First-Order Rewritability of Ontology-Mediated Queries in
Linear Temporal Logic (Extended Abstract)*

Alessandro Artale'’, Roman Kontchakov?, Alisa Kovtunova®, Vladislav Ryzhikov?,
Frank Wolter? and Michael Zakharyaschev?
IKRDB Research Centre, Free University of Bozen-Bolzano, Italy
2Department of Computer Science and Information Systems, Birkbeck, University of London, UK
3Chair for Automata Theory, Technische Universitit Dresden, Germany
“Department of Computer Science, University of Liverpool, UK
artale @inf.unibz.it, {roman,vlad,michael } @dcs.bbk.ac.uk, alisa.kovtunova@tu-dresden.de,
wolter @liverpool.ac.uk

Abstract

We argue that linear temporal logic LTL in tandem
with monadic first-order logic can be used as a ba-
sic language for ontology-based access to tempo-
ral data and obtain a classification of the resulting
ontology-mediated queries according to the type of
standard first-order queries they can be rewritten to.

1 Introduction

Ontology-mediated query (OMQ) answering has recently be-
come one of the most successful applications of description
logics (DLs) and semantic technologies. Its main aim is to
facilitate user-friendly access to possibly heterogeneous, dis-
tributed and incomplete data. To this end, an ontology is
employed to provide (a) a convenient and uniform vocabu-
lary for formulating queries and (b) a conceptual model of
the domain for capturing background knowledge and obtain-
ing more complete answers. Thus, instead of querying data
directly by means of convoluted database queries, one can
use OMQs of the form (O, q), where O is an ontology and
g a query formulated in the vocabulary of O. Under the
standard certain answer semantics for OMQs, the answers
to (O, q) over a data instance D are exactly those tuples
of individual names from D that satisfy g in every model
of O and D. Because of this open-world semantics, answer-
ing OMQs can be computationally much harder than evalu-
ating standard database queries. For example, answering an
atomic query A(z) using an ontology in the standard descrip-
tion logic ALC can be CONP-hard for data complexity—the
complexity measure (adopted in this paper) that regards the
OMAQ as fixed and the data instance as the only input to the
OMQ answering problem. For this reason, weaker descrip-
tion logics (DLs) have been developed to enable not only
tractable OMQ answering but even a reduction—known as
first-order (FO-) rewritability [Calvanese et al., 2007b]—of
OMQ answering to evaluation of standard relational database

*Extended version published in the Al journal, 2021.
TContact Author

queries directly over the data, which is in AC® for data com-
plexity. After 15 years of intensive research and coding,
ontology-based data access (OBDA, aka virtual knowledge
graphs) originally conceived by [Calvanese et al., 2007b;
Poggi et al., 2008] has become a well-developed area lying
at the crossroads of knowledge representation, databases and
computational complexity [Xiao er al., 2018], with multiple
real-word applications using mature systems such as Mastro
and Ontop; see [Xiao er al., 2019] for a survey.

An important application area where OBDA has so far
failed to make a substantial impact is the management of tem-
poral data. A typical example is querying data from sensors
in complex industrial systems such as gas turbines, where
sensors read the temperature, rotor speed, power, etc., in order
to analyse and predict their behaviour. One of the problems
engineers are facing in this scenario is identifying various
events of interest (active power trip, abnormal restart, etc.)
based on timestamped sensor readings stored in a database.
The OBDA approach could immensely simplify this task for
engineers by (i) encoding the definitions of those temporal
events in an ontology, thereby making query formulation eas-
ier, and by (i¢) using background knowledge to compensate
for incomplete data due, for example, to sensor failures.

Unfortunately, OBDA languages such as OWL 2 QL, stan-
dardised by the W3C, provide no means to express temporal
events in ontologies because the addition of temporal opera-
tors even to inexpressive description logics tends to dramat-
ically increase the complexity of reasoning and, in particu-
lar, ruin FO-rewritability of OMQs; see [Lutz et al., 2008;
Artale et al., 2017] for surveys. One way to avoid this ‘curse
of many-dimensional logics’ would be to keep OWL 2 QL as
the ontology language but extend the query language (say,
SPARQL) with the relevant temporal operators [Borgwardt et
al., 2015]. However, this approach clearly undermines princi-
ple (¢) of OBDA as the burden of encoding complex temporal
events in queries lies solely on the users’ shoulders.

