨

O1∪O2|=C1⊓···⊓Cn|=∃u.A′

∧
1≤i≤n

(0, qCi
) ∨

∨
i∈{−1,1,...,k}

(i, q∃u.A′) ∨

∨
O1∪O2|=∃r.B′⊑∃u.A′

(0, q∃r.B′) .

From a state q∃u.C where C = {a} ⊓ A′ or C = {a} ⊓
{b} with b ̸= a, the automaton checks if condition 4 from
derivation trees can be applied either (i) taking the current
node as x, that is, there exist concepts C1, . . . , Cn of the
form B′, {b}, ∃u.({b} ⊓ B′) or ∃u.({b} ⊓ {c}) such that
O1 ∪ O2 |= C1 ⊓ · · · ⊓ Cn |= ∃u.C and there exists a run
from each qCi

from the current node, or (ii) taking some
other node as x, which can be checked by propagating the
search for a run from q∃u.C to all neighbouring nodes:

δ2(q∃u.C , α) =
∨

O1∪O2|=C1⊓···⊓Cn|=∃u.C

∧
1≤i≤n

(0, qCi
) ∨

∨
i∈{−1,1,...,k}

(i, q∃u.C) .

We also set

δ2(q∃u.({a}⊓{a}), α) = true .

For C = {a} or C ∈ NC, δ(qC , α) = true if C ∈ α or
O1 ∪O2 |= ⊤ ⊑ C, and otherwise, the automaton checks if
conditions 1 or 3 from derivation trees can be applied:

δ2(qC , α) =
∨

O1∪O2|=C1⊓···⊓Cn|=C

∧
1≤i≤n

(0, qCi) ∨∨
O1∪O2|=∃r.B′⊑C

(0, q∃r.B′) .

Lemma 14. For all finite k-ary 2Λ-labeled trees (T, L), we
have (T, L) ∈ L(A2) if and only if O1∪O2,A(T,L) |= B(ε).

Proof. We observe that for all (T, L),

• For all sig(O1,O2)-concept C of the form C = A′, C =
{a} or C = ∃u.A′ with A′ ∈ NC and a ∈ NI, A has a run
starting from state qC on (T, L) if and only if there exists
a derivation tree for (ε, C) in O1 ∪ O2,A(T,L).

• For all a ∈ NI ∩ sig(O1,O2), for all sig(O1,O2)-concept
C = {b} or C = A′ ∈ NC, A has a run starting from state
q∃u.({a}⊓C) if and only if there exists a derivation tree for
(a,C) in O1 ∪ O2,A(T,L).

From A2, one can construct an equivalent NTA A′
2 with

exponentially many states (Vardi 1998). By Lemmas 13
and 14, we have O1 ∪ O2,AΣ

O1∪O2
|= B(ρA) if and only

if L(A1)∩L(A′
2) = ∅, which can be checked in exponential

time.



Lower Bound for Explicit Definitions. We construct an
ELI-ontology O, signature Σ, and concept name A such
that the smallest explicit ELI(Σ)-definition of A under
O is of double exponential size in ||O||. O is a vari-
ant of ontologies constructed in (Lutz and Wolter 2010;
Nikitina and Rudolph 2014) and defined as follows. It con-
tains ⊤ ⊑ ∃r.⊤ ⊓ ∃s.⊤,

A ⊑M ⊓X0 ⊓ . . . ⊓Xn

∃σ−.(Xi ⊓X0 ⊓ . . . ⊓Xi−1) ⊑ Xi σ ∈ {r, s}, i ≤ n

∃σ−.(Xi ⊓X0 ⊓ . . . ⊓Xi−1) ⊑ Xi σ ∈ {r, s}, i ≤ n

∃σ−.(Xi ⊓Xj) ⊑ Xi σ ∈ {r, s}, j < i ≤ n

∃σ−.(Xi ⊓Xj) ⊑ Xi σ ∈ {r, s}, j < i ≤ n

X0 ⊓ . . . ⊓Xn ⊑ L

and

L ⊑ B, ∃r.B ⊓ ∃s.B ⊑ B, B ⊓M ⊑ A.

Let Σ = {M, r, s, L}. Note that A triggers a marker M
and a binary tree of depth 2n using counter concept names
X0, . . . , Xn and X0, . . . , Xn. A concept name L is made
true at the leafs. Conversely, if L is true at the leafs of a
binary tree of depth 2n then B is true at all nodes of the tree
and A is entailed by M and B at its root. Define inductively

C0 = L, Ck+1 = ∃r.Ck ⊓ ∃s.Ck, C = C2n ⊓M.

