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Abstract

The separation problem for a class Q of database
queries is to find a query in Q that distinguishes
between a given set of ‘positive’ and ‘negative’
data examples. Separation provides explanations
of examples and underpins the query-by-example
paradigm to support database users in constructing
and refining queries. As the space of all separating
queries can be large, it is helpful to succinctly rep-
resent this space by means of its most specific (log-
ically strongest) and general (weakest) members.
We investigate this extremal separation problem for
classes of instance queries formulated in linear tem-
poral logic LTL with the operators conjunction,
‘next’, and ‘eventually’. Our results range from
tight complexity bounds for verifying and counting
extremal separators to algorithms computing them.

1 Introduction
The separation (aka fitting or consistency) problem for a class
Q of queries is to find some q ∈ Q that separates a given
set E = (E+, E−) of positive and negative data examples
in the sense that D |= q for all D ∈ E+, and D ̸|= q for
all D ∈ E−. Separation underpins the query-by-example ap-
proach, which aims to support database users in constructing
queries and schema mappings with the help of data exam-
ples [Alexe et al., 2011; Martins, 2019], inductive logic pro-
gramming [Cropper et al., 2022], and, more recently, auto-
mated feature extraction, where separating queries are pro-
posed as features in classifier engineering [Kimelfeld and
Ré, 2018; Barceló et al., 2021]. Separating queries (and,
more generally, formulas) also underpin recent logic-based
approaches aiming to explain positive and negative data ex-
amples given by applications [Sarker et al., 2017; Camacho
and McIlraith, 2019; Raha et al., 2022].

The space of all separating queries, denoted s(E,Q), forms
a convex subset of Q under the containment (or logical en-
tailment) relation q |= q′ between queries q, q′, and is
an instance of the more general version spaces [Mitchell,
1982]. If finite, s(E,Q) can be represented by its extremal
elements: the most specific (logically strongest) and most
general (logically weakest) separators in Q. In fact, many

known algorithms check the existence of separators by look-
ing for a most specific one [ten Cate and Dalmau, 2015;
Barceló and Romero, 2017; Gutiérrez-Basulto et al., 2018;
Funk et al., 2019]. This is not surprising as query classes are
often closed under ∧, and so the conjunction of all separators
gives the unique most specific one. Dually, the unique most
general separator is given by the disjunction of all separators
if the query class is closed under ∨, which is a less common
assumption. For the case of first-order queries constructed us-
ing ∧ and existential quantifiers (conjunctive queries or CQs),
a systematic study of extremal separation has recently been
conducted in the award winning [ten Cate et al., 2023].

Here, we study extremal separation for temporal instance
queries. Data instances take the form (δ0, . . . , δn) describ-
ing temporal evolutions, where the δi are the sets of atomic
propositions that are true at time i. Queries are formu-
lated in the fragment of linear temporal logic LTL with
the operators ∧, ⃝ (next), and 3 (eventually). These ⃝3-
queries and its subclass of 3-queries without ⃝, are obtained
by restricting CQs to propositional temporal data and form
the core of most temporal query languages proposed in the
database and knowledge representation literature [Chomicki
and Toman, 2018; Baader et al., 2015; Borgwardt et al., 2015;
Artale et al., 2021]. We are particularly interested in sub-
classes of the classes of ⃝3-and 3-queries that are not closed
under ∧ and take the form of path queries:

q = ρ0 ∧ o1(ρ1 ∧ o2(ρ2 ∧ · · · ∧ onρn)) (1)

with oi ∈ {⃝,3} and conjunctions ρi of atoms. The tempo-
ral patterns expressed by path queries correspond to common
subsequences, subwords, and combinations thereof, which
have been investigated in the string pattern matching litera-
ture for more than 50 years. Their applications range from
computational linguistics to bioinformatics and revision con-
trol systems [Bergroth et al., 2000; Chowdhury et al., 2010;
Abboud et al., 2015; Blum et al., 2021]. In fact, our results
can also be interpreted and applied in that research tradition
and our techniques combine both logic and automata-based
methods with pattern matching. We note that not admitting
∨ in our query languages is crucial for finding this type of
patterns and adding it would often trivialise separation.
Example 1. Suppose the first two sequences of events shown
below are ‘positive’, the third one is ‘negative’, and our task is
to explain this phenomenon using path queries. The space of



0

A

1

B

2

C

3 0 1

A

2

B

3

C

4 0

A

1

B

2 3

C

4

possible explanations includes q1 = 3(A ∧ ⃝(B ∧ ⃝C)),
q2 = 3(A ∧ ⃝⃝C) and q3 = 3(B ∧ ⃝C), all of which
are true at 0 in the positive examples and false in the negative
one. In fact, q1 is the unique most specific explanation, while
q2 and q3 are the non-equivalent most general ones. On the
other hand, there exists no explanation in terms of 3 only.

The (bounded-size) separator existence problem for var-
ious classes Q of LTL -queries has recently been studied
in [Fijalkow and Lagarde, 2021; Raha et al., 2022; Fortin
et al., 2023]. Our aim here is to investigate systematically
the separator spaces s(E,Q) by determining the complexity
of verifying and counting most specific and general separa-
tors and giving algorithms computing them. On our way, we
determine the complexity of entailment (aka containment in
database theory) between queries and computing weakening
and strengthening frontiers, which are the key to understand-
ing s(E,Q). Intuitively, a weakening/strengthening frontier
of q ∈ Q is a set of queries properly weaker/stronger than
q that form a boundary between q and all of its weaken-
ings/strengthenings in Q.

In detail, we first prove that query containment is in P for
the class of 3-queries and all of our classes of path queries.
Based on this result, we show that strengthening and weak-
ening frontiers can be computed in polytime for path queries.
This is also the case for 3-queries and weakening frontiers
but not for strengthening ones. It follows that checking
whether a path query is a most specific/general separator and
whether a 3-query is a most general one are both in P. In con-
trast, we establish CONP-completeness of checking whether
a 3-query is a most specific separator and whether a path
query is the unique most specific/general one. Using fron-
tiers, we show for path queries that the existence of unique
most specific/general separators is in the complexity class
US (for which unique SAT is complete) and that counting
the number of most general/specific separators is in ♯P. We
show that these upper bounds are tight, sometimes using the
rich literature on algorithms for sequences (e.g., longest com-
mon subsequences). Our lower bounds mostly require only a
bounded number of atomic propositions and an unbounded
number of either negative or positive examples.

These complexity results are complemented with algo-
rithms for computing extremal separators in the majority of
our query classes. The algorithms use a graph encoding of
the input example set, associating (extremal) separators with
certain paths in the graph. Complexity-wise, they are optimal,
running in polytime if the number of examples is bounded and
exponential time otherwise.

1.1 Related Work
Being inspired by the investigation of extremal separation for
first-order conjunctive queries (CQs) [ten Cate et al., 2023],
our results turn out to be very different. For instance, while
separability by CQs is NEXPTIME-complete and separating
queries are exponential in the size of the examples (the ex-
tremal ones even larger), the extremal separation problems
for LTL -queries are often complete for SAT-related complex-

ity classes, with separating queries being of polynomial size.
For work on separation in the query-by-example paradigm
we refer the reader to [Zhang et al., 2013; Weiss and Co-
hen, 2017; Kalashnikov et al., 2018; Deutch and Gilad, 2019;
Staworko and Wieczorek, 2012; Barceló and Romero, 2017;
Cohen and Weiss, 2016; Arenas et al., 2016] in the database
context and to [Gutiérrez-Basulto et al., 2018; Ortiz, 2019;
Cima et al., 2021; Jung et al., 2022] in the context of KR.

Our contribution is also closely related to work on syn-
thesising LTL -formulas that explain the positive and nega-
tive data examples coming from an application [Lemieux et
al., 2015; Neider and Gavran, 2018; Camacho and McIlraith,
2019; Raha et al., 2022; Fortin et al., 2022; Fortin et al.,
2023]. While concerned with separability of temporal data
instances and, in particular, separability by LTL -formulas of
small size, the separator spaces s(E,Q) themselves have not
yet been investigated in this context.

2 Data and Queries in LTL
Fix some countably-infinite set of unary predicate symbols,
called atoms. A signature, σ, is any finite set of atoms. A
(temporal) data instance is any finite set D ≠ ∅ of facts A(ℓ)
with an atom A and a timestamp ℓ ∈ N, saying that A hap-
pened at ℓ. The size |D| of D is the number of symbols in
it, with the timestamps given in unary. Let maxD be the
maximal timestamp in D. Where convenient, we also write
D as the word δ0 . . . δmaxD with δi = {A | A(i) ∈ D}. The
signature sig(D) of D is the set of atoms occurring in it.

We query data instances by means of LTL -formulas, called
queries, that are built from atoms (treated as propositional
variables) and the logical constant ⊤ (truth) using ∧ and the
temporal operators ⃝ (next time) and 3 (sometime in the fu-
ture). We consider the following classes of queries:

Q[⃝3]: all ⃝3-queries;
Q[3]: all 3-queries (not containing ⃝);
Qp[⃝3]: path ⃝3-queries of the form (1), where the con-

junctions of atoms ρi are often treated as sets and the
empty conjunction as ⊤;

Qp[3]: all path 3-queries (not containing ⃝);
Qin: interval-queries of the form (1) with ρ0 = ⊤, ρ1 ̸= ⊤,

o1 = 3, and oi = ⃝, for i > 1.

Queries inQin single out an interval of a fixed length starting
at some time-point ≥ 1; q1–q3 from Example 1 are in Qin.
Qσ is the restriction of a class Q to a signature σ. The tem-
poral depth tdp(q) of q is the maximum number of nested
temporal operators in q. The signature sig(q) of q is the set
of atoms in q; the size |q| of q is the number of symbols in it.

The truth-relation D, n |= q—saying that q is true in D at
moment n ∈ N—is defined as usual in temporal logic under
the strict semantics: D, n |= ⊤ for all n ∈ N; D, n |= Ai iff
Ai(n) ∈ D; D, n |= ⃝q′ iff D, n+ 1 |= q′; and D, n |= 3q′

iff D,m |= q′, for some m > n. A data instance D is called
a positive example for a query q if D, 0 |= q; otherwise, D is
a negative example for q. Checking whether D is a positive
(negative) example for our queries q can obviously be done
in polytime in |D| and |q|.



We write q |= q′ if D, 0 |= q implies D, 0 |= q′ for all
instances D, and q ≡ q′ if q |= q′ and q′ |= q, in which case
q and q′ are equivalent. For example, for any query q, we
have 3⃝q ≡ ⃝3q ≡ 33q. It follows that every path query
in Qp[⃝3] is equivalent to a query of the form (1), in which
ρn ̸= ⊤ and whenever ρi = ⊤, 0 < i < n, then oi = oi+1;
in this case we say that q is in normal form. Unless indicated
otherwise, we assume all path queries to be in normal form.
Sequences. There is a close link between evaluating
path queries and algorithms for finding patterns in strings
[Crochemore et al., 2007]. A sequence is a data instance
D = δ0 . . . δn with δ0 = ∅ and |δi| = 1, for i > 0; a se-
quence query is a path query of the form (1) with |ρ0| = 0
and |ρi| = 1, for i > 0. Querying sequences using sequence
queries corresponds to the following matching problems:

– for any sequence query q ∈ Qp[3] of the form (1), we
have D, 0 |= q iff ρ1 . . . ρm is a subsequence of D;

– for any sequence query q ∈ Qin of the form (1), we have
D, 0 |= q iff ρ1 . . . ρm is a subword of D.

3 Query Containment
The query containment problem for a class Q of queries is to
decide whether q |= q′, for any given q, q′ ∈ Q. In con-
trast to conjunctive queries, where query containment is NP-
complete [Chandra and Merlin, 1977], query containment is
tractable for the majority of query classes defined above:

Theorem 2. The query containment problems for Qp[⃝3],
Q[3] (and their subclasses) are all in P.

To prove Theorem 2, suppose first that we are given two
queries q, q′ ∈ Qp[⃝3], where q takes of the form (1) and
q′ = ρ′0 ∧ o′

1(ρ
′
1 ∧ · · · ∧ o′

mρ
′
m). Denote by [m] the closed

interval [0,m] ⊆ N. A function h : [m] → [n] is monotone
if h(i) < h(j) whenever i < j. Then tractability of contain-
ment for path queries follows from the criterion below, which
is proved in the appendix by induction on tdp(q′):

Lemma 3. Let q, q′ ∈ Qp[⃝3]. Then q |= q′ iff there is
a monotone function h : [m] → [n] such that h(0) = 0 and,
for all i ∈ [m], we have ρ′i ⊆ ρh(i) and if o′

i+1 = ⃝, then
oh(i+1) = ⃝ and h(i+ 1) = h(i) + 1.

We refer to any function h defined in Lemma 3 as a con-
tainment witness for the pair q, q′ ∈ Qp[⃝3].

Suppose now q ∈ Q[3]. As shown in [Fortin et al., 2022],
we can convert q in polytime to an equivalent query in the
normal form ρ ∧ q1 ∧ · · · ∧ qn, where ρ is a conjunction of
atoms and each qi is inQp[3] and starts with 3. Tractability
of containment for Q[3]-queries follows from:

Lemma 4. If q = ρ ∧ q1 ∧ · · · ∧ qn ∈ Q[3] is in normal
form, q′ ∈ Qp[3] and q |= q′, then there is qi, 1 ≤ i ≤ n,
with ρ ∧ qi |= q′.

Proof. In the detailed proof given in the appendix, we show
that, assuming ρ ∧ qi ̸|= q′ for all i, we can convert the qi
into a data instance D with D, 0 |= q and D, 0 ̸|= q′. ⊣

For queries q ∈ Q[⃝3], Lemma 4 does not hold:

Example 5. Let q = q1 ∧ q2 ∧ q3 ∧ q4, where

q1 = 3(a ∧⃝((a ∧ b) ∧⃝a)),

q2 = 3(b ∧⃝((a ∧ b) ∧⃝b)),

q3 = 3(a ∧⃝((a ∧ b) ∧⃝b)),

q4 = 3(a ∧3(b ∧3(a ∧3(b ∧3(a ∧3b))))),

and q′ = 3(b∧3((a∧ b)∧3a)). Then q |= q′ but qi ̸|= q′,
for any i, 1 ≤ i ≤ 4.