Here, we propose an alternative approach to designing log-
ics for temporal OBDA, viz., to start with classical linear tem-
poral logic LTL as an ontology language and monadic first-
order logic with < over timestamps as a query language. Our
first observation is that already this basic temporal OBDA for-

malism is sufficiently expressive in scenarios where the inter-
action among the individuals in the object domain—say, be-
tween different turbines and their parts—usually captured by
binary relations in DLs, is not important and can be neglected.

Example 1 Gas turbines, ¢, are equipped with multiple sen-
sors, s, measuring the rotor speed, the temperature of the
blades, vibration, electric current, etc. Imagine that a rela-
tional database in a remote diagnostic centre stores a binary
predicate location(s, t) saying that sensor s is located in tur-
bine ¢ and a ternary predicate measurement(s, v, n) giving the
numerical value v of the reading of s at time instant n. The
timestamps of sensor readings are synchronised with a central
computer clock, and so can be regarded as integers.

When defining important events like active power trip, en-
gineers usually operate with statements such as ‘the active
power of turbine ¢ measured by s is above 1.5SMW at mo-
ment n’, which can be obtained as database views of the form
PowerSensor’’ .(n). We regard these unary predicates as
atomic propositions that can be true or false at different mo-
ments of time. Omitting ¢ and s to simplify notation, we can
then assume that our database D contains facts of the form

Pause(5), Run(6), PowerSensors1.5(7), Run(8),
Malfunction(8), Disabled(11), ...

based on which we analyse the behaviour of the turbines. As
some sensors occasionally fail to send their measurements,
we cannot assume the data to be complete. Thus, in our sam-
ple data above, the sensor detecting if the turbine is running
(by measuring the electric current) failed to send a signal at
time instant 7. However, the power sensor attached to the tur-
bine recorded > 1.5MW at 7, which should imply that the
turbine must have been running at 7. This piece of domain
knowledge can be encoded as an ontology axiom

O(PowerSensors1.5 — Run)

with the LTL -operator O (at all times). Other LTL axioms in
our example ontology O could look like

O(Pause A Run — 1), O(Disabled — —~<pDiagnostics),
O(Malfunction — OgPause N\ < Diagnostics).

The first of them says that a turbine cannot be paused and run-
ning at the same time; the second says that a disabled turbine
cannot undergo diagnostics in the future (<r); and the third
axiom asserts that immediately after (Op) a malfunction the
turbine is paused and will eventually be diagnosed.

Now, if we are interested in maximal intervals of uninter-
rupted run of a turbine, we can execute the following query
formulated in MFO(<) (monadic first-order logic with <):

q1(z,y) = (y >) A=Run(z — 1) A ~Run(y + 1) A
Vz ((z < 2 < y) = Run(z)),

which is mediated by the ontology O and returns the certain
answer [6, 8] over D. The MFO(<)-query

q2(z,y) = q1(z,y) A3z ((y < z < y+3) ADiagnostics(z))
finds intervals of maximal continuous run followed by a di-
agnostics event within 3 time units. The certain answer to the
OMQ (O, g,(z,y)) over D is [6, 8] as well because O and D

imply that the diagnostics took place at some (unknown) mo-
ment within the interval [9, 11].

2 OMQsin LTL and MFO(<)

Formally, the temporal ontology language we present here
operates with LTL axioms given in the clausal normal form

D(Ol/\"'/\ck — Ck+1 \/"'\/Ck-t,-m,), (1)

where the C; are atomic concepts (unary predicates), possi-
bly prefixed with the temporal operators O (next time), O
(always in the future) and their past-time counterparts Op
and O,. An ontology, O, is a finite set of such axioms. Note
that every finite set of O-prefixed LTL-formulas can be ef-
ficiently converted into clausal form without affecting OMQ
answering to be defined below. For example, the last axiom of
O from Example 1 can be replaced by O(Disabled — O, A)
and O(A A Diagnostics — 1) with fresh A.

A data instance, D, is a finite set of atoms of the form
A(n) with a timestamp n € 7Z. We query data using MFO(<)
formulas g(x) built from unary atoms A(x) and binary atoms
x < y as usual in first-order logic. Here, x is the set of
free, answer variables in q. An ontology-mediated query is
a pair (O, q(x)). A certain answer to (O, g(x)) over D is
any assignment of some timestamps from D to the answer
variables @ under which q is true in all LTL-models of O
and D. Note that we use the standard strict semantics of the
LTL operators (which does not include the current point); see,
e.g., [Gabbay et al., 1994; Demri et al., 2016].

