
Exploiting Symmetry in Relational Similarity for
Ranking Relational Search Results

Tomokazu Goto, Nguyen Tuan Duc, Danushka Bollegala, and Mitsuru Ishizuka

The University of Tokyo, Japan
{goto, duc}@mi.ci.i.u-tokyo.ac.jp,

danushka@iba.t.u-tokyo.ac.jp, ishizuka@i.u-tokyo.ac.jp

Abstract. Relational search is a novel paradigm of search which focuses on the
similarity between semantic relations. Given three words(A, B, C)as the query, a
relational search engine retrieves a ranked list of wordsD, where a wordD ∈ D
is assigned a high rank if the relation betweenA andB is highly similar to that
betweenC andD. However, ifC andD has numerous co-occurrences, thenD is
retrieved by existing relational search engines irrespective of the relation between
A andB. To overcome this problem, we exploit the symmetry in relational simi-
larity to rank the result setD. To evaluate the proposed ranking method, we use
a benchmark dataset of Scholastic Aptitude Test (SAT) word analogy questions.
Our experiments show that the proposed ranking method improves the accuracy
in answering SAT word analogy questions, thereby demonstrating its usefulness
in practical applications.

Key words: relational search, relational similarity, symmetry

1 Introduction

Relational search is a novel search paradigm based on relational similarity of word
pairs. For the query{(A,B),(C,?)}, in which A, B, andC are input words, a relational
search engine finds the wordsD such that the relation betweenA andB is also held
betweenC andD. A candidate answerD is assigned a high rank when the word pair(C,
D) has a high degree of relational similarity with the word pair(A, B). In previous meth-
ods for relational search [3] and relational similarity measure [1], the relation between
two words in a word pair is represented by lexico-syntactic patterns that frequently co-
occur with those words. However, this approach imposes a bias towards the frequency
of a word – a high frequency wordD has a higher probability of being assigned a top
rank, irrespective of the semantic relation shared between(A, B) and(C, D). We pro-
pose a ranking method which uses the symmetry in relational similarity to alleviate this
phenomenon.

To demonstrate the proposed ranking method, let us consider the query{(Google,
Eric Schmidt), (Microsoft, ?)}. Here, ”?” denotes an entity.Steve Ballmeris expected
to be ranked at the top of the result list for this query becauseSteve Ballmeris the CEO
of Microsoft, whereasEric Schmidtis the CEO ofGoogle. Moreover, when we use the
inverse query{(Eric Schmidt, Google), (?, Microsoft)}, Steve Ballmeris also expected
to be ranked as the first result. This is because relational similarity is invariant if both

2 Exploiting Symmetry in Relational Similarity for Ranking Relational Search Results

word pairs are inverted [4]. The invariance of relational similarity under a symmetric
transformation of word pairs provides us with a practical method to rank candidates in
a relational search engine: we can obtain a better ranking if we take into account the
ranking in the inverse query’s result list.

In addition, we propose “complementary rank” for improving the precision in rank-
ing the result set of a relational search query. WhenD is assigned a high rank (i.e., top
rank) in the query{(A, B), (C, ?)}, we can expect thatC is also assigned a high rank
in the query{(A, B), (?, D)}. Therefore, we can consider the rank ofC in the query
{(A, B), (?, D)} as an additional criterion for rankingD in the query{(A, B), (C, ?)}.
We call this additional criterion as the “complementary rank ofD”. In the proposal
method, we combine the symmetric property and complementary rank to improve the
initial ranking.

2 Related Work

The idea of relational search has been introduced in Veale [6] and Bollegala, et al. [1].
Kato, et al. first implementedrelational search [3] by issuing queries to a keyword-
based Web search engine. To extract candidate answers, they first query a Web search
engine for terms or lexico-syntactic patterns that are likely to appear only in documents
which contain bothA andB. The extracted term or pattern setT is supposed to contain
terms or lexical patterns that express the relations betweenA andB. Then, they useC
and a termt ∈ T to find documents that contain bothC andt. The candidate answer set
D is then defined as the set of terms that are likely to appear only in those documents.
Then, they rank the candidate set using the likelihood of co-occurrence of the termD
with the pair(C,t). Our method also uses lexico-syntactic pattern to express the relations
betweenA andB. However, the pattern generation algorithm and the scoring scheme
are different. In particular, they use only the words in the mid-fix between A and B for
extracting lexical patterns that might represent relations betweenA andB. On the other
hand, we use wildcards and an n-gram model which can precisely capture the relation
betweenA andB [1].