At the moment, the question whether containment of
Q[⃝3]-queries is tractable remains open.

4 Example Sets and Separating Queries
An example set E is a pair (E+, E−) of finite sets E+ ̸= ∅
and E− of data instances. We say that a query q separates
E if all D ∈ E+ are positive examples and all D ∈ E−

are negative examples for q. Denote by s(E,Q) the set of
queries in a class Q separating E and call E Q-separable if
s(E,Q) ̸= ∅. Our general aim is to understand the structure
of s(E,Q) for various important query classes Q.

We consider queries in Q modulo equivalence, not distin-
guishing between q ≡ q′. In this case, the relation |= is a
partial order on Q. For any q ∈ s(E,Q), we clearly have

– tdp(q) ≤ min{maxD | D ∈ E+},
– sig(q) ⊆

⋂
{sig(D) | D ∈ E+},

so s(E,Q) is finite. We refer to the |=-minimal elements
of s(E,Q) ̸= ∅ as most specific Q-separators of E and
to the |=-maximal elements as most general Q-separators
of E (modulo ≡); they comprise the sets mss(E,Q) and
mgs(E,Q), respectively. If these sets are singletons, we call
their only element the unique most specific and, respectively,
unique most general Q-separator of E. Note that the former
always exists if s(E,Q) ̸= ∅ and Q is closed under ∧.
Example 6. (i) Suppose D+ = {A(0), B(0), A(1), B(1)},
D− = {A(0)} andE = ({D+}, {D−}). The separator space
s(E,Qp[3]) is shown below as a Hasse diagram with arrows
indicating the partial order |= (and ⊤, A /∈ s(E,Qp[3])), so

A ∧B ∧3(A ∧B)

A ∧B ∧3A A ∧B ∧3B A ∧3(A ∧B) B ∧3(A ∧B)

A ∧B A ∧3A A ∧3B B ∧3A B ∧3B 3(A ∧B)

A B 3A 3B
⊤

the most general Qp[3]-separators of E comprise the set
mgs(E,Qp[3]) = {B,3A,3B} and the unique most spe-
cific one is A ∧B ∧3(A ∧B).
(ii) For the example set E = ({D+

1 ,D
+
2 }, {D

−
1 }) with

D+
1 = {A(1), B(2)},D+

2 = {B(1), A(2)},D−
1 = {C(0)},

s(E,Qp[3]) = {3A,3B} = mss/mgs(E,Qp[3]) but there
is no unique most specific/general separator. In contrast,
s(E,Q[3]) = {3A,3B,3A ∧ 3B} has the unique most
specific separator 3A∧3B but no unique most general one.



(iii) One can show that mss/mgs(E,Q) always contains a
longest/shortest separator ofE inQ (of largest/smallest tem-
poral depth). To illustrate, let E = ({D+

1 }, {D
−
1 ,D

−
2 ,D

−
3 }),

D+
1 = {B(0), C(0), A(1)},

D−
1 = {B(0)}, D−

2 = {C(0)}, D−
3 = {A(1)}.

Then mgs(E,Qp[3]) = {B ∧ C,B ∧3A,C ∧3A}, where
B ∧ C of depth 0 is the shortest separator of E in Qp[3].

Our main concern is the following three algorithmic prob-
lems for query classesQ ⊆ Q[⃝3] with input E and q ∈ Q:
(most specific/general separator verification): decide

whether q is an element of mss(E,Q) /mgs(E,Q);
(counting most specific/general separators): count the el-

ements of mss(E,Q) /mgs(E,Q);
(computing a most specific/general separator): construct

some query in mss(E,Q) /mgs(E,Q).
We are particularly interested in deciding whether there is
a unique most specific/general separator and computing it.
To achieve our aims, we obviously should be able to decide
whether q ∈ s(E,Q) (separator verification) and whether
s(E,Q) ̸= ∅ (separator existence). As mentioned in Sec-
tion 2, separator verification is in P. We are also interested in
the case when the number of positive or negative examples in
E is bounded. The table below summarises the complexities
of separator existence for our query classes, where b+ / b−

separator existence b+, b− b+ b− or unbounded
Qp[3] /Qp[⃝3] in P NP-c. NP-c.
Q[3] /Q[⃝3] /Qin in P in P NP-c.

means that |E+| / |E−| is bounded, and one can assume a
bounded signature. Except forQin, these results are shown in
[Fortin et al., 2023]. The proofs use techniques developed for
the longest common subsequence problem (given k > 0 and
a set E+ of sequences, is there a sequence query in Qp[3] of
depth≥ k that is a subsequence of allD ∈ E+; see Section 2)
and separator existence for sequence queries inQp[3] [Maier,
1978; Fraser, 1996]. The NP-upper bound for Qin is trivial;
the lower one follows from the proof of Theorem 21, and
tractability for b+ is ensured by the observation that there are
polynomially-many relevant intervals in the E+-examples.

This NP-lower bound shows that great care is needed when
transferring techniques from the literature on algorithms for
sequences to our framework as separability of example sets
of sequences using sequence queries in Qin is easily seen to
be in P even for unbounded example sets and signatures.

A key to the extremal separator problems above is the fol-
lowing notions of strengthening and weakening frontiers.

5 Strengthening and Weakening Frontiers
LetQ be a class of queries and q ∈ Q. A set F ⊆ Q is called
a strengthening frontier for q in Q if

– for any q′ ∈ F , we have q′ |= q and q′ ̸≡ q;
– for any q′′ ∈ Q, if q′′ |= q and q′′ ̸≡ q, then there is
q′ ∈ F such that q′′ |= q′.

A set F ⊆ Q is called a weakening frontier for q in Q if
– for any q′ ∈ F , we have q |= q′ and q′ ̸≡ q;

– for any q′′ ∈ Q, if q |= q′′ and q′′ ̸≡ q, then there is
q′ ∈ F with q′ |= q′′.

Trivial strengthening/weakening frontiers for q comprise all
queries that are properly stronger/weaker than q in Q; our
concern, however, is finding small frontiers. We show now
that, for Qσ

p [3] and Qσ
p [⃝3], one can compute a strengthen-

ing/weakening frontier for any given q in polytime.
Theorem 7. Let q ∈ Qσ

p [⃝3] be in normal form (1). A
strengthening frontier for q in Qσ

p [⃝3] can be computed in
polytime by applying once to q one of the following opera-
tions, for i ∈ [n] and qi = ρi ∧ oi+1(ρi+1 ∧ · · · ∧ onρn):

1. extend some ρi in q by some A ∈ σ \ ρi;
2. replace some 3qi in q by 3(⊤ ∧3qi);
3. replace some oi = 3 in q by ⃝ provided that the result-

ing query is in normal form;
4. add on+1ρn+1 at the end of q, where on+1 = 3 and
ρn+1 = A, for some A ∈ σ.

If q ∈ Qσ
p [3], a strengthening frontier for q inQσ

p [3] can be
computed in polytime using operations 1, 2, and 4.

Proof. Let F be the set of queries obtained by a single appli-
cation of one of these operations to q. By Lemma 3, q′ |= q
and q ̸≡ q′ for all q′ ∈ F . Let q′ |= q and q ̸≡ q′, for some
q′ ∈ Qσ

p [⃝3] of the form q′ = ρ′0 ∧ o′
1(ρ

′
1 ∧ · · · ∧ o′

m(ρ′m)).
Take a containment witness h : [n] → [m] for q′, q. If h is
surjective, then n = m and h(i) = i for all i ∈ [n], and so
ρi ⊆ ρ′i. As q ̸≡ q′, either o′

i = ⃝ and oi = 3, for some
i ∈ [n], or ρi ⊊ ρ′i, for some i ∈ [n]. In the former case,
operation 3 gives q′′ ∈ F with q′ |= q′′; in the latter one,
operation 1 gives such a q′′.

Suppose h is not surjective. If there is i < n such that
h(i + 1) − h(i) ≥ 2, then q′ |= q′′ for a q′′ ∈ F given by
operation 2. Otherwise m is not in the range of h, and we get
such a q′′ ∈ F by operation 4. ⊣

Example 8. For σ = {A,B} and q = 3(A ∧ ⃝B), opera-
tions 1–4 give the following strengthening frontier for q:

3(A ∧B ∧⃝B),3(A ∧⃝(A ∧B)),3(⊤ ∧3(A ∧⃝B)),

⃝(A ∧⃝B),3(A ∧⃝(B ∧3A)),3(A ∧⃝(B ∧3B)).

A weakening frontier can be constructed by reversing op-
erations 1–3 from Theorem 7 and using a similar argument:
Theorem 9. Let q ∈ Qσ

p [⃝3] be in normal form (1). A weak-
ening frontier for q in Qσ

p [⃝3] can be computed in polytime
by applying once to q one of the following operations, for
i ∈ [n] and qi = ρi ∧ oi+1(ρi+1 ∧ · · · ∧ onρn):

1. drop some atom from ρi;
2. replace some 3(⊤ ∧3qi) in q by 3qi;
3. replace some oi = ⃝ by 3.

If q ∈ Qσ
p [3], a weakening frontier for q in Qσ

p [3] can be
computed in polytime using operations 1 and 2.
Example 10. For σ = {A,B} and q = 3(A ∧⃝B), opera-
tions 1-3 give the following weakening frontier for q:

3(⊤ ∧3B), 3A, 3(A ∧3B).

Note that the computed weakening frontier can be made
smaller by omitting 3A, which is weaker than 3(A ∧3B).



We next consider frontiers for queries in Qσ[3]. We say
that q = ρ ∧ q1 ∧ · · · ∧ qn ∈ Qσ[3] in normal form is
redundancy-free if it does not contain qi, qj with i ̸= j and
qi |= qj . Clearly, for any q ∈ Qσ[3], we can compute an
equivalent redundancy-free q′ ∈ Qσ[3] in polytime.

Theorem 11. Let q = ρ ∧ q1 ∧ · · · ∧ qn ∈ Qσ[3] be
redundancy-free. A weakening frontier for q in Qσ[3] can
be computed in polytime by a single application of one of the
following operations to q:

1. drop some atom from ρ;
2. replace some qi by

∧
Fi, where Fi is the weakening

frontier for qi in Qσ
p [3] provided by Theorem 9.

Proof. Let F be the set of queries defined above. Clearly,
q |= q′; as q is redundancy-free and in view of Lemma 4,
q ̸≡ q′ for all q′ ∈ F . Suppose q |= q′ and q ̸≡ q′, for some
q′ = ρ′ ∧ q′

1 ∧ · · · ∧ q′
m in Qσ[3]. By Lemma 4, ρ′ ⊆ ρ

and, for each j, 1 ≤ j ≤ m, there exists f(j), 1 ≤ f(j) ≤ n,
with qf(j) |= q′

j . If ρ′ ⊊ ρ, then operation 1 gives a q′′ ∈ F
with q′′ |= q′. Otherwise, as q ̸≡ q′, there is qi such that
q′
j ̸|= qi for all q′

j , 1 ≤ j ≤ m. Let q′′ be the query obtained
from q by replacing qi with

∧
Fi by operation 2. To establish

q′′ |= q′, it suffices to show that f(j) = i implies
∧
Fi |= qj .

So suppose f(j) = i. Then q′
j ̸|= qi, and so, by the definition

of Fi, there is q′′
i ∈ Fi with q′′

i |= qj . ⊣

However, strengthening frontiers for queries in Qσ[3] are
not necessarily of polynomial size as shown by the following:

Example 12. We represent queries in Qσ[3] of the form (1)
as ρ0 . . . ρn. For σ = {A1, A2, B1, B2}, let q1 = ∅(qσ)nq,
q2 = ∅σ2n+1, and q = {A1, A2}{B1, B2}. Using [Fortin et
al., 2022, Example 18], one can show that any strengthening
frontier for the query q1 ∧ q2 in Qσ[3] is of size O(2n).

Note also that weakening frontiers for q ∈ Qσ
in can be com-

puted in polytime using operation 1 in Theorem 9 (if i = 1
and |ρi| = 1, we drop⊤ and take 3(ρ2∧⃝(ρ3∧· · ·∧⃝ρn)).
On the other hand, strengthening frontiers can be infinite:

Example 13. All 3(A ∧ ⃝nA), n > 0, are in any strength-
ening frontier for q = 3A in Qσ

in, where σ = {A}.
As shown by Theorem 17, the lack of polytime com-

putable strengthening frontiers in Q[3] affects the complex-
ity of verifying most specific separators. In contrast, the
lack of polytime computable strengthening frontiers in Qin
turns out to be harmless. For n ≥ tdp(q), call F ⊆ Q
an n-bounded weakening/strengthening frontier for q in Q
if F is a weakening/strengthening frontier for q in the class
{q′ ∈ Q | tdp(q′) ≤ n} (we assume n to be given in unary).

Theorem 14. Weakening frontiers and n-bounded strength-
ening frontiers in Qσ

in can be computed in polytime.

Theorems 7, 9 give an alternative way of polytime comput-
ing unique characterisations ofQσ

p [⃝3]-queries by examples
[Fortin et al., 2022], opening another route to studying unique
characterisations and exact learning of temporal queries.

6 Complexity
Now we show complexity bounds for the decision and count-
ing problems from Section 4, starting with verification and
observing that polytime computable n-bounded frontiers im-
ply tractable verification of most specific/general separators:

Lemma 15. If an n-bounded strengthening/weakening fron-
tier for q ∈ Q is polytime computable in |q| and n, then most
specific/general separator verification for Q is in P.

Proof. Let n = min{maxD | D ∈ E+}. We compute an
n-bounded strengthening frontier F for q in Q and use that
q ∈ mss(E,Q) iff q ∈ s(E,Q) and q′ /∈ s(E,Q) for all
q′ ∈ F . The case of mgs(E,Q) is similar. ⊣

Corollary 16. Most specific/general separator verification is
in P for Qp[3], Qp[⃝3], and Qin. Most general separator
verification is in P for Q[3].