We now define the key notion of FO-rewritability. Let £
be a first-order language that is capable of speaking about fi-
nite linear orders. An OMQ (O, g()) is called L-rewritable
if there is an L-formula Q(x) with free variables x—an L-
rewriting of (O, q(x))—such that, for any data instance D, a
tuple £ of timestamps from D is a certain answer to (O, g(x))
over D if and only if Q(£) is true in D regarded as an FO-
structure. Thus, answering L-rewritable LTL OMQs under
the open-world semantics as defined above reduces to eval-
uating their L-rewritings over the original data under the
closed-world semantics. In other words, the data complexity
of answering those OMQs is the same as the data complex-
ity of evaluating £-formulas. Good target languages £ whose
evaluation lies in one of the smallest complexity classes AC°
are FO(<) with one built-in predicate < over timestamps
and FO(<, =) that also allows the unary predicates z = 0
(mod n), for any fixed n > 1. Executing such £-queries can
be done by standard database management systems.

Example 2 (a) The OMQ (O, q,(z,y)) from Example 1 is
FO(<)-rewritable to the following formula:

Qa,y) = [(y>a) Am(e —1) Am(y+1) A
Vz ((z <2 <y) = p(2)] Ve,
where 7(x) stands for Pause(x) V Malfunction(x — 1), p(x)
for Run(x) V PowerSensors1 5(z) and ¢ is a disjunction of

sentences such as 3z (Malfunction(z) A Run(z + 1)) and
3z (Pause(z) A Run(z)) expressing inconsistency of O, D.

(b) Now, suppose an ontology O contains the axioms
O(Activated — O2*Diagnostics),
O(Diagnostics — O2*Diagnostics)

saying that the turbine undergoes diagnostics in 24 hours af-
ter its activation, and that diagnostics repeats every 24 hours.
The OMQ (O, q(z)) with g(z) = Diagnostics(z) is
FO(<, =)-rewritable to the following formula:

Diagnostics(x) V Jy [(x —ye24+ 24N) A
(Diagnostics(y) V Activated(y))],

where x—y € a+bN with constants a, b—i.e., t—y = a+bk,
for some £k € N—is expressible via predicates of the form
2z =0 (mod b). However, (O, q) is not FO(<)-rewritable.

Not all OMQs are FO(<, =)-rewritable: e.g., there is an
OMAQ that checks if the number of some events happened in
a given data instance is even or odd, and as well known, the
parity function is not in AC°. This parity OMQ can be rewrit-
ten to an FO(<,MOD)-formula with quantifiers 3"z ¢(z)
checking if the number of timestamps ¢ satisfying o (¢) is di-
visible by n. The language FO(<, MOD) corresponds to the
circuit complexity class ACC®. Our first result is:

Theorem 3 Any OMQs with an LTL-ontology and an
MFO(<)-query is FO(RPR)- and MSO(<)-rewritable, and
so can be answered in NC' for data complexity.

Here, FO(RPR) comprises first-order formulas with rela-
tional primitive recursion [Compton and Laflamme, 1990]
and MSO(<) monadic second-order formulas with <, both
of which can be evaluated in NC' for data complexity. Note
that the SQL:1999 ISO standard contains a WITH RECUR-
SIVE construct, which can represent some FO(RPR)-queries,
and that AC’ G ACC® C NC' C LOGSPACE C P. This im-
plies that answering LTL/MFO(<) OMQs can be performed
by an efficient parallel algorithm; it also means that answer-
ing such OMQs can be done using finite automata.

One of the main results of this paper is a uniform syntac-
tical classification of OMQs according to their rewritability
type (= data complexity). We classify OMQs (O, q) along
three axes: the form of MFO(<)-queries g, the Boolean
shape of the clauses in ontologies O, and the temporal op-
erators that can occur in O.

