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Abstract
In reverse engineering of database queries, one aims to construct a query from a set of positively and

negatively labelled answers and non-answers. The query can then be used to explore the data further or

as an explanation of the answers and non-answers. We consider this reverse engineering problem for

queries formulated in various fragments of positive linear temporal logic LTL over data instances given

by timestamped atomic concepts. We focus on the design of suitable query languages and the complexity

of the separability problem: ‘does there exist a query in the given query language that separates the

given answers from the non-answers?’. We deal with both plain LTL queries and those that are mediated

by ontologies providing background knowledge and formulated in fragments of clausal LTL.

Keywords
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1. Introduction

Supporting users of databases by constructing a query from examples of answers and non-

answers to the query has been a major research area for many years [1]. In the database

community, research has focussed on standard query languages such as (fragments of) SQL,

graph query languages, and SPARQL [2, 3, 4, 5, 6, 7, 8, 9]. The KR community has been concerned

with constructing queries from examples under the open world semantics and with background

knowledge given by an ontology [10, 11, 12, 13, 14]. In both cases, the focus has been on

general multi-purpose query languages. A fundamental problem that has been investigated

by both communities is known as separability or query-by-example: given sets 𝐸+
and 𝐸−

of

pairs (𝒟,𝑑) with a database 𝒟 and a tuple 𝑑 in 𝒟, and a query language 𝒬, does there exist

a query 𝑞 ∈ 𝒬 that separates (𝐸+, 𝐸−) is the sense that 𝒟 |= 𝑞(𝑑) for all (𝒟,𝑑) ∈ 𝐸+
and

𝒟 ̸|= 𝑞(𝑑) for all (𝒟,𝑑) ∈ 𝐸−
(or 𝒪,𝒟 |= 𝑞(𝑑) for all (𝒟,𝑑) ∈ 𝐸+

and 𝒪,𝒟 ̸|= 𝑞(𝑑) for all

(𝒟,𝑑) ∈ 𝐸−
if an ontology 𝒪 is present)?

1
There are various strategies to ensure that the query

𝑞 is a generalisation of the positive examples and does not overfit. For instance, one can ask for
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the existence of a small separating query in 𝒬 or one can choose a query language that enforces

generalisation by not admitting disjunction. In the latter case, query-by-example is often very

hard computationally: it is coNExpTime-complete for conjunctive queries (CQs) over standard

relational databases [15, 16] and even undecidable for CQs under ℰℒℐ or 𝒜ℒ𝒞 ontologies [17].

In many applications, the input data is timestamped and queries are naturally formulated in

languages with temporal operators. Taking into account the prohibitive complexity of many

query-by-example problems already in the static case, it does not seem wise to start an investi-

gation of the temporal case by considering temporal extensions of standard query languages

(which can only lead to computationally even harder problems). Instead, we investigate the

simpler but still very useful case in which data, 𝒟, is a set of timestamped atomic concepts.

Our query languages are positive fragments of linear temporal logic LTL with the temporal

operators ◇ (eventually), ○ (next), and U (until) interpreted under the strict semantics [18].

To avoid overfitting, we only consider such fragments without ∨. The most expressive query

language we deal with, 𝒬[U], is thus defined as the set of formulas constructed from atoms

using ∧ and U (via which ○ and ◇ can be defined). The fragments 𝒬[◇], 𝒬[○], and 𝒬[○,◇]
are defined analogously.

Within this temporal setting, we take a broad view of the potential applications of the reverse

engineering of queries and the query-by-example problem. On the one hand, there are non-

expert end-users who would like to explore data via queries but are not familiar with temporal

logic. They usually are, however, capable of providing data examples illustrating the queries

they are after. Query-by-example supports such users in the construction of those queries. On

the other hand, the positive and negative data examples might come from an application, and

the user is interested in possible explanations of the examples. Such an explanation is then

provided by a temporal query separating the positive examples from the negative ones. In this

case, our goal is similar to recent work on learning linear temporal logic formulas and, more

generally, explainable AI [19, 20, 21, 22, 23]. The following example illustrates this point.

Example 1. Imagine an engineer whose task is to explain the behaviour of the monitored

equipment (say, why an engine stops) in terms of qualitative sensor data such as ‘low tempera-

ture’, which can be represented by the atomic concept 𝑇 , ‘strong vibration’, 𝑉 , etc. Suppose the

engine stopped after the runs 𝒟+
1 and 𝒟+

2 shown below but did not stop after the runs 𝒟−
1 , 𝒟−

2 ,

𝒟−
3 , where we assume the runs to start at 0 and measurements to be recorded at 0, 1, 2, . . . :

𝒟+
1 = {𝑇 (2), 𝑉 (4)},𝒟+

2 = {𝑇 (1), 𝑉 (4)},𝒟−
1 = {𝑇 (1)},𝒟−

2 = {𝑉 (4)},𝒟−
3 = {𝑉 (1), 𝑇 (2)}.

The ◇-query 𝑞 = ◇(𝑇 ∧ ◇◇𝑉 ) is true at 0 in the positive data instances 𝒟+
𝑖 , false in the

negative ones 𝒟−
𝑖 , and so provides a possible natural explanation of what could cause the engine

failure. The example set ({𝒟+
3 ,𝒟

+
4 }, {𝒟

−
4 }) with

𝒟+
3 = {𝑇 (1), 𝑉 (2)}, 𝒟+

4 = {𝑇 (1), 𝑇 (2), 𝑉 (3)}, 𝒟−
4 = {𝑇 (1), 𝑉 (3)}

can be explained by the U-query 𝑇 U 𝑉 . Using background knowledge of the domain, we can

compensate for sensor failures, which result in incomplete data. To illustrate, suppose that

𝒟̄+
1 = {𝐻(3), 𝑉 (4)}, where 𝐻 stands for ‘heater is on’. If a background ontology 𝒪 contains

the axiom ○𝐻 → 𝑇 saying that a heater can only be triggered by the low temperature at the



previous moment, then the same 𝑞 will separate {𝒟̄+
1 ,𝒟+

2 } from {𝒟−
1 ,𝒟

−
2 ,𝒟

−
3 } under 𝒪. ⊣

The queries used in Example 1 are of a particular ‘linear’ form and suggest a restriction to

path queries in which the order of the atoms is fixed and not left open as in ◇𝐴 ∧◇𝐵. More

precisely, path ○◇-queries in the class 𝒬𝑝[○,◇] take the form

𝑞 = 𝜌0 ∧ 𝑜1(𝜌1 ∧ 𝑜2(𝜌2 ∧ · · · ∧ 𝑜𝑛𝜌𝑛)), (1)

where 𝑜𝑖 ∈ {○,◇} and 𝜌𝑖 is a conjunction of atoms; 𝒬𝑝[◇] and 𝒬𝑝[○] restrict 𝑜𝑖 to {◇} and

{○}, respectively; and path U-queries in the class 𝒬𝑝[U] take the form

𝑞 = 𝜌0 ∧ (𝜆1 U (𝜌1 ∧ (𝜆2 U (. . . (𝜆𝑛 U 𝜌𝑛) . . . )))), (2)

where 𝜆𝑖 is a conjunction of atoms or ⊥. Path queries are motivated by two observations. First,

if a query language 𝒬 allows conjunctions of queries, then, dually to the overfitting problem

for disjunction, the admission of multiple negative examples becomes trivialised: if queries

𝑞𝒟 separate (𝐸+, {𝒟}) for 𝒟 ∈ 𝐸−
, then the conjunction

⋀︀
𝒟∈𝐸− 𝑞𝒟 separates (𝐸+, 𝐸−). In

particular, the query-by-example problem becomes polynomially reducible to its version with a

single negative example. This is clearly not the case for path queries.

Example 2. Let 𝒟1 = {𝐴(1), 𝐵(2)}, 𝒟2 = {𝐵(1), 𝐴(2)}, 𝒟3 = {𝐴(1)} and 𝒟4 = {𝐵(1)}.

Then ({𝒟1,𝒟2},𝒟3) and ({𝒟1,𝒟2},𝒟4) are separated in 𝒬𝑝[◇] by ◇𝐵 and ◇𝐴, respectively;

({𝒟1,𝒟2}, {𝒟3,𝒟4}) is separated in 𝒬[◇] by ◇𝐵 ∧◇𝐴, but it is not 𝒬𝑝[◇]-separable. ⊣

Second, numerous natural types of query classes from applications are represented by path

queries. For example, the existence of a common subsequence of the positive examples that is

not a subsequence of any negative example corresponds to the existence of a separating query

in 𝒬𝑝[◇] with 𝜌0 = ⊤ and 𝜌𝑖 ̸= ⊤ for 𝑖 > 0, and the existence of a common subword of the

positive examples that is not a subword of any negative example corresponds to the existence

of a separating query of the form ◇(𝜌1 ∧ ○(𝜌2 ∧ · · · ∧ ○𝜌𝑛)). The unique characterisability

and learnability of path queries is investigated in [24].

Except for 𝒬𝑝[○] = 𝒬[○] (modulo logical equivalence), no nontrivial inclusion relations

hold between the separation capabilities of the query languages introduced above, as illustrated

by the following example.

Example 3. (1) Let 𝒟1 = {𝐴(1)}, 𝒟2 = {𝐴(2)} and 𝐸 = ({𝒟1}, {𝒟2}). Then ○𝐴 separates

𝐸 but no query in 𝒬[◇] does. On the other hand, 𝐸 is not 𝒬-separable under 𝒪 = {○𝐴→ 𝐴},

for any class 𝒬 defined above, as 𝒪,𝒟1 |= 𝑞(0) implies 𝒪,𝒟2 |= 𝑞(0) for all 𝑞 ∈ 𝒬.

(2) Let𝐸 = ({𝒟1,𝒟2}, ∅) with 𝒟1 and 𝒟2 as in (1). Then ◇𝐴 separates𝐸 but no 𝒬[○]-query

does. Observe that at least two positive examples are needed to achieve this effect. However,

○○○𝐵 separates 𝐸 under 𝒪 = {𝐴→ □𝐵}.

(3) Let 𝐸 = ({{𝐴(1), 𝐵(2)}, {𝐴(2), 𝐵(3)}}, {{𝐴(3), 𝐵(5)}}). Then ◇(𝐴 ∧ ○𝐵) separates

𝐸 but no query in 𝒬[○] or 𝒬[◇] does.

(4) 𝐴 U𝐵 separates ({{𝐵(1)}, {𝐴(1), 𝐵(2)}}, {{𝐵(2)}}) but no 𝒬[○,◇]-query does. ⊣



Our contribution. We now briefly present our initial results on the complexity of the

separability problem for LTL queries, both plain and mediated by an LTL-ontology.

Ontology-free LTL queries. Separability in 𝒬[○] is almost trivial as it corresponds to the existence

of a time point where some atom holds in all positive examples but in no negative example,

which is decidable in polynomial time. For the query languages ranging from 𝒬𝑝[◇] and 𝒬[◇]
to 𝒬𝑝[○,◇] and 𝒬[○,◇] and also 𝒬𝑝[U], separability turns out to be NP-complete. The upper

bound is proved by observing that, in any of these languages, every separable example set

can be separated by a query of polynomial size. The matching lower bound is established

by reduction of the NP-hard problem of deciding whether the words in a given set contain

a common subsequence of a given length [25]. Separability by 𝒬[U]-queries turns out to be

trickier because of the interplay of ∧, the left- and the right-hand sides of the U-operator.

Example 4. The example set below, where the instance on the right is negative, is separated by

0 1 2 3

𝐴2, 𝐵1

4

𝐵2

5 0 1

𝐴1, 𝐵2

2

𝐵1

3 0 1

𝐵1

2 3

𝐵2

4

the 𝒬[U]-query ◇
(︀
(𝐴1 U𝐵1) ∧ (𝐴2 U𝐵2)

)︀
but is not separable in any other class of queries.

We give a separability criterion in terms of U-simulations between subsets of the disjoint

union of the positive examples and points of a negative example (cf. [26]). Then, using a game-

theoretic variant of U-simulations, we show that a separating 𝒬[U]-query can be constructed

in PSpace. However, at the moment, we only have an NP-lower bound for separability.

Separability under LTL Ontologies. Apart from full LTL, we consider its fragment LTL
□◇

that

only uses the operators □ and ◇, also known as the Prior logic [27, 28, 29, 30], and the Horn

fragment LTL
□○
horn

containing axioms of the form 𝐶1∧· · ·∧𝐶𝑘 → 𝐶𝑘+1, where the 𝐶𝑖 are atoms

possibly prefixed by □ and ○ for 𝑖 ≤ 𝑘 + 1, and also by ◇ for 𝑖 ≤ 𝑘. The Ontology axioms are

supposed to hold at all times.

Separability by (path) ◇-queries is Σ𝑝2-complete under LTL
□◇

ontologies and PSpace-

complete under LTL
□○
horn

ontologies. For LTL ontologies, we have a NExpTime upper bound. We

conjecture that exactly the same bounds can be proved for (path) ○◇-queries. As concerns

𝒬𝑝[U]-queries, separability under LTL
□○
horn

ontologies is shown to be between ExpSpace and

NExpTime; for ‘branching’ 𝒬[U−]-queries without nesting U-operators on the left of U, it can

be decided in ExpTime using U-simulations. We establish the upper bounds by constructing

two exponential-size transition systems 𝑆+
and 𝑆−

from (𝒪, 𝐸+) and (𝒪, 𝐸−) such that (𝑖)
there is a trace-based simulation of 𝑆+

by 𝑆−
iff (𝐸+, 𝐸−) is separated in 𝒬𝑝[U] and (𝑖𝑖) there

is a tree-based simulation of 𝑆+
by 𝑆−

iff (𝐸+, 𝐸−) is separated in 𝒬[U−]. The existence of

trace-based and tree-based simulations can be decided in PSpace- and P, respectively [31].

QBE(ℒ,𝒬) LTL LTL
□○
horn

LTL
□◇ QBE(𝒬)

𝒬[U]

?

?

?

≥ NP,≤ PSpace𝒬[U−] ≤ ExpTime

𝒬𝑝[U] ≥ NExpTime,≤ ExpSpace

= NP

𝒬[○,◇] ≤ ExpTime

𝒬𝑝[○,◇] ≤ ExpSpace

𝒬[◇] ≤ NExpTime = PSpace = Σ𝑝2𝒬𝑝[◇]
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Appendix

2. Related Work in Concept Learning

We discuss related work in concept learning in description logic, as first proposed in [32].

Inspired by inductive logic programming, refinement operators are used to construct a concept

that separates positive from negative examples in an ABox. An ontology may or may not

be present. There has been significant interest in this approach [33, 34, 35, 36, 37, 38, 39].

Prominent systems include the DL Learner [40, 41], DL-Foil [42] and its extension DL-Focl

[43], SPaCEL [44], YinYang [45], and pFOIL-DL [46].

3. Preliminaries

Temporal ontology-mediated queries. In our setting, the alphabet of linear temporal logic

LTL comprises a set of atomic concepts 𝐴𝑖, 𝑖 < 𝜔 (or simply atoms, for short). Basic temporal

concepts, 𝐶 , are defined by the grammar

𝐶 ::= 𝐴𝑖 | □𝐶 | ◇𝐶 | ○𝐶

with the temporal operators □ (always in the future), ◇ (sometime in the future) and ○ (at the

next moment). An LTL ontology, 𝒪, is a finite set of axioms of the form

𝐶1 ∧ · · · ∧ 𝐶𝑘 → 𝐶𝑘+1 ∨ · · · ∨ 𝐶𝑘+𝑚, (3)

where 𝑘,𝑚 ≥ 0, the 𝐶𝑖 are basic temporal concepts, the empty ∧ is ⊤, and the empty ∨ is ⊥.

In this paper, we consider four types of LTL ontologies, adopting the nomenclature from [47]

where both future- and past-time temporal operators were allowed:

LTL□○
bool admits arbitrary axioms of the form (3); ◇ is not mentioned in the fragment’s name be-

cause it can be expressed via□ and ○. Every LTL ontology given by arbitrary (non-clausal)

formulas of the form 𝜙 ∧□𝜙 can be efficiently converted to an LTL
□○
bool

ontology [47].