Then C is the smallest explicit ELI(Σ)-definition of A un-
der O.

Transfer Sequences. For the proof of “2. ⇒ 3.” of The-
orem 6 and the proof that interpolants can be computed
in double exponential time we require an extension of the
notion of transfer sequences first introduced in (Bienvenu,
Lutz, and Wolter 2013) to logics with nominals.

Assume that Condition 2 of Theorem 6 holds. So we
have ELIOu-ontologies O1,O2 in normal form, concept
names A,B, and Σ = sig(O1, A) ∩ sig(O2, B) such that
O1 ∪ O2,AΣ

O1∪O2,A
|= B(ρA). Set O = O1 ∪ O2. We

use AO,A to denote the ABox associated with the canonical
model IO,A. We require some notation for the individuals
that occur in AO,A. We set a ∼ b if O |= {a}⊓∃u.A ⊑ {b}
and set [a] = {b ∈ sig(O) | a ∼ b}. We say that concept
name E is absorbed by a if O |= E ⊓ ∃u.A ⊑ {a}. We
denote the individual xτa of AO,A by xa and the individu-
als xτE of AO,A by xE . Note that xa = xb if a ∼ b and
xa = xA if A is absorbed by a.

Givenw ∈ ind(AO,A), we call the individuals of the form
ww′ ∈ ind(AO,A) the subtree of AO,A1

rooted at w.
By compactness we have a finite subset A of AO,A con-

taining xA such that O,A|Σ |= B(xA). We may assume
that A is prefix closed and that A|Σ contains

• {a}(xa) and A(xA) for all a,A ∈ Σ;
• ⊤(xA) and ⊤(xa) for all a,A ∈ sig(O) \ Σ;
We obtain the ABox AΣ from A|Σ by adding the assertions

• {a}(xa,new) and ⊤(xA,new), for all a,A ∈ sig(O) \ Σ,
where xa,new and xA,new are fresh individuals.

Let I denote the set of individuals xa, xA with a,A ∈
sig(O) and let Inew denote the set of individuals
xa,new, xA,new with a,A ∈ sig(O) \ Σ. Observe that
O,AΣ and O,A|Σ entail the same assertions C(a) for a ∈
ind(A|Σ), so the additional individuals do not influence what
is entailed. In fact, we introduce the individuals Inew only
to enable explicit bookkeeping about when in a transfer se-
quence (defined below) an assertion of the form C(a) or
∃u.A is derived.

We aim to define a small subset A′ of AΣ such that O |=
A ⊑ C for the concept C corresponding to A′ and such
that still O,A′ |= B(xA). If A′ has at most exponential
depth in the size of O then we are done, as then A′ is of at
most double exponential size in the size of O. We obtain A′

from AΣ by determining w and ww′ ∈ ind(A) \ (I ∪ Inew)
which behave ‘sufficiently similar’ such that if we obtain A′

from A by replacing the subtree rooted at w in AΣ by the
subtree rooted at ww′, then we still have O,A′ |= B(xA)
and O |= A ⊑ C for the concept C defined by A′. The
replacement of subtrees is then performed exhaustively.

Forw andww′ to be sufficiently similar, we firstly require
that tail(w) = tail(ww′) (with tail(w) the final type in w for
any w). This ensures that O |= A ⊑ C for the concept
C corresponding to A′. This also has the consequence that
A′ is (isomorphic) to a prefix closed subABox of AΣ. For
the second condition for being sufficiently similar, we apply
the notion of transfer sequences (Bienvenu, Lutz, and Wolter
2013). To define transfer sequences, we consider derivations
using O and intermediate ABoxes B such that

I ∪ Inew ⊆ ind(B) ⊆ ind(AΣ)

We admit B to contain equations xe = xe′ for xe, xe′ ∈
I ∪ Inew, with the obvious semantics. Consider such an in-
termediate B and w ∈ ind(B) \ (I ∪ Inew). Then the set
DB(w) is defined as the set of assertions α with O,B′ |= α
and α of the form

• A(c) or {a}(c) withA, a ∈ sig(O) and c ∈ {w}∪I∪Inew;
or

• r(w, c) with r ∈ NR ∪ NR
− and c ∈ I ∪ Inew;

• r(c, d) with r ∈ NR ∪ NR
− and c, d ∈ I ∪ Inew;

• c = d with c, d ∈ I ∪ Inew.

and B′ = B ∪ {A(xA,new) | O,B |= ∃u.A}. For w ∈
ind(B) \ (I ∪ Inew), let

• B↓
w denote the restriction of B to the individuals in the

subtree of B rooted at w and I ∪ Inew; and let

• B↑
w be the ABox obtained from B by dropping B↓

w from
B except for w itself and I ∪ Inew.