Before giving a survey of our results in terms of these
axes, we discuss our choice of LTL and MFO(<) as ontol-
ogy and query languages. LTL can be regarded as a fragment
of MFO(<) by spelling out the quantifier patterns defining
the temporal operators. This standard FO-translation can be
done in linear time, and so from a purely technical viewpoint,
we can equivalently express any LTL ontology in MFO(<).
We note, however, that typical ontological axioms are much
more intuitive and succinct in LTL than in MFO(<). The
question then is whether MFO(<) could provide additional
expressive power to formulate domain knowledge in the on-
tology. By a celebrated result in philosophical logic, called
Kamp’s Theorem [Kamp, 1968], the answer is negative: for
every MFO(<)-formula ¢ with one free variable, one can
construct an equivalent LTL formula ¢* (i.e., ¢(¢) is true in
amodel Z over Z iff ©* is true at £ in 7). It follows, in partic-
ular, that axioms V ¢(z) can be translated into LTL as Og*.
In the worst case, this translation is non-elementary, and so
there are sentences in MFO(<) that cannot be practically ex-
pressed in LTL. It seems, however, that such sentences are

hardly relevant for the formulation of domain knowledge, and
so we focus on LTL as our ontology language.

The question whether queries should be formulated in
MFO(<) or LTL requires a more nuanced answer. First,
Kamp’s Theorem only holds for formulas with one free vari-
able, and so there are practically relevant MFO(<) queries
with more than one answer variable that cannot be expressed
in LTL (see g, and g, in Example 1). Second, when formu-
lating queries, one is often interested in non-tree-shaped pat-
terns such as, for instance, the very simple MFO(<)-query

q(z) =Ty, yo. 2 [(z <y1 <2)A (2 <y2 < 2) A
A(y1) A B(ya) A C(Z)]

whose LTL -translation needs all possible linearisations of the
variables, and so could be difficult to read. Below, we formu-
late our results for queries in MFO(<), but also characterise
our most important fragment of MFO(<) in terms of LTL.

Now, for the first axis, apart from arbitrary MFO(<)-
queries, we consider afomic queries of the form A(x) and
quasi-positive queries that are built (inductively) from atoms
A(z), (x < '), (x =2') and (z = 2’ + 1) using A, V, ¥, 3
as well as the guarded universal quantification such as

Vy((z <y<a')—)

with quasi-positive ¢. For example, the standard FO-
translation of the LTL formula AU B with the until operator U
under the strict semantics is the quasi-positive MFO(<)-
formula 3y [(z < y) A B(y) AVz ((z < z <y) = A(2))].
Quasi-positive queries play a fundamental role for the formu-
lation of our results, and so we start by characterising their
expressive power. The first characterisation is semantical, in
terms of monotone MFO(<)-formulas, i.e., those that are pre-
served under any addition of timestamps to the extension of
atomic concepts in models. It is not hard to see that all quasi-
positive formulas are monotone. The other characterisation
is syntactical, in terms of positive LTL concepts built from
atomic concepts using A, V and the temporal operators Uy,
Cp, Op, U and their past-time counterparts. It generalises
Kamp’s Theorem to the class of monotone formulas.

Theorem 4 An MFO(<)-formula is monotone iff it is equiv-
alent over (Z, <) to a quasi-positive MFO(<)-formula.

(Monotone Kamp Theorem) Every monotone MFO(<)-
Sformula with one free variable is equivalent over (Z,<) ei-
ther to a positive LTL concept or to 1.

The second axis in our classification of OMQs is similar
to that for DL ontologies [Calvanese et al., 2007b; Artale et
al., 2009]: we distinguish between Boolean clauses (1), Horn
clauses (without V on the right-hand side), Krom clauses with
k +m < 2, and core clauses that are both Horn and Krom.

The third axis is in terms of temporal operators in on-
tologies. Namely, for any pair ¢ € {bool, horn, krom, core}
and o € {0,0,00}, we denote by LTL? the fragment of
LTL with c-clauses (1), in which the temporal concepts C;
may only contain the (future and past) operators indicated
in o. For example, ontologies given in Prior-LTL—one of
the first temporal logics going back to Prior [Prior, 1956]—
can be converted into LTL;) , ontologies. We establish the

following complete uniform syntactical classification of the
LTL/MFO(<)-OMQs, complementing Theorem 3:

Theorem 5 (i) All OMQs with an LTL;, , ontology and an
atomic query are FO(<)-rewritable.

(i3) All OMQs with an LTL.S) ontology and an atomic
query are FO(<,=)-rewritable. ~Some of them are not
FO(<)-rewritable.