LTL□
bool admits axioms of the form (3) in which the 𝐶𝑖 do not contain ○ (with ◇ being express-

ible via □). This fragment is equivalent to the □◇-fragment of non-clausal LTL, known

as the Prior logic [27, 28, 29, 30].

LTL□○
horn admits axioms of the form (3) in which 𝑚 ≤ 1 and ◇ does not occur in 𝐶𝑘+1 (◇ on

the left-hand side of (3) is expressible via ○).



LTL□
horn admits axioms of the form (3) in which 𝑚 ≤ 1 and ◇ does not occur in 𝐶𝑘+1 (in this

case ◇ on the left-hand side of (3) is not expressible via □ but can be expressed using the

past-time counterpart □𝑃 of □).

A data instance is a finite set 𝒟 of atoms of the form 𝐴𝑖(ℓ) with a timestamp ℓ ∈ N together

with an interval tem(𝒟) = [𝑚,𝑛] ⊆ N, called the active domain of 𝒟, such that 𝑚 ≤ ℓ ≤ 𝑛, for

all 𝐴𝑖(ℓ) ∈ 𝒟. If 𝒟 = ∅, then tem(𝒟) may also be ∅. Otherwise, we assume (without loss of

generality) that 𝑚 = 0. If tem(𝒟) is not specified explicitly, it is assumed to be either empty

or [0, 𝑛], where 𝑛 is the maximal timestamp in 𝒟. By a signature, Σ, we mean any finite set of

atomic concepts. An instance 𝒟 is said to be a Σ-data instance if 𝐴𝑖(ℓ) ∈ 𝒟 implies 𝐴𝑖 ∈ Σ.

We access data by means of (LTL analogues of conjunctive) queries, κ, constructed from

atoms, ⊥ and ⊤ using ∧ and the temporal operators ○, ◇ and U. The set of atoms occurring

in κ is denoted by sig(κ). The set of queries that only use the operators from Φ ⊆ {○,◇,U}
is denoted by 𝒬[Φ]; 𝒬Σ[Φ] is the restriction of 𝒬[Φ] to a signature Σ. We also consider the

subclass 𝒬[U−] of 𝒬[U] comprising those queries that do not contain subqueries of the form

κ1 U κ2 with an occurrence of U in κ1. The size |κ| of κ is the number of symbols in κ, and

the temporal depth tdp(κ) of κ is the maximum number of nested temporal operators in κ.

Note that under the strict semantics to be defined below, 𝒬[○,◇]-queries can be equivalently

given as tree-shaped conjunctive queries (CQs) with the binary predicates suc and < over N,

and atomic concepts as unary predicates. Each such CQ is a set 𝑄(𝑡0) of assertions of the form

𝐴(𝑡), suc(𝑡, 𝑡′), and 𝑡 < 𝑡′, with a distinguished variable 𝑡0, such that, for every variable 𝑡 in

𝑄(𝑡0), there exists exactly one path from 𝑡0 to 𝑡 along the binary predicates suc and <. The set

of 𝒬[○,◇]-queries with path-shaped CQ counterparts is denoted by 𝒬𝑝[○,◇]. Such queries κ
take the form (4), where 𝑜𝑖 ∈ {○,◇} and 𝜌𝑖 is a conjunction of atoms; similarly, path-shaped

𝒬𝑝[U]-queries are of the form (5):

κ = 𝜌0 ∧ 𝑜1(𝜌1 ∧ 𝑜2(𝜌2 ∧ · · · ∧ 𝑜𝑛𝜌𝑛)), (4)

κ = 𝜌0 ∧ (𝜆1 U (𝜌1 ∧ (𝜆2 U (. . . (𝜆𝑛 U 𝜌𝑛) . . . )))). (5)

Note that 𝒬𝑝[U] ⊆ 𝒬[U−].
The intended interpretations are structures ℐ = (N, 𝐴ℐ

0 , 𝐴
ℐ
1 , . . . ) with 𝐴ℐ

𝑖 ⊆ N, for every

𝑖 < 𝜔. The extension κℐ
of a temporal concept κ in ℐ is defined inductively as usual in LTL

under the strict semantics [48, 18]:

(○κ)ℐ =
{︀
𝑛 ∈ Z | 𝑛+ 1 ∈ κℐ }︀,

(□κ)ℐ =
{︀
𝑛 ∈ Z | 𝑘 ∈ κℐ , for all 𝑘 > 𝑛

}︀
,

(◇κ)ℐ =
{︀
𝑛 ∈ Z | there is 𝑘 > 𝑛 with 𝑘 ∈ κℐ }︀,

(κ1 U κ2)
ℐ =

{︀
𝑛 ∈ Z | there is 𝑘 > 𝑛 with 𝑘 ∈ κℐ

2 and 𝑚 ∈ κℐ
1 for 𝑛 < 𝑚 < 𝑘

}︀
.

We regard ℐ, 𝑛 |= κ as synonymous to 𝑛 ∈ κℐ
. We say that an axiom (3) is true in ℐ if

𝐶ℐ
1 ∩ · · · ∩ 𝐶ℐ

𝑘 ⊆ 𝐶ℐ
𝑘+1 ∪ · · · ∪ 𝐶ℐ

𝑘+𝑚, that is, if it is true at all times. An interpretation ℐ is

a model of 𝒪 if all axioms of 𝒪 are true in ℐ ; it is a model of 𝒟 if 𝐴𝑖(ℓ) ∈ 𝒟 implies ℓ ∈ 𝐴ℐ
𝑖 .

𝒪 and 𝒟 are consistent if they have a model. We write 𝒪,𝒟 |= κ(𝑘), for 𝑘 ∈ N, if 𝑘 ∈ κℐ
in

all models ℐ of 𝒪 and 𝒜. We say that κ 𝒪-entails κ′
and write κ |=𝒪 κ′

if ℐ, 0 |= κ implies



ℐ, 0 |= κ′
for all models ℐ of 𝒪. Further, κ and κ′

are 𝒪-equivalent, κ ≡𝒪 κ′
in symbols, if

they 𝒪-entail each other. Clearly, ○𝑞 ≡ ⊥ U 𝑞 and ◇𝑞 ≡ ⊤ U 𝑞, where ≡ stands for ≡∅.

Recall from [47] that, for any LTL
□○
horn

-ontology 𝒪 and any instance 𝒟 consistent with 𝒪,

there is a canonical model 𝒞𝒪,𝒟 of 𝒪 and 𝒟 such that, for any query κ and 𝑘 ∈ N,

𝒪,𝒟 |= κ(𝑘) iff 𝒞𝒪,𝒟 |= κ(𝑘). (6)

Let sub𝒪 be the set of temporal concepts in 𝒪 and their negations. A type for 𝒪 is any maximal

subset tp ⊆ sub𝒪 consistent with 𝒪. Let 𝑇 be the set of all types for 𝒪. Given an interpretation

ℐ , we denote by tpℐ(𝑛) the type for 𝒪 that holds in ℐ at 𝑛 ∈ N. For 𝒪 consistent with 𝒟, we

abbreviate tp𝒞𝒪,𝒟
to tp𝒪,𝒟 . The canonical model has a periodic structure in the following sense:

Proposition 5. For any LTL
□○
horn

ontology 𝒪 and any instance 𝒟 consistent with 𝒪, there are

positive integers 𝑠𝒪,𝒟 ≤ 2|𝒪|
and 𝑝𝒪,𝒟 ≤ 22|𝒪|

such that

tp𝒪,𝒟(𝑛) = tp𝒪,𝒟(𝑛+ 𝑝𝒪,𝒟), for every 𝑛 ≥ max𝒟 + 𝑠𝒪,𝒟. (7)

If 𝒪 is an LTL
□
horn

ontology, then 𝑠𝒪,𝒟 ≤ |𝒪| and 𝑝𝒪,𝒟 = 1.

3.1. Query by Example and Strongest Separators

We now formulate the problems we are concerned with in this paper.

Query by example. By an example set we mean a pair 𝐸 = (𝐸+, 𝐸−), where 𝐸+
and 𝐸−

are finite sets of data instances. We refer to the instances in 𝐸+
and 𝐸−

as positive and negative

examples, respectively. Given an ontology 𝒪, we say that a query κ separates 𝐸 under 𝒪 if

𝒪,𝒟 |= κ(0), for each 𝒟 ∈ 𝐸+
, and 𝒪,𝒟 ̸|= κ(0), for each 𝒟 ∈ 𝐸−

. Let 𝒬 be a class of

queries. We say that 𝐸 is 𝒬-separable under 𝒪 if there exists κ ∈ 𝒬 that separates 𝐸 under 𝒪.

The general query-by-example problem QBE(ℒ,𝒬), for an ontology language ℒ and a query

language 𝒬, is formulated as follows:

given an ℒ-ontology 𝒪 and an example set 𝐸,

decide whether 𝐸 is 𝒬-separable under 𝒪.

If ℒ only admits the empty ontology, we shorten QBE(∅,𝒬) to QBE(𝒬). We are interested in

the computational complexity of deciding QBE(ℒ,𝒬) for various ℒ and 𝒬.

Example 6. (1) Let 𝒟1 = {𝐴(1)}, 𝒟2 = {𝐴(2)} and 𝐸 = ({𝒟1}, {𝒟2}). Then ○𝐴 separates

𝐸 (under 𝒪 = ∅) but no query in 𝒬[◇] does. On the other hand, 𝐸 is not 𝒬-separable under

𝒪 = {○𝐴→ 𝐴}, for any class 𝒬 defined above, as 𝒪,𝒟1 |= κ(0) implies 𝒪,𝒟2 |= κ(0) for

all κ ∈ 𝒬.

(2) Let𝐸 = ({𝒟1,𝒟2}, ∅) with 𝒟1 and 𝒟2 as in (1). Then ◇𝐴 separates𝐸 but no 𝒬[○]-query

does. Observe that at least two positive examples are needed to achieve this effect. However,

○○○𝐵 separates 𝐸 under 𝒪 = {𝐴→ □𝐵}.

(3) Let 𝐸 = ({{𝐴(1), 𝐵(2)}, {𝐴(2), 𝐵(3)}}, {{𝐴(3), 𝐵(5)}}). Then ◇(𝐴 ∧ ○𝐵) separates

𝐸 but no query in 𝒬[○] or 𝒬[◇] does.



(4) Let 𝐸 = ({{𝐵(1)}, {𝐴(1), 𝐵(2)}}, {{𝐵(2)}}). Then 𝐴U𝐵 separates 𝐸 but no 𝒬[○,◇]-
query does.

Note that if 𝒬 is closed under ∧, 𝐸 = (𝐸+, 𝐸−) and 𝐸− = {𝒟−
1 , . . . ,𝒟−

𝑛 }, then 𝐸 is 𝒬-

separable under 𝒪 iff each (𝐸+, {𝒟−
𝑖 }) is, for 1 ≤ 𝑖 ≤ 𝑛. Indeed, if κ𝑖 separates (𝐸+, {𝒟−

𝑖 }),
then κ1 ∧ · · · ∧ κ𝑛 separates 𝐸. For such 𝒬, we can therefore assume that 𝐸−

consists of a

single data instance.

As there may be multiple non-𝒪-equivalent queries that separate𝐸 under 𝒪, it seems natural

to ask whether there is a ‘strongest’ separator for𝐸 in a given class 𝒬 in the sense that it entails

all other separators for 𝐸 in 𝒬.

Strongest separators. We call a 𝒬-query κ a strongest 𝒬-separator for an example set 𝐸
under an ontology 𝒪 if κ separates 𝐸 under 𝒪 and κ |=𝒪 κ′

for any κ′ ∈ 𝒬 separating 𝐸
under 𝒪. We say that κ is a strongest universal 𝒬-separator for a set 𝐸+

of positive instances

under 𝒪 if κ is a strongest 𝒬-separator for (𝐸+, 𝐸−) under 𝒪, for every 𝒬-separable example

set (𝐸+, 𝐸−). The strongest separator existence problem SSE(ℒ,𝒬) is formulated as follows:

given an ℒ-ontology 𝒪 and an example set 𝐸,

decide whether there exists a strongest 𝒬-separator for 𝐸 under 𝒪.

In the problem SUSE(ℒ,𝒬), where U stands for ‘universal’, we are interested in the existence

of a strongest universal 𝒬-separator for a given input set 𝐸+
of data instances.

As before we set SSE(𝒬) = SSE(∅,ℒ) and SUSE(𝒬) = SUSE(∅,ℒ)), in which case we drop

qualification ‘under 𝒪’.

Example 7. (1) Let 𝐸+ = {{𝐴(0), 𝐵(0)}} and 𝐸− = {{𝐶(0)}}. Then κ = 𝐴 ∧ 𝐵 is a

strongest 𝒬-separator for 𝐸 = (𝐸+, 𝐸−) (under 𝒪 = ∅), for any query language 𝒬. The same

κ is also a strongest universal 𝒬-separator for 𝐸+
.

(2) A strongest 𝒬𝑝[◇]-separator for 𝐸 with 𝐸+ = {{𝐴(2)}, {𝐴(3)}} and 𝐸− = {{𝐶(0)}}
is ◇◇𝐴, which is also a strongest universal 𝒬𝑝[◇]-separator for 𝐸+

.

(3) A strongest 𝒬𝑝[U]-separator for 𝐸 = (𝐸+, 𝐸−) with 𝐸+ = {{𝐴(1), 𝐵(2)}, {𝐵(1)}}
and 𝐸− = {{𝐶(0)}} is 𝐴 U𝐵, which is also a strongest universal 𝒬𝑝[U]-separator for 𝐸+

.

(4) Consider 𝐸 with 𝐸+ = {{𝐶(1), 𝐷(2), 𝐴(3), 𝐵(4)}, {𝐴(1), 𝐵(2), 𝐶(3), 𝐷(4)}} and

𝐸− = {{𝐶(1), 𝐷(2)}}. Then ◇(𝐴 ∧ ◇𝐵) is a strongest 𝒬𝑝[◇]-separator for 𝐸. Now, take

𝐸− = {{𝐴(1), 𝐵(2)}}. Then a strongest 𝒬𝑝[◇]-separator for 𝐸 is ◇(𝐶 ∧ ◇𝐷). Finally,

if 𝐸− = {{𝐴(1)}}, then there is no strongest 𝒬𝑝[◇]-separator for 𝐸 (though 𝐸 is 𝒬𝑝[◇]-
separable). There is no strongest universal 𝒬𝑝[◇]-separator for 𝐸+

either

(5) Suppose 𝒪 = {𝐴 → ○𝐵,𝐶 → ○𝐵,𝐵 → ○○𝐵}, 𝐸+ = {{𝐴(0)}, {𝐶(0)}} and

𝐸− = {{𝐷(0)}}. Then ◇𝐵 is a strongest 𝒬[◇]-separator for 𝐸 under 𝒪.

Strongest separators are not invesigated further in this paper and are left for future work.



4. QBE(ℒ,𝒬[◇]) and QBE(ℒ,𝒬[◇,○])

We begin by introducing a normal form for queries in 𝒬[○,◇]. Denote by 𝒬○
𝑝 [◇] the class of

𝒬[○,◇]-queries of the form

κ = 𝜌0 ∧◇(𝜌1 ∧◇(𝜌2 ∧ · · · ∧◇𝜌𝑛)), (8)

where every 𝜌𝑖 is a 𝒬[○]-query. The following lemma generalizes a normal form introduced

in [24] and can be proved in the same way.

Lemma 8. For every κ in 𝒬[○,◇] one can compute in polynomial time κ1, . . . ,κ𝑛 ∈ 𝒬○
𝑝 [◇]

such that κ is equivalent to κ1 ∧ . . . ∧ κ𝑛. If κ ∈ 𝒬[◇], then κ1, . . . ,κ𝑛 ∈ 𝒬𝑝[◇].

We obtain the following reductions.