Proof. It follows from Lemma 15 and Theorems 7, 9, 14 that
most specific/general separator verification is in P forQp[3],
Qp[⃝3], and Qin. By Theorem 11, most general separation
verification is also in P for Q[3]. ⊣

Most specific separator verification is harder for Q[3]:

Theorem 17. ForQ[3], the most specific separator verifica-
tion problem coincides with the unique most specific separa-
tor verification problem and is CONP-complete.

Proof. As we know, E has a unique most specific separa-
tor in Q[3] iff s(E,Q[3]) ̸= ∅. Hence most specific sep-
arator verification coincides with unique most specific sep-
arator verification. Given q and E, we can check in NP
that either q /∈ s(E,Q[3]) (which is in P) or that there is
q′ ∈ s(E,Q[3]) with q′ |= q and q′ ̸≡ q (which is in NP).
This gives the CONP upper bound. The more involved proof
of the lower one (in the appendix) is based on ideas similar to
those in the proof of Theorem 21 below. ⊣

In the cases when most specific/general separators are not
necessarily unique, we obtain the following:

Theorem 18. Unique most specific/general separator verifi-
cation inQp[⃝3],Qp[3],Qin as well as unique most general
separator verification in Q[3] are CONP-complete.

Proof. The upper bounds follow from Corollary 16. The
lower ones are by reduction of the problem to decide whether,
for a Boolean formula φ and a satisfying assignment a, there
is a satisfying assignment for φ different from a. We use ideas
similar to those in the proof of Theorem 21. ⊣

We now turn to the existence and counting problems. Re-
call that UNIQUE SAT is the problem to decide whether there
is exactly one satisfying assignment for a propositional for-
mula [Blass and Gurevich, 1982]. It is in ∆p

2, CONP-hard,
and complete for the class US of problems solvable by a
non-deterministic polynomial-time Turing machine M that
accepts iff M has exactly one accepting path. A counting
problem is in the class ♯P if there is such M whose number
of accepting paths coincides with the number of solutions to
the problem [Arora and Barak, 2009].



Theorem 19. ForQp[⃝3],Qp[3],Qin, counting most speci-
fic/general separators is ♯P -complete; the existence of a
unique most specific/general separator is US-complete. The
same holds for most general separators in Q[3].

Theorem 19 follows from the very general and fine-grained
complexity results provided by Theorems 20 and 21 below.
Theorem 20. Let Q ⊆ Qp[⃝3] be a class with polytime
decidable membership and polytime computable n-bounded
strengthening/weakening frontiers for queries in Q. Then

– counting most specific/general Q-separators is in ♯P ;
– the existence of a unique most specific/general Q-sepa-

rator is in US.
This also holds for most general separators in classes of con-
junctions of ⃝3-path queries closed under dropping con-
juncts and having polytime computable weakening frontiers.

Proof. Given E, construct a TM M that guesses a q ∈ Q
with tdp(q) ≤ n = min{maxD | D ∈ E+} and accepts if
q separates E and no q′ in the n-bounded frontier for q in Q
separates E. As we know, the required checks are in P. In the
second claim, M guesses a query q = ρ ∧ 3q1 ∧ · · · ∧ 3ql
with qi ∈ Qp[⃝3] and l ≤ |E−|. ⊣

For the lower bounds, we take into account the bounded-
ness of sig(E) and the cardinalities |E+| and |E−| of pos-
itive and negative examples in E. The next result provides
matching lower bounds for Theorem 19 even if the signature
is bounded and only one of |E+| and |E−| is unbounded, ex-
cept for Qin and Q[3], where |E+| has to be unbounded.
Theorem 21. Let Q ⊆ Qp[⃝3] be any class of queries con-
taining all 3ρ with a conjunction of atoms ρ. Then

– counting most specific/generalQ-separators is ♯P-hard;
– the existence of unique most specific/general separator

is US-hard
even for E = (E+, E−) and σ = sig(E) with (a) |E−| ≤ 1
or (b) |E−| ≤ 1, |σ| = 2 andQ = Qin orQ ⊇ Qp[3], or (c)
|E+| ≤ 4, |σ| = 3, Q ⊇ Qp[3]. This result also holds for
most general separators in Q[3] and |E−| = 1, |σ| = 2.

Proof. We sketch the proof of the first claim by a parsi-
monious reduction from SAT for an unbounded number of
negative examples (which can be easily merged into one).
Take a CNF φ = ψ1 ∧ · · · ∧ ψk with clauses ψi over vari-
ables x1, . . . , xn. We construct E = (E+, E−) such that
there is a bijection between the satisfying assignments for
φ and the separators for E in Q[⃝3] (even queries of the
form 3ρ). The claim follows from the fact that the separat-
ing queries are mutually |=-incomparable. Define the posi-
tive examples E+ = {D0,D′

0,D1, . . . ,Dn} with 2n atoms
A1, Ā1, . . . , An, Ān by taking

D0 = {Ai(1), Āi(1) | 1 ≤ i ≤ n},
D′

0 = {Ai(2), Āi(2) | 1 ≤ i ≤ n},
Di = {Ai(1), Āi(2), Aj(1), Āj(1), Aj(2), Āj(2) | i ̸= j},

for 1 ≤ i ≤ n. Let E− = {D1
1, . . . ,D1

k,D2
1, . . . ,D2

n}, where
D1

i , 1 ≤ i ≤ k, comprises Āj(1) if xj does not occur nega-
tively in ψi, and Aj(1) if xj does not occur positively in ψi,

and D2
i = {Aj(1), Āj(1) | j ̸= i}. For an assignment a for

x1, . . . , xn, let ρa contain Ai if a(xi) = 1 and Āi, otherwise.
Now our claim follows from the following: (i) if a satisfies
φ, then 3ρa separates E; (ii) if q ∈ Qp[⃝3] separates E,
then q ≡ 3ρa, for some a satisfying φ.

To bound σ and/or E+, we give parsimonious reductions
from SAT and employ techniques for the longest common
subsequence problem and separator existence for sequence
queries in Qp[3] [Blin et al., 2012; Fraser, 1996]. ⊣

Again, re-using techniques from the literature on algo-
rithms for sequences needs some care. Similar to separability,
for example sets of sequences, counting most general/specific
sequence Qin-separators is easily seen to be in P even for un-
bounded signatures and example sets, but Theorem 21 shows
that this is not so for Qin on non-sequence data instances.

Surprisingly, the complexities of counting most general
separators and deciding the existence of a unique one diverge
if we bound the number of examples, cf. Theorems 23 and 27.
Theorem 22. Let Q = Q[3] or Q ⊆ Qp[⃝3] be any class
containing all 3ρ with a conjunction of atoms ρ. Then count-
ing most general Q-separators is ♯P-hard even for example
sets E = (E+, E−) with |E+| = 2 and |E−| = 1.

Proof. The proof is by reduction from counting satisfying as-
signments for monotone formulas: E− is as in the proof of
Theorem 21 and the positive examples are D0, D′

0. ⊣

Theorem 22 does not hold for counting most specific sep-
arators in Qin, which is easily seen to be in P if |E+| is
bounded. It remains open whether some version of this theo-
rem holds for most specific separators in Qp[⃝3] or Qp[3].

7 Algorithms
The frontiers defined in Section 5 give a polytime algorithm
for computing a most specific/general separator starting from
any given separator. Suppose Q ∈ {Qp[3],Qp[⃝3],Qin},
we are given q ∈ s(E,Q) and need a most specific separa-
tor. By Theorems 7, 9, the length of the longest |=-chain in
s(E,Qp[⃝3]) is polynomial in |E|.1 We take, if possible,
some q′ ∈ s(E,Q) in the strengthening frontier for q, then
q′′ ∈ s(E,Q) in the strengthening frontier for q′, etc. This
process terminates after polynomially-many steps, returning
a most specific Q-separator (and so the unique one, if any).

Thus, we can focus on algorithms deciding the existence of
a (unique most specific/general) separator and constructing it.
In the next theorem, we compute not just a random input sepa-
rator, but a longest/shortest one. As strengthening/weakening
frontiers contain queries that are not shorter/longer than the
input, the procedure above will compute a longest most spe-
cific/shortest most general separator.
Theorem 23. Let E = (E+, E−), σ = sig(E), t+/t− be
the maximum timestamp in E+/E−, c+ = |E+|, c− = |E−|,
and Q ∈ {Qp[3],Qp[⃝3]}. The following can be done in
time O(t

c+
+ t

c−
− ):

(a) deciding whether s(E,Q) ̸= ∅;
1In contrast, the proof of Theorem 21 shows the size of the max-

imal antichain in s(E,Qp[3]) is in general exponential in |E|.



(b) computing a longest/shortest separator in s(E,Q);
(c) deciding the existence of a unique most specific Q-

separator and a unique most general Qp[3]-separator,
and constructing such a separator.

For bounded c+ and c−, problem (a) is in NL.

Proof. We only sketch the construction for Q = Qp[3].
(a) First, we define a directed labelled rooted graph P

whose paths from the root representQp[3]-queries with pos-
itive examples E+ = {D1, . . . ,Dc+}. Its nodes are vectors
(n1, . . . , nc+) with 0 ≤ ni ≤ maxDi, which are labelled by
the sets {A ∈ σ | A(ni) ∈ Di for all i}, and the edges are
(n1, . . . , nc+) → (n′1, . . . , n

′
c+) with ni < n′i for all i. The

root of P is 0̄ = (0, . . . , 0). To illustrate, let E = (E+, E−),
where E+ = {D+

1 ,D
+
2 }, E− = {D−

1 ,D
−
2 ,D

−
3 },

D+
1 = {A(0), C(1), D(1), B(2)},

D+
2 = {A(0), C(1), B(2), D(2)},

D−
1 = {A(0), C(1)}, D−

2 = {A(0), D(1)}, D−
3 = {B(0)}.

Graph P is shown on the left-hand side of the picture below:

(0, 0)

{A}
(1, 1)

{C}

(2, 1) ∅

(1, 2) {D}

(2, 2)

{B}

P

(0, 0,∞)

{A}

(1, 1,∞)

∅

(1,∞,∞) {C}

(∞, 1,∞) {D}

(∞,∞,∞)

{A,B,C,D}

N

Each path starting at 0̄ gives rise to aQσ
p [3]-query with posi-

tive examples in E+: e.g., (0, 0)→ (1, 1)→ (2, 2) gives rise
to the query A ∧3(C ∧3B).

Next, define another graph N for E− = {D1, . . . ,Dc−}.
Its nodes are (n1, . . . , nc−), where ni ∈ [0,maxDi] ∪ {∞},
including ∞̄ = (∞, . . . ,∞), which is labelled by σ. The
label of (n1, . . . , nc−) is {A | A(ni) ∈ Di, for all ni ̸=∞}.
The edges are defined in the same way as for P, with ni <∞,
for any ni. The root of N is (n1, . . . , nl), where ni = 0 if
{A(0) | A(0) ∈ D, for all D ∈ E+} ⊆ Di and ni = ∞
otherwise (see the picture above). Let q be aQσ

p [3]-query of
the form (1) with ρ0 contained in the root’s label. Then all
Di ∈ E− are negative examples for q iff every path starting
at the root and having labels ρ′0, . . . , ρ

′
n with ρ′i ⊇ ρi, for all

i ≤ n, comes through node ∞̄. In our example, every such
path for q = A∧3B and q = A∧3(C ∧3B) involves ∞̄.
However, this is not the case for q = A ∧3C.

Consider now a graph P ⊗ N with nodes (n,m), where
n is a node in P and m a node in N with l(n) ⊆ l(m),
for the labels l(n) and l(m) of n and m. We have an edge
(n,m)→ (n′,m′) in P⊗N iff n→ n′ in P, m→m′ in
N, and P ⊗N has no (n′,m′′) with m → m′′, m′′

i < m′
i

and m′′
i ̸= ∞, for some i, mi being the ith coordinate of

m. One can see that, for any (n,m) in P × N and n′ in
P, there exists at most one edge (n,m) → (n′,m′). The
root of P × N comprises the roots of P and N. In our ex-
ample, the edges from the root (0̄, (0, 0,∞)) of P ⊗ N lead
to ((1, 2), (∞, 1,∞)), ((2, 1), (1, 1,∞)), ((1, 1), (1,∞,∞))
and ((2, 2), ∞̄). Given a path

π = (0̄ = n0,m0), . . . , (nn,mn) (2)

let qπ be the Qp[3]-query of the form (1) with ρi = l(ni)
(note that qπ is not necessarily in normal form). We call π a
separating path for E if l(nn) ̸= ∅ and mn =∞.

Lemma 24. s(E,Q) ̸= ∅ iff P ⊗ N contains a separating
path π, with qπ separating E.

In our running example, P⊗N has two separating paths:
π1 = (0̄, (0, 0,∞)), ((2, 2), ∞̄) and π2 = (0̄, (0, 0,∞)),
((1, 1), (1,∞,∞)), ((2, 2), ∞̄), which give rise to the sep-
arators qπ1

= A ∧3B and qπ2
= A ∧3(C ∧3B).

The existence of a separating path in P⊗N can be checked
in time O(t

c+
+ t

c−
− ). If c+ and c− are bounded, given (n,m)

and (n′,m′), we can check in logspace whether (n,m) is the
root of P⊗N and (n,m)→ (n′,m′), and so the existence
of a separating path can be decided in NL.

The proof of point (b) relies on the following observation:

Lemma 25. If q of the form (1) separates E, then there is a
separating path of the form (2) with ρi ⊆ l(ni), for all i ≤ n.

It follows that the length of a longest/shortest separator for
E coincides with the length of a longest/shortest separating
path in P⊗N, which can be found in polytime.

The proof of point (c) is based on the following criterion:

Lemma 26. A Qp[3]-query q is a unique most specific
Qp[3]-separator for E iff there is a separating path π such
that q = qπ and qπ |= qν , for every separating path ν.

In our example, qπ2
is a unique most specific separator.

We show that the criterion of Lemma 26 can be checked in
polytime in P ×N. For unique most general separators, the
seemingly obvious inversion of qπ |= qν does not give a
criterion, and a different type of graph is required. ⊣

Finally, we show how Theorem 23 can be used to check the
existence of and construct unique most general separators in
Q[3] (the case of unique most specific ones is trivial).
Theorem 27. An example set E = (E+, E−) has a unique
most general separator in Q[3] iff q =

∧
D∈S qD separates

E, where S is the set of D ∈ E− such that (E+, {D}) has a
unique most general separator, qD, in Qp[3]. In this case, q
is a unique most general separator of E in Q[3].