(ii1) Answering OMQs with an LTL;, . ontology and an
atomic query is NC*-hard,

(iv) All OMQs with an LTL,, = ontology and a quasi-
positive MFO(<) query are FO(<)-rewritable.

(v) All OMQs with an LTLLS. ontology and a quasi-
positive MFO(<) query are FO(<, =)-rewritable. Some of
them are not FO(<)-rewritable.

(vi) Answering OMQs with an LTLy,,, ontology and a

quasi-positive MFO(<) query is NC'-hard.

3 Outlook

As an alternative to the open-world semantics for OMQ an-
swering considered above, one can use the epistemic se-
mantics (ES) proposed by [Calvanese ef al., 2007al. Under
ES, —A(n) is regarded to be true if A(n) is not entailed.
(The same semantics is used in the standard query language
SPARQL for RDF datasets when interpreted with OWL on-
tologies under the entailment regimes [Glimm and Ogbuji,
2013].) For example, the answer to g; from Example 1
under ES remains [6, 8]. However, g, has no answers un-
der ES because there is no ¢ in the interval [9, 11] such that
Diagnostics(¢) is entailed. Indeed, the answer [6, 8] to g,
can be deemed meaningless as there is no definite time ¢ for
diagnostics. This is one motivation for ES. Another motiva-
tion is that, for many OMQ languages, answering FO-queries
with V and — under ES becomes decidable, while it is unde-
cidable under the open-world semantics. As an alternative to
our query language, we can use MFO(<) formulas, in which
the atoms are replaced by LTL -formulas, under ES. All such
OMQs will be FO(RPR)-rewritable. Even lower complexity
bounds can be established when positive LTL-formulas are
used as atoms; see [Artale et al., 2021b].

The classification of LTL/MFO(<) OMQs obtained in this
paper is uniform in the sense that all OMQs in a given syn-
tactical class are L-rewritable, for a target language £, with
some of them being non-rewritable to any weaker language.
Yet, many useful OMQs in a syntactical class can be rewrit-
ten to more efficient languages. Ideally, we would like to have
an OBDA system that could recognise the optimal rewritabil-
ity type for any given OMQ—in other words, determine the
exact data complexity of answering that OMQ. The same
problem has been investigated for datalog queries since the
1980s [Kanellakis, 1990] and for description logic OMQs
since the 2010s [Bienvenu et al., 2014; Hernich et al., 20201.

First steps in this direction for OMQs, in which both ontol-
ogy and query are given in LTL, were made in [Ryzhikov
et al., 2021]. It was shown that, for any target lan-
guage £ € {FO(<),FO(<,=),FO(<,MOD)}, deciding £L-
rewritability of OMQs (O, q) with LTL queries g is equiva-
lent to deciding £-definability of the regular language given

by an exponential-size automaton. The problem of recognis-
ing whether a regular language is £-definable has been con-
sidered since the 1990s. In particular, it has been shown that
deciding FO(<)-definability of regular languages is PSPACE-
complete [Cho and Huynh, 1991] and, recently, that decid-
ing the other types of L-definability is PSPACE-complete,
too [Kurucz et al.,, 2021]. Using these results, [Ryzhikov
et al., 2021] prove that deciding L-rewritability of the
LTL OMQs mentioned above is EXPSPACE-complete and
also identify some smaller classes of OMQs in which £-
rewritability is decidable in PSPACE (for positive OMQs with
a core ontology) and CONP (for atomic OMQs with a Krom
ontology). However, the full picture is still far from clear.

LTL OMQs over discrete (Z, <) are appropriate for mod-
elling synchronous systems with a central clock against
which all events can be sequenced. However, in scenarios
where sensors report their readings asynchronously, dense
(Q, <) for both timestamps and ontology axioms appears
more adequate. A promising temporal KR formalism in
this case is metric temporal logic MTL that was introduced
for modelling and reasoning about real-time systems [Koy-
mans, 1990]. In MTL, the temporal operators are indexed
by a time interval over which the operator works: for ex-
ample, ©(g1.5)A4 is true at n iff A holds at some n' with
0 < n’ —n < 1.5. The interpretation domain is Q un-
der the continuous semantics and the active domain of the
data instance under the pointwise semantics [Ouaknine and
Worrell, 2008]. Some use cases, algorithms, and implemen-
tations for MTL OMQs under the continuous semantics are
discussed by [Brandt ef al., 2018; Wang ef al., 2022]. Find-
ing a syntactical classification of MTL OMQs according to
their data complexity/rewritability type under the pointwise
semantics is substantially more challenging than in the LTL
case [Ryzhikov er al., 2019]. The relevant complexity classes
for answering MTL OMQs include (N)LOGSPACE, P and
NP, which, apart from the three axes above, also depend on
the type of intervals indexing the temporal operators, say
semi-infinite (a, 00), punctual [a, a], or bounded [0, a). The
target languages for rewritings include FO(DTC), FO(TC)
with (deterministic) transitive closure, and datalog(FO).