Corollary 9. The problems QBE(ℒ,𝒬[○,◇]) and QBE(ℒ,𝒬[◇]) are polynomially reducible to

QBE(ℒ,𝒬○
𝑝 [◇]) and QBE(ℒ,𝒬𝑝[◇]), respectively.

Proof. There exists a 𝑞 ∈ 𝒬[○,◇] separating (𝐸+, 𝐸−) iff there exist 𝑞𝒟 ∈ 𝒬○
𝑝 [◇] separating

(𝐸+, {𝒟}) for 𝒟 ∈ 𝐸−
. ❑

We first consider the complexity of separability without a mediating ontology. Then separa-

bility turns out to be NP-complete for all languages between 𝒬𝑝[◇] and 𝒬[○,◇]. Observe that

only two concept names are required and that we encode the following common subsequence

problem: given a set 𝑆 of words and number 𝑘, does there exist a common subsequence of all

words in 𝑆 of length 𝑘?

Theorem 10. QBE(𝒬𝑝[◇]), QBE(𝒬[◇]), QBE(𝒬𝑝[○,◇]), and QBE(𝒬[○,◇]) are NP-

complete. The lower bound already holds for example sets with two atomic concepts and one

negative example.

Proof. We start with the upper bound. Let κ be a query of the form (8) and let 𝒟 |= κ(0)
for some data instance 𝒟. Then κ is equivalent to a query of the form (8) in which 𝑛 does

not exceed the maximal timestamp in 𝒟 and each 𝜌𝑖 is a ○-path query whose temporal depth

also does not exceed the maximal timestamp in 𝒟. (For instance, if 𝜌𝑛 ̸= ∅, then 𝑛 ≤ max𝒟;

otherwise, we can remove ◇𝜌𝑛 from κ.)

Now assume that 𝐸 = (𝐸+, 𝐸−) is given. By the observation above, it follows that if 𝐸 is

𝒬○
𝑝 [◇]-separable, then it is separated by a query in 𝒬○

𝑝 [◇] that is of polynomial size in the

size of 𝐸+
. An NP-algorithm can guess such a 𝒬○

𝑝 [◇]-query and check in polynomial time

whether it separates 𝐸.

For the lower bound we provide a polynomial time reduction of the following problem (KsubS)

known to be NP-complete [25]: given a set 𝑆 of words over a two-element alphabet and a

natural number 𝑘, decide whether there exists a common subsequence 𝜎 of the words in 𝑆 of

length at least 𝑘.

Suppose that an instance 𝑆, 𝑘 of (KsubS) over alphabet {𝐴,𝐵} is given. We define 𝐸 of the

form (𝐸+, {𝒟−}) such that the following conditions are equivalent:



• there exists a common subsequence of 𝑆 of length 𝑘;

• there exists 𝑞 ∈ 𝒬𝑝[◇] that separates (𝐸+, {𝒟−});
• there exists 𝑞 ∈ 𝒬○

𝑝 [◇] that separates (𝐸+, {𝒟−}).

As we have only a single negative example in 𝐸, the NP-lower bound follows for all languages

given in Theorem 10. We represent each word 𝑤 ∈ 𝑆 as an ABox 𝒟𝑤 starting at time point 1
(for example, the word 𝑤 = 𝐴𝐵𝐵𝐴 is represented as 𝒟𝑤 = {𝐴(1), 𝐵(2), 𝐵(3), 𝐴(4)}). Now

let

𝒟+ = {𝐴(𝑘 + 2), 𝐵(𝑘 + 2), . . . , 𝐴(𝑘(𝑘 + 2)), 𝐵(𝑘(𝑘 + 2))}

and

𝒟− = 𝒟+ ∖ {𝐴(𝑘(𝑘 + 2)), 𝐵(𝑘(𝑘 + 2))}

and let 𝐸+ = {𝒟𝑤 | 𝑤 ∈ 𝑆} ∪ {𝒟+}. Assume first that there exists a common subsequence

𝐶1 · · ·𝐶𝑘 of 𝑆 of length 𝑘. Then ◇(𝐶1 ∧ ◇(𝐶2 ∧ · · · ∧ ◇𝐶𝑘)) separates (𝐸+, {𝒟−}). Now

assume that a query

κ = 𝜌0 ∧◇(𝜌1 ∧◇(𝜌2 ∧ · · · ∧◇𝜌𝑛)),

where every 𝜌𝑖 a 𝒬[○]-query, separates (𝐸+, {𝒟−}). As 𝒟𝑤, 0 |= κ for some 𝑤 ∈ 𝑆, we have

that 𝑛 ≤ 𝑘 and all 𝜌𝑖 have depth bounded by 𝑘. Then 𝜌0 = ⊤ and also, as there are ‘gaps’ of

length 𝑘+1 between any two entries in 𝒟+
and since 𝒟+, 0 |= κ we may assume that each 𝜌𝑖,

𝑖 > 0, is of the form ○𝑚𝑖𝜌′𝑖 with 0 ≤ 𝑚𝑖 ≤ 𝑘 and 𝜌′𝑖 a conjunction of atoms. Observe that we

can satisfy, in 𝒟+
,

• 𝜌1 in the interval {1, . . . , 𝑘 + 2};

• 𝜌2 in the interval {(𝑘 + 1) + 1, . . . , 2(𝑘 + 2)};

• and so on, with 𝜌𝑛 satisfied in the interval {(𝑛− 1)(𝑘 + 2) + 1, . . . , 𝑛(𝑘 + 2)}.

In particular, if 𝜌𝑖 is a conjunction of atoms, then it can be satisfied in 𝑖(𝑘 + 2). If 𝑛 < 𝑘, then

it follows directly that 𝒟−, 0 |= κ, and we have derived a contradiction. Hence 𝑛 = 𝑘. Then,

as the depth of κ is bounded by 𝑘, 𝜌𝑘 is a conjunction of atoms. In fact, one can now show by

induction starting with 𝜌𝑘−1 that all 𝜌𝑖, 𝑖 > 0, are nonempty conjunctions of atoms. Otherwise

a shift to the left shows that 𝒟−, 0 |= κ and we have derived a contradiction. Thus κ takes the

form ◇(𝜌1 ∧◇(𝜌2 ∧ · · · ∧◇𝜌𝑘)) with all 𝜌𝑖 non-empty. It follows from 𝒟𝑤 |= κ for all 𝑤 ∈ 𝑆
that κ defines a common subsequence of 𝑆 of length 𝑘, as required. ❑

Suppose next that the language ℒ in QBE(ℒ,𝒬𝑝[◇]) is an LTL
□
bool

-ontology.

Theorem 11. (𝑖) If an example set 𝐸 is 𝒬𝑝[◇]-separable under an LTL
□
bool

ontology 𝒪, then 𝐸
can be separated under 𝒪 by a 𝒬𝑝[◇]-query of polynomial size in 𝐸 and 𝒪.

(𝑖𝑖) QBE(LTL
□
bool
,𝒬𝑝[◇]) and QBE(LTL

□
bool
,𝒬[◇]) are both Σ𝑝2-complete.

(𝑖𝑖𝑖) QBE(LTL
□
horn

,𝒬[◇]) and QBE(LTL
□
horn

,𝒬[◇]) are both NP-complete.

Proof. (𝑖) Suppose 𝐸 = (𝐸+, 𝐸−) is separated by a 𝒬𝑝[◇]-query κ under 𝒪. Then, for every

𝒟 ∈ 𝐸−
, there is a model 𝒥𝒟 of 𝒪 and 𝒟 such that 𝒥𝒟 ̸|= κ(0). As follows from [28] and since



κ is a positive existential query, we can assume that the types (in the vocabulary of 𝒪 and 𝒟)

in 𝒥𝒟 form a sequence

tp0, . . . , tp𝑘, tp𝑘+1, . . . , tp𝑘+𝑚, tp𝑘+1, . . . , tp𝑘+𝑚, . . . , tp𝑘+1, . . . , tp𝑘+𝑚, . . . (9)

with 𝑘 and 𝑚 polynomial in 𝒟 and 𝒪. Let 𝐾 be the maximal such 𝑘 over all 𝒟 ∈ 𝐸−
. If the

depth 𝑛 of κ of the form (4) does not exceed 𝐾 , then κ is as required. If 𝐾 > 𝑛, we shorten

κ as follows. Consider first the ‘prefix’ κ′
of κ formed by 𝜌0, . . . , 𝜌𝐾 . If 𝒥𝒟 ̸|= κ′(0), for all

𝒟 ∈ 𝐸−
, then κ′

is as required. Otherwise, for each 𝒟 ∈ 𝐸−
, we pick some 𝜌𝑖 with 𝑖 > 𝐾 such

that 𝜌𝑖 ̸⊆ tp𝑘+𝑗 , for any 𝑗, 1 ≤ 𝑗 ≤ 𝑘, which must exist since 𝒥𝒟 ̸|= κ(0). Then we construct

κ′′
by omitting from κ all 𝜌𝑙 that are different from those in κ′

and the chosen 𝜌𝑖 with 𝑖 > 𝐾 .

Clearly, κ′′
separates 𝐸 and is of polynomial size in 𝒟 and 𝒪.

(𝑖𝑖) A Σ𝑝2 upper bound follows immediately from (𝑖): we guess polynomial-size κ and 𝒥𝒟 , for

𝒟 ∈ 𝐸−
and then check in polynomial time that 𝒥𝒟 |= 𝒪,𝒟 and 𝒥𝒟 ̸|= κ(0) and in coNP [28]

that 𝒪,𝒟 |= κ(0) for all 𝒟 ∈ 𝐸+
.

We establish a matching lower bound by reduction of the validity problem for fully quantified

Boolean formulas of the form

∃𝑝 ∀𝑞 𝜓,

where 𝜓 is a propositional formula, and 𝑝 = 𝑝1, . . . , 𝑝𝑘 and 𝑞 = 𝑞1, . . . , 𝑞𝑚 are lists of

propositional variables. We assume w.l.o.g. that 𝜓 is not a tautology. We also assume that

¬𝜓 ̸|= 𝑥 for 𝑥 ∈ {𝑝𝑖,¬𝑝𝑖, 𝑞𝑗 ,¬𝑞𝑗 | 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑚}. Indeed, if ¬𝜓 |= 𝑥 then

𝜓 ≡ ¬𝑥 ∨ 𝜓′
, for some 𝜓′

, and when 𝑥 ∈ {𝑝𝑖,¬𝑝𝑖} the QBF formula ∃𝑝 ∀𝑞 𝜓 is vacuously

valid whereas when 𝑥 ∈ {𝑞𝑗¬𝑞𝑗} the QBF formula ∃𝑝∀𝑞 𝜓 is valid iff ∃𝑝∀𝑞′ 𝜓′
is, where 𝑞′ is

obtained from 𝑞 by removing 𝑞𝑗 . We regard propositional variables as atomic concepts and also

use fresh atoms 𝐴1, . . . , 𝐴𝑘, 𝐴̄1, . . . , 𝐴̄𝑘 and 𝐵.

Let 𝐸 = (𝐸+, 𝐸−) with 𝐸+ = {𝒟1,𝒟2}, 𝐸− = {𝒟3}, where

𝒟1 = {𝐵1(0)}, 𝒟2 = {𝐵2(0)}, 𝒟3 = {𝑞1(0), 𝑞2(0), . . . , 𝑞𝑚(0)},

and let 𝒪 contain (the normal forms of) the following axioms, for all 𝑖 = 1, . . . , 𝑘:

𝐵1 → ¬𝜓, 𝐵2 → ¬𝜓, (10)

𝑝𝑖 → ◇
(︀
𝐴̄𝑖 ∧

⋀︁
𝑗 ̸=𝑖

(𝐴𝑗 ∧ 𝐴̄𝑗)
)︀
, ¬𝑝𝑖 → ◇

(︀
𝐴𝑖 ∧

⋀︁
𝑗 ̸=𝑖

(𝐴𝑗 ∧ 𝐴̄𝑗)
)︀
, (11)

We show that ∃𝑝 ∀𝑞 𝜓 is valid iff 𝐸 is 𝒬𝑝[◇]-separable under 𝒪.

(⇒) Suppose ∃𝑝 ∀𝑞 𝜓 is valid. Take an assignment a for the variables 𝑝 such that under all

assignments b for the variables 𝑞 formula 𝜓 is true. Let 𝐶 be the conjunction of all 𝐴𝑖 with

a(𝑝𝑖) = 1 and all 𝐴̄𝑖 with a(𝑝𝑖) = 0, and let κ = ◇𝐶 . We show that κ separates 𝐸. Define an

interpretation 𝒥 by taking

• 𝒥 , 0 |= 𝑝𝑖 iff a(𝑝𝑖) = 1, for 𝑖 = 1, . . . , 𝑘 and 𝒥 , 0 |= 𝑞𝑗 , for 𝑗 = 1, . . . ,𝑚;

• if 𝒥 , 0 |= 𝑝𝑖, then 𝒥 , 𝑖 |= 𝐴̄𝑖 ∧
⋀︀
𝑗 ̸=𝑖(𝐴𝑗 ∧ 𝐴̄𝑗);

• if 𝒥 , 0 ̸|= 𝑝𝑖, then 𝒥 , 𝑖 |= 𝐴𝑖 ∧
⋀︀
𝑗 ̸=𝑖(𝐴𝑗 ∧ 𝐴̄𝑗).



By the definition, 𝒥 is a model of 𝒪 and 𝒟3 with 𝒥 , 0 ̸|= κ. On the other hand, let ℐ be a

model of 𝒪 and some 𝒟𝑙, 𝑙 = 1, 2. By (10), ℐ, 0 ̸|= 𝜓. Then the truth values of the 𝑝𝑖 in ℐ at

0 cannot reflect the truth values of the 𝑝𝑖 under a (for otherwise 𝜓 would be true at 0 in ℐ).

Take some 𝑖0 for which these truth values of 𝑝𝑖0 differ, say a(𝑝𝑖0) = 1 but ℐ, 0 ̸|= 𝑝𝑖0 . Then

ℐ, 0 |= ◇(𝐴𝑖0 ∧
⋀︀
𝑗 ̸=𝑖0(𝐴𝑗 ∧ 𝐴̄𝑗)), and so ℐ, 0 |= κ.

(⇐) Suppose a 𝒬𝑝[◇]-query κ separates 𝐸 but ∃𝑝 ∀𝑞 𝜓 is not valid. From our conditions

on 𝜓, it is easy to see by considering possible models of 𝒪 and 𝒟𝑙, 𝑙 = 1, 2, 3, that κ does not

contain occurrences of 𝐵1, 𝐵2, 𝑝𝑖, 𝑞𝑗 , 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑚. Let 𝒥 be a model of 𝒪 and 𝒟3

such that 𝒥 , 0 ̸|= κ. Let a be the assignment for 𝑝 given by 𝒥 at 0. As ∃𝑝 ∀𝑞 𝜓 is not valid,

there is an assignment b for 𝑞 such that 𝜓 is false under a and b. Consider an interpretation ℐ
such that ℐ, 0 |= 𝐵1, the truth values of 𝑝 and 𝑞 at 0 are given by a and b, and all other atoms

are interpreted as in 𝒥 . Then ℐ is a model of 𝒪 and 𝒟1, and so ℐ, 0 |= κ. But then 𝒥 |= κ, as

κ can only contain atoms 𝐴𝑖 and 𝐴̄𝑖, which is a contradiction showing that ∃𝑝∀𝑞 𝜓 is valid.

(𝑖𝑖𝑖) Follows from (𝑖) and the fact that query answering is in polynomial time [49]. ❑

Extending LTL
□
horn

with the next-time operator ○ leads to the following result:

Theorem 12. QBE(LTL
□○
horn

,𝒬𝑝[◇]) and QBE(LTL
□○
horn

,𝒬[◇]) are both PSpace-complete.