8 Conclusions
We have conducted a comprehensive complexity analysis of
extremal separators in the spaces s(E,Q) with Q ranging
from various classes of temporal path ⃝3-queries to arbitrary
3-queries. For arbitrary ⃝3-queries, we only know more or
less straightforward upper bounds such as Πp

2 for (unique)
most general separator verification and Σp

3 for unique most
general separator existence. Establishing tight bounds re-
mains a challenging open problem, which requires a deeper
understanding of query containment for these queries.

We also plan to analyse the shortest and longest separators.
For instance, we show in the appendix that verifying such
separators in s(E,Qp[⃝3]) is CONP-complete—harder than
verifying most specific/general ones. An empirical evaluation
of our algorithms and more expressive query languages (say,
with non-strict 3 and ‘until’) are left for future work.
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Appendix: Proofs

A Proofs for Section 3
We assume that queries q are in normal form. Recall that [n] = {0, . . . , n}. We start by introducing a helpful tool for checking
whether D, 0 |= q. Let q be a path ⃝3-query of the form (1), that is,

q = ρ0 ∧ o1(ρ1 ∧ o2(ρ2 ∧ · · · ∧ onρn)),

where oi ∈ {⃝,3} and ρi is a conjunction of atoms. A satisfying function f for q into a data instance D maps [n] to [maxD]
such that

• f(0) = 0;
• ρi ⊆ Df(i) := {A | A(f(i)) ∈ D};
• f(i) < f(i+ 1);
• f(i+ 1) = f(i) + 1 if oi+1 = ⃝.

It is easy to show that D, 0 |= q iff there exists a satisfying function for q into D.

q′ = ρ′0 ∧ o′
1(ρ

′
1 ∧ · · · ∧ o′

m(ρ′m)). (3)

A function g : [m]→ [n] is a containment witness for q, q′ if the following conditions holds:
• ρ′i ⊆ ρg(i);
• g(0) = 0;
• g(i) < g(i+ 1);
• if o′

i+1 = ⃝, then og(i+1) = ⃝ and g(i+ 1) = g(i) + 1.
We can now state Lemma 3 as follows.
Lemma 28. q |= q′ iff there is a containment witness for q, q′.

Proof. It is easy to see that if there is a containment witness for q, q′ then q |= q′. We prove the converse direction.
Let σ = sig(q). The proof is by induction on the temporal depth of q′. If tdp(q′) = 0, the claim is trivial.
Assume q |= q′ are given and the statement has been shown for all q′′ with tdp(q′′) < tdp(q′).
Assume first that q′ starts with a nonempty sequence of ⃝. Then let k > 0 be maximal such that o′

1 = · · · = o′
k = ⃝. Then

ρ′k ̸= ⊤ (by normal form) and if m > k, then o′
k+1 = 3.

Let r be minimal such that
ρ0 ∧ o1(ρ1 ∧ · · · ∧ orρr)) |= ρ′0 ∧ o′

1(ρ
′
1 ∧ · · · ∧ o′

kρ
′
k))

Claim 1. For all i ≤ k, oi = ⃝ and ρi ⊇ ρ′i. Hence r = k.

To prove Claim 1 observe that if there is i ≤ k with oi = 3, then we have for

D = ρ0 . . . ρi−1∅mρi . . . ρn
D, 0 |= q and D, 0 ̸|= q′, a contradiction. If there is i ≤ k with ρi ̸⊇ ρ′i, then we have for

D = ρ0 . . . ρn

D, 0 |= q and D, 0 ̸|= q′, again a contradiction. This finishes the proof of Claim 1.
Next observe that if follows from q |= q′ that

δ |= δ′

for δ = ok+1(ρk+1 ∧ · · · ∧ onρn)) and δ′ = o′
k+1(ρ

′
k+1 ∧ · · ·o′

mρ
′
m)). As

tdp(δ′) < tdp(q′)

we can apply the IH to δ, δ′ and have a containment witness g′ for δ, δ′. Define g by setting g(i) = i for all i ≤ k and
g(k + j) = g′(j) + k for all j with 1 ≤ j ≤ m− k. Then g is a containment witness for q, q′.

Assume now that q′ does not start with ⃝. Assume first there is a minimal initial subquery

δ′ = ρ′0 ∧ o′
1(ρ

′
1 ∧ · · · ∧ o′

kρ
′
k))

of q′ ending with ρ′k ̸= ⊤ and, moreover, o′
k+1 = 3 and k > 0. Let

δ = ρ0 ∧ o1(ρ1 ∧ · · · ∧ ρr))



be the minimal initial subquery of q such that δ |= δ′. As tdp(δ′) < tdp(q′), by IH we have a containment witness g0 for
δ, δ′. As ρ′k ̸= ⊤ and r is minimal we have g0(k) = r. By IH the claim also holds for γ′ = o′

k+1(ρ
′
k+1 ∧ · · · ∧ o′

mρ
′
m)) and

γ = or+1(ρr+1 ∧ · · · ∧ onρn)). Hence we obtain a containment witness g1 for γ, γ′. Then we obtain a containment witness
for q, q′ by concatenating g0 and g1.

Finally assume there is no ρ′k ̸= ⊤ with op′k+1 = 3 and k > 0. Then, by normal form, q′ takes the form

ρ′0 ∧3k(ρ′k ∧ o′
k+1ρ

′
k+1 · · · ∧ o′

mρ
′
m))

with k > 0, ρ′k ̸= ⊤, and o′
k+1 = · · · = o′

m = ⃝.
We show there exists j ≥ k such that oj+1 = · · · = oj+m−k = ⃝ and ρj+ℓ ⊇ ρ′k+ℓ for all ℓ with 0 ≤ ℓ ≤ m− k. Clearly

then there is a containment witness g for q, q′.
To show our claim, suppose no such j exists. Then take the data instance

D = ρ0w1ρ1 · · ·wnρn

where wi is the empty word if oi = ⃝ and wi = ∅m if oi = 3. Then we have D, 0 |= q but D, 0 ̸|= q′, a contradiction. ⊣

We consider Q[3]. We assume that q ∈ Q[3] takes the from

ρ ∧ q1 ∧ · · · ∧ qn

where ρ is a conjunction of atoms and each qi is in Qp[3] and starts with 3.

Lemma 4. If q = ρ ∧ q1 ∧ · · · ∧ qn ∈ Q[3] is in normal form, q′ ∈ Qp[3] and q |= q′, then there is qi, 1 ≤ i ≤ n, with
ρ ∧ qi |= q′.

Proof. Assume
qi = 3(ρ1i ∧ · · · ρ

ni
i ))

for 1 ≤ i ≤ n,
q′ = ρ0 ∧3(ρ1 ∧ · · · ∧3ρm)),

and q |= q′. Note that ρ ⊇ ρ0 as otherwise q ̸|= q′. We define functions

fi : {1, . . . ,m} → {1, . . . , ni} ∪ {∞}
for 1 ≤ i ≤ n. The definition is by induction starting from 1.

Set fi(1) = j if j is minimal such that ρji ⊇ ρ1 and fi(1) =∞ if no j with ρji ⊇ ρ1 exists.
Inductively, if fi(ℓ) =∞, then fi(ℓ+ 1) =∞. If fi(ℓ) <∞, then set fi(ℓ+ 1) = j if j is minimal such that
• j > fi(ℓ);

• ρji ⊇ ρℓ+1

and fi(ℓ+ 1) =∞ if no j > fi(ℓ) such that ρji ⊇ ρℓ+1 exists.
Observe that if there exists i ≤ n such that fi(m) < ∞, then ρ ∧ qi |= q′, as required. Hence it remains to show that there

exists such an i ≤ n. For a proof by contradiction, assume there is no such i ≤ n. We derive a contraction by proving that
q ̸|= q′. Let m′ ≤ m be minimal such that fi(m′) =∞ for all i ≤ n. Define a data instance D1 as

D1 = ρρ11 · · · ρ
k1
1 · · · ρ1n · · · ρkn

n ,

where ki = min{ni, fi(1) − 1} for 1 ≤ i ≤ n (we set ∞ − 1 = ∞). If m′ = 1, then D1, 0 |= q and D1, 0 ̸|= q′ since
D1, 0 ̸|= 3ρ1, and we are done. Otherwise let

δ1 =
⋃

1≤i≤n,fi(1)<∞

ρ
fi(1)
i

We continue in this way for ℓ = 2, 3, . . . ,m′ as follows. First define for 2 ≤ ℓ ≤ m′:

Dℓ = ρ
f1(ℓ)+1
1 · · · ρkℓ,1

1 · · · ρfn(ℓ)+1
n · · · ρkℓ,n

n ,

where kℓ,i = min{ni, fi(ℓ + 1) − 1} for 1 ≤ i ≤ n (note that ρfi(ℓ)+1
i · · · ρkℓ,i

i is empty if fi(ℓ) + 1 > ni). Then let for
2 ≤ ℓ < m′:

δℓ =
⋃

1≤i≤n,fi(ℓ)<∞

ρ
fi(ℓ)
i

and set
D = D1δ1D2δ2 · · · δm′−1Dm′

It is straightforward to show that D, 0 |= q and D, 0 ̸|= q′. Hence q ̸|= q′ and we have derived a contradiction. ⊣



B Proofs for Section 4
We prove the complexity results for separability that are stated in this section for Qin.
Theorem 29. (1) For Qin, separator existence is NP-complete. This also holds if |E−| and sig(E) are bounded.

(2) If |E+| is bounded then Qin-separator existence is in P.
(3) For example data instances E = (E+, E−) that are sequences, the existence of a separator that is a sequence query in

Qin is in P.

Proof. (1) The NP-upper bound follows from the fact that given E one can guess a separator of polynomial size in Qin and
check in polytime that is separates. The lower bound follows directly from the proof of Theorem 21 (b) given later in this
appendix.

(2) Assume E+ = {D1, . . . ,Dn}. Let mi = maxDi and m = max{mi | 1 ≤ i ≤ n}. Consider for every 0 ≤ k < m and
vector k⃗ = k1, . . . , kn with 0 < ki ≤ mi the query

qk,⃗k = 3(ρ0
k,⃗k
∧⃝(· · · ∧⃝ρk

k,⃗k
))

where
ρj
k,⃗k

=
⋂

1≤i≤n

{A|A(ki + j) ∈ Di}

Let Ξ denote the set of queries of the form qk,⃗k that are in Qin. Then it is easy to see that there exists a query in Qin that
separates E iff some query in Ξ separates E. The latter can be checked in polynomial time if n is fixed.

(3) Let E+ = {D1, . . . ,Dn} be a set of sequences. Assume

D1 = {A0}{A1} · · · {Am}
Then any possible separating sequence query in Qin takes the form

3(Ak1 ∧⃝(· · ·⃝Ak2))

with 0 < k1 ≤ k2 ≤ m. Clearly it can be checked in polynomial time whether any such query separates E. ⊣

C Proofs for Section 5
Theorem 9. Let q ∈ Qσ

p [⃝3] be in normal form (1). A weakening frontier for q in Qσ
p [⃝3] can be computed in polytime by

applying once to q one of the following operations, for i ∈ [n] and qi = ρi ∧ oi+1(ρi+1 ∧ · · · ∧ onρn):
1. drop some atom from ρi;
2. replace some 3(⊤ ∧3qi) in q by 3qi;
3. replace some oi = ⃝ by 3.

If q ∈ Qσ
p [3], a weakening frontier for q in Qσ

p [3] can be constructed in polynomial time using operations 1 and 2.

Proof. Let F denote the set of queries defined in Theorem 9. It is easy to see using Lemma 3 that q |= q′ and q ̸≡ q′ for all
q′ ∈ F .

Assume now q |= q′ and q ̸≡ q′ for some q′ ∈ Qσ
p [⃝3]. We show that there exists a query q′′ ∈ F such that q′′ |= q′.

Assume
q′ = ρ′0 ∧ o′

1(ρ
′
1 ∧ · · · ∧ o′

m(ρ′m)).

and assume that g : [m]→ [n] is a containment witness for q, q′.
We distinguish the following cases.
Case 1. g is a surjective mapping onto [n]. Then n = m and g(i) = i for all i ∈ [m]. Hence ρ′i ⊆ ρi for all i ∈ [m]. Then,

as q ̸≡ q′, either oi = ⃝ and o′
i = 3 for some i ∈ [m] or ρ′i ⊊ ρi for some i ∈ [m]. In the first case q′′ |= q′ for a q′′ ∈ F

obtained in Point 3 and in the second case q′′ |= q′ for a q′′ ∈ F obtained in Point 1.
Case 2. g is not onto [n]. Take any i ≤ n that is not in the range of g. If there is i < mwith f(i+1)−f(i) ≥ 2, then q′′ |= q′

for a q′′ ∈ F obtained in Point 2. Otherwise n is not in the range of g and q′′ |= q′ for a q′′ ∈ F obtained in Point 1. ⊣

Example 12 We represent queries in Qσ[3] of the form (1) as ρ0 . . . ρn. For σ = {A1, A2, B1, B2}, let q1 = ∅(qσ)nq,
q2 = ∅σ2n+1, and q = {A1, A2}{B1, B2}. We show using [Fortin et al., 2022, Example 18] that any strengthening frontier
for the query q1 ∧ q2 inQσ[3] is of size O(2n). Indeed, let P be the set of queries of the form ∅q1 . . . qn+1, where qi is either
{A1}{A2} or {B1}{B2}. Clearly, |P | = 2n+1. As shown in [Fortin et al., 2022], q1 ∧ q2 ̸|= q for all q ∈ P and, for any
data instance D with D |= q1 ∧ q2, there is at most one q ∈ P with D ̸|= q. It follows that |F| ≥ 2n+1, for otherwise the
pigeonhole principle would give distinct q1, q2 ∈ P and some q ∈ F such that q1 ∧ q2 ∧ qi |= q, i = 1, 2. As q1 ∧ q2 ̸|= q,
there is a data instance D |= q1 ∧ q2 with D ̸|= q, and so D ̸|= qi, for i = 1, 2, contrary to q1 ̸= q2.