If n-ary relations over the object domain need to be taken
into account in ontologies and queries, the 1D OMQ lan-
guages mentioned above should be extended with appropri-
ate DL or datalog constructs. The FO-rewritability results
presented above are lifted, in some cases, to combinations of
LTL with DL-Lite and instance temporal queries in [Artale
et al., 2021al. Other DL examples include atomic queries
in the temporal extensions of £L [Gutiérrez-Basulto et al.,
2016]; CQs with guarded negation and metric temporal oper-
ators under the minimal-world semantics in the extension of
ELH [Borgwardt er al., 2019]. Extensions of datalog by con-
straints over a time domain provide an alternative and well in-
vestigated approach to querying temporal data [Revesz, 1993;
Kanellakis et al., 1995; Toman and Chomicki, 1998].

Acknowledgements

This work was supported by EPSRC UK grants EP/S032207
and EP/S032282.

References

[Artale et al., 2009] A. Artale, D. Calvanese, R. Kontchakov,
and M. Zakharyaschev. The DL-Lite family and relations.
J. Artif. Intell. Res., 36:1-69, 2009.

[Artale er al., 2017] A. Artale, R. Kontchakov, A. Kovtuno-
va, V. Ryzhikov, F. Wolter, M. Zakharyaschev. Temporal
ontology-mediated querying: A survey. In TIME, 2017.

[Artale et al., 2021a] A. Artale, R. Kontchakov, A. Kovtuno-
va, V. Ryzhikov, F. Wolter, M. Zakharyaschev. First-order
rewritability and complexity of two-dimensional temporal
ontology-mediated queries. CoRR, abs/2111.06806, 2021.

[Artale er al., 2021b] A. Artale, R. Kontchakov, A. Kov-
tunova, V. Ryzhikov, F. Wolter, and M. Zakharyaschev.
First-order rewritability of ontology-mediated queries in
linear temporal logic. Artif. Intell., 299:103536, 2021.

[Bienvenu et al., 2014] M. Bienvenu, B. ten Cate, C. Lutz,
and F. Wolter. Ontology-based data access: A study
through disjunctive datalog, CSP, and MMSNP. ACM
Trans. on Database Systems, 39(4):33:1-44, 2014.

[Borgwardt er al., 2015] S. Borgwardt, M. Lippmann, and
V. Thost. Temporalizing rewritable query languages over
knowledge bases. J. Web Semant., 33:50-70, 2015.

[Borgwardt et al., 2019] S. Borgwardt, W. Forkel, A. Kov-
tunova. Finding new diamonds: Temporal minimal-world
query answering over sparse ABoxes. RuleML+RR, 2019.

[Brandt ef al., 2018] S. Brandt, E. Kalayci, V. Ryzhikov,
G. Xiao, M. Zakharyaschev. Querying log data with metric
temporal logic. J. Artif. Intell. Res., 62:829-877, 2018.

[Calvanese et al., 2007a] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, and R. Rosati. EQL-Lite: Ef-
fective first-order query processing in description logics.
In Proc. IJCAI, pages 274-279, 2007.

[Calvanese et al., 2007b] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, R. Rosati. Tractable reasoning
and efficient query answering in description logics: The
DL-Lite family. J. Autom. Reason., 39(3):385-429, 2007.

[Cho and Huynh, 1991] S. Cho and D. T. Huynh. Finite-
automaton aperiodicity is PSPACE-complete. Theor.
Comp. Sci., 88(1):99-116, 1991.

[Compton and Laflamme, 1990] K. J. Compton and
C. Laflamme. An algebra and a logic for NC!. Inf
Comput., 87(1/2):240-262, 1990.