Proof. The lower bound follows from [50]. To obtain the upper one, we first recall from [47]

that 𝑘 and 𝑚 in (9) for the canonical model 𝒞𝒪,𝒟 of a given LTL
□○
horn

ontology 𝒪 and 𝒟 are

exponential in |𝒟| and |𝒪|, and so a given 𝐸 = (𝐸+, 𝐸−) is 𝒬𝑝[◇]-separable under 𝒪 iff it

is separated by a 𝒬𝑝[◇]-query κ of exponential size. Our nondeterministic PSpace-algorithm

incrementally guesses the 𝜌𝑖 in (4) (in the signature of 𝒪 and 𝐸) and checks whether they are

satisfiable in some relevant part of the relevant 𝒞𝒪,𝒟 , which can be done in PSpace. Details of

the algorithm are given below.

Let 𝐸+ = {𝒟+
1 , . . . ,𝒟+

𝑛 } and 𝐸− = {𝒟−
1 , . . . ,𝒟

−
𝑙 }. Let 𝐾 (respectively, 𝑀 ) be the maxi-

mum of all 𝑘 (respectively, 𝑚) for 𝒞𝒪,𝒟 with 𝒟 ∈ 𝐸+ ∪ 𝐸−
. The nondeterministic algorithm

starts by guessing a conjunction of atoms 𝜌0 and checking in PSpace that 𝒪,𝒟+
𝑖 |= 𝜌0(0) for

all 𝑖 ∈ [1, 𝑛]. We use numbers 𝑑+𝑖 , 𝑑
−
𝑗 ≤ 𝐾 +𝑀 , for 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑙], and a set 𝑁 ⊆ [1, 𝑙]

that will keep track of the negative examples yet to be separated. Initially, we set all 𝑑+𝑖 , 𝑑
−
𝑗 = 0

and 𝑁 = {𝑗 ∈ [1, 𝑙] | 𝒪,𝒟−
𝑗 |= 𝜌0(0)}. Then we repeat the following steps until 𝑁 = ∅, in

which case the algorithm terminates accepting the input:

• Guess a conjunction 𝜌 of atoms in the signature of 𝒪 and 𝐸.

• For every 𝑖 ∈ [1, 𝑛], check in PSpace that 𝒪,𝒟+
𝑖 |= ◇𝜌(𝑑+𝑖 ) and reject if this is not so.

• Guess 𝑑+𝑖
′

such that min(𝑑+𝑖 ,𝐾) < 𝑑+𝑖
′ ≤ 𝐾 +𝑀 and 𝒪,𝒟+

𝑖 |= 𝜌(𝑑+𝑖
′
).

• For each, 𝑗 ∈ 𝑁 check that 𝒪,𝒟−
𝑗 |= ◇𝜌(𝑑−𝑖 ). If no, remove 𝑗 from 𝑁 . Otherwise, find

in PSpace the smallest 𝑑−𝑖
′
such that min(𝑑−𝑖 ,𝐾) < 𝑑−𝑖

′ ≤ 𝐾+𝑀 and 𝒪,𝒟−
𝑖 |= 𝜌(𝑑−𝑖

′
).

• Set 𝑑+𝑖 := 𝑑+𝑖
′

and, for all 𝑗 still in 𝑁 , set 𝑑−𝑗 := 𝑑−𝑖
′
.

Let 𝜙𝑖 = 𝜌0 ∧◇(𝜌1 ∧◇(. . . (𝜌𝑖−1 ∧◇𝜌𝑖) . . . ), where 𝜌𝑖 is the conjunction of atoms guessed in

the 𝑖-th iteration. Let 𝑁𝑖 be the set 𝑁 after the 𝑖-th iteration. Then, for all 𝑗 ∈ [1, 𝑛], we have

𝒪,𝒟+
𝑗 |= 𝜙𝑖(0), for all 𝑗 ∈ 𝑁𝑖 we have 𝒪,𝒟−

𝑗 |= 𝜙𝑖(0), and for all 𝑗 ∈ [1, 𝑙] ∖ 𝑁𝑖 we have

𝒪,𝒟−
𝑗 ̸|= 𝜙𝑖(0). So the algorithm accepts after the ℓ-th iteration iff 𝜙ℓ separates (𝐸+, 𝐸−). ❑



For the full ontology language LTL
□○
bool

, we only obtain an upper bound:

Theorem 13. QBE(LTL
□○
bool
,𝒬𝑝[◇]) and QBE(LTL

□○
bool
,𝒬[◇]) is in NExpTime.

Proof. Similarly to the case of QBE(LTL
□
bool
,𝒬𝑝[◇]), one can show that if 𝐸 = (𝐸+, 𝐸−) is

𝒬𝑝[◇]-separable under 𝒪, then there exists a separating 𝒬𝑝[◇]-query of exponential size. We

show that, having guessed a 𝒬𝑝[◇]-query κ of exponential size, one can check in exponential

time whether κ separates 𝐸 under 𝒪.

For every data instance 𝒟, there is an automaton A𝒪,𝒟 over the alphabet of types for 𝒪 and

𝒟, which is computable and traversable in polynomial space (and therefore of exponential size),

such that each infinite run of it corresponds to a model of 𝒪 and 𝒟 (see, e.g., [51, 47]). There

is also an exponential-size automaton A¬κ (constructible and traversable in PSpace) whose

infinite runs correspond to interpretations that do not satisfy κ(0). For instance, assuming that

κ = 𝜌0 ∧◇(𝜌1 ∧◇(𝜌2 ∧ · · · ∧◇𝜌𝑛)), one can take the automaton shown below:

0 1 2
. . . 𝑛

1′

𝜌0

¬𝜌1

𝜌1

¬𝜌2

𝜌2 𝜌𝑛−1

¬𝜌𝑛

¬𝜌0

⊤

Here, each transition 𝜌𝑖 means the set of transitions that correspond to all of the types satisfying

𝜌𝑖, and the transitions ¬𝜌𝑖 mean the set of transitions that correspond to all of the types not

satisfying 𝜌𝑖. Then κ separates (𝐸+, 𝐸−) under 𝒪 iff

• for all 𝒟 ∈ 𝐸+
, there are no models (infinite runs) common to both A𝒪,𝒟 and A¬κ ;

• for all 𝒟 ∈ 𝐸−
, there is a model (infinite run) common to both A𝒪,𝒟 and A¬κ .

This can be decided in exponential time because all of the automata can be traversed using only

polynomial space. ❑

5. QBE(ℒ,𝒬[U−])

We next consider separability by 𝒬[U−]-queries, possibly mediated by Horn ontologies. We

start by establishing upper complexity bounds.

5.1. Upper bounds

Theorem 14. QBE(𝒬𝑝[U]) and QBE(LTL
□
horn

,𝒬𝑝[U]) are in NP.

Proof. We only need to show the result for QBE(LTL
□
horn

,𝒬𝑝[U]). Let 𝑀 be the maximum of

max𝒟 + 𝑠𝒪,𝒟 (see Proposition 5) over all 𝒟 ∈ 𝐸+ ∪ 𝐸−
. We observe that if 𝐸 is separable

under some LTL
□
horn

ontology 𝒪 by a query κ of the form (5), then it is separable by κ with



𝑛 ≤𝑀 . Indeed, suppose 𝒞𝒪,𝒟 |= κ(0) for all 𝒟 ∈ 𝐸+
and 𝒞𝒪,𝒟 ̸|= κ(0) for all 𝒟 ∈ 𝐸−

. Let

𝑋 = {𝐴 ∈ Σ | 𝒞𝒪,𝒟 |= 𝐴(𝑀) for all 𝒟 ∈ 𝐸+}. It follows that 𝜌𝑖 ⊆ 𝑋 , 𝜆𝑖+1 ⊆ 𝑋 ∪ {⊥} for

all 𝑖 ≥𝑀 . Clearly, if we remove the subquery 𝜆𝑀+1 U (𝜌𝑀+1 ∧ (. . . (𝜆𝑛 U 𝜌𝑛) . . . )) from κ,

it is still the case that 𝒞𝒪,𝒟 |= κ(0) for all 𝒟 ∈ 𝐸+
and 𝒞𝒪,𝒟 ̸|= κ(0) for all 𝒟 ∈ 𝐸−

. An

NP-algorithm can then guess a 𝒬𝑝[U]-query of depth ≤𝑀 and check in polynomial time (using

dynamic programming) whether it separates 𝐸. ❑

To obtain our results for QBE(LTL
□○
horn

,𝒬𝑝[U]) and QBE(LTL
□○
horn

,𝒬[U−]), we require some

technical definitions. Let ℳ = {ℐ𝑖 | 𝑖 ∈ 𝐼} be a set of LTL interpretations. We assume that

each ℐ𝑖 has a domain (N𝑖, <𝑖) isomorphic to (N, <) with N𝑖 ∩N𝑗 = ∅ for any 𝑖 ̸= 𝑗. We denote

the copy of 0 in N𝑖 by 0𝑖 and set 0 =
⋃︀
𝑖∈𝐼{0𝑖} Let ∆ ⊆

⋃︀
𝑖∈𝐼 N𝑖 be such that ∆ ∩ N𝑖 is finite

and convex in (N𝑖, <𝑖). We call ∆ an arena for ℳ. For an arena ∆ for ℳ, we say that 𝑑 is

in ∆ if 𝑑 ⊆ ∆ and we say that 𝑑 is in ℳ if there exists an arena ∆ for ℳ such that 𝑑 ⊆ ∆.

For any 𝑑 in ℳ, we set 𝑑𝑖 = 𝑑 ∩ N𝑖. We call 𝑑 singleton if |𝑑𝑖| = 1, 𝑖 ∈ 𝐼 . For a pair 𝑑, 𝑠 of

singletons in ℳ, we define 𝑑+ 𝑠 as a component-wise sum of 𝑑 and 𝑠. By definition, it is a

singleton in ℳ. For singleton 𝑑 and 𝑑′
, we write 𝑑⋖ 𝑑′

if 𝑑𝑖 <𝑖 𝑑
′
𝑖, 𝑖 ∈ 𝐼 . For singleton 𝑑 and

𝑑′
such that 𝑑 ⋖ 𝑑′

, we set ∇(𝑑,𝑑′) =
⋃︀
𝑖∈𝐼{𝑑 ∈ N𝑖 | 𝑑𝑖 < 𝑑 < 𝑑′

𝑖}. Observe that ∇(𝑑,𝑑′)
is in ℳ, but not necessarily singleton. We write ℳ,𝑑 |= κ if ℐ𝑖, 𝑑𝑖 |= κ for all 𝑑𝑖 ∈ 𝑑𝑖 and

𝑖 ∈ 𝐼 . By ℐ𝑖,𝑑𝑖 |= κ we mean that ℐ𝑖, 𝑑𝑖 |= κ for all 𝑑𝑖 ∈ 𝑑𝑖.
Given an LTL

□○
horn

-ontology 𝒪 and an example set 𝐸 = (𝐸+, 𝐸−), let 𝐸+ = {𝒟𝑖 | 𝑖 ∈ 𝐼}
and 𝐸− = {𝒟𝑖 | 𝑖 ∈ 𝐽}, assuming that 𝐼 and 𝐽 are disjoint. We set ℳ+

𝒪 = {𝒞𝒪,𝒟𝑖 | 𝑖 ∈ 𝐼}
and ℳ−

𝒪 = {𝒞𝒪,𝒟𝑖 | 𝑖 ∈ 𝐽}. Consider an infinite tree T+
(respectively, T−

) whose vertices are

non-empty finite sequences s of the form 0𝑠1 . . . 𝑠𝑛 such that 0⋖ 𝑠𝑘 are singletons in ℳ+
𝒪

(respectively, ℳ−
𝒪). The edges of T+

(T−
) are defined by taking s → s′ if s′ = s𝑠. We denote

by

∑︀
s the sum 0+ 𝑠1 + · · ·+ 𝑠𝑛, which is a singleton. For any finite subtree T+

2 of T+
and

any subtree T−
2 of T−

, we say that T+
2 is homomorphically embeddable into T−

2 if there is a map

ℎ such that s → s′ in T+
2 implies ℎ(s) → ℎ(s′) in T−

2 and

(at′) ℳ+
𝒪,

∑︀
s |= 𝐴 implies ℳ−

𝒪,
∑︀
ℎ(s) |= 𝐴, for all 𝐴 ∈ Σ;

(nxt′) ℳ+
𝒪,∇(

∑︀
s,
∑︀

s′) |= 𝐴 implies ℳ−
𝒪,∇(

∑︀
ℎ(s),

∑︀
ℎ(s′)) |= 𝐴, for all 𝐴 ∈ Σ∪{⊥}.

For a subtree of T+
, we say that it is finitely homomorphically embeddable into T−

2 if every finite

subtree of T+
is homomorphically embeddable into T−

2 .

Theorem 15. (𝑖) 𝐸 is not 𝒬[U−]-separable under an LTL
□○
horn

-ontology 𝒪 iff T+
is finitely

homomorphically embeddable into T−
.

(𝑖𝑖)𝐸 is not𝒬𝑝[U]-separable under𝒪 iff every finite path inT+
is homomorphically embeddable

into T−
.

Proof. The proof is a straightforward modification of the proof of Theorem 25. ❑

Let T+
1 be the restriction of T+

to s with 𝑠𝑘𝑖 ∈ [1,𝑀𝑖), where𝑀𝑖 = max𝒟𝑖+𝑠𝒪,𝒟𝑖 +2𝑝𝒪,𝒟𝑖

for 𝑖 ∈ 𝐼 . Similarly, let T−
1 be the tree defined as T−

but with the restriction that 𝑠𝑘𝑖 ∈ [1,𝑀𝑖),
where 𝑀𝑖 = max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 + 𝑝𝒪,𝒟𝑖 for 𝑖 ∈ 𝐽 . The following lemma is the first step towards

an algorithm for checking the criterion of Theorem 15 (𝑖):



Lemma 16. (𝑖) T+
is finitely homomorphically embeddable into T−

iff T+
1 is finitely homomor-

phically embeddable into T−
1 .

(𝑖𝑖) Every finite path of T+
is homomorphically embeddable into T−

iff every finite path of T+
1

is homomorphically embeddable into T−
1 .

Proof. (𝑖) First, we show that T+
is finitely homomorphically embeddable into T−

iff T+
1 is

finitely homomorphically embeddable into T−
. (⇒) is straightforward because T+

1 ⊆ T+
. (⇐)

Suppose T+
1 is finitely homomorphically embeddable into T−

. Let T′
be a finite subtree of T+

and let 𝑛 be the longest sequence in T′
. We define T′′

as a tree with all sequences 0𝑠1 . . . 𝑠𝑚,

𝑚 ≤ 𝑛, and 𝑠𝑗𝑖 ∈ [1,𝑀𝑖). Clearly, T′′
is a finite subtree of T+

1 ; take its embedding ℎ into

T−
. We now show how to construct an embedding ℎ′ of T′

into T−
. We set ℎ′(0) = ℎ(0).

Now, consider any sequence 0𝑠1 in T′
. If 𝑠1𝑖 ∈ [1,𝑀𝑖) for all 𝑖, we set ℎ′(0𝑠1) = ℎ(0𝑠1).

Suppose now 𝑠1𝑖 ≥ 𝑀𝑖. Then let 𝐷𝑖 = 𝑠1𝑖 −max𝒟𝑖 − 𝑠𝒪,𝒟𝑖 (mod 𝑝𝒪,𝒟𝑖) and take 𝑠𝑖 equal

to max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 + 𝑝𝒪,𝒟𝑖 + 𝐷𝑖. Clearly, 𝑠𝑖 ∈ [1,𝑀𝑖). We now construct 𝑒1 by taking

𝑒1𝑖 = 𝑠1𝑖 , if 𝑠1𝑖 ∈ [1,𝑀𝑖) and taking 𝑒1𝑖 = 𝑠𝑖 otherwise. We set ℎ′(0𝑠1) = ℎ(0𝑒1). It can

be readily verified that (at′) holds for ℎ′ and s = 0𝑠1 while (nxt′) holds for s′ = 0 and

s′ = 0𝑠1. Now, consider any sequence 0𝑠1𝑠2 in T′
. We show how to define ℎ′ for it. If

𝑠2𝑖 ∈ [1,𝑀𝑖) for all 𝑖, we set ℎ′(0𝑠1𝑠2) = ℎ(0𝑒1𝑠2). Suppose now 𝑠2𝑖 ≥ 𝑀𝑖. Then let

𝐷𝑖 = (𝑠2𝑖 −max𝒟𝑖 − 𝑠𝒪,𝒟𝑖) mod 𝑝𝒪,𝒟𝑖 and take 𝑠𝑖 equal to max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 + 𝑝𝒪,𝒟𝑖 +𝐷𝑖.