Define the transfer sequence X0,X1, . . . of (AΣ, w) w.r.t. O
as follows:

X0 = D(AΣ)↓w
(w)

X1 = D(AΣ)↑w∪X0
(w)

X2 = D(AΣ)↓w∪X1
(w)

X3 = ...



Intuitively, we first consider the set X0 of assertions that are
entailed by O and AΣ at {w} ∪ I ∪ Inew if we only use
assertions in AΣ

↓
w. We update AΣ by those assertions. Next

we consider the set X1 of assertions that are entailed by O
and the updated AΣ at {w}∪I∪Inew if we only use assertions
in the updated AΣ

↑
w. We update AΣ again, and so on. It is

not difficult to see that if w,ww′ ∈ ind(AΣ)\ (I ∪ Inew) and

• the restrictions of AΣ to {w} ∪ (I ∪ Inew) and {ww′} ∪
(I ∪ Inew) coincide (modulo renaming w to ww′) and

• the transfer sequences of (AΣ, w) w.r.t. O coincides with
the transfer sequence of (AΣ, ww

′) w.r.t. O (modulo re-
naming w to ww′)

then one can replace AΣ
↓
w by AΣ

↓
ww′ in AΣ and it still holds

that O,A′ |= B(xA) for the resulting ABox A′. If in addi-
tion we require that tail(w) = tail(ww′), then the resulting
ABox is (isomorphic to) a prefix closed sub ABox of AΣ and
so the concept corresponding to the ABox A′ is still entailed
by A w.r.t. O.

By performing the above replacement exhaustively, we
obtain a prefix closed subset A of AΣ that is of depth
≤ 2q(||O||) with q a polynomial and therefore has the prop-
erties required for Point 3 of Theorem 6. Such an A can
be constructed in at most double exponential time since one
can construct the canonical model IO,A up to nodes of depth
≤ 2q(||O||) in double exponential time.

The claims stated in Theorem 6 for interpolants without
the universal role are shown by modifying the proof above
in a straightforward way.

F Proofs for Sections 8 and 9
We first complete the proof of Theorem 8 by showing that
there is a Horn-ALCI-simulation between the interpreta-
tions I and I ′ defined in Figure 5. The definition of Horn-
simulations is as follows. For any two sets X and Y and a
binary relation R, we set

• XR↑Y if for all x ∈ X there exists y ∈ Y with (x, y) ∈
R;

• XR↓Y if for all y ∈ Y there exists x ∈ X with (x, y) ∈
R.

A relation Z ⊆ P(∆I) × ∆I′
is a Horn-ALCI(Σ)-

simulation between I and I ′ if (X, b) ∈ Z implies X ̸= ∅
and the following hold:

• for any A ∈ Σ, if (X, b) ∈ Z and X ⊆ AI , then b ∈ AI′
;

• for any role r in Σ, if (X, b) ∈ Z and XrI↑Y , then
there exist Y ′ ⊆ Y and b′ ∈ ∆I′

with (b, b′) ∈ rI
′

and
(Y ′, b′) ∈ Z;

• for any role r in Σ, if (X, b) ∈ Z and (b, b′) ∈ rI
′
, then

there is Y ⊆ ∆I with XrI↓Y and (Y, b′) ∈ Z;

• if (X, b) ∈ Z, then I ′, b ⪯ELI,Σ I, a for every a ∈ X
(where ⪯ELI,Σ indicates that we have a simulation that
does not only respect role names in Σ but also the inverse
of role names in Σ).

We write I, X ⪯horn,Σ I ′, b if there exists a Horn-
ALCI(Σ)-simulation Z between I and I ′ such that
(X, b) ∈ Z. It is shown in (Jung et al. 2019) that if
I, X ⪯horn,Σ I ′, b, then all Horn-ALCI(Σ)-concepts true
in all nodes in X are also true in b.

Now observe that the relation Z between 2∆
I

and ∆I′

containing all pairs ({x}, x′), ({b, c}, b′′), and ({d, e}, d′′)
is a Horn-ALCI(Σ)-simulation between the interpretations
I and I ′ defined in Figure 5, as required.