Bunescu and Mooney proposed an approach for overcoming the problem of bias due
to high frequency words as mentioned in previous section [2].However, their method
needs a large amount of texts from Web documents for compute word frequencies. This
can not be accomplished by using only snippets from a keyword-based Web search
engine’s results.

3 Method

To answer the query{(A, B), (C, ?)}, the proposed method first extracts lexical patterns
that represent relations betweenA andB. The lexical patterns are n-grams of the context
surrounding the pair(A, B) in a sentence. It then uses the keywordC along with these
patterns to query a Web search engine for the answerD, similar to [3]. To improve the
ranking of the results that are returned by the above procedure, we use the symmetry of
relational similarity and complementary rank.

Exploiting Symmetry in Relational Similarity for Ranking Relational Search Results 3

Web Search
Engine

“A *** B” “A B” w1 w2 w3

“C w1w2w3 * ”“C w1w2w3 D”

Fig. 1.Relational Search on the Web

Stem pair ostrich bird
1 lion cat
2 goose flock
3 ewe sheep
4 cub bear
5 primate monkey

Fig. 2.An example SAT analogy question

D1

D2

D3

…
D20

x1

…
x10

x11 = C
…
x20

{(B,A),(D 2,?)}

{(A,B),(C,?)} {D1 , D2 , D3 , … , D20}

rankAB?D2 = 11

x1

…
x5

x6 = C
…
x20

rankBAD2? = 6

{(A,B),(?, D2)}

scorecomp(D2) = {2 + (11 + 6) / 2} / 2

rankini (D2)
= 2

Retrieve candidates

Fig. 3. Scoring candidatesD retrieved for the
query{(A,B),(C,?)}

3.1 Relational Search on the Web

Fig. 1 shows the process to find the answer for the query{(A, B), (C, ?)}. First, we
extract the semantic relation between A and B by issuing queries of type “A * * * B”
to a Web search engine1 to obtain some text snippets that includeA andB separated by
up to three words. Here, ”*” denotes a wildcard for any word. To increase the similarity
between two pairs that have similar contexts, we generate all n-grams (n ≤ 5) which
contain both two words in a word pair as lexical patterns for the pair. For instance, in
the sentence“big A such as B is considered to be ...”, we generate sequences such as
“big A such as B”, “A such as B” and“A such as B is”. We obtain the lexical patterns
by replacingA with the variableα andB with β in the original sub-sequences:“big α
such asβ” , “ α such asβ’ and“ α such asβ is” . To avoid noisy patterns, we ignore all
patterns whose frequencies are smaller than a frequency thresholdξ. We denote the set
of these patterns byP.
To get candidate answers, for each patternp ∈ P we input the query“p[C/ α, */β]”
(including the double qoutes) to the search engine. The formula p[C/α] represents the
substitution ofα by C in the pattern p. For this query, the search engine returns snippets
which includeC and other words in the patternp and some extra words in this order.
For example, for the query “lion is a large *”, the search engine returns snippets such
as “lion is a large cat ...” or “lion is a large four-legged animal ...”. Because we want
to get the word at the position of the wildcard* in the query, we add the those extra
words into the candidate answer setD. We then rank the a candidateD ∈ D using the
following ranking score:

scoreinit(D) =

∑
p⊆PD

(freq(“p[C/α, D/β]”))
freq(“C ∗ ∗ ∗ D”)

. (1)

In Formula 1,PD are the patterns that appeared withD, freq(“p[C/α, D/β]”) is the
frequency of co-occurrences of the wordD with the wordC and other words in the

1 Yahoo Boss API http://developer.yahoo.com/search/boss/

4 Exploiting Symmetry in Relational Similarity for Ranking Relational Search Results

patterns. Because the number of words between C and D is less than three, we normalize
the sum by dividing the sum of freq(“p[C/α, D/β]”) by the hit count of the query“C
*** D’ ’. Finally, we assign a rank to eachD ∈ D using the score in Fomula 1. We call
this ranking as theinitial ranking . The ranking scorescoreinit(D) is called the initial
ranking score.