Clearly, 𝑠𝑖 ∈ [1,𝑀𝑖). We now construct 𝑒2 by taking 𝑒2𝑖 = 𝑠2𝑖 if 𝑠2𝑖 ∈ [1,𝑀𝑖) and 𝑒2𝑖 = 𝑠𝑖
otherwise. Set ℎ′(0𝑠1𝑠2) = ℎ(0𝑒1𝑒2). It can be readily verified that (at′) and (nxt′) hold for

the corresponding s.

To complete the proof of Lemma 16 (𝑖), we show that for any finite subtree of T+
1 , there

is a homomorphic embedding of it into T−
iff there exists an embedding of it into T−

1 . The

direction (⇐) is trivial, we only need to show (⇒). Let T′
be a finite subtree of T+

1 and ℎ′

its homomorphic embedding into T−
. Consider the maximal subtree of T+

1 genetated by 0
and satisfying ℎ′(s′)𝑖 − ℎ′(s)𝑖 < 𝑀𝑖, for all 𝑖 ∈ 𝐽 and each edge s → s′. For every s in it, set

ℎ(s) = ℎ′(s). Take s → s′ closest to 0 such that ℎ′(s′)𝑖−ℎ′(s)𝑖 ≥𝑀𝑖, for some 𝑖 ∈ 𝐽 . Let𝐷𝑖 =
ℎ′(s′)𝑖−ℎ′(s)𝑖−max𝒟𝑖− 𝑠𝒪,𝒟𝑖 (mod 𝑝𝒪,𝒟𝑖) and set ℎ(s′)𝑖 = ℎ′(s)𝑖+max𝒟𝑖+ 𝑠𝒪,𝒟𝑖 +𝐷𝑖

(recall that ℎ(s) = ℎ′(s)). Clearly, ℎ(s′)𝑖 − ℎ(s)𝑖 < 𝑀𝑖 and conditions (at′) and (nxt′) hold for

s, s′. Now, consider s′ → s′′ and suppose ℎ′(s′′)𝑖 − ℎ(s′)𝑖 ≥𝑀𝑖. Let 𝐷𝑖 = ℎ′(s′′)𝑖 − ℎ(s′)𝑖 −
max𝒟𝑖 − 𝑠𝒪,𝒟𝑖 (mod 𝑝𝒪,𝒟𝑖) and set ℎ(s′′)𝑖 = ℎ(s′)𝑖 + max𝒟 + 𝑖 + 𝑠𝒪,𝒟𝑖 + 𝐷𝑖. It can be

readily verified that (at′) and (nxt′) hold for the corresponding s.

The proof of (𝑖𝑖) is similar and left to the reader. ❑

By a transition system we mean a structure 𝑆 = (Σ1,Σ2,𝑊,𝐿,𝑅, 𝑠0), where Σ1 (Σ2)

is an alphabet of state (respectively, transition) labels, 𝑊 is a set of states 𝑠, 𝐿 is a set

of labelled states (𝑠, 𝑎), 𝑠 ∈ 𝑊 , 𝑎 ∈ Σ1, 𝑅 is a set of labelled transitions (𝑠, 𝑠′, 𝑏),
𝑠, 𝑠′ ∈ 𝑊 , 𝑏 ∈ Σ2 between states, and 𝑠0 ∈ 𝑊 is an initial state. A run of 𝑆
is a finite sequence (𝑠0, 𝑎0)(𝑠0, 𝑠1, 𝑏1)(𝑠1, 𝑎1)(𝑠1, 𝑠2, 𝑏2) . . . (𝑠𝑛−1, 𝑎𝑛−1)(𝑠𝑛−1, 𝑠𝑛, 𝑏𝑛)(𝑠𝑛, 𝑎𝑛)
such that (𝑠𝑖, 𝑎𝑖) ∈ 𝐿 and (𝑠𝑖, 𝑠𝑖+1, 𝑏𝑖+1) ∈ 𝑅. Given two transition systems

𝑆1 = (Σ1,Σ2,𝑊,𝐿,𝑅, 𝑠0) and 𝑆2 = (Σ1,Σ2,𝑊
′, 𝐿′, 𝑅′, 𝑠′0) (with the same state

and transition alphabets), we say that 𝑆1 is finitely contained in 𝑆2 if, for every run

(𝑠0, 𝑎0)(𝑠0, 𝑠1, 𝑏1)(𝑠1, 𝑎1)(𝑠1, 𝑠2, 𝑏2) . . . (𝑠𝑛−1, 𝑎𝑛−1)(𝑠𝑛−1, 𝑠𝑛, 𝑏𝑛)(𝑠𝑛, 𝑎𝑛) of 𝑆1, there exists a



run (𝑠′0, 𝑎0)(𝑠
′
0, 𝑠

′
1, 𝑏1)(𝑠

′
1, 𝑎1)(𝑠

′
1, 𝑠

′
2, 𝑏2) . . . (𝑠

′
𝑛−1, 𝑎𝑛−1)(𝑠

′
𝑛−1, 𝑠

′
𝑛, 𝑏𝑛)(𝑠

′
𝑛, 𝑎𝑛) of 𝑆2. We say

that 𝑆1 is finitely simulated by 𝑆2 if, for each finite 𝑊1 ⊆𝑊 , there is a relation 𝐻 ⊆𝑊1 ×𝑊 ′

such that the following conditions are satisfied:

• (𝑠0, 𝑠
′
0) ∈ 𝐻 ;

• (𝑠, 𝑎) ∈ 𝐿 implies (𝑠′, 𝑎) ∈ 𝐿′
, for all (𝑠, 𝑠′) ∈ 𝐻 and 𝑎 ∈ Σ1;

• if (𝑠, 𝑡, 𝑏) ∈ 𝑅 and (𝑠, 𝑠′) ∈ 𝐻 , then there exists 𝑡′ ∈ 𝑊 ′
such that (𝑠′, 𝑡′, 𝑏) ∈ 𝑅′

and

(𝑡, 𝑡′) ∈ 𝐻 , for all 𝑠, 𝑡 ∈𝑊1 and 𝑠′ ∈𝑊 ′
.

We say that 𝑆1 is simulated by 𝑆2 if the above condition is satisfied for 𝑊1 =𝑊 . (It is easy to

see that if 𝑊 is finite, then 𝑆1 is finitely simulated by 𝑆2 iff 𝑆1 is simulated by 𝑆2.) We require

the following known results (see, e.g., [31]):

Theorem 17. Let 𝑆1 and 𝑆2 be finite transitions systems. Then it can be checked in PSpace if 𝑆1
is finitely contained in 𝑆2, and it can be checked in P if 𝑆1 is (finitely) simulated by 𝑆2.

We next convert the trees T∘
1, for ∘ ∈ {+,−}, into infinite transition systems 𝑆∘ =

(Σ1,Σ2,𝑊
∘, 𝐿∘, 𝑅∘, 𝑠∘0). The state label alphabet Σ1 of 𝑆∘

is 2Σ and the transition label

alphabet is Σ2 = 2Σ∪{⊥}
. The states of 𝑆∘

are the nodes s of T∘
1 and the initial state is 0. We

define 𝐿+
as the set of pairs (s, 𝑋+

s ), where s is in T+
1 and 𝑋∘

s = {𝐴 ∈ Σ | ℳ∘
𝒪,

∑︀
s |= 𝐴}.

We define 𝑅+
as the set of triples (s, s′, 𝑋+

s,s′), where s → s′ in T+
1 and 𝑋∘

s,s′ (for s → s′ in T∘
1)

equals {𝐴 ∈ Σ ∪ {⊥} | ℳ∘
𝒪,∇(

∑︀
s,
∑︀

s′) |= 𝐴}. Finally, we define 𝐿−
as the set of pairs

(s, 𝑋), for s in T−
1 and 𝑋 ⊆ 𝑋−

s and 𝑅−
as the set of triples (s, s′, 𝑋), for s → s′ in T−

1 and

𝑋 ⊆ 𝑋−
s,s′ . The following result is an immediate consequence of Lemma 16 and Theorem 15:

Theorem 18. (𝑖) 𝐸 is not 𝒬[U−]-separable under 𝒪 iff 𝑆+
is finitely simulated by 𝑆−

.

(𝑖𝑖) 𝐸 is not 𝒬𝑝[U]-separable under 𝒪 iff 𝑆+
is finitely contained in 𝑆−

.

As the last step towards the algorithms for QBE(LTL
□○
horn

,𝒬𝑝[U]) and QBE(LTL
□○
horn

,𝒬[U−]),
we replace 𝑆∘

, for ∘ ∈ {+,−}, by finite transition systems 𝑆∘
1 = (Σ1,Σ2,𝑊

∘
1 , 𝐿

∘
1, 𝑅

∘
1, 𝑡

∘
0).

Denote 𝐼 by 𝐼+ and 𝐽 by 𝐼−. Let𝑁𝑖 = max𝒟𝑖+𝑠𝒪,𝒟𝑖 +𝑝𝒪,𝒟𝑖 for 𝑖 ∈ 𝐼+∪𝐼− (thus,𝑁𝑖 < 𝑀𝑖

for 𝑖 ∈ 𝐼+ and𝑁𝑖 =𝑀𝑖 for 𝑖 ∈ 𝐼−). The set of states𝑊 ∘
1 of 𝑆∘

1 contains all 𝑑 in ℳ∘
𝒪 such that

𝑑𝑖 ∈ [0, 𝑁𝑖). The initial states 𝑡∘0 are 0. To define the transitions and labels, we require several

technical definitions. For each 𝑖 ∈ 𝐼+ ∪ 𝐼−, we define the function 𝑟𝑖 : N𝑖 → N𝑖 such that

𝑟𝑖(𝑑) = 𝑑, if 𝑑 ∈ [0,𝑀𝑖) and 𝑟𝑖(𝑑) = [𝑑− (max𝒟𝑖 + 𝑠𝒪,𝒟𝑖)] (mod 𝑝𝒪,𝒟𝑖) + max𝒟𝑖 + 𝑠𝒪,𝒟𝑖

otherwise. For 𝑑 as above and 𝑠 with 𝑠𝑖 ∈ [0,𝑀𝑖), we define 𝑑 ⊕ 𝑠 equal to 𝑑′
such that

𝑑′
𝑖 = 𝑟𝑖(𝑑𝑖 + 𝑠𝑖). Denote by per

𝑘
𝑖 , for 𝑘 ∈ N, the interval

[max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 + 𝑝𝒪,𝒟𝑖𝑘,max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 + 𝑝𝒪,𝒟𝑖(𝑘 + 1)).



We define ∇′(𝑑, 𝑠) as the set 𝑆 =
⋃︀
𝑖∈𝐼 𝑆𝑖, where 𝑆𝑖 ⊆ N+

𝑖 and

𝑆𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑑𝑖,𝑑𝑖 + 𝑠𝑖), if 𝑑𝑖,𝑑𝑖 + 𝑠𝑖 < max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 or

𝑑𝑖 < max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 ,𝑑𝑖 + 𝑠𝑖 ∈ per
0
𝑖 ;

(𝑑𝑖,max𝒟𝑖 + 𝑠𝒪,𝒟𝑖) ∪ per
0
𝑖 , if 𝑑𝑖 < max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 ,𝑑𝑖 + 𝑠𝑖 ∈ per

𝑘
𝑖 ,

for some 𝑘 ≥ 1;

(𝑟𝑖(𝑑𝑖), 𝑟𝑖(𝑑𝑖 + 𝑠𝑖)), if 𝑑𝑖,𝑑𝑖 + 𝑠𝑖 ∈ per
𝑘
𝑖 , for some 𝑘 ∈ N;

per
0
𝑖 , if 𝑑𝑖 ∈ per

𝑘
𝑖 ,𝑑𝑖 + 𝑠𝑖 ∈ per

𝑘+2
𝑖 for some 𝑘 ∈ N;

(𝑟𝑖(𝑑𝑖),max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 + 𝑝𝒪,𝒟𝑖) ∪
[max𝒟𝑖 + 𝑠𝒪,𝒟𝑖 , 𝑟𝑖(𝑑𝑖 + 𝑠𝑖)), if 𝑑𝑖 ∈ per

𝑘
𝑖 ,𝑑𝑖 + 𝑠𝑖 ∈ per

𝑘+1
𝑖 for some 𝑘 ∈ N.

Now, define 𝐿+
1 as the set of pairs (𝑑, 𝑋+

𝑑 ), where 𝑑 ∈𝑊+
1 and𝑋∘

𝑑 = {𝐴 ∈ Σ | ℳ∘
𝒪,𝑑 |= 𝐴},

for 𝑑 in ℳ∘
𝒪. We define 𝑅+

1 as the set of triples (𝑑,𝑑 ⊕ 𝑠, 𝑋+
𝑑,𝑠), where 𝑑 is as above, 𝑠 is

such that 𝑠𝑖 ∈ [0,𝑀𝑖), and 𝑋∘
𝑑,𝑠 = {𝐴 ∈ Σ ∪ {⊥} | ℳ∘

𝒪,∇′(𝑑, 𝑠) |= 𝐴} for 𝑑 in ℳ∘
𝒪 and 𝑠

as above. Finally, we define 𝐿−
1 as the set of pairs (𝑑, 𝑋), where 𝑑 ∈𝑊−

1 and 𝑋 ⊆ 𝑋−
𝑑 , and

define 𝑅−
1 as the set of triples (𝑑,𝑑⊕ 𝑠, 𝑋), where 𝑑 is in 𝑊−

1 , 𝑠 is such that 𝑠𝑖 ∈ [0,𝑀𝑖), and

𝑋 ⊆ 𝑋−
𝑑,𝑠. Using the periodic structure of the canonical models and so the transitions in 𝑆∘

,

we can show the following:

Theorem 19. (𝑖) 𝑆+
is finitely simulated by 𝑆−

iff 𝑆+
1 is simulated by 𝑆−

1 .

(𝑖𝑖) 𝑆+
is finitely contained in 𝑆−

iff 𝑆+
1 is finitely contained in 𝑆−

1 .

It can be easily verified that 𝑆+
1 and 𝑆−

1 are of the exponential size in |𝒪| + |𝐸−| and

|𝒪|+ |𝐸+|, respectively, and can be constructed in ExpTime. Therefore, using the above result

together with Theorems 17 and 18, we obtain:

Theorem 20. QBE(LTL
□○
horn

,𝒬[U−]) is in ExpTime and QBE(LTL
□○
horn

,𝒬𝑝[U]) is in ExpSpace.

5.2. Lower bounds

Theorem 21. QBE(𝒬𝑝[U]) is NP-complete.

Proof. The proof is by reduction of KsubS. Suppose an instance 𝑆, 𝑘 of (KsubS) over the alphabet

{𝐴,𝐵} is given. We represent each word 𝑤 ∈ 𝑆 as an ABox 𝒟𝑤 as in the proof of Theorem 10.

Let 𝒟𝑛 = {𝐴(1), 𝐵(1), . . . , 𝐴(𝑛), 𝐵(𝑛)} and 𝒟+
𝑛 = {𝐴(2𝑖), 𝐵(2𝑖) | 1 ≤ 𝑖 ≤ 𝑛}.

Define𝐸 = (𝐸+, 𝐸−) by taking𝐸+ = {𝒟𝑤 | 𝑤 ∈ 𝑆}∪{𝒟𝑘,𝒟+
𝑘 } and𝐸− = {𝒟𝑘−1,𝒟+

𝑘−1}.