We next observe that moving to the Horn fragment Horn-
GF of the guarded fragment is not sufficient to obtain a logic
in which interpolants/explicit definitions always exist. To
this end we modify the ontology given in the proof of Theo-
rem 8. In detail, let O′ contain the following CIs:

A ⊑ B

B ⊑ ∀r.F
F ⊑ ∃r1.D1 ⊓ ∃r2.D2 ⊓ ∃r1.M ⊓ ∃r2.M
A ⊑ ∀r.((F ⊓ ∃r1.(D1 ⊓M) ⊓ ∃r2.(D2 ⊓M)) → E)

B ⊑ ∃r.C
C ⊑ F ⊓ ∀r1.D1 ⊓ ∀r2.D2

and also B ⊓ ∃r.(C ⊓ E) ⊑ A. Define the signature Σ by
setting Σ = {B,D1, D2, E, r, r1, r2}. We note that, intu-
itively, the third and fourth CI should be read as

F ⊑ ∃r1.D1 ⊓ ∃r2.D2

A ⊑ ∀r.((F ⊓ ∀r1.D1 ⊓ ∀r2.D2) → E)

and the concept name M is introduced to achieve this in a
projective way as the latter CI is not in Horn-ALCI.

We first observe that A is implicitly definable from Σ un-
der O′ since

O′ |= A ≡ B ⊓ ∀r.(∀r1.D1 ⊓ ∀r2.D2 → E).

We next sketch the proof that A is not explicitly Horn-
GF(Σ)-definable under O′. For a definition of Horn-GF
and Horn-GF simulations we refer the reader to (Jung et al.
2019). Now consider the interpretations I and I ′ defined
in Figure 9. Both I and I ′ are models of O′, a ∈ AI ,
a′ ̸∈ AI′

, but a ∈ F I implies a′ ∈ F I′
holds for every

Horn-GF(Σ)-formula F , and the claim follows. The latter
can be proved by observing that there exists a Horn-GF(Σ)-
simulation between I and I ′ (Jung et al. 2019) containing
({a}, a). In fact, one can show that the relation Z containing
all pairs ({x}, x′), ({b, c}, b′′), and ({d, e}, d′′) is a Horn-
GF(Σ)-simulation.

We finally make a few observations regarding the Horn
fragment of first-order logic. Recall that Horn-FO is defined
as the closure of formulas of the form R(⃗t),

R1(⃗t1)∧· · ·∧Rn(⃗tn) → R(⃗t), R1(⃗t1)∧· · ·∧Rn(⃗tn) → ⊥

under conjunction, universal quantification, and existential
quantification, where t⃗1, . . . , t⃗n, t⃗ are sequences of indi-
vidual variables and individual names (Chang and Keisler
1998). According to Exercise 6.2.6 in (Chang and Keisler
1998) Horn-FO has the following property.
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Figure 9: Interpretations I (left) and I′ (right) used for O′.

Theorem 9. Let φ,ψ be sentences in Horn-FO such that
φ ∧ ψ is not satisfiable. Then there exists a sentence χ in
Horn-FO such that sig(χ) ⊆ sig(φ) ∩ sig(ψ), φ |= χ, and
χ ∧ ψ is not satisfiable.

We directly obtain the following interpolation result.
Theorem 10. Let O1,O2 be Horn-ALCIOu-ontologies
and let C1, C2 be Horn-ALCIOu-concepts such that O1 ∪
O2 |= C1 ⊑ C2. Then there exists a formula χ(x) in Horn-
FO such that

• sig(χ) ⊆ sig(O1, C1) ∩ sig(O2, C2);
• O1 |= ∀x(C1(x) → χ(x));
• O2 |= ∀x(χ(x) → C2(x)).

Proof. Take a fresh unary relation symbol A(x) and a fresh
individual name c. Let φ be the conjunction of all sentences
in O1∪{C1(c)} and let ψ be the conjunction of all sentences
in O2 ∪ {∀x(C2(x) ↔ A(x)),¬A(c)}. Then φ and ψ are
both equivalent to sentences in Horn-FO. By definition φ∧ψ
is not satisfiable. Thus there exists a Horn-FO sentence χ
using only c and symbols in sig(O1, C1)∩ sig(O2, C2) such
that φ |= χ and χ ∧ ψ is not satisfiable. Thus:

• O1 |= C1(c) → χ;
• O2 ∪ {∀x(C2(x) ↔ A(x))} |= χ→ A(c).

Replace c by x in χ,C1(c), and A(c). Then

• O1 |= ∀x(C1(x) → χ(x));
• O2 |= ∀x(χ(x) → C2(x)),

as required.

Applied to Horn-ALCI ontologies and concepts we thus
always obtain an interpolant in Horn-FO and an interpolant
in ALCI (since ALCI enjoys the CIP (ten Cate, Franconi,
and Seylan 2013)).

It would be interesting to find out whether there exists an
interpolant in the intersection of Horn-FO and ALCI and
whether it is possible to give an informative syntactic de-
scription of that intersection.