Theorem 14 is a consequence of the following two results.



Theorem 30. Let q = 3(ρ1 ∧ ⃝(ρ2 ∧ · · · ∧ ⃝ρn) ∈ Qσ
in. A weakening frontier for q in Qσ

in can be computed in polytime by
dropping some atom from ρi for some i ∈ [n]; here, if i = 1 and ρi is a singleton, then also drop ⊤ and take 3(ρ2 ∧ ⃝(ρ3 ∧
· · · ∧⃝ρn).

Proof. Let F denote the set of queries defined in Theorem 30. It is easy to see using Lemma 3 that q |= q′ and q ̸≡ q′ for all
q′ ∈ F .

Assume now q |= q′ and q ̸≡ q′ for some q′ ∈ Qσ
in. We show that there exists a query q′′ ∈ F such that q′′ |= q′. Assume

q′ = 3(ρ′1 ∧⃝(ρ′2 ∧ · · · ∧⃝ρ′m)).

and assume that g : [m]→ [n] is a containment witness for q, q′.
We distinguish the following cases.
Case 1. g is a surjective mapping onto [n]. Then n = m and g(i) = i for all i ∈ [m]. Hence ρ′i ⊆ ρi for all i ∈ [m]. Then, as

q ̸≡ q′, ρ′i ⊊ ρi for some i ∈ [m]. Then q′′ |= q′ for a q′′ ∈ F obtained by dropping an atom from ρi (observe that ρ′i ̸= ⊤ by
the definition of interval queries, so ρi is not a singleton).

Case 2. g is not onto [n]. Then either i = 1 or i = n are not in the range of g. If i = 1, then we obtain q′′ ∈ F with q′′ |= q′

by dropping an atom from ρ1 (if ρ1 is a singleton we also drop ⊤). If i = n > 1, then we obtain q′′ ∈ F with q′′ |= q′ by
dropping an atom from ρn. ⊣

Theorem 31. Let q = 3(ρ1 ∧⃝(ρ2 ∧ · · · ∧⃝ρn) ∈ Qσ
in. A strengthening frontier for q in Qσ

in can be computed by applying
once to q one of the following operations:

1. extend some ρi in q by some A ∈ σ \ ρi;
2. insert A ∧⃝n before ρ1, that is, form 3(A ∧⃝n(ρ1 ∧⃝(ρ2 ∧ · · · ∧⃝ρn) for some A ∈ σ and n ≥ 1;
3. add ⃝nA at the end of q, for some A ∈ σ and n ≥ 1.

Proof. Let F be the set of queries obtained by a single application of one of these operations to q. By Lemma 3, q′ |= q and
q ̸≡ q′ for all q′ ∈ F . Let q′ |= q and q ̸≡ q′, for some q′ ∈ Qσ

in of the form

q′ = 3(ρ′1 ∧⃝(ρ′2 ∧ · · · ∧⃝ρ′m)).

Take a containment witness h : [n]→ [m] for q′, q. If h is surjective, then n = m and h(i) = i for all i ∈ [n], and so ρi ⊆ ρ′i.
As q ̸≡ q′, ρi ⊊ ρ′i, for some i ∈ [n]. Then operation 1 gives a q′′ ∈ F with q′ |= q′′.

Suppose h is not surjective. Then either i = 1 is not in the range of h or i = m is not in the range of h. In the first case
q′ |= q′′ for a q′′ ∈ F given by operation 2. In the second case, q′ |= q′′ for a q′′ ∈ F given by operation 3. ⊣

D Proofs for Section 6

Theorem 17. For Q[3], the most specific separator verification problem coincides with the unique most specific separator
verification problem and is CONP-complete.

Proof. It remains to show the lower bound. We reduce SAT to the complement of most specific separator verification. Let
φ = ψ1∧ . . .∧ψk be a propositional formula with k clauses over n variables x1, . . . , xn. We assume without loss of generality
that no variable occurs both positively and negatively in a clause. We use 2n atoms A1, Ā1, . . . , An, Ān. Define the positive
examples E+ = {D0,D′

0,D1, . . . ,Dn} by setting
• D0 = {Ai(1), Āi(1) | 1 ≤ i ≤ n},
• D′

0 = {Ai(2), Āi(2) | 1 ≤ i ≤ n},
and including in Di, for 1 ≤ i ≤ n, the assertions:

• Ai(1) and Āi(2), and
• Aj(1), Āj(1), Aj(2), Āj(2) for all j ̸= i.

We also add to each Di the following, for 1 ≤ ℓ ≤ k:
• Āj(2 + ℓ), if xj does not occur negatively in ψℓ, and
• Aj(2 + ℓ), if xj does not occur positively in ψℓ.
Now consider the query

q =
∧

1≤ℓ≤k

3ρℓ

with ρℓ containing:
• Āj , if xj does not occur negatively in ψℓ, and



• Aj , if xj does not occur positively in ψℓ.

The negative examples are not relevant, we simply take E− = {D−} with D− = {A1(0)}.
Then clearly D, 0 |= q for all D ∈ E+ and D−, 0 ̸|= q. We show that q is equivalent to the unique most specific separator

if and only if φ is not satisfiable. For a variable assignment a for x1, . . . , xn, we denote with ρa the set that contains, for all i,
Ai, if a(xi) = 1 and Āi, otherwise.

Assume first that φ is satisfiable. Take a variable assignment a witnessing this. Then 3ρa separates E but q ̸|= 3ρa and so
q is not a most specific separating query for E. To show that q ̸|= 3ρa take the data instance D containing for 1 ≤ ℓ ≤ k:

• Āj(2 + ℓ), if xj does not occur negatively in ψℓ, and

• Aj(2 + ℓ), if xj does not occur positively in ψℓ.

Then, by definition, D, 0 |= q. But D, 0 ̸|= 3ρa since a is a satisfying variable assignment for φ.
For the converse direction, assume that q′ is a query in Q[3] that separates E but that q ̸|= q′. We show that φ is satisfiable.

By the positive examples D0 and D′
0 we may assume that q′ is a conjunction

q′ = 3ρ′1 ∧ . . . ∧3ρ′ℓ

with each ρ′j a set of atoms. It should be clear that each 3ρ′j separates E and there is at least one j with q ̸|= 3ρ′j . Thus, we
can assume that q′ actually takes the form 3ρ for some set of atoms ρ.

By construction of the positive examples Di, 1 ≤ i ≤ n, either ρ ⊆ ρℓ for some 1 ≤ ℓ ≤ k, or for every i at most one of
Ai, Āi is contained in ρ. As q ̸|= q′, the first condition does not hold and the latter holds. Thus, ρ ⊆ ρa for some variable
assignment a. It remains to show that a is a model for φ. But this follows directly from ρa ̸⊆ ρℓ for any ρℓ, 1 ≤ ℓ ≤ k. ⊣

We do not know whether Theorem 17 still holds if the number of positive examples is bounded.

Theorem 18. Unique most specific/general separator verification in Qp[⃝3], Qp[3], Qin as well as unique most general
separator verification in Q[3] are CONP-complete.

Proof. For the upper bound we show an NP upper bound for the complement. For given q and E, check that either Q is not a
most general/specific separator (this is in P by Corollary 16) or there exists q′ with q′ ̸≡ q which separates E (which can be
done in NP by guessing q′ and then doing the checks in P).

For the lower bounds we show an NP lower bound for the complement. We use that given a propositional formula φ and a
satisfying assignment a it is NP-hard to decide whether there is satisfying assignment for φ different from a.

Let φ = ψ1∧ . . .∧ψk a propositional formula with k clauses over n variables x1, . . . , xn. Let a0 be a satisfying assignment.
We assume without loss of generality that no variable occurs both positively and negatively in a clause. We use 2n atoms
A1, Ā1, . . . , An, Ān. Define the positive examples E+ = {D0,D′

0,D1, . . . ,Dn} by setting

• D0 = {Ai(1), Āi(1) | 1 ≤ i ≤ n},
• D′

0 = {Ai(2), Āi(2) | 1 ≤ i ≤ n},
and including in Di, for 1 ≤ i ≤ n, the assertions:

• Ai(1) and Āi(2), and

• Aj(1), Āj(1), Aj(2), Āj(2) for all j ̸= i.

We next define E− = {D1
1, . . . ,D1

k,D2
1, . . . ,D2

n}. In D1
i , 1 ≤ i ≤ k, we include

• Āj(1), if xj does not occur negatively in ψi, and

• Aj(1), if xj does not occur positively in ψi.

In D2
i , 1 ≤ i ≤ n, we include

• Aj(1), Āj(1), for all j ̸= i.

Set E = (E+, E−). For a variable assignment a for x1, . . . , xn, we denote with ρa the set that contains, for all i, Ai, if
a(xi) = 1 and Āi, otherwise.

Lemma 32. (i) For every model a of φ, 3ρa separates E.

(ii) If q ∈ Qp[⃝3] separates E, then q ≡ 3ρa for some model a of φ.



Proof. Point (i) is straightforward.
For Point (ii), take any separator q for E. Since the positive example D0 satisfies maxD0 = 1, we can assume that q has

temporal depth at most 1. It cannot be of temporal depth 0 as then it would not separate. Thus, q has temporal depth 1 and is
of shape q = oρ for some ρ ⊆ {A1, Ā1, . . . , An, Ān} and o ∈ {3,⃝}. Since D′

0 is a positive example, o cannot be ⃝ and
q = 3ρ. By construction of the positive examples Di, 1 ≤ i ≤ n, for every i at most one of Ai, Āi is contained in ρ. Since all
D2

i are negative examples, also at least one ofAi, Āi is contained in ρ. Thus, ρ = ρa for some variable assignment a. It remains
to show that a is a model for φ. Let ψi be a clause of φ and assume that a ̸|= ψi. Then a(xj) = 1 (and hence Aj ∈ ρ if xj
occurs negatively in ψi and a(xj) = 0 (and hence Āj ∈ ρ) if xj occurs positively. It is now readily checked that D1

i , 0 |= 3ρ,
a contradiction. ⊣

Observe that the 3ρa are pairwise incomparable w.r.t. containment. Hence, it follows from Lemma 32 that 3ρa0
is not the

unique most specific/general separator in Qp[⃝3] (equivalenty, Qp[3] or Qin) iff there is an assignment a distinct from a0
satisfying φ.

For Q[3] the same argument applies, but only for unique most general separators. ⊣

Theorem 21. Let Q ⊆ Qp[⃝3] be any class containing all 3ρ with ρ a conjunction of atoms. Then
• counting most specific/general Q-separators is ♯P -hard.
• the existence of unique most specific/general separator is US-hard.

even for E = (E+, E−) and σ = sig(E) with
1. |E−| ≤ 1; or
2. |E−| ≤ 1, |σ| = 2 and Q = Qin or Q ⊇ Qp[3]; or
3. |E+| ≤ 4, |σ| = 3, and Q ⊇ Qp[3].

This result also holds for most general separator case for Q[3] and |E−| = 1 and |σ| = 2.

Proof. We start with the proof of Point 1. For the sake of readability, we provide the proof first for an unbounded number of
negative examples and argue afterwards that a single negative examples suffices.

We reduce from SAT in essentially the same way as in the lower bound proof for Theorem 18 above. Let φ = ψ1∧ . . .∧ψk a
propositional formula with k clauses over n variables x1, . . . , xn. We assume without loss of generality that no variable occurs
both positively and negatively in a clause. We use 2n atoms A1, Ā1, . . . , An, Ān. Define the examples E = (E+, E−) in
exactly the same way as in the proof of Theorem 18. Then Lemma 32 holds. Point 1 for an unbounded number of negative
examples follows directly.

To finish the proof for |E−| = 1, it remains to join the negative examples into a single one. Recall that, due to the structure
of the positive examples, any separator for E has temporal depth at most 1. Based on this observation, it can be verified that
Lemma 32 continues to hold when E− is replaced by {D−} for the data instance

D− = ∅D1
1∅2 · · · ∅2D1

k∅2D2
1∅2 · · · ∅2D2

n.

We next provide the proof of Point 2. We start by considering Qin. Again, we provide the proof first for an unbounded
number of negative examples and argue afterwards that a single negative examples suffices.
Qin We reduce from SAT. Let φ = ψ1 ∧ . . .∧ψk a propositional formula with k clauses over n variables x1, . . . , xn. We use
three atoms M,A, Ā. Define the positive examples E+ = {D0,D1, . . . ,Dn} by including in Di, for 1 ≤ i ≤ n the assertions:

• M(1) and M(n+ 1), and
• A(i) and Ā(n+ i), and
• A(j), Ā(n+ j) for all j ̸= i.

In D0, we include
• M(1), and
• A(i), Ā(i), for all 1 ≤ i ≤ n.

We next define negative examples E− = {D0,D1
1, . . . ,D1

k,D2,D3
1, . . . ,D3

n}. In D0, we include

• M(i), A(i), Ā(i), for all 1 ≤ i ≤ n− 1.
In D1

i , 1 ≤ i ≤ k, we include
• M(1), and
• Ā(j), if xj does not occur negatively in ψi, and



• A(j), if xj does not occur positively in ψi.

In D2, we include

• A(j), Ā(j), for all 1 ≤ j ≤ n.

In D3
i , 1 ≤ i ≤ n, we include

• M(1),

• A(j), Ā(j), for all i ̸= j.

Set E = (E+, E−). For a variable assignment a for x1, . . . , xn, we denote with qa the query

qa = 3(ρ1a ∧ (⃝ρ2a ∧ (. . . ∧⃝ρna ) . . .))

where ρ1a = {M,A} if a(x1) = 1 and ρ1a = {M, Ā} otherwise, and for all i > 1, ρia = {A} if a(xi) = 1 and ρia = {Ā},
otherwise.

Lemma 33. (i) For every model a of φ, qa separates E.

(ii) If q ∈ Qin separates E, then q ≡ qa for some model a of φ.

(iii) Every Qin-separator for E is both a most general and most specific separator.

Proof. Point (iii) is immediate from Points (i) and (ii) and the fact that all qa are pairwise incomparable w.r.t. containment. We
hence concentrate on Points (i) and (ii).