3.2 Symmetry in Relational Similarity

In the initial ranking, a candidateD might receive a top rank merely because it fre-
quently occurs withC irrespective of the relation betweenA andB. To solve this prob-
lem, we propose a ranking score using the symmetry in relational similarity. Let us
denote the relational similarity between(A, B) and(C, D) by R((A,B), (C, D)). Re-
lational similarity will remain unchanged under certain permutations of the four words
(e.g., R((A,B), (C, D)) = R((B, A), (D, C))). Therefore, the candidates that are
ranked at the top by one form of the query (e.g.,(A,B),(C,?)) must also be ranked at
the top by the other (alternative) forms of the query (e.g.,(B,A),(?,C)). In other words,
if D is an incorrect candidate, then it will be ranked at the top only in a small number
of alternative forms of the query and it will receive bad ranks in almost all alternative
forms. To consider the symmetric property, we define the score ofD as follows:

score(D) =
scorecomp(D) + scorecompR(D)

2
. (2)

In the above formula,scorecomp(D) is the score ofD in the query{(A,B),(C,?)} when
we take into account the complementary rank (we will explain complementary rank in
the next section). Similarly,scorecompR(D) is the score ofD in the other forms of the
query whose similarities are invariant to a symmetric transformation (e.g.,{(B,A),(?,C)}).

In addition to symmetry, we use complementary rank ofC or D to rank candidate
answers in a relational search engine. The complementary rank of a candidateD in the
query{(A, B), (C, ?)} is the initial rank ofC in the query{(A, B), (?, D)} and vice
versa. We define the score ofD by using complementary rank as follows,

scorecomp(D) =
rankini(D) + rankAB?D(C)+rankBAD?(C)

2

2
, (3)

whererankini(D) is the rank ofD in the initial ranking (i.e., ranking byscoreinit(D)
as shown in Fomula 1),rankAB?D(C) is the initial rank ofC in {(A, B),(?, D)} and
rankBAD?(C) is the initial rank ofC in {(B, A),(D, ?)}. We denote the score ofD in
initial ranking of{(A, B),(C, ?)} asscorecomp(D) and the score ofD in initial ranking
of {(B, A),(?, C)} asscorecompR(D). By combining the Formula 2 and 3, we obtain the
final score ofD (score(D)) for ranking candidatesD ∈ D.

We illustrate the process of calculatingscorecomp(D) in Figure 3 in the query{(A,
B),(C, ?)}. We assignD a high rank ifC is assigned high ranks when we use the queries
{(A, B),(?, D)} and{(B, A),(D, ?)}.

4 Evaluation

4.1 Experiments

To evaluate the proposed ranking algorithm, we use the SAT dataset [1, 5]. The SAT
dataset contains374 word analogy questions selected from the Scholastic Aptitude Test.

Exploiting Symmetry in Relational Similarity for Ranking Relational Search Results 5

Each questions has a question word pair (stem pair) and five choices for answer word
pairs, in which the correct pair has the highest similarity with the stem pair as shown in
Fig. 2. Therefore, we use the following method for solving SAT analogy questions.

Calculating the score of a word in the search result set:
Given a stem word pair(A,B)and a choice word pair(C,D) (e.g.,A is ostrich, B is bird,
C is lion andD is cat), we first perform the query{(A,B),(C,?)} to obtain a candidate
answer setD. Using the Formula 1, we rank the setD to get the initial ranking. Suppose
that the rank ofD in this ranking isND. Next, we perform the query{(A,B),(?, D)}
to obtain a candidate set and record the rank (according to the score in Formula 1)NC

1

of C in this set. Similarly, we use the query{(B,A),(D, ?)} to get the rank ofC asNC
2 .

Finally, we define the SAT candidate score ofD using the following formula:

SATSubScore(D) =
ND + NC

1 +NC
2

2

2
(4)

Score of a SAT candidate answer:
We calculate the score of a SAT candidate word pairc = (C,D) as follow

SATScore(c) =
SATSubScore(C) + SATSubScore(D)

2
(5)

After calculating SATScore for each candidate SAT answer, we select the choice whose
score is minimal as the answer to the SAT question. To evaluate the performance, we
compare the answer that our system outputs with the correct answer.