[Demri et al., 2016] S. Demri, V. Goranko, and M. Lange.
Temporal Logics in Computer Science. CUP, 2016.

[Gabbay et al., 1994] D. Gabbay, 1. Hodkinson, and
M. Reynolds. Temporal Logic: Mathematical Foundations

and Computational Aspects, vol. 1. OUP, 1994.
[Glimm and Ogbuji, 2013] B. Glimm and C. Ogbuji.

SPARQL 1.1 entailment regimes. W3C Recommendation.
https://www.w3.org/TR/sparql11-entailment/

[Gutiérrez-Basulto et al., 2016] V. Gutiérrez-Basulto, J. C.
Jung, and R. Kontchakov. Temporalized EL ontologies for
accessing temporal data: Complexity of atomic queries.
Proc. IJCAI 2016.

[Hernich er al., 2020] A. Hernich, C. Lutz, F. Papacchini,
and F. Wolter. Dichotomies in ontology-mediated query-
ing with the guarded fragment. ACM Trans. Comput. Log.,
21(3):20:1-20:47, 2020.

[Kamp, 1968] H. W. Kamp. Tense Logic and the Theory of
Linear Order. PhD thesis, UCLA, 1968.

[Kanellakis e al., 1995] P. Kanellakis, G. Kuper, and
P. Revesz. Constraint query languages. J. Comput. Syst.
Sci., 51(1):26-52, 1995.

[Kanellakis, 1990] P. C. Kanellakis. Elements of relational
database theory. In Handbook of Theoretical Computer
Science, pp.1073-1156. Elsevier & MIT Press, 1990.

[Koymans, 1990] R. Koymans. Specifying real-time prop-
erties with metric temporal logic. Real-Time Systems,
2(4):255-299, 1990.

[Kurucz et al., 2021] A. Kurucz, V. Ryzhikov, Y. Savateev,
and M. Zakharyaschev. Deciding FO-definability of reg-
ular languages. In Proc. RAMICS, vol. 13027 of LNCS,
pages 241-257. Springer, 2021.

[Lutz et al., 2008] C. Lutz, F. Wolter, and M. Zakharyaschev.
Temporal description logics: A survey. In Proc. TIME’08.

[Ouaknine and Worrell, 2008] J. Ouaknine and J. Worrell.
Some recent results in metric temporal logic. In Proc.
FORMATS, pages 1-13, 2008.

[Poggi er al., 2008] A. Poggi, D. Lembo, D. Calvanese,
G. De Giacomo, M. Lenzerini, and R. Rosati. Linking data
to ontologies. J. on Data Semantics, X:133—-173, 2008.

[Prior, 1956] A. Prior. Time and Modalitry. OUP, 1956.

[Revesz, 1993] P. Z. Revesz. A closed-form evaluation for
datalog queries with integer (gap)-order constraints. Theor.
Comput. Sci., 116(1):117-149, 1993.

[Ryzhikov et al., 2019] V. Ryzhikov, P. A. Walega, and
M. Zakharyaschev. Data complexity and rewritability of
ontology-mediated queries in metric temporal logic under
the event-based semantics. In Proc. IJCAI, 2019.

[Ryzhikov et al., 2021] V. Ryzhikov, Y. Savateev, M. Zakha-
ryaschev. Deciding FO-rewritability of ontology-mediated
queries in linear temporal logic. In Proc. TIME, 2021.

[Toman and Chomicki, 1998] D. Toman and J. Chomicki.
Datalog with integer periodicity constraints. J. Log. Pro-
gram., 35(3):263-290, 1998.

[Wang et al., 2022] D. Wang, P. Hu, P. Walega, B. Cuenca

Grau. Meteor: Practical reasoning in datalog with metric
temporal operators. CoRR, abs/2201.04596, 2022.

[Xiao et al., 2018] G. Xiao, D. Calvanese, R. Kontchakov,
D. Lembo, A. Poggi, R. Rosati, M. Zakharyaschev. Onto-
logy-based data access: A survey. In Proc. IJCAI, 2018.

[Xiao er al., 2019] G. Xiao, L. Ding, B. Cogrel, and D. Cal-
vanese. Virtual knowledge graphs: An overview of sys-
tems and use cases. Data Intell., 1(3):201-223, 2019.

	Introduction
	OMQs in LTL and MFO(<)
	Outlook