We show that 𝐸 is 𝒬𝑝[U]-separable iff there exists a common subsequence 𝜎 of the words in 𝑆
of length at least 𝑘.

(⇐) If 𝜎 = 𝐶1 . . . 𝐶𝑘 ∈ {𝐴,𝐵}𝑘 is a common subsequence of 𝑤 ∈ 𝑆, then 𝐸 is separated by

the query ⊤ U (𝐶1 ∧ ⊤ U (𝐶2 ∧ ⊤ U (· · · ∧ (⊤ U 𝐶𝑘) . . . ))).
(⇒) Suppose a 𝒬𝑝[U]-query κ = 𝜆0 U (𝜌1 ∧ 𝜆2 U (𝜌2 ∧ 𝜆3 U (· · · ∧ (𝜆𝑙 U 𝜌𝑙) . . . ))) with

𝜌𝑙 ̸= ∅ separates 𝐸. As 𝒟𝑘 ∈ 𝐸+
, we have 𝑙 ≤ 𝑘. As 𝒟𝑘−1 ∈ 𝐸−

, 𝑙 ≥ 𝑘, and so 𝑙 = 𝑘.

For any ABox 𝒟, we have 𝒟 |= κ(0) iff



there is 𝑓 : [0, 𝑘] → N such that 𝑓(0) = 0, 𝒟 |= 𝜌𝑖(𝑓(𝑖)), for 0 < 𝑖 ≤ 𝑘,

and 𝒟 |= 𝜆𝑖(𝑗) for all 𝑗 ∈ (𝑓(𝑖− 1), 𝑓(𝑖)). (12)

Consider such a map 𝑓 for 𝒟+
𝑘 ∈ 𝐸+

. Since 𝜌𝑘 ̸= ⊤, we have 𝑓(𝑘) ≤ 2𝑘. If 𝑓(𝑘) < 2𝑘,

then 𝒟+
𝑘−1 |= κ(0), contrary to 𝒟+

𝑘−1 ∈ 𝐸−
. So 𝑓(𝑘) = 2𝑘. Suppose there is 𝑖 ≤ 𝑘 with

𝑓(𝑖) − 𝑓(𝑖− 1) ≥ 3. Take 𝑓 ′ with 𝑓 ′(𝑗) = 𝑓(𝑗), for 𝑗 < 𝑖, and 𝑓 ′(𝑗) = 𝑓(𝑗) − 2, for 𝑗 ≥ 𝑖.
The map 𝑓 ′ satisfies (12), and so 𝒟+

𝑘−1 |= κ(0), which is again a contradiction. It follows that

𝑓(𝑖) = 2𝑖, for all 𝑖 ∈ [0, 𝑘], and 𝜆𝑖 = ⊤, for all 𝑖 ∈ [0, 𝑘]. Now, if there is 𝜌𝑖 = ⊤, then take

the map 𝑓 ′ with 𝑓 ′(𝑗) = 𝑓(𝑗) for 𝑗 < 𝑖, 𝑓 ′(𝑖) = 2𝑖 − 1, and 𝑓 ′(𝑗) = 2𝑗 − 2 for 𝑗 > 𝑖. It

satisfies (12), and so 𝒟+
𝑘−1 |= κ(0). Thus, 𝜌𝑖 ̸= ⊤ for all 𝑖. Since 𝒟𝑤 ∈ 𝐸+

for all 𝑤 ∈ 𝑆, each

𝜌𝑖 is either 𝐴 or 𝐵, and each 𝑤 contains the subsequence 𝜌1, . . . , 𝜌𝑘. ❑

Theorem 22. QBE(LTL
○
horn

,𝒬𝑝[U]) is NExpTime-hard.

Proof. Let 𝑀 be a non-deterministic Turing machine that accepts words 𝑥 over its tape alphabet

in at most 𝑁 = 2𝑝(|𝑥|) steps, for some polynomial 𝑝. Given such an 𝑀 and an input 𝑥, our aim

is to define an LTL
○
horn

ontology 𝒪 and an example set 𝐸 = (𝐸+, 𝐸−) of size polynomial in 𝑀
and 𝑥 such that 𝐸 is separated by a 𝒬𝑝[U]-query under 𝒪 iff 𝑀 accepts 𝑥.

Suppose 𝑀 = (𝑄,Σ, 𝛿, b, 𝑞0, 𝑞acc) with a set 𝑄 of states, tape alphabet Σ with b for blank,

transitional relation 𝛿 ⊆ (𝑄×Σ)×(𝑄×Σ×{−1, 0, 1}), initial state 𝑞0 and accepting state 𝑞acc.

Without loss of generality we assume that 𝑀 erases the tape before accepting, its head is at the

left-most cell in any accepting configuration, and if 𝑀 does not accept the input, it runs forever.

Given an input word 𝑥 = 𝑥1 . . . 𝑥𝑛 over Σ, we represent configurations c of a computation of

𝑀 on 𝑥 by the (𝑁−1)-long word written on the tape (with sufficiently many blanks at the end),

in which the symbol 𝑦 in the active cell is replaced by the pair (𝑞, 𝑦) with the current state 𝑞. An

accepting computation of 𝑀 on 𝑥 is encoded by the word 𝑤 = ♯c1 ♯ c2 ♯ . . . ♯ c𝑁−1 ♯ c𝑁 over

the alphabet Σ′ = Σ ∪ (𝑄× Σ) ∪ {♯}, where c1, c2, . . . , c𝑁 are the subsequent configurations

in the computation. In particular, c1 is the initial configuration (𝑞0, 𝑥1)𝑥2 . . . 𝑥𝑛b . . . b, and c𝑁
is the accepting configuration (𝑞acc, b)b . . . b. Thus, any accepting computation is encoded by a

word of length 𝑁2
.

Call a tuple t = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) ∈ (Σ′)6 legal [52, Theorem 7.37] if there exist two consecutive

configurations c1 and c2 of 𝑀 and a number 𝑖 such that

𝑎𝑏𝑐𝑑𝑒𝑓 = c1[𝑖]c1[𝑖+ 1]c1[𝑖+ 2]c2[𝑖]c2[𝑖+ 1]c2[𝑖+ 2].

Let L ⊆ (Σ′)6 be the set of all legal tuples (plus a few additional 6-tuples to take care of ♯).
Thus, a word 𝑤 encodes an accepting computation iff it starts with the initial configuration

preceded by ♯, ends with the accepting configuration, and

(𝑤[𝑖], 𝑤[𝑖+ 1], 𝑤[𝑖+ 2], 𝑤[𝑖+𝑁 ], 𝑤[𝑖+𝑁 + 1], 𝑤[𝑖+𝑁 + 2]) ∈ L,

for any 𝑖 ≤ 𝑁2 −𝑁 − 2. Let L̄ = (Σ′)6 ∖ L.

For any 𝑘 > 0, by a 𝑘-counter we mean a set A = {𝐴𝑖𝑗 | 𝑖 = 0, 1, 𝑗 = 1, . . . , 𝑘} of atomic

concepts that will be used to store values between 0 and 2𝑘 − 1, which can be different at

different time points. The counter A is well-defined at a time point 𝑛 ∈ N in an interpretation ℐ



if ℐ, 𝑛 |= 𝐴0
𝑗 ∧𝐴1

𝑗 → ⊥ and ℐ, 𝑛 |= 𝐴0
𝑗 ∨𝐴1

𝑗 , for any 𝑗 = 1, . . . , 𝑘. In this case, the value of A
at 𝑛 in ℐ is given by the unique binary number 𝑏𝑘 . . . 𝑏1 for which ℐ, 𝑛 |= 𝐴𝑏11 ∧ · · · ∧𝐴𝑏𝑘𝑘 . We

require the following formulas, for 𝑐 = 𝑏𝑘 . . . 𝑏1 (provided that A is well-defined):

• [A = 𝑐] = 𝐴𝑏11 ∧ · · · ∧𝐴𝑏𝑘𝑘 , for which ℐ, 𝑛 |= [A = 𝑐] iff the value of A is 𝑐;

• [A< 𝑐] =
⋁︀
𝑘≥𝑖≥1
𝑏𝑖=1

(︀
𝐴0
𝑖 ∧

⋀︀𝑘
𝑗=𝑖+1𝐴

𝑏𝑗
𝑗

)︀
with ℐ, 𝑛 |= [A < 𝑐] iff the value of A is < 𝑐;

• [A> 𝑐] =
⋁︀
𝑘≥𝑖≥1
𝑏𝑖=0

(︀
𝐴1
𝑖 ∧

⋀︀𝑘
𝑗=𝑖+1𝐴

𝑏𝑗
𝑗

)︀
with ℐ, 𝑛 |= [A > 𝑐] iff the value of A is > 𝑐.

We regard the set (○𝐹A) = {○𝐹𝐴
𝑖
𝑗 | 𝑖 = 0, 1, 𝑗 = 1, . . . , 𝑘} as another counter that stores at 𝑛

in ℐ the value stored byA at𝑛+1 in ℐ . Thus, we can use formulas like [A > 𝑐1] → [(○𝐹A) = 𝑐2],
which says that if the value of A at 𝑛 in ℐ is greater than 𝑐1, then the value of A at 𝑛+1 in ℐ is

𝑐2. Also, for 𝑙 ≤ 𝑘, we can use formulas like [A = 𝑖 (mod 2𝑙)] with self-explaining meaning.

To define 𝒪 and 𝐸 = (𝐸+, 𝐸−) for given 𝑀 and 𝑥 = 𝑥1 . . . 𝑥𝑛, we fix 𝑘 = ⌈log |Σ′|⌉+ 1
and 𝑚 = ⌈2𝑘 log𝑁⌉+ 1, and let Σ′ = {𝑎0, . . . , 𝑎𝑙}. We use the following atomic concepts in

𝒪 and 𝐸: the symbols in Σ′
, the atoms 𝐵, 𝑆, 𝐶 , 𝑇 , 𝐷, 𝐺, and 𝐹t, for t ∈ L̄, and those atoms

that are needed in 𝑚-counters S, C, T, D, G, Ft.

We define 𝐸 = (𝐸+, 𝐸−) by taking

• 𝐸+
with the ABoxes {𝑇 (0)}, {𝑆(0)}, and {𝐶(0)};

• 𝐸−
with the ABoxes {𝐷(0)}, {𝐺(0)}, and {𝐹t(0)}, for all t ∈ L̄.

The following axioms, for 𝐴 ∈ {𝑆,𝐶, 𝑇,𝐷,𝐺, 𝐹t} and t ∈ L̄, serve to initialise the corre-

sponding 𝑚-counters:

𝐴→ [(○A) = 0].

(These and all other axioms of𝒪 can be easily transformed to equivalent sets of LTL
○
horn

axiooms.)

The behaviour of each counter is specified by the axioms below whose meaning is illustrated

by the structure of the canonical model of the corresponding example restricted to 𝐵 and Σ′
.

The 𝑇 -axioms

[T < 𝑁2] → [○T = T+ 1], [T = 0] → ♯, [T = 1] → (𝑞1, 𝑥1),

[T = 2] → 𝑥2, . . . , [T = 𝑛] → 𝑥𝑛, [T > 𝑛] ∧ [T < 𝑁 ] → b, [T = 𝑁 ] → ♯,

[T > 𝑁 ] ∧ [T < 𝑁2 −𝑁 ] → 𝑋, for all 𝑋 ∈ Σ′
,

[T = 𝑁2 −𝑁 ] → ♯, [T = 𝑁2 −𝑁 + 1] → (𝑞acc, b), [T > 𝑁2 −𝑁 + 1] → b

together with the ABox {𝑇 (0)} give rise to the canonical model of the form

𝒞𝒪,{𝑇 (0)}: ∅, ♯, (𝑞1, 𝑥1), 𝑥2, . . . , 𝑥𝑛, b𝑁−𝑛−1, ♯, (Σ′)𝑁
2−2𝑁−1, ♯, (𝑞acc, b), b

𝑁−2, ∅, ∅, . . . .

The 𝐷-axioms

[D < 𝑁2 − 1] → [○D = D+ 1], [D < 𝑁2 − 1] → 𝑋, for all 𝑋 ∈ Σ′

and {𝐷(0)} give the canonical model



𝒞𝒪,{𝐷(0)}: ∅, (Σ′)𝑁
2−1, ∅, ∅, . . . .

The 𝑆-axioms

[S < 2𝑁2] → [○S = S+1], [S < 2𝑁2]∧𝑆0
0 → 𝐵, [S < 2𝑁2]∧𝑆1

0 → 𝑋, for all 𝑋 ∈ Σ′,

and {𝑆(0)} generate the canonical model

𝒞𝒪,{𝑆(0)}: ∅, (𝐵,Σ′)𝑁
2
, ∅, ∅, . . . ,

The 𝐺-axioms

[G < 2𝑁2 − 2] → [○G = S+ 1], [G < 2𝑁2 − 2] ∧𝐺0
0 → 𝐵,

[G < 2𝑁2 − 2] ∧𝐺1
0 → 𝑋, for all 𝑋 ∈ Σ′,

and {𝐺(0)} generate

𝒞𝒪,{𝐺(0)}: ∅, (𝐵,Σ′)𝑁
2−1, ∅, ∅, . . .

and the 𝐶-axioms

[C < 2𝑘𝑁2] → [○C = C+1], [C < 2𝑘𝑁2] → 𝐵, [C = 𝑖 (mod 2𝑘)] → 𝑎𝑖, for all 𝑖 ∈ [0, 𝑙]

together with {𝐶(0)} generate

𝒞𝒪,{𝐶(0)}: ∅, (𝑎0𝐵, 𝑎1𝐵, . . . , 𝑎𝑙𝐵,𝐵2𝑘−𝑙−1)𝑁
2
, ∅, ∅, . . . .

Finally, the 𝐹t-axioms, for t = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) ∈ L̄,

[Ft < 2𝑁2] → [○Ft = Ft + 1],

[Ft < 𝑁2 −𝑁 − 2] → 𝑋, for all 𝑋 ∈ Σ′ ∪ {𝐵},

[Ft = 𝑁2 −𝑁 − 2] → 𝑎, [Ft = 𝑁2 −𝑁 − 1] → 𝑏, [Ft = 𝑁2 −𝑁 ] → 𝑐,

[Ft > 𝑁2 −𝑁 ] ∧ [Ft < 𝑁2 − 2] → 𝑋, for all 𝑋 ∈ Σ′
,

[Ft = 𝑁2 − 2] → 𝑑, [Ft = 𝑁2 − 1] → 𝑒, [Ft = 𝑁2] → 𝑓,

[Ft > 𝑁2] → 𝑋, for all 𝑋 ∈ Σ′
,

and the ABox {𝐹t(0)} give the canonical model

𝒞𝒪,{𝐹t(0)}: ∅, (Σ′ ∪ {𝐵})𝑁2−𝑁−2, 𝑎, 𝑏, 𝑐, (Σ′)𝑁−2, 𝑑, 𝑒, 𝑓, (Σ′)𝑁
2
, ∅, ∅, . . . .

We denote the set of the axioms above by 𝒪 and show that 𝐸 is separated by a 𝒬𝑝[U]-query κ
under 𝒪 iff 𝑀 accepts 𝑥.

(⇐) Suppose 𝜌1 . . . 𝜌𝑁2 encodes an accepting computation of 𝑀 on 𝑥. Consider the 𝒬𝑝[U]-
query

κ = 𝐵 U (𝜌1 ∧𝐵 U (𝜌2 . . . (𝜌𝑁2−1 ∧ (𝐵 U 𝜌𝑁2)) . . . )).



It is not hard to show by inspecting the respective canonical models described above that

𝒞𝒪,{𝑇 (0)} |= κ(0), 𝒞𝒪,{𝑆(0)} |= κ(0), 𝒞𝒪,{𝐶(0)} |= κ(0),
𝒞𝒪,{𝐷(0)} ̸|= κ(0), 𝒞𝒪,{𝐺(0)} ̸|= κ(0), 𝒞𝒪,{𝐹t(0)} ̸|= κ(0).

