
Joint Automated Reasoning Workshop and

Deduktionstreffen

As part of the Vienna Summer of Logic – IJCAR

23-24 July 2014

Preface

For many years the British and the German automated reasoning commu-
nities have successfully run independent series of workshops for anybody
working in the area of automated reasoning. Although open to the general
public they addressed in the past primarily the British and the German com-
munities, respectively. At the occasion of the Vienna Summer of Logic the
two series have a joint event in Vienna as an IJCAR workshop. In the spirit
of the two series there will be only informal proceedings with abstracts of
the works presented. These are collected in this document. We have tried to
maintain the informal open atmosphere of the two series and have welcomed
in particular research students to present their work. We have solicited for all
work related to automated reasoning and its applications with a particular
interest in work-in-progress and the presentation of half-baked ideas.

As in the previous years, we have aimed to bring together researchers from
all areas of automated reasoning in order to foster links among researchers
from various disciplines; among theoreticians, implementers and users alike,
and among international communities, this year not just the British and
German communities.

1

Topics

Topics of interest include but are not limited to:

• Theorem proving in classical and non-classical logics

• Interactive theorem proving, logical frameworks, proof assistants, proof-
planning

• Reasoning methods

– Saturation-based, instantiation-based, tableau, SAT

– Equational reasoning, unification

– Constraint satisfaction

– Decision procedures, SMT

– Combining reasoning systems

– Non-monotonic reasoning, commonsense reasoning,

– Abduction, induction

– Model checking, model generation, explanation

• Formal methods to specifying, deriving, transforming and verifying
computer systems, requirements and software

• Logic-based knowledge representation and reasoning:

– Ontology engineering and reasoning

– Domain specific reasoning (spatial, temporal, epistemic,agents,
etc)

• Logic and functional programming, deductive databases

• Implementation issues and empirical results, demos

• Practical experiences and applications of automated reasoning

For the Programme Committee:
Alexander Bolotov and Manfred Kerber

2

Programme Committee:

• Serge Autexier (DFKI)

• Bernhard Beckert (Karlsruhe Institute of Technology)

• Christoph Benzmüller (Freie Universität Berlin)

• Alexander Bolotov (University of Westminster) - chair

• Simon Colton (Department of Computing, Goldsmiths College, Uni-
versity of London)

• Louise Dennis (University of Liverpool)

• Clare Dixon (University of Liverpool)

• Jacques Fleuriot (University of Edinburgh)

• Ulrich Furbach (University of Koblenz)

• Jürgen Giesl (RWTH Aachen)

• Ullrich Hustadt (University of Liverpool)

• Dieter Hutter (DFKI GmbH)

• Reiner Hähnle (Technical University of Darmstadt)

• Mateja Jamnik (University of Cambridge)

• Manfred Kerber (University of Birmingham) - chair

• Ekaterina Komendantskaya (School of Computing, University of Dundee)

• Sebastian Rudolph (Technische Universitt Dresden)

• Renate A. Schmidt (University of Manchester)

• Viorica Sofronie-Stokkermans (MPI)

• Volker Sorge (University of Birmingham)

3

Table of Contents

1. Towards Usability Evaluation of Interactive Theorem Provers
Bernhard Beckert, Sarah Grebing, and Florian Böhl

2. Combined Reasoning with Sets and Aggregation Functions
Markus Bender

3. Reasoning about Auctions
Marco Caminati, Manfred Kerber, Christoph Lange, and Colin Rowat

4. Automating Regression Verification
Dennis Felsing, Sarah Grebing, Vladimir Klebanov, and Mattias Ul-
brich

5. Automated Reasoning in Deontic Logic
Ulrich Furbach, Claudia Schon, and Frieder Stolzenburg

6. Modular Verification of Interconnected Families of Uniform Linear Hy-
brid Automata
Matthias Horbach and Viorica Sofronie-Stokkermans