Point (i) is straightforward.
For Point (ii), take any separator

q = 3(ρ1 ∧ (⃝ρ2 ∧ (. . . ∧⃝ρm) . . .))

for E, for some m > 0 and sets ρi. Since D0 is a negative example for q, we have m ≥ n. Since D0 is a positive example for
q, we have that m ≤ n, hence m = n. Then observe that some ρi has to contain M , since otherwise D2, 0 |= q. By D0 again,
it can only be ρ1.

By construction of the positive examples, for every i at most one of A, Ā is contained in ρi. Since all D3
i are negative

examples, each ρi contains also at least one of A, Ā. Thus, q = qa for some variable assignment a.
It remains to show that a is a model for φ. Let ψi be a clause of φ and assume that v ̸|= ψi for some i. Then a(xj) = 1

(and hence A ∈ ρj) if xj occurs negatively in ψi and a(xj) = 0 (and hence Ā ∈ ρj) if xj occurs positively. It is now readily
checked that D1

i , 0 |= qa, a contradiction. ⊣

It remains to join the negative examples into a single one. Recall that, because ofD0 ∈ E+, any separator forE has temporal
depth at most n. Based on this observation, it can be verified that Lemma 33 continues to hold when E− is replaced by {D−}
for the data instance

D− = ∅D0∅nD1
1∅n · · · ∅nD1

k∅nD2∅nD3
1∅n · · · ∅nD3

n.

We next assume that Qp[3] ⊆ Q ⊆ Qp[⃝3].
We employ a reduction of 3SAT to a longest common subsequence problem, which is defined as follows: Given a set S of

sequences and a number m, decide whether the sequences in S have a common subsequence of length m. We use the following
result [Blin et al., 2012, Proposition 6]. Given a formula φ = ψ1 ∧ · · · ∧ ψk with k clauses over n variables x1, . . . , xn, one
can construct in polynomial time a set S of sequences over the alphabet {H,T} such that

• S contains k + 2 sequences;

• there is a poly-time computable bijection f from the set L of common subsequences of S of length exactly 11n onto the
set V of variable assignments a satisfying φ;

• no common subsequence of the sequences in S of length > 11n exists.

Thus, given φ as above, we use S to construct E = (E+, E−). For any sequence s1 · · · sℓ ∈ S we include in E+ the data
instance ∅{s1} · · · {sℓ}. We also include in E+ the data instances D+

1 = ∅{H,T}11n and D+
2 = ∅(∅11n{H,T})11n and

include in E− the data instances D−
1 = ∅{H,T}11n−1 and D−

2 = ∅(∅11n{H,T})11n−1.

Claim 1. Any query q ∈ Q separating E is a 3-path sequence query and the sequence defined by q is a common subsequence
of the sequences in S.

Proof of Claim 1. To prove Claim 1 suppose q ∈ Q of the form

q = ρ0 ∧ o1(ρ1 ∧ o2(ρ2 ∧ · · · ∧ oℓρℓ)), (4)



separates E. By definition of separation it is clear that ρ0 = ⊤ and |ρi| ≤ 1. From D+
1 ∈ E+ it follows that ℓ ≤ 11n and from

D−
1 ∈ E− it follows that ℓ ≥ 11n. Hence ℓ = 11n.
It follows from D+

2 ∈ E+ and ℓ = 11n that oi = 3 for all i ≤ ℓ. We obtain from D2 ∈ E− that |ρi| ≥ 1 for all i ≥ 1. Thus,
q is a 3-path sequence query of length 11n. Since we included one positive example for every sequence in S, the sequence
corresponding to q is a common subsequence of the sequences in S. This finishes the proof of Claim 1.

The following claim follows directly from the definition of E.

Claim 2. For every s1 . . . sℓ ∈ S, the corresponding 3-path query 3(s1 ∧3(s2 · · ·3sℓ)) separates E.

It follows from Claims 1 and 2 and the fact that all sequence 3-path queries of the same temporal depth are pairwise
incomparable w.r.t. containment, that there is a poly-time computable bijection f from the set L′ of queries in Q separating E
onto the set V of satisfying assignments for φ.

We now come to the proof of Point 3. We use an existing reduction showing NP-hardness of the consistent subsequence
problem, defined as follows. Given two sets P,N of sequences, decide whether there is a sequence s consistent with P,N , that
is, s is a subsequence of each sequence in P , but of no sequence in N .

We use the following result [Fraser, 1996, Theorem 2.1]. Given a 3CNF formula φ = ψ1 ∧ . . . ∧ ψk with k clauses over n
variables, one can construct in polynomial time two sets P,N of sequences over an alphabet σ = {#, 0, 1} such that

• P contains two sequences;

• there is a poly-time computable bijection f from the set L of sequences that are consistent with P,N of length 6k onto the
set of models of φ;

• any sequence that is consistent with P,N has length exactly 6k.

Thus, given φ as above, we use P,N to construct E = (E+, E−). For any sequence s1 · · · sℓ ∈ P we include in E+ the data
instance ∅{s1} · · · {sℓ}. Similarly, for any sequence s1 · · · sℓ ∈ N , we include in E− the data instance ∅{s1} · · · {sℓ}. We
also include in E+ the data instances D+

1 = ∅{0, 1,#}6k and D+
2 = ∅(∅6k{0, 1,#})6k, and include in E− the data instances

D−
1 = ∅({0, 1,#})6k−1 and D−

2 = ∅(∅6k{0, 1,#})6k−1.
Assume now that a set Q with Qp[3] ⊆ Q ⊆ Qp[⃝3] is given.

Claim 1. Any query q ∈ Q separating E is a 3-path sequence query and the sequence defined by q is consistent with P,N .

Proof of Claim 1. Suppose q ∈ Q of the form

q = ρ0 ∧ o1(ρ1 ∧ o2(ρ2 ∧ · · · ∧ oℓρℓ))

separates E. By definition of separation it is clear that ρ0 = ⊤ and |ρi| ≤ 1. From D+
1 ∈ E+ it follows that ℓ ≤ 6k and from

D−
1 ∈ E− it follows that ℓ ≥ 6k. Hence ℓ = 6k. FromD−

2 ∈ E− it also follows that ρi ̸= ∅ for all i > 1, hence q is a ⃝3-path
sequence query.

It follows from D+
2 ∈ E+ and ℓ = 6k that oi = 3 for all i ≤ ℓ. We have thus shown that q is a 3-path sequence query of

length 6k. Finally, it is easy to see that the corresponding sequence is consistent with P,N . This finishes the proof of Claim 1.

The following claim follows directly from the definition of E.

Claim 2. For every sequence consistent with P,N , the corresponding 3-path query separates E.

It follows from Claims 1 and 2 to that we have a poly-time computable bijection f from the set L′ of queries inQ separating
E onto the set of models of φ. Moreover, the queries in L′ are all 3-path sequence queries of the same length and therefore
incomparable w.r.t. |=.

We finally come to Q[3]. Observe that our claim follow directly from Point 2 for Qp[3]: as we have only one negative
example, any separating query in Q[3] contains a conjunct in Qp[3] that separates. Hence the most general separating queries
in Q[3] and Qp[3] coincide (up to logical equivalence). So the ♯P-lower bound established for Qp[3] for counting most
general separating queries and the US-lower bound for the existence of a unique most general separator also hold forQ[3]. ⊣

Theorem 22. Let Q = Q[3] or Q ⊆ Qp[⃝3] be any class containing all 3ρ with a conjunction of atoms ρ. Then counting
most general Q-separators is ♯P-hard even for example sets E = (E+, E−) with |E+| = 2 and |E−| = 1.



Proof. By reduction from counting the number of satisfying assignments for a monotone propositional formula (that is, a
formula in conjunctive normal form without negation). We re-use data instances introduced before.

Take a monotone Boolean formula φ = ψ1∧· · ·∧ψk with clauses ψi over variables x1, . . . , xn. We constructE = (E+, E−)
such that there is a bijection between the satisfying assignments for φ and the most general separators for E in Qp[⃝3] (even
queries of the form 3ρ). Define the positive examples E+ = {D0,D′

0} with 2n atoms A1, Ā1, . . . , An, Ān by taking

D0 = {Ai(1), Āi(1) | 1 ≤ i ≤ n},
D′

0 = {Ai(2), Āi(2) | 1 ≤ i ≤ n}

Let E− = {D−} with

D− = ∅D1
1∅2 · · · ∅2D1

k∅2D2
1∅2 · · · ∅2D2

n.

where D1
i , 1 ≤ i ≤ k, comprises all Āj(1) and Aj(1) if xj does not occur positively in ψi, and D2

i = {Aj(1), Āj(1) | j ̸= i}.
For a variable assignment a for x1, . . . , xn, we denote with ρa the set that contains, for all i, Ai, if a(xi) = 1 and Āi,

otherwise. Now one can easily show:
(i) For every model a of φ, 3ρa separates E.

(ii) If q ∈ Qp[⃝3] separates E, then q ≡ 3(ρa ∪ ρ) for some model a of φ and some set ρ of atoms of the form Āi.
The claim for Q ⊆ Qp[⃝3] follows. The claim for Q[3] also follows since we have only one negative example and so any
most general separator is in Q[3]. ⊣

We show the properties of Qin that are stated in Section 6.
Theorem 34. (1) For Qin, counting most specific separators is in P if |E+| is bounded.

(2) For example data instances E = (E+, E−) that contain sequences, counting most specific sequence queries in Qin that
separate E is in P.

Proof. We extend the proof of Theorem 29.
(1) Assume E+ = {D1, . . . ,Dn}. Let Ξ be the set of queries defined in the proof of Theorem 29. Then the most specific

queries in Ξ that separate E coincide with the most specific queries in Qin that separate E, and so can be counted in polytime.
(2) E+ = {D1, . . . ,Dn} be a set of sequences. Assume

D1 = {A0}{A1} · · · {Am}

Then any possible separating sequence query in Qin takes the form

3(Ak1
∧⃝(· · ·⃝Ak2

))

with 0 < k1 ≤ k2 ≤ m. Clearly the most specific queries of this form that separate E can be counted in P. ⊣

E Proofs for Section 7
Let tD(n) = {A | A(n) ∈ D}. It will be convenient to assume that tEj

(∞) = σ, for Ej ∈ E−, where σ is the set of symbols
occurring in E+.

Lemma 24. s(E,Q) ̸= ∅ iff P⊗N contains a separating path π, with qπ separating E.

Proof. (⇒) Suppose q of the form ρ0 ∧ 3(ρ1 ∧ (. . .3ρℓ) . . . ) separates E. If ℓ = 0, then ρ0 ⊆ l(0̄) and ρ0 ̸⊆ tEj (0) for all
1 ≤ j ≤ c−. It follows that l(0̄) ̸= ∅ and (0̄, ∞̄) is in P×N, which completes the proof. Suppose ℓ > 0. Further, we assume
that ρ0∧3(ρ1∧ (. . .3ρℓ−1) . . . ) does not separate E, which implies ρℓ ̸= ∅. We define n0 = 0̄. Suppose ni = (n1, . . . , nc+)

has been defined, we define ni+1 = (n′1, . . . , n
′
c+) where n′j = min{n | n > nj , ρi+1 ⊆ tDj

(n)}, for 0 ≤ i < ℓ. It follows
that l(nℓ) ̸= ∅. Then we take m0 to be the root of N and set mi+1 to be m′ such that (ni,mi) → (ni+1,m′). We claim
that the path (n0,m0), . . . , (nℓ,mℓ) is such that mℓ = ∞̄. To prove the claim, we introduce some notation. For a data
instance E and t ≥ 0, denote by E≤t the data instance obtained from E by removing all assertions A(n) with n > t. Set
mi

j = min{t | t ≥ i and E≤t
j |= ρ0 ∧ 3(ρ1 ∧ (. . .3ρi) . . . )} or mi

j = ∞ if t as above does not exist, for 0 ≤ i ≤ c− and
1 ≤ j ≤ l. Let mi

− = (mi
1, . . . ,m

i
c−). It follows that mℓ

− = ∞̄. It is easily shown by induction on i that mi
− = mi, which

completes the proof.
(⇐) Let (n0,m0), . . . , (nℓ,mℓ) be a path with n0 = 0̄, l(nℓ) ̸= ∅ and mℓ = ∞̄. We will show that q = ρ0 ∧ 3(ρ1 ∧

(. . .3ρℓ) . . . ) with ρi = l(ni) separates E. Indeed, clearly D |= q for each D ∈ E+. By induction on i, we show that
mi

− = mi. It follows that E ̸|= q for all E ∈ E− which completes the proof. ⊣

Lemma 38. If q of the form (1) separates E, then there is a separating path of the form (2) with ρi ⊆ l(ni), for all i ≤ n.



Proof. Straightforwardly follows from the construction in (⇒) above. ⊣

Lemma 26. AQp[3]-query q is a unique most specificQp[3]-separator for E iff there is a separating path π such that q = qπ
and qπ |= qν , for every separating path ν.