To prove the last one, notice that 𝒞𝒪,{𝐹t(0)} ̸|= 𝐵(𝑖) for all 𝑖 ≥ 𝑁2 − 𝑁 − 2. Therefore, if

𝒞𝒪,{𝐹t(0)} |= κ(0), there is 𝑖 ≤ 𝑁2 −𝑁 − 2 such that 𝒞𝒪,{𝐹t(0)} |= 𝜌𝑖+𝑗(𝑁
2 −𝑁 − 2 + 𝑗) for

all 𝑗 ∈ [0, 𝑁2 − 𝑖]. But then 𝜌𝑖𝜌𝑖+1𝜌𝑖+2 = 𝑎𝑏𝑐 and, since 𝜌𝑖+𝑁𝜌𝑖+𝑁+1𝜌𝑖+𝑁+2 ̸= 𝑑𝑒𝑓 , we have

𝒞𝒪,{𝐹t(0)} ̸|= 𝜌𝑖+𝑁 (𝑁
2 − 2) ∧ 𝜌𝑖+𝑁+1(𝑁

2 − 1) ∧ 𝜌𝑖+𝑁+2(𝑁
2), which is a contradiction.

(⇒) Suppose the query

κ = 𝜆1 U (𝜌1 ∧ 𝜆2 U (𝜌2 . . . (𝜌𝐾−1 ∧ (𝜆𝐾 U 𝜌𝐾)) . . . ))

with 𝜌𝐾 ̸= ⊤ separates 𝐸 under 𝒪. Since 𝒞𝒪,{𝑇 (0)} |= κ(0), we have 𝐾 ≤ 𝑁2
and 𝜌𝑖 ⊆ Σ′

for

all 𝑖. Since 𝒞𝒪,{𝐷(0)} ̸|= κ(0), we have 𝐾 > 𝑁2 − 1, and so 𝐾 = 𝑁2
. Since 𝒞𝒪,{𝐶(0)} |= κ(0)

and 𝐵 /∈ Σ′
, we have |𝜌𝑖| ≤ 1 for all 𝑖. Since 𝒞𝒪,{𝑆(0)} |= κ(0) and 𝒞𝒪,{𝐺(0)} ̸|= κ(0), we have

|𝜌𝑖| ≥ 1 and 𝜆𝑖 ⊆ {𝐵} for all 𝑖. So |𝜌𝑖| = 1.

Suppose 𝜆𝑖 = ⊤ for some 𝑖. Let 𝑦𝑗 = 𝑗 for 𝑗 ∈ [1, 𝑖−1], 𝑦𝑗 = 𝑁2+𝑗−𝑖+1 for 𝑗 ∈ [𝑖,𝑁2], let

𝑎𝑏𝑐𝑑𝑒 = 𝜌𝑁2−𝑁−2𝜌𝑁2−𝑁−1𝜌𝑁2−𝑁𝜌𝑁2−2𝜌𝑁2−1, and choose 𝑓 so that t = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) ∈ L̄.

Then 𝒞𝒪,{𝐹t(0)} |= 𝜌𝑗(𝑦𝑗) for all 𝑗, and so 𝒞𝒪,{𝐹t(0)} |= κ(0), which is a contradiction. Thus,

𝜆𝑖 = 𝐵 for all 𝑖.
Suppose 𝜌1 . . . 𝜌𝑁2 does not encode an accepting computation of 𝑀 on 𝑥. In view of

𝒞𝒪,{𝑇 (0)} |= κ(0), we have 𝜌1 . . . 𝜌𝑁+1 = ♯(𝑞1, 𝑥1)𝑥2 . . . 𝑥𝑛b
𝑁2−𝑁−1♯ and 𝜌𝑁2−𝑁 . . . 𝜌𝑁2 =

(𝑞𝑎𝑐𝑐, b)b
𝑁−2

, so there is some 𝑖 such that (𝜌𝑖, 𝜌𝑖+1, 𝜌𝑖+2, 𝜌𝑁+𝑖, 𝜌𝑁+𝑖+1, 𝜌𝑁+𝑖+2) ∈ L̄. Let

t = 𝜌𝑖𝜌𝑖+1𝜌𝑖+2𝜌𝑁+𝑖𝜌𝑁+𝑖+1𝜌𝑁+𝑖+2. Let 𝑦𝑗 = 𝑗 for 𝑗 ∈ [1, 𝑖−1] and 𝑦𝑗 = 𝑁2−𝑁−2+𝑗−𝑖 for

𝑗 ∈ [𝑖,𝑁2]. We have 𝒞𝒪,{𝐹t(0)} |= 𝜌𝑗(𝑦𝑗), and so 𝒞𝒪,{𝐹t(0)} |= κ(0), which is impossible. ❑

6. QBE(ℒ,𝒬[U])

To deal with arbitrary 𝒬[U]-queries (with possibly nested U-operators on the left-hand side of

U), we require a few more technical definitions.

Let ℳ = {ℐ𝑖 | 𝑖 ∈ 𝐼} be a set of LTL interpretations and ∆ an arena for ℳ (see the previous

section). Let 𝑑1,𝑑2 ⊆ ∆ be nonempty. For any 𝑑 ∈ 𝑑1
𝑖 , let 𝜇𝑖(𝑑) = min{𝑑′ ∈ 𝑑2

𝑖 | 𝑑 <𝑖 𝑑′}. If

𝜇𝑖 is a surjective 𝑑1
𝑖 → 𝑑2

𝑖 function, for every 𝑖 ∈ 𝐼 , we write 𝑑1 ⋖ 𝑑2
and set

∇(𝑑1,𝑑2) =
⋃︁
𝑖∈𝐼

⋃︁
𝑑∈𝑑1

𝑖

{𝑑′ ∈ ∆ | 𝑑 <𝑖 𝑑′ <𝑖 𝜇𝑖(𝑑)}.

We thereby generalise the definition of ⋖ and ∇ from the previous section to possibly non-

singleton 𝑑. For singleton 𝑑, the old and new definitions coincide.

Example 23. Let ℳ consist of one interpretation, ∆ = {1, 2, 3, 4}, 𝑑1 = {1, 2, 3} and

𝑑2 = {3, 4}. Then 𝑑1 ⋖ 𝑑2
with ∇(𝑑1,𝑑2) = {2}. However, for 𝑑1 = {1, 2} and 𝑑2 = {3, 4},

we have neither 𝑑1 ⋖ 𝑑2
(because 𝜇 is not a surjection) nor 𝑑2 ⋖ 𝑑1

(because 𝜇 is not defined).



Given an arena ∆ for ℳ and a set Σ of atoms, a Σ∆-U-simulation between ℳ and an LTL

interpretation 𝒥 is a binary relation 𝑆 ̸= ∅ between ℘(∆) ∖ {∅} and the domain ∆𝒥 = N of

𝒥 such that the following conditions hold (cf. [26]):

(at) if (𝑑, 𝑒) ∈ 𝑆 and ℳ,𝑑 |= 𝐴, then 𝒥 , 𝑒 |= 𝐴, for every 𝐴 ∈ Σ;

(nxt) if (𝑑, 𝑒) ∈ 𝑆 and 𝑑 ⋖ 𝑑′ ∈ ∆, then there exists 𝑒′ > 𝑒 such that (𝑑′, 𝑒′) ∈ 𝑆 and

(∇(𝑑,𝑑′), 𝑒′′) ∈ 𝑆, for every 𝑒′′ with 𝑒 < 𝑒′′ < 𝑒′.

If (𝑑, 𝑒) ∈ 𝑆, we say that 𝑆 is via (𝑑, 𝑒).

Example 24. Suppose ℳ consists of the interpretations whose ‘meaningful parts’ are shown

on the left-hand side of the picture below (with no atom being true at any of the omitted

time points) and suppose the ‘meaningful part’ of an interpretation 𝒥 looks like that on the

right-hand side. Let ∆ = {01, 11, 21, 31, 02, 12, 22} and Σ = {𝑝, 𝑞, 𝑟}. We show how to

construct a Σ∆-U-simulation 𝑆 between ℳ and 𝒥 via (0, 0). First, we add (0, 0) to 𝑆 = ∅
and consider all 𝑑 ⊆ ∆ with 0⋖ 𝑑 and then all 𝑑′ ⊆ ∆ with 𝑑⋖ 𝑑′

:

• 0⋖ 1 with ∇(0,1) = ∅, and we add (1, 1) to 𝑆;

• 0⋖ {11, 22} with ∇(0, {11, 22}) = {12}, and we add ({11, 22}, 1) to 𝑆;

• 0⋖ {21, 12} with ∇(0, {21, 12}) = {11}, and we add ({21, 12}, 1) to 𝑆;

• 0⋖ {21, 12} with ∇(0, {21, 12}) = {11}, and we add ({21, 12}, 1) to 𝑆;

• 0⋖ 2 with ∇(0,2) = 1, and we add (2, 2) to 𝑆, with (1, 1) being in 𝑆 already;

• 0 ⋖ {31, 12} with ∇(0, {31, 12}) = {11, 21, 12}, and we add both ({31, 12}, 2) and

({11, 21}, 1) to 𝑆;

• 0 ⋖ {31, 22} with ∇(0, {31, 22}) = {11, 21, 12}, and we add both ({31, 22}, 2) and

({11, 21, 12}, 1) to 𝑆;

• 1⋖ 2 with ∇(1,2) = ∅, and we already have (2, 2) ∈ 𝑆;

• 1⋖ {31, 22} with ∇(1, {31, 22}) = {11}, and we already have ({31, 22}, 2) ∈ 𝑆;

• {11, 21}⋖ {31} with ∇({11, 21}, {31}) = {21}, so we add ({31}, 2) to 𝑆;

• {21, 12}⋖ {31, 22} with ∇({21, 12}, {31, 22}) = {21} and ({31, 22}, 2) ∈ 𝑆;

• {11, 21, 12}⋖ {31, 22} with ∇({11, 21, 12}, {31, 22}) = {21}, ({31, 22}, 2) ∈ 𝑆.



Theorem 25. Let 𝐸 = (𝐸+, {𝒟𝑁}) be an example set, 𝒪 an LTL ontology, and Σ the set of

atoms that occur in 𝐸 and 𝒪. Suppose ℳ𝒟 , for each 𝒟 ∈ 𝐸+
, is a set of models of 𝒪 and 𝒟 such

that, for all 𝒬[U]-queries κ with atoms from Σ,

𝒪,𝒟 |= κ(0) iff ℐ |= κ(0) for all ℐ ∈ ℳ𝒟. (13)

Then the following conditions are equivalent:

(𝑖) there is no κ ∈ 𝒬[U] separating 𝐸 under 𝒪;

(𝑖𝑖) for any model 𝒥 of 𝒪 and 𝒟𝑁 and any arena ∆ for ℳ =
⋃︀

𝒟∈𝐸+ ℳ𝒟 , there exists a

Σ∆-U-simulation between ℳ and 𝒥 via (0, 0).

Proof. We require a few definitions. Let ℳ = {ℐ𝑖 | 𝑖 ∈ 𝐼}. For any 𝑖 ∈ 𝐼 and any κ = 𝜙 U 𝜓
with ℐ𝑖, 𝑘 |= κ, for some 𝑘 ∈ N, let mw𝑖(κ, 𝑘) be the minimal 𝑚 > 𝑘 witnessing ℐ𝑖, 𝑘 |= κ in

the sense that ℐ𝑖,𝑚 |= 𝜓 and ℐ𝑖, 𝑙 |= 𝜙 for all 𝑙 with 𝑘 < 𝑙 < 𝑚. Note that if 𝑘 < 𝑘′, ℐ𝑖, 𝑘 |= κ,

ℐ𝑖, 𝑘′ |= κ and mw𝑖(κ, 𝑘) > 𝑘′, then mw𝑖(κ, 𝑘) = mw𝑖(κ, 𝑘′). Now, for any κ ∈ 𝒬[U], we

define inductively a number reach𝑖(κ, 𝑛) by taking

• reach𝑖(𝐴, 𝑘) = 𝑘, for any atom 𝐴,

• reach𝑖(𝜙 ∧ 𝜓, 𝑘) = max{reach𝑖(𝜙, 𝑘), reach𝑖(𝜓, 𝑘)},

• reach𝑖(𝜙 U 𝜓, 𝑘) = max{reach𝑖(𝜙,mw𝑖(𝜙 U 𝜓, 𝑘)− 1), reach𝑖(𝜓,mw𝑖(𝜙 U 𝜓, 𝑘))}.

Lemma 26. Suppose κ ∈ 𝒬[U], 𝑑 ⊆
⋃︀
𝑖∈𝐼 N𝑖 with finite 𝑑𝑖, and ℳ,𝑑 |= κ. Let ∆κ,𝑑 =⋃︀

𝑖∈𝐼
⋃︀
𝑑∈𝑑𝑖

{𝑘 ∈ N | 𝑑 ≤ 𝑘 ≤ reach𝑖(κ, 𝑑)}. If there exists a Σ∆κ,𝑑
-U-simulation 𝑆 between

ℳ and an interpretation 𝒥 via (𝑑, 𝑒), then 𝒥 , 𝑒 |= κ.

Proof. The proof is by induction on the construction of κ. The basis follows immediately from

the definition, and the case κ = 𝜙 ∧ 𝜓 follows from IH because 𝑆 is also a Σ∆𝜙,𝑑
-U- and

Σ∆𝜓,𝑑
-U-simulation. So let κ = 𝜙 U 𝜓. For any 𝑖 ∈ 𝐼 and 𝑑 ∈ 𝑑𝑖, we have ℐ𝑖,mw𝑖(κ, 𝑑) |= 𝜓.

Let 𝑑′ =
⋃︀
𝑖∈𝐼

⋃︀
𝑑∈𝑑𝑖

{mw𝑖(κ, 𝑑)} ⊆ ∆κ,𝑑
. Since 𝑑⋖ 𝑑′

because 𝜇𝑖(𝑑) = mw𝑖(κ, 𝑑), there is

𝑒′ > 𝑒 such that (𝑑′, 𝑒′) ∈ 𝑆 and (∇(𝑑,𝑑′), 𝑒′′) ∈ 𝑆, for every 𝑒′′ with 𝑒 < 𝑒′′ < 𝑒′. By the

definition, ℳ,𝑑′ |= 𝜓. It also follows from the definitions of simulation and the functions

reach𝑖 that the restriction of 𝑆 to ∆𝜓,𝑑′
is a Σ∆𝜓,𝑑′

-U-simulation between ℳ and 𝒥 via

(𝑑′, 𝑒′). We also have ℐ𝑖, 𝑑′′ |= 𝜙 whenever 𝑑 < 𝑑′′ < mw𝑖(κ, 𝑑), and so ℳ,∇(𝑑,𝑑′) |= 𝜙.

And we have a Σ∆𝜙,∇(𝑑,𝑑′)
-U-simulation between ℳ and 𝒥 via (∇(𝑑,𝑑′), 𝑒′′), for every 𝑒′′

with 𝑒 < 𝑒′′ < 𝑒′. By IH, 𝒥 , 𝑒′ |= 𝜓 and 𝒥 , 𝑒′′ |= 𝜙 for all such 𝑒′′, from which 𝒥 , 𝑒 |= κ. ❑

We now proceed with the proof of our theorem.

(𝑖𝑖) ⇒ (𝑖) Suppose on the contrary that κ ∈ 𝒬[U] separates 𝐸 under 𝒪. Then ℐ𝑖, 0𝑖 |= κ
for all 𝐼𝑖 ∈ ℳ and there is a model 𝒥 of 𝒪 and 𝒟𝑁 with 𝒥 , 0 ̸|= κ. Now, take a Σ∆κ,𝑛

-U-

simulation 𝑆 between ℳ and 𝒥 via (0, 0). By Lemma 26, we then have 𝒥 , 0 |= κ, which is

impossible.