7. (AI) Planning to Reconfigure your Robot?
Mark Judge

8. Using CSP Meta Variables in AI Planning
by Mark Judge

9. Computing Uniform Interpolants of ALCH-Ontologies with Background
Knowledge
Patrick Koopmann and Renate A. Schmidt

10. On Herbrand theorems for classical and non-classical logics
Alexander Lyaletski

11. Extended Resolution in Modern SAT Solving
Norbert Manthey

12. A Resolution-Based Prover for Normal Modal Logics
Cláudia Nalon and George Bezerra Silva

4

13. Models Minimal Modulo Subset-Simulation for Expressive Propositional
Modal Logics
Fabio Papacchini and Renate A. Schmidt

14. Tableau Development for a Bi-Intuitionistic Tense Logic
John G. Stell, Renate A. Schmidt, and David Rydeheard

15. Socratic Proofs for Propositional Linear-Time Logic
Mariusz Urbanski, Alexander Bolotov, Vasilyi Shangin, and Oleg Grig-
oriev

16. Second-Order Characterizations of Definientia in Formula Classes
Christoph Wernhard

17. The Leo-III Project
Max Wisniewski, Alexander Steen, and Christoph Benzmüller

5

Towards Usability Evaluation of

Interactive Theorem Provers∗

Bernhard Beckert Sarah Grebing Florian Böhl

Karlsruhe Institute of Technology (KIT)

{beckert, sarah.grebing, florian.boehl}@kit.edu

Abstract: The effectiveness of interactive theorem provers (ITPs) has increased in a way that the bottleneck

in the interactive process shifted from effectiveness to efficiency. Proving large theorems still needs a lot of

effort for the user interacting with the system. This issue is recognized by the ITP-communities and improve-

ments are being developed. However, in contrast to properties like soundness or completeness, where rigorous

methods are applied to provide evidence, the evidence for a better usability is lacking in many cases. Our con-

tribution is the application of methods from the human-computer-interaction (HCI) field to ITPs. We report

on the application of focus groups to evaluate the usability of Isabelle/HOL and the KeY system. We apply

usability evaluation methods in order to a) detect usability issues in the interaction between ITPs and their

users, and b) to analyze whether methods such as focus groups are applicable to the field of ITP.

1 Introduction

Motivation. The degree of automation of interactive the-

orem provers (ITPs) has increased to a point where com-

plex theorems over large formalizations of real-world prob-

lems can be proven effectively. But even with a high degree

of automation, user interaction is still required on different

levels. On a global level, users have to find the right for-

malization and have to decompose the proof task by find-

ing useful lemmas. On a local level, when automatic proof

search for a lemma fails, they have to either direct proof

search or understand why no proof can be constructed and

fix the lemma or the underlying formalization. As the de-

gree of automation increases, the number of interactions

decreases. However, the remaining interactions get more

complex as ITPs are applied to more complex problems.

Thus, the time has come to shift the focus from the effec-

tiveness of automated proof search to the efficiency of user

interaction by increasing usability of ITPs and providing a

better user experience. Soundness of ITPs can be formally

proven and the effectiveness of automated proof search can,

e.g., be measured with benchmarks. But, in the area of

usability of ITPs, objective and reproducible experiments

are rare and often replaced by anecdotal evidence or hand-

waving. Here, we report on two experiments applying the

focus group method to two different ITPs: The tactical the-

orem prover Isabelle/HOL [11] and the interactive program

verification system KeY [3]. The focus group method is

a structured group discussion guided by a moderator. The

main goal of our experiments was twofold: Firstly, on the

“meta-level,” we wanted to see if focus groups can be used

to evaluate the usability of ITPs and what impact the spe-

cific characteristics of ITPs have on the setup and the results

of focus groups. Secondly, on the concrete level, our aim

was to compare the two ITP systems w.r.t. their usability.

∗The work presented here is part of the project Usability of Software

Verification Systems within the BMBF-funded programme Software Cam-

pus.

Related Work There have been some attempts to address

the usability of theorem provers with structured usabil-

ity evaluations, e.g., applying questionnaire based meth-

ods [12, 4, 2, 7], qualitative methods such as co-operative

evaluations [6] or analyzing recordings of user errors [1].