Proof. (⇒) Let q = ρ0 ∧ 3(ρ1 ∧ (. . .3ρℓ) . . . ) be a unique most specific separator. Consider the path π =
(n0,m0), . . . , (nℓ,mℓ) constructed in the proof of Lemma 24 (⇒). Clearly, π is a separating path. Because q is a most
specific separator and ρi ⊆ l(ni), it follows that l(ni) = ρi, and so q = qπ . Let ν be an arbitrary separating path in P ×N.
From the proof of Lemma 24 (⇐) we obtain that qν is a separator. It follows that qπ |= qν .
(⇐) Let π be a separating path such that qπ |= qν for every separating path ν in P⊗N. Let q = ρ′0∧3(ρ′1∧ (. . .3ρ′ℓ′) . . . )

be a separator (for E), we only need to show that qπ |= q′. Consider the separating path ν′ = (n0,m0), . . . , (nℓ′ ,mℓ′)
constructed in the proof of Lemma 24 (⇒) for q′. Clearly, ρ′i ⊆ l(ni). Since we have qπ |= qν′ , we also obtain qπ |= q′. ⊣

We now explain how checking the existence of a separating path π such that qπ |= qν for every separating path ν in P⊗N
can be checked in P. We compute the required separator qπ by analysing the queries associated with the paths leading to each
node (n,m) of P⊗N from its root (0̄,m0). We mark inductively each (n,m) either by a query qπ , for some path π, or by ε.
The root is marked by qπ for π = (0̄,m0). Now, assume that all immediate predecessors of (n,m) have already been marked.
Let qπi

, i = 1, . . . , k, be all of their marks different from ε. Consider the extended paths π′
i = πi, (n,m) and the set Π of all

paths to (n,m). We check whether there is a containment witness for qπ′
1

and every qπ , π ∈ Π, in which case we mark (n,m)

by qπ′
1
. Otherwise, we do the same for qπ′

2
, and so on. If (n,m) has no mark after k iterations, we mark it by ε. Although Π

can be of exponential size, we show that marking each node can be done in P. Indeed, consider the following problem: given
qπ′

1
and (n,m), decide if there exists π ∈ Π such that there is no containment witness for qπ′

1
and qπ . This problem is in NL

because such π, if exists, can be computed by a non-deterministic algorithm guessing π of the form (2) node-by-node. At each
step i ∈ {0, . . . , n} we only need to remember the minimal h(i) (in the set {0, . . . , n′ − 1} for the length n′ of π′

1) where h is
a containment witness for qπ′

1
and q(n0,m0),...,(ni,mi). If at some step it is impossible to extend h(i) to h(i + 1) and (n,m)

is reachable from (ni+1,mi+1), we have obtained π ∈ Π such that there is no containment witness for qπ′
1

and qπ . Because
NL = CONL and the latter problem is in NL, we conclude that checking whether there is a containment witness for qπ′

1
and

qπ for every π ∈ Π is in NL.
Then we consider all nodes (ni, ∞̄), i = 1, . . . , l, with l(ni) ̸= ∅ that are marked by some qi ̸= ε. If there are no such, there

is no unique most specific separator. Otherwise, take the set Π of all paths leading to the (ni, ∞̄). We check whether there is a
containment witness for q1 and every qπ , π ∈ Π, in which case q1 is returned as a unique most specific separator. Otherwise,
we do the same for q2, and so on.

Theorem 23. Let E = (E+, E−), σ = sig(E), t+/t− be the maximum timestamp in E+/E−, c+ = |E+|, c− = |E−|, and
Q ∈ {Qp[3],Qp[⃝3]}. The following can be done in time O(t

c+
+ t

c−
− ):

(a) deciding whether s(E,Q) ̸= ∅;
(b) computing a longest/shortest separator in s(E,Q);
(c) deciding the existence of a unique most specificQ-separator and a unique most generalQp[3]-separator, and constructing

such a separator.

For bounded c+ and c−, problem (a) is in NL.

Proof. We first prove (c) for unique most general Qp[3]-separators. Computing unique most general separators requires a
different type of graph. One might think that inverting qπ |= qν in Lemma 26 would give a criterion for qπ being such a
separator. To show that this is not so, take E+ = {{A(1), B(1)}} and E− = {{C(0)}}. In this case, P⊗N looks as follows:

((0), (0))∅ ((1), ∞⃗) {A,B}

It contains only one separating path. However, there is no unique most general separator. The issue is that the labels of the
paths π leading to (n, ∞⃗) represent some of the separators, including most specific ones, but not all separators. In our example,
both 3A and 3B are separators.

To handle unique most general separators, we need another type of a labelled graph. To this end, we redefine P (N) with
the tuples n (respectively, m) as above as nodes and add the new node −1̄. The edges of P (N) are labelled with ρ ⊆ σ.
Denote by l(n) (l(m)) the label of n in P (respectively, m in N) defined above. First, in P, we set −1̄ →ρ 0̄ for ρ = l(0̄).
Then, we set n →ρ n′ for all n,n′ and ρ satisfying ρ ⊆ l(n) and ρ ̸⊆ l(n′′) for all n′′ ∈ ∇n,n′ , where ∇n,n′ is the
set of all n′′ satisfying n → n′′ and n′′i < n′

i, n
′′
i ̸= n′i, for some i (see the definition of n → n′′ above). In N, we set

−1̄ →ρ m, for all ρ and m satisfying mi = 0 if ρ ⊆ {A | A(0) ∈ Di}, where E− = {Di | i ∈ I} for some I , and mi = ∞
otherwise. Then, we set m →ρ m′ using the same definition as for P with m,m′ in place of n,n′. For example, for E− =
{D1,D2} with D1 = {A(1), A(2), B(2), C(2)}, D2 = {A(1), B(1), C(1)}, and σ = {A,B,C}, we have the following N:



−1 (0, 0)
∅

(1, 1)∅, {A}

(2, 1)

L1

(2,∞)
L2

(∞,∞)
L2

L2

L0 L2

with L0 ∈ 2σ \ {∅}, L1 ∈ {{B}, {C}, {B,C}, {A,B}, {A,C},Σ}, and L2 = 2σ (we omit nodes unreachable from −1̄ such
as (∞, 0)). We now define P × N as a standard product of P with N (with a edges (n,m) →ρ (n′,m′) for all nodes such
that n→ρ n′ in P and m→ρ m′) in N).

Given a path
π = −1 = (−1̄,−1̄)→ρ0

(n0,m0) · · · →ρn
(nn,mn) (5)

let qπ be the Qp[3]-query of the form (1) (with matching ρi). We call π a separating path for E if mn = ∞̄ and l(nn) ̸= ∅.
Now, it directly follows from the construction that

• a query q is a separator iff there exists a separating path π in P×N such that q = qπ

and the following holds (cf. Lemma 26):

Lemma 35. AQp[3]-query q is a unique most generalQp[3]-separator forE iff there is a separating path π such that q = qπ
and qπ |= qν , for every separating path ν.

We could then use a marking algorithm analogous to that for finding a strongest separator. The problem is that, unless σ is
fixed, P ⊗ N has exponentially many edges w.r.t. |σ|. To provide an algorithm with the complexity O(|σ|tc++ t

c−
− ), we define

P⊗N with the same vertices as P×N but with two sorts of labelled edges ↪→ρ and ;ρ from −1 to (0̄,m) and from (n,m)
to (n′,m′). Set ρ−1,m =

⋂
−1→ρ(0̄,m) ρ and ρn,m,n′,m′ =

⋂
(n,m)→ρ(n′,m′) ρ. To define ↪→, we let (n,m) ↪→ρn,m,n′,m′

(n′,m′) if (n,m) →ρn,m,n′,m′ (n′,m′). To define ;, we let (n,m) ;ρn,m,n′,m′ (n′,m′) if (n,m) →ρ (n′,m′) for
some ρ and (n,m) ̸→ρn,m,n′,m′ (n

′,m′). The definition of −1 ↪→ρ (0̄,m) and −1 ;ρ (0̄,m) is analogous and left to the
reader. To illustrate, let E− = {E1, E2} be as below

E1
0

A

1

A,B,C

2
E2

0

A,B,C

1

and let 1̄ in P be such that l(1̄) = {A,B,C,D}. Then, we have (0̄, (01, 02)) ↪→∅ (1̄, (11, 12)) and (0̄, (01, 02)) ;∅
(1̄, (21, 12)). We also observe that if C was removed from E1 and E2, then it would be the case (0̄, (01, 02)) ↪→{B} (1̄, (21, 12)).
We now show:

Lemma 36. q is a unique most general Qp[3]-separator for E iff q = qπ for a ↪→-separating path π in P ⊗ N such that
qν |= qπ for each separating path ν (i.e., using ↪→- or ;-edges) in P⊗N.

Proof. (⇒) By Lemma 35, there exists a separating path π such that q = qπ and qν |= qπ for each separating path qν . Let the
sequence of vertices of π be−1̄, (n0,m0), . . . , (nℓ,mℓ) with (n0,m0) = (0̄,m) and (nℓ,mℓ) = (n, ∞̄). Consider any path
ν = −1→ρ′

0
(n0,m0) · · · →ρ′

ℓ
(nℓ,mℓ) in P×N and let Ππ be the set of all such paths. Because by Lemma 35 qν |= qπ for

each ν ∈ Ππ and π ∈ Ππ , it follows that ρi =
⋂

ν∈Ππ
ρ′i. Thus, π is a ↪→-path in P⊗N. We now need to show that qν |= qπ

for any separating path ν = −1⇒ρ′
0
(n′

0,m
′
0) · · · ⇒ρ′

ℓ′
(n′

ℓ′ ,m
′
ℓ′) in P⊗N, where⇒ρ′

i
∈ {↪→ρ′

i
,;ρ′

i
}. Let Qν be the set of

queries q such that q = qν′ for a path ν′ in P×N using the same sequence of vertices as ν. For q1 = ρ10 ∧3(ρ11 ∧ · · · ∧3ρ1ℓ′)
and q2 = ρ20 ∧3(ρ21 ∧ · · · ∧3ρ2ℓ′) in Qν , we define q1 ∩ q2 = ρ10 ∩ ρ20 ∧3(ρ11 ∩ ρ21 ∧ · · · ∧3ρ1ℓ′ ∩ ρ2ℓ′). We observe that

q′ |= qπ for each q′ ∈ Qν iff
⋂
Qν |= qπ. (6)

It remains to note that
⋂
Qν = qν , while we have q′ |= qπ for each q′ ∈ Qν from Lemma 35.

(⇐) Let π = −1 ↪→ρ0
(n0,m0) · · · ↪→ρℓ

(nℓ,mℓ) be the separating path in P ⊗ N such that qν |= qπ for each
separating path ν in P ⊗ N. Clearly, π = −1 →ρ0 (n0,m0) · · · →ρℓ

(nℓ,mℓ) is a separating path in P ⊗ N. It remains
to show that qν |= qπ for any separating path ν in P ⊗ N, then the result would follow by Lemma 35. Take an arbitrary
separating ν = −1 →ρ′

0
(n′

0,m
′
0) · · · →ρ′

ℓ′
(n′

ℓ′ ,m
′
ℓ′) in P × N. Let q =

⋂
Qν . Observe that by our construction,

−1 ⇒ρ0 (n′
0,m

′
0), . . . , (n

′
ℓ′−1,m

′
ℓ′−1) ⇒ρℓ′ (n

′
ℓ′ ,m

′
ℓ′) is in P ⊗N, where⇒ρi

∈ {↪→ρi
,;ρi

}. Thus, q |= qπ and by (6),
qν |= qπ . ⊣

Now we explain how, for given (n,m) and (n′,m′) in P⊗N, to compute ρ such that (n,m) ↪→ρ (n′,m′) (respectively,
(n,m) ;ρ (n′,m′)) or decide that one does not exist, in time polynomial in |σ||P||N|. Let Xn,m = l(n) ∩ l(m) for all n
in P and m in N. Clearly, (n,m)→ρ (n′,m′) for some ρ iff Xn′,m′ \Xn′′,m′′ ̸= ∅ for all n′′ ∈ ∇n,n′ and m′′ ∈ ∇m,m′ .
It is easy to see that

ρn,m,n′,m′ =
⋃

n′′∈∇n,n′ ,m′′∈∇m,m′ ,

|Xn′,m′\Xn′′,m′′ |=1

(Xn′,m′ \Xn′′,m′′).



It follows that (n,m) ↪→ρ (n′,m′) iff ρ = ρn,m,n′,m′ and (Xn′,m′ \Xn′′,m′′) ∩ ρn,m,n′,m′ ̸= ∅ for all n′′ ∈ ∇n,n′ and
m′′ ∈ ∇m,m′ . Then, (n,m) ;ρ (n′,m′) iff ρ = ρn,m,n′,m′ , (n,m)→ρ (n′,m′) for some ρ, and (Xn′,m′ \Xn′′,m′′) ∩
ρn,m,n′,m′ = ∅ for some n′′ ∈ ∇n,n′ and m′′ ∈ ∇m,m′ . Thus, we have an algorithm to construct P⊗N in time polynomial
in |σ||P||N|.

It remains to show how to check the condition on P ⊗ N in Lemma 36. We will use an algorithm similar to the one for
unique most specific separators in Lemma 26, marking each (n,m) in P⊗N by either a query qπ for some ↪→-path π (from
−1) or with ε. Intuitively, qπ marks (n,m) if qν |= qπ for each path ν to (n,m) and otherwise it is marked by ε. We start by
marking all the states (0̄,m) such that −1 ↪→ρ (0̄,m) with ρ and marking the states with −1 ;ρ (0̄,m) with ε. Now, assume
that all immediate predecessors of (n,m) have already been marked. Let qπi

, i = 1, . . . , k, be all of their marks different
from ε. Consider the extended paths π′

i = πi ↪→ρi (n,m) and the set Π of all paths to (n,m). We check whether there is
a containment witness for qπ and qπ′

1
, for every π ∈ Π, in which case we mark (n,m) by qπ′

1
. Otherwise, we do the same

for qπ′
2
, and so on. If (n,m) has no mark after k iterations, we mark it by ε. Although Π can be of exponential size, we

show that marking each node can be done in P. Indeed, consider the following problem: given qπ′
1

and (n,m), decide if there
exists π ∈ Π such that there is no containment witness for qπ and qπ′

1
. This problem is in NL because such π, if exists, can

be computed by a non-deterministic algorithm guessing π of the form (2) node-by-node. At each step i ∈ {0, . . . , n} we only
need to remember the maximal i′ ∈ {0, . . . , n′ − 1}, for the length n′ of π′

1, such that there exists a containment witness for
q−1⇒ρ0

(n0,m0)···⇒ρi
(ni,mi) and the prefix of π′

1 up to (and including) i′-th item. If, after the final step n, we have i′ ̸= n′− 1,
we obtained π ∈ Π such that there is no containment witness for qπ and qπ′

1
. Because NL = CONL and the latter problem is

in NL, we conclude that checking whether there is a containment witness for qπ and qπ′
1
, for every π ∈ Π, is in NL. After all

the nodes are marked, we consider all nodes (ni, ∞̄), i = 1, . . . , l, marked with qπi
for πi = π′

i ↪→ρi
(ni, ∞̄) with ρi ̸= ∅. If

there are no such, there is no unique most general separator. Otherwise, take the set Π of all paths leading to the (ni, ∞̄). We
check whether there is a containment witness for qπ and qπ1

, for every π ∈ Π, in which case qπ1
is returned as a unique most

specific separator. Otherwise, we do the same for q2, and so on.