(𝑖) ⇒ (𝑖𝑖) Suppose we have a model 𝒥 of 𝒪 and 𝒟𝑁 and an arena ∆ for ℳ such that there

is no Σ∆-U-simulation between ℳ and 𝒥 via (0, 0). We construct a query κ ∈ 𝒬[U] that



separates 𝐸 under 𝒪 as follows. For any 𝑑 ⊆ ∆, we set inductively, using the fact that ∆ ∩ N𝑖
is finite, and so any chain 𝑑⋖ 𝑑1 ⋖ . . .⋖ 𝑑𝑙 ⋖ . . . with the 𝑑𝑗 ⊆ ∆ is finite, too:

𝜙𝑑 =
⋀︁
𝐴∈Σ

ℳ,𝑑|=𝐴

𝐴 ∧
⋀︁

𝑑′⊆Δ
𝑑⋖𝑑′

𝜙∇(𝑑,𝑑′) U 𝜙𝑑′ .

Aiming to show that κ = 𝜙0 separates𝐸 under 𝒪, we first prove by induction that ℐ𝑖,𝑑𝑖 |= 𝜙𝑑,

for any 𝑑 ⊆ ∆. The basis of induction is the obvious case when there is no 𝑑′ ⊆ ∆ with

𝑑⋖ 𝑑′
. Suppose now that our statement holds for all subformulas 𝜙𝑑1 of 𝜙𝑑 and show it for

𝜙𝑑. To prove that ℐ𝑖,𝑑𝑖 |= 𝜙∇(𝑑,𝑑′) U 𝜙𝑑′ for each 𝑑′ ⊆ ∆ with 𝑑⋖ 𝑑′
, consider any 𝑑 ∈ 𝑑𝑖.

Since 𝜇𝑖(𝑑) ∈ 𝑑′
𝑖, the IH yields ℐ𝑖, 𝜇𝑖(𝑑) |= 𝜙𝑑′ . Now, take any 𝑐 with 𝑑 <𝑖 𝑐 <𝑖 𝜇𝑖(𝑑). Then

𝑐 ∈ ∇(𝑑,𝑑′)𝑖 and, by IH, ℐ𝑖, 𝑐 |= 𝜙∇(𝑑,𝑑′). Thus, we obtain ℐ𝑖,𝑑𝑖 |= 𝜙∇(𝑑,𝑑′) U 𝜙𝑑′ . It follows

that ℐ𝑖, 0𝑖 |= 𝜙0, as required.

It remains to show that 𝒥 , 0 ̸|= 𝜙0. Suppose otherwise and construct a Σ∆-U-simulation

𝑆 between ℳ and 𝒥 via (0, 0), leading to a contradiction. We start by taking 𝑆0 = {(0, 0)}.

Condition (at) holds for the pair in 𝑆0 because 𝒥 , 0 |= 𝐴 for all 𝐴 ∈ Σ with ℳ,0 |= 𝐴. On

the other hand, for any 𝑑′ ⊆ ∆ with 0 ⋖ 𝑑′
, there is 𝑛𝑑′ > 0 such that 𝒥 , 𝑛𝑑′ |= 𝜙𝑑′ and

𝒥 , 𝑛∇(0,𝑑′) |= 𝜙∇(0,𝑑′) for all 𝑛∇(0,𝑑′) with 0 < 𝑛∇(0,𝑑′) < 𝑛𝑑′ . We extend 𝑆0 by adding to it

(𝑑′, 𝑛𝑑′), for each such 𝑑′
, together with all the pairs (∇(0,𝑑′), 𝑛∇(0,𝑑′)), and denote the result

by 𝑆1. Condition (at) holds for all (𝑑1, 𝑛𝑑1) ∈ 𝑆1 in view of 𝒥 , 𝑛𝑑1 |= 𝜙𝑑1 . To satisfy (nxt) for

the newly added pairs, we use the second conjunct of 𝜙𝑑1 and extend 𝑆1 to 𝑆2 in the same way

as we did it for 𝑆0. We proceed in this way till there are no (𝑑, 𝑒) ∈ 𝑆𝑗 ∖ 𝑆𝑗−1 with 𝑑⋖ 𝑑′
and

𝑑′ ⊆ ∆, which must be the case for some 𝑗 in view of the finiteness of the ∆𝑖 and the definition

of ⋖. The resulting 𝑆 = 𝑆𝑗 is the required Σ∆-U-simulation between ℳ and 𝒥 via (0, 0). ❑

To understand the complexity of checking the existence of simulations, we re-define them in

game-theoretic terms. We begin by giving a brief abstract description of the games we need.

Every game 𝐺 is played by two players, Player 1 and Player 2, and defined by a set S of states,

a set C of challenges, and two functions 𝜒 : S → 2C and 𝜌 : S× C → 2S, where 𝜒(s) is the set

of challenges Player 1 can choose from in any state s and 𝜌(s, c) is the set of responses available

to Player 2 in order to respond to any challenge c made by Player 1 in state s. The game starts

in an initial state s0 ∈ S and is played in rounds. In each round 𝑖, for 𝑖 > 0, the current state

is s𝑖−1 ∈ S. If 𝜒(s𝑖−1) = ∅, then Player 1 loses. Otherwise, Player 1 challenges Player 2 by

choosing c𝑖 ∈ 𝜒(s𝑖−1). If 𝜌(s𝑖−1, c𝑖) = ∅, then Player 2 loses. Otherwise, Player 1 responds

with s𝑖 ∈ 𝜌(s𝑖−1, c𝑖), which becomes the current state for the next round 𝑖+1. A play of length

𝑛 starting from s0 ∈ S is any sequence s0, . . . , s𝑛 of states obtained as described above. For

any ordinal 𝜆 ≤ 𝜔, we say that Player 2 has a 𝜆-winning strategy in the game 𝐺 starting from

s0 if, for any play s0, . . . , s𝑛 with 𝑛 < 𝜆 that is played according to this strategy, Player 2 has a

response to any challenge of Player 1 in the final state s𝑛.

Let ℳ = {ℐ𝑖 | 𝑖 ∈ 𝐼} be a set of LTL interpretations with 0 =
⋃︀
𝑖∈𝐼{0𝑖}, ∆ an arena for

ℳ, and 𝒥 an LTL interpretation. We define a game 𝐺(ℳ,∆,𝒥 ) in the table below, where,

intuitively, Player 1 aims to show that there is no Σ∆-U-simulation between ℳ and 𝒥 , while

Player 2 wants to show that such a simulation exists.



Game 𝐺(ℳ,∆,𝒥 )

states (0, 0) and (𝑑1,𝑑2, 𝑒1, 𝑒2), where 𝑑1
and 𝑑2

are non-empty in ∆ with

𝑑1 ⋖ 𝑑2
, 𝑒1, 𝑒2 ∈ N with 𝑒1 < 𝑒2, and ℳ,𝑑𝑗 |= 𝐴 implies 𝒥 , 𝑒𝑗 |= 𝐴,

for all 𝐴 ∈ Σ and 𝑗 = 1, 2

initial state (0, 0)

challenges, 𝑖 = 0 (0, 0) → (0,𝑑2, 0) with 0⋖ 𝑑2
(type A)

challenges, 𝑖 > 0 (𝑑1,𝑑2, 𝑒1, 𝑒2) → (𝑑2,𝑑3, 𝑒2) with 𝑑2 ⋖ 𝑑3
(type A)

(𝑑1,𝑑2, 𝑒1, 𝑒2) → (∇(𝑑1,𝑑2), 𝑒3) with 𝑒1 < 𝑒3 < 𝑒2 (type B)

responses (𝑑1,𝑑2, 𝑒1) → (𝑑1,𝑑2, 𝑒1, 𝑒2) provided that ℳ,∇(𝑑1,𝑑2) |= 𝐴 im-

plies 𝒥 , 𝑒3 |= 𝐴 for all 𝑒3 with 𝑒1 < 𝑒3 < 𝑒2 and 𝐴 ∈ Σ ∪ {⊥}

Example 27. Suppose ℳ consists of two interpretations whose ‘meaningful parts’ are shown

on the left-hand side of the picture below and suppose the ‘meaningful part’ of an interpretation

𝒥 looks like the one on the right-hand side of the picture. Let ∆ be the set of points in ℳ
shown in the picture and Σ = {𝑝1, 𝑝2, 𝑞1, 𝑞2}. We claim that player 2 does not have a winning

strategy in the game 𝐺(ℳ,∆,𝒥 ).

Indeed, let Player 1 start with the challenge ({01, 02}, 0) → ({01, 02}, {31, 12}, 0).
Suppose Player 2’s strategy is to respond with the node ({01, 02}, {31, 12}, 0, 1), for

which ∇({01, 02}, {31, 12}) = {11, 21}. Then Player 1 can challenge with the node

({31, 12}, {51, 22}, 1) to which Player 2 does not have a response because the only choice

of ({31, 12}, {51, 22}, 1, 4) does not satisfy the extra condition for 𝑝1, 𝑞2 that are true at

∇({31, 12}, {51, 22}) = {41} in ℳ but not at 2 and 3 in 𝒥 . Suppose Player 2 responds

to the first challenge with ({01, 02}, {31, 12}, 0, 2). Then Player 1 can challenge with

({31, 12}, {41, 32}, 2) to which Player 2 has no good response. The case when Player 2 re-

sponds to the first challenge with ({01, 02}, {31, 12}, 0, 3) is similar.

Theorem 28. Let ℳ be a set of LTL models and 𝒥 a model. Then, for every arena ∆ for ℳ, there

exists a Σ∆-U-simulation between ℳ and 𝒥 via (0, 0) iff Player 2 has an 𝜔-winning strategy

for 𝐺(ℳ,∆,𝒥 ).

Proof. (⇒) Suppose 𝑆 is a Σ∆-U-simulation between ℳ and 𝒥 via (0, 0). We describe how

to construct a winning strategy for Player 2. For any Player 1’s challenge (0,𝑑′, 0), Player 2

responds with any (0,𝑑′, 0, 𝑒′) such that (𝑑′, 𝑒′) ∈ 𝑆 and also (∇(𝑑,𝑑′), 𝑒′′) ∈ 𝑆, for every

𝑒′′ with 𝑒 < 𝑒′′ < 𝑒′. Clearly, such 𝑒′ exists by the definition of U-simulation. Now, for the

node (0,𝑑′, 0, 𝑒′) of Player 2, Player 1’s move can be to (𝑑′,𝑑′′, 𝑒′) or to (∇(𝑑,𝑑′),𝑑′′, 𝑒′′). In

the former case, Player 2 responds with (𝑑′,𝑑′′, 𝑒′, 𝑒′′), such that (𝑑′′, 𝑒′′) ∈ 𝑆 (which exists by



the definition of U-simulation). In the latter case, Player 2 responds with (𝑑′′, 𝑒′′′) ∈ 𝑆, for the

appropriate 𝑒′′′. We proceed further in the same way obtaining a winning strategy for Player 2

because there is an outgoing edge in each of their nodes. The proof (⇐) is similar. ❑

Theorem 29. QBE(𝒬[U]) is in PSpace.

Proof. It suffices to consider example sets of the form 𝐸 = (𝐸+, {𝒟𝑁}). Let Σ consist of the

atoms that occur in 𝐸. Take ℳ = {𝒞∅,𝒟 | 𝒟 ∈ 𝐸+} (assuming that different 𝒞∅,𝒟 have

disjoint domains) and let 𝒥 = 𝒞∅,𝒟𝑁
. By Theorems 25 and 28, we need to show that we

can check in PSpace if Player 2 has a winning strategy in 𝐺(ℳ,∆,𝒥 ), for any arena ∆ for

ℳ. First, we show that this is the case iff Player 2 has a winning strategy in 𝐺(ℳ,∆*,𝒥 ),
where ∆* =

⋃︀
𝑖∈𝐼{𝑘𝑖 | 0 ≤ 𝑘 ≤ max𝒟𝑖}. Indeed, suppose Player 2 has a winning strategy

in 𝐺(ℳ,∆*,𝒥 ). It follows that Player 2 has a winning strategy in 𝐺(ℳ,∆,𝒥 ), for each

∆ ⊆ ∆*
, as the restriction of the ∆*

-winning strategy to ∆ is a ∆-winning strategy. Now,

consider ∆ ⊋ ∆*
and show how to construct a ∆-winning strategy. It is enough to explain

Player 2’s responses from the nodes of the form (𝑑,𝑑′, 𝑒) with 𝑑′ ∩ (∆ ∖∆*) ̸= ∅. We observe

that ℳ,𝑑′ ̸|= 𝐴, for all such 𝑑′
and all atoms 𝐴. Therefore, Player 2 can respond with

(𝑑,𝑑′, 𝑒, 𝑒 + 1). This strategy is clearly winning for Player 2 as there is an outgoing edge in

each of their nodes.

Let max∆ = max𝑖∈𝐼 ∆𝑖. We show that Player 2 has a winning strategy in 𝐺(ℳ,∆,𝒥 )
iff Player 2 has a winning strategy that only uses nodes with 𝑒, 𝑒′ ≤ max𝒟𝑁 + max∆.

Indeed, if a ∆-winning strategy of Player 2 at (0,𝑑′, 0) is to respond with (0,𝑑′, 0, 𝑒′), for

𝑒 > max𝒟𝑁 + max∆, we could change the response to (0,𝑑′, 0,𝒟𝑁 + max∆) (in the

sense that if the play after (0,𝑑′, 0, 𝑒′) was winning for Player 2, the play after the updated

response will be winning as well). Further, if a ∆-winning strategy of Player 2 at (𝑑,𝑑′, 𝑒), for

𝑒 ≥ max𝒟𝑁 +max∆, is to respond with (𝑑,𝑑′, 𝑒, 𝑒′), for 𝑒′ > 𝑒+ 1, then we could change

the response of Player 2 to (𝑑,𝑑′, 𝑒, 𝑒+ 1).
Now we show how to check in PSpace the existence of Player 2’s winning strategy in

𝐺(ℳ,∆*,𝒥 ) only using nodes with 𝑒, 𝑒′ ≤ max𝒟𝑁 +max∆*
. Since ∆*

is of polynomial

size in 𝐸, all the required nodes in the graph of 𝐺(ℳ,∆*,𝒥 ) can be stored in PSpace. We

observe that, in each play, the node (𝑛, 𝑛) changes to the node (𝑛,𝑑′, 𝑛) with 𝑛 ⋖ 𝑑′
and

each node (𝑑,𝑑′, 𝑒, 𝑒′) changes to a node of the form (𝑓 ,𝑑′′, 𝑒′′), where 𝑑′ ⋖ 𝑑′′
. Therefore,

the required winning strategy of Player 2 exists iff it exists for the plays of the length up to

2max∆*
, which is polynomial in 𝐸. Therefore, we can check the existence of the required

winning strategy in PSpace. ❑

Example 30. Suppose ℳ comprises two interpretations whose ‘meaningful parts’ are shown

on the left-hand side of the picture below and suppose the ‘meaningful part’ of an interpretation

𝒥 looks like on the right-hand side of the picture. We claim that Player 2 does not have a

winning strategy in the game 𝐺(ℳ,𝒥 , {01, 02}, 0). Indeed, consider the plays that start with



the edge ({01, 02}, 0) → ({01, 02}, {31, 12}, 0). Suppose Player 2’s strategy is to con-

tinue with ({01, 02}, {31, 12}, 0, 1), which has an edge to ({31, 12}, {51, 22}, 1). There

are three outgoing edges from that node: one to ({31, 12}, {51, 22}, 1, 4), for which

we have ∇({31, 12}, {51, 22}) = {41}, another to ({41}, 2) and the third one to

({41}, 3). Suppose Player 2 responds with ({01, 02}, {31, 12}, 0, 2). Then Player 1 moves

to ({31, 12}, {41, 32}, 2), where the possible responses of Player 2 are ({31, 12}, {41, 32}, 2, 3)
and ({31, 12}, {41, 32}, 2, 4), and both of such plays are wins of Player 1. The case when

Player 2 responds with ({01, 02}, {31, 12}, 0, 3) is similar. Finally, we note that ℳ and 𝒥 can

be separated by the query ◇
(︀
(𝑝1 U 𝑞1) ∧ (𝑝2 U 𝑞2)

)︀
.
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