2 Evaluation

Evaluation Method. Focus group discussions are a qual-

itative method to explore opinions of users about specific

topics or products, e.g., in market research. In the field

of human-computer interaction (HCI) they are used to ex-

plore user perspectives on software systems and their us-

ability in an early stage of the usability engineering pro-

cess [5, 10]. Based on their results, (prototypical) mecha-

nisms for improving usability can be developed, which can

then be evaluated with methods such as usability testing and

user questionnaires to quantitatively measure increases in

usability. While focus groups explore the subjective ex-

perience of users, they are designed to eliminate experi-

menter’s bias and to provide more objective results. The

number of participants required (five to ten participants) to

get significant results is much smaller than for quantitative

evaluations, which makes focus groups well-suited for the

relatively small user base of ITPs. The duration of the dis-

cussion groups is around one to two hours and it is guided

by a moderator who uses a script to structure the discus-

sion. Focus groups have three phases: Recruiting partic-

ipants, performing the discussion and post-processing. In

the following we will briefly describe how we conducted

the focus groups for Isabelle/HOL and the KeY system.

Participants. The participants, mostly Master or PhD

students, were recruited using personal contacts. We en-

sured that each group included novice, intermediate, and

expert users in different proportions. The KeY group had

seven and the Isabelle group five participants.

Script for the discussions. The main questions and tasks

in the script were the same for both discussions as we

wanted to compare the results. Adaptations of the questions

and mock-ups to the specifics of the two systems were the

main differences. The full scripts for our experiments are

available at formal.iti.kit.edu/grebing/SWC.

As warm-up task, we asked about typical application areas

of the systems and about their strengths and weaknesses

related to the proof process. In the main part of the dis-

cussion, we had two topics: (1) Support during the proof

process and (2) Mechanisms for understanding proof states.

For the cool-down task, we asked the participants to be cre-

ative and imagine their ideal interactive proof system.

Topic 1: Support during the proof process. In this topic

we address the question “Does the tool give sufficient sup-

port during the proof process?”. We divided the discussion

for this topic into two parts, namely the global proof pro-

cess (finding the right formalization and decomposing the

proof task) and the local proof process (proving a single

lemma or theorem). For each part, participants were asked

to describe the typical proof process and discuss where the

prover gives support and where support is missing. Time-

consuming actions should be pointed out as well.

Topic 2: Mechanisms for understanding proof states. For

the second topic, we initiated a more focused discussion by

presenting mock-ups for mechanisms not yet built into the

tools. This included (a) a mechanism for tracing formulas,

terms, and variables that are generated during proof con-

struction back to the original proof goal (for both tools),

(b) a visual support for proof management that shows which

lemmas contribute to a proof (for Isabelle), and (c) a mech-

anism for highlighting local changes between two adjacent

nodes in the proof tree (for KeY). Thus, we used focus

groups to get a first assessment of new features.

For all presented mechanisms we had the same line of

action and questions. First, the participants were asked

to describe what they think the mechanism does (i.e., the

mechanism was not explained by the moderator). This was

done to avoid bias introduced by the moderator and to see

if the mechanism is intuitive. Then, the participants should

express opinion on the usefulness of the mechanism. The

planned duration for both groups was 2 hours. Due to lively

discussions, the actual duration was 2.5 resp. 3 hours.

Analysis and Results We transcribed the recorded discus-

sion to use Qualitative Content Analysis [9] to analyze and

structure the results to draw conclusions from the evalua-

tion. We gained insight into strengths and weaknesses of

the two systems, which mostly can be generalized for ITPs,

e.g., missing comprehension about the automatic strategies

of the tools. Also technical issues, which are annoying for

the user and in their opinion compromising for the effi-

ciency, were mentioned, e.g., unstable loading mechanisms

or a slow user interface. These point out where the systems

could be improved in particular. By showing mock-ups

of improvements we gained lively feedback and opinions

about the presented mechanisms, allowing us to improve

our mechanisms and prototypically implement them in the

future. The full details of the presented mechanisms, the

evaluation and the results will be presented in the poster.