We next prove Theorem 23 (a) for Qp[⃝3]-separators. Let E+ = {D1, . . . ,Dk}. As in the previous part of the proof, we
denote by n any vector (n1, . . . , nk) with 0 ≤ nj ≤ maxDj , 1 ≤ j ≤ k. The vertices of P are tuples nt = (n1, . . . , nk)

t,
where (n1, . . . , nk) is as above and 0 ≤ t ≤ min{maxDj − nj | 1 ≤ j ≤ k}. Define n + t = (n1 + t, . . . , nk + t) and
n < n′ if nj < n′j for all 1 ≤ j ≤ k. P has edges nt → ns

1 for all vertices nt,ns
1 in P such that n + t < n1. Let t+(n) =⋂

0≤j≤k tDj
(nj). We set the label L(nt) of each nt in P to be a t+1-component vector (t+(n), t+(n+1), . . . , t+(n+ t)). It

will be convenient to set L(n) = t+(n). Similarly, given E− = {E1, . . . , El}, we denote by m any vector (m1, . . . ,ml) with
mj ∈ [0,max Ej ]∪ {∞}, 1 ≤ j ≤ l. Let mj + t =∞ if mj + t > max Ej and∞+ t =∞ for t ≥ 0. We denote (∞, . . . ,∞)
by ∞̄. The vertices of N are tuples mt = (m1, . . . ,mk)

t, where mj is as above and 0 ≤ t ≤ min{maxDj | 1 ≤ j ≤ k}. N
has edges mt →m′s for all vertices such that m+ t <m′. Set tEj (∞) = σ and t+(m) =

⋂
1≤j≤l tEj (mj). We set the label

M(mt) of each mt in N to be a t+1-component vector (t+(m), t+(m+1), . . . , t+(m+ t)). Let (ρ0, . . . , ρt) ⊆ (ρ′0, . . . , ρ
′
t)

if ρi ⊆ ρ′i for all i.
We take a product-like structure P ⊗ N containing the vertices (0̄t,mt) such that mj = 0 if (tDj

(0), . . . , tDj
(t)) ⊆

(tEj (0), . . . , tEj (t)), and mj = ∞ otherwise, for all 1 ≤ j ≤ l. Also, it contains vertices (nt,mt) with nt ̸= 0̄t from P
and with mt from N such that L(nt) ⊆ M(mt). The edges of P × N are (nt,mt) → (n′s,m′s) such that nt → n′s,
mt → m′s and there exists no P × N-vertex (n′s,m′′s) satisfying mt → m′′s, m′′

i < m′
i and m′′

i ̸= ∞ for some
1 ≤ i ≤ l. The latter minimality condition on m′ ensures that for given (nt,mt) and n′s ← nt there is a unique m′s such that
(nt,mt)→ (n′s,m′s).

Given a path in P⊗N
π = (nt0

0 ,m
t0
0 ), . . . , (ntℓ

ℓ ,m
tℓ
ℓ ) (7)

with n0 = 0̄, let qπ be the Qp[⃝3]-query of the form (1) with n = t0 + · · ·+ tℓ + ℓ such that:

• (ρ0, . . . , ρt0) = L(nt0
0 ) and oi = ⃝ for i ∈ (0, t0]

• (ρt0+1, . . . , ρt0+t1+1) = L(nt1
1 ), ot0+1 = 3 and oi = ⃝ for i ∈ (t0 + 1, t0 + t1 + 1]

• . . .

• (ρt0+···+tℓ−1+ℓ, . . . , ρt0+···+tℓ+ℓ) = L(ntℓ
ℓ ), ot0+···+tℓ−1+ℓ = 3 and oi = ⃝ for i ∈ (t0+ · · ·+tℓ−1+ℓ, t0+ · · ·+tℓ+ℓ].

(Note that qπ is not necessarily in normal form.) If L(nℓ + tℓ) ̸= ∅ and mℓ + tℓ = ∞̄, we call π a separating path.

Lemma 37. E is Qp[⃝3]-separable iff there exists a separating path in P⊗N.

Proof. (⇒) Suppose q = ρ̄0∧3(ρ̄1∧(. . .3ρ̄ℓ) . . . ) (in the normal form) separatesE, where each ρ̄i = ρ0i ∧⃝ρ1i ∧· · ·∧⃝piρpi

i .
If ℓ = 0, we can further assume ρp0

0 ̸= ∅. It follows ρ̄0 ⊆ L(0̄p0) and ρ̄0 ̸⊆ (tEj (0), . . . , tEj (p0)) for all 1 ≤ j ≤ l. Thus,
L(0̄ + p0) ̸= ∅, and (0̄p0 , ∞̄p0) (so,∞+ p0 = ∞̄) is in P⊗N, which completes the proof.



Suppose ℓ > 0, ρ̄0 ∧ 3(ρ̄1 ∧ (. . .3ρ̄ℓ−1) . . . ) does not separate E, and ρpℓ

ℓ ̸= ∅. We define n0 = 0̄. Assuming that
ni = (n1, . . . , nk) has been defined, define ni+1 = (n′1, . . . , n

′
k) where n′j = min{n | n > nj + pi, ρ̄i+1 ⊆ (tDj (n), tDj (n+

1), . . . , tDj
(n + pi+1))}, for 0 ≤ i < ℓ. Clearly, we have n0

p0 → · · · → nℓ
pℓ and L(nℓ + pℓ) ̸= ∅. Then, we take m0

equal to m satisfying mj = 0 if (tDj
(0), . . . , tDj

(p0)) ⊆ (tEj
(0), . . . , tEj

(p0)), and mj = ∞ otherwise, for all 1 ≤ j ≤ l.
We set mi+1 to be m such that (npi

i ,m
pi

i ) → (n
pi+1

i+1 ,m
pi+1). We claim that the path (np0

0 ,m
p0

0 ), . . . , (npℓ

ℓ ,m
pℓ

ℓ ) is such
that mℓ + pℓ = ∞̄. To prove the claim, set di,j = min{t | t ≥ i + p0 + · · · + pi and E≤t

j |= ρ̄0 ∧3(ρ̄1 ∧ (. . .3ρ̄i) . . . )} or
di,j = ∞ if t as above does not exist, for 0 ≤ i ≤ ℓ and 1 ≤ j ≤ l. Let di = (di,1, . . . , di,l). It follows that dℓ = ∞̄. It is
easily shown by induction on i that di = mi + pi which completes the proof.

(⇐) Let (7) be a separating path. We will show that qπ separatesE. Indeed, clearlyD |= qπ for eachD ∈ E+. By induction
on i, we show that di = mi + ti. It follows that E ̸|= qπ for all E ∈ E− which completes the proof. ⊣

The existence of a separating path in P ⊗N can be checked in time O(t
c+
+ t

c−
− ). If c+ and c− are bounded, given (nt,mt)

and (n′s,m′s), we can check in logspace whether (nt,mt) is the root of P×N and (nt,mt)→ (n′s,m′s). So the existence
of a separating path can be decided in NL.

We now prove Theorem 23 (b) for Qp[⃝3]-separators. As it was already done in the proof of Lemma 37, we assume that
the Qp[⃝3]-queries are

q = ρ̄0 ∧3(ρ̄1 ∧ · · · ∧3ρ̄ℓ), (8)

where each ρ̄i = ρ0i ∧⃝ρ1i ∧ · · · ∧⃝piρpi

i . Furthermore, we treat each query ρ̄i as a vector (ρ0i , . . . , ρ
pi

i ) when convenient. The
proof of the following statement is a straightforward modification of the proof of Lemma 38 (in the same way as the proof of
Lemma 37 modifies the proof of Lemma 24):

Lemma 38. If q of the form (8) separates E, then there exists a separating path (7) such that ti = pi and ρ̄i ⊆ L(nti
i ), for all

i ≤ ℓ.

In essence, we can now use any existing algorithm for computing a shortest/longest path in the directed acyclic graph2 P×N,
where the edges (nt,mt)→ (n′s,m′s) have weights s+1 (we also need to add a new root and extra edges leading to the root
(0̄s,ms) of P⊗N). Some straightforward algorithms are provided below.

For the shortest separator, we compute the closures Cℓ containing all the tuples (n′t,m′t, w) such that (n′t,m′t) is reachable
in P×N from some (0̄s,ms) on a path of length ≤ ℓ, while

w = min{ℓ′ + t1 + · · ·+ tℓ′ | (0̄t1 ,mt1), . . . , (n′tℓ′ ,m′tℓ′ )

is a path from some (0̄s,ms) to (n′t,m′t)}. (9)

We compute all C1, . . . , Cℓ, where ℓ is the length of the longest path in P ⊗ N. Let Ci∞ be the restriction of Ci to tuples
(n′t,m′t, w) with m′ + t = ∞̄ and L(n′ + t) ̸= ∅. We select i∗ and w∗ such that (n′t,m′t, w∗) ∈ Ci∗∞ and w∗ = min{w |
(n′t,m′t, w) ∈ Ci∞, 1 ≤ i ≤ ℓ}. In essence, w∗ is the length of the shortest query separating E. To construct a q with length
w∗, we use the sets C1, . . . , Ci∗−1, Ci∗∞. κ will be ρ̄1 ∧3(ρ̄2 ∧ (. . .3ρ̄i) . . . ) where each ρ̄i = ρ0i ∧⃝ρ1i ∧ · · · ∧⃝piρpi

i . Take
an nti∗

i∗ such that (nti∗
i∗ ,m

′ti∗ , w∗) ∈ Ci∗∞. We set pi∗ = ti∗ and (ρ0i∗ , . . . , ρ
pi∗
i∗ ) = L(nti∗

i∗ ). Now, take an n
ti∗−1

i∗−1 such that
(n

ti∗−1

i∗−1 ,m
ti∗−1 , wi∗−1) ∈ Ci

∗−1, (nti∗−1

i∗−1 ,m
ti∗−1) → (nti∗

i∗ ,m
′ti∗ ), and w∗ = wi∗−1 + ti∗ + 1. We set pi∗−1 = ti∗−1 and

(ρ0i∗−1, . . . , ρ
pi∗−1

i∗−1 ) = L(n
ti∗−1

i∗−1 ). We continue in this fashion to obtain t1 such that (0̄t1 ,mt1 , t1+1) ∈ C1 andw2 = t1+t2+2.
We define p1 = t1 and (ρ01, . . . , ρ

p1

1 ) = L(0̄t1). This completes the definition of a shortest q separating E.
To compute a longest separator, we compute the closures Ci as in the case of the shortest separator except for using max

instead of min in (9). We proceed with computing the separator q as in the case above setting w∗ with max instead of min.

Finally, we prove Theorem 23 (c) for unique most specificQp[⃝3]-separators. First, we observe that the proof of Lemma 26
is modified in a straightforward way to demonstrate that this lemma holds forQp[⃝3]-queries and separating paths (7) in P⊗N.
Secondly, we note that checking the existence of a separating path π such that qπ |= qν for every separating path ν in P ⊗N
can be checked in P by a very similar algorithm as for Qp[3]-queries. To see that the marking of the nodes can still be done
in P for Qp[⃝3], we only need to note that checking q |= q′ for q, q′ ∈ Qp[⃝3] remains in P (see Theorem 2). Moreover,
the problem of checking whether there is a containment witness for a given qπ′

1
and qπ for every π in the set Π of path (7) in

P⊗N ending at a given (nt,mt), is in NL.
At the final stage of the algorithm, we need to consider all the nodes of the form (nti

i ,m
ti
i ), i = 1, . . . , l, withL(ni+ti) ̸= ∅,

mi + ti = ∞̄ and marked with qi ̸= ε. If there are no such, there is no unique most specific separator. Otherwise, take the
set Π of all paths leading to the (nti

i ,m
ti
i ). We check whether there is a containment witness for q1 and every qπ , π ∈ Π, in

which case q1 is returned as a unique most specific separator. Otherwise, we do the same for q2, and so on. ⊣
2see e.g. Sedgewick, Robert; Wayne, Kevin Daniel (2011), Algorithms (4th ed.), Addison-Wesley Professional.



F Proofs for Section 8
We show that for Q ∈ {Qp[3],Qp[⃝3],Qin}, verifying longest and shortest separators is CONP-complete. The upper bound
is trivial, and so we focus on the lower bound. We start with a general construction that shows how one can combine two
example sets in a controlled way.

Let Q ∈ {Qp[3],Qp[⃝3],Qin} be given and consider example set E1 = (E+
1 , E

−
1 ) and E2 = (E+

2 , E
−
2 ) with disjoint

signatures such that all separating queries in s(E1,Q) and s(E2,Q) start with 3. Define E+ by taking all

D1D2, D2D1

with D1 ∈ E+
1 and D2 ∈ E+

2 and let E− = E−
1 ∪ E

−
2 .

Lemma 39. s(E,Q) = s(E1,Q) ∪ s(E2,Q).

Proof. s(E,Q) ⊇ s(E1,Q) ∪ s(E2,Q) follows from the condition that queries in s(E1,Q) and s(E2,Q) start with 3.
To show that s(E,Q) ⊆ s(E1,Q) ∪ s(E2,Q) observe that it follows from the definition of E+ that every query in s(E,Q)

either only uses symbols from E1 or only symbols from E2. Now the inclusion is trivial. ⊣

Theorem 40. Let Q ∈ {Qp[3],Qp[⃝3],Qin}. Then verification of longest and shortest separating queries is CONP-hard.

Proof. By reduction from SAT for the complement. Assume a propositional formula φ is given. Construct E1 as in the proof
of Point 2 of Theorem 21 such that there is a separating query inQ if φ is satisfiable. Assume all separating queries have length
at least 2 and length at most n.

First let E2 be any example set in a signature disjoint from the signature of E1 and such that all separators have the form 3ρ
with ρ a set of atoms. Assume some such q separates E2. Then q is not a longest separator of E (as defined above) iff φ is
satisfiable.

Now let E2 be any example set in a signature disjoint from the signature of E1 and such that all separators start with 3 and
have length n + 1. Assume some such q separates E2. Then q is not a shortest separator of E (as defined above) iff φ is
satisfiable. ⊣
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