4.2 Results

We obtain105 correct answers before using the symmetry and complementary rank.
After using symmetry and complementary rank, we get114 correct answers. Table 1
shows the experimental results. When we do not retrieve the wordC or D for all five
choices, we can not use the queries{(A,B),(C,?)} or {(A,B),(?,D)} respectively. In such
cases, we can not estimate our method’s effect, so we also measure the performance
when we ignore those cases. After eliminating such cases, only243 questions remain.
For those questions, the proposed method achieved an accuracy of46.9% when use the
symmetry, whereas in initial ranking it is only43.0%.
To measure our method’s effect, we consider questions including correct answers and
two or more answer candidates which includeC or D. This results in 216 questions
in which we made 78 correct answers (36.1%) before utilizing symmetry and comple-
mentary rank and 87 correct answers (40.3%) after. Therefore, by using symmetry and
complementary rank, we could obtain4.2% improvement in the SAT result.

Table 1.Comparison of correct rates

Criterion Initial ranking Using symmetry and complementary rank
correct / # questions (recall) 28.1% 30.5%
correct / # questions that we can getC or D (precision) 43.0% 46.9%
correct / # questions that we can retrieve the correct choice
and at least one other choice

36.1% 40.3%

6 Exploiting Symmetry in Relational Similarity for Ranking Relational Search Results

5 Discussion

We observe that the use of symmetry and complementary rank improves the initial
ranking. This shows that the proposed ranking method can be effectively applied to
rank relational search results. Especially, the proposed method of exploiting symmetry
of relations can be combined with advanced lexical pattern extraction techniques (e.g.,
PrefixSpan algorithm, etc.) to drastically improve the precision of relational search. Fur-
thermore, one can improve the precision by combining existing relational search scor-
ing algorithm such as [3] with the proposed scoring algorithm. Therefore, the proposed
method can be smoothly integrated with other existing methods for ranking relational
search results. The integration can be done easily because the proposed method exploits
a special aspect of relations (i.e., the symmetry of relations) that is not utilized in ex-
isting approaches. It is worth noting that relational search is the first task concerning
relational similarity in which complementary rank can be exploited and therefore be in-
vented. In other tasks such as similarity measuring [1, 5], complementary rank does not
appear because in those tasks, the four words in the two pairs (A, B) and (C, D) are all
given. On the other hand, in relational search or tasks in which one or more words are
not given, we can define complementary rank to represent the strength of the relation
between the candidate word and the input query word.
It is worth noting that the evaluation using SAT benchmark gives an interesting crite-
rion for evaluating performance of a relational search engine, which can not be easily
evaluated using normal criteria such as F-score or MRR (mean reciprocal rank).

6 Conclusion

We implemented relational search by using web search engine and proposed a rank-
ing method for relational search. There are some noisy candidate words in the initial
ranking of relational search results. To eliminate noisy candidate words from the ini-
tial ranking, we used a symmetric property and complementary rank. By using these
features, we could improve 4.2% of precision. This shows that our proposed method
of using symmetric property is effective for improving correct rate on SAT dataset and
ranking relational search results.

References

1. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring the similarity between implicit semantic
relations from the web. In: Proc. of WWW’09. pp. 651–660 (2009)

2. Bunescu, R.C., Mooney, R.: Learning to extract relations from the web using minimal super-
vision. In: Proc. of ACL’07. pp. 576–583 (2007)

3. Kato, M.P., Ohshima, H., Oyama, S., Tanaka, K.: Query by analogical example: relational
search using web search engine indices. In: Proc. of CIKM’09. pp. 27–36 (2009)

4. Medin, D., Goldstone, R., Gentner, D.: Respects for similarity. Psychological Review 6(1),
1–28 (1991)

5. Turney, P., Littman, M., Bigham, J., Shnayder, V.: Combining independent modules to
solve multiple-choice synonym and analogy problems. In: Proc. of RANLP’03. pp. 482–486
(2003)

6. Veale, T.: The analogical thesaurus. In: Proc. of 15th Innovative Applications of Artificial
Intelligence Conference (IAAI’03). pp. 137–142 (2003)