3 Conclusion and Future Work

Our experiments show, that focus groups can be used to get

insight into ITPs and explore where to improve the systems

in order to ease the interactive verification process for the

user. The first results already show, that focus groups can

help to determine which mechanisms might or might not

satisfy the needs of the users and how to improve the pre-

sented mechanisms. A full analysis and interpretation of the

recorded and transcribed material is currently being done.

This will result in a detailed report on desirable features for

interactive theorem provers. The mechanisms that attracted

interest during the discussions need to be further developed

and prototypically implemented. By using usability testing

we ensure that the mechanisms suit the user’s needs and

evaluate the impact on the usability of the systems. We will

apply the User Experience Questionnaire method [8] to as-

sess the usability of the KeY system quantitatively. Here,

we will determine, whether such general-purpose question-

naires are helpful for evaluating the usability of ITPs, or

whether more adaptable solutions are needed.

References

[1] J. S. Aitken and T. F. Melham. An analysis of errors

in interactive proof attempts. Interacting with Computers,

12(6):565–586, 2000.

[2] B. Beckert and S. Grebing. Evaluating the usability of in-

teractive verification system. In Proceedings of COMPARE

2012, CEUR Workshop Proceedings 873, 2012.

[3] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Veri-

fication of Object-Oriented Software: The KeY Approach.

LNCS 4334. Springer-Verlag, 2007.

[4] J. Cheney. Project report – theorem prover usability. Tech-

nical report, 2011.

[5] X. Ferré, N. J. Juzgado, H. Windl, and L. L. Constantine.

Usability basics for software developers. IEEE Software,

18(1):22–29, 2001.

[6] M. Jackson, A. Ireland, and G. Reid. Interactive proof crit-

ics. Formal Aspects of Computing, 11(3):302–325, 1999.

[7] G. Kadoda, R. Stone, and D. Diaper. Desirable features

of educational theorem provers: A Cognitive Dimensions

viewpoint. In Proceedings of the 11th Annual Workshop of

the Psychology of Programming Interest Group, 1996.

[8] B. Laugwitz, T. Held, and M. Schrepp. Construction

and evaluation of a user experience questionnaire. In

A. Holzinger, editor, HCI and Usability for Education and

Work, LNCS 5298, pages 63–76. Springer, 2008.

[9] P. Mayring. Einführung in die qualitative Sozialforschung

– Eine Anleitung zu qualitativem Denken (Introduction to

qualitative social research). Psychologie Verl. Union, 1996.

[10] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[11] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL:

A Proof Assistant for Higher-Order Logic. LNCS 2283.

Springer, 2002.

[12] V. Vujosevic and G. Eleftherakis. Improving formal meth-

ods’ tools usability. In 2nd South-East European Workshop

on Formal Methods. South-East European Research Centre

(SEERC), 2006.

Combined Reasoning with Sets and Aggregation Functions

Markus Bender

Universität Koblenz-Landau

Institut für Informatik

Universitätsstrasse 1

56070 Koblenz

mbender@uni-koblenz.de

Abstract: We developed a method that allows to check the satisfiability of a formula in the combined theories

of sets and the bridging functions card, sum, avg, min, max by using a prover for linear arithmetic. Since

abstractions of certain verification tasks lie in this fragment, this method can be used in program verification.

1 Introduction

In [2, 1], Kuncak et al. give a sound, complete and terminat-

ing method to check the satisfiability of formulae in the the-

ory of Boolean algebras and Presburger arithmetic (BAPA),

which is equivalent to the combined theory of sets and car-

dinalities. They reduce the given problem to a problem in

pure Presburger arithmetic and then use a prover for Pres-

burger arithmetic. We extended this method, such that in

addition to considering BAPA, we can deal with additional

bridging functions between the theory of sets and the the-

ory of Presburger arithmetic, namely the functions sum that

calculates the sum of all elements of a set, avg that calcu-

lates the average of all elements of a set and min and max

that calculate the minimal and maximal element of a set,

respectively.

This variety of additional bridging functions allows us to

deal with a broader range of verification tasks.

2 Preliminaries

As we need the concepts of atomic sets and atomic decom-

position, these are introduced as follows:

For n given sets A1, . . . ,An, there are 2n atomic sets

S0, . . . ,S2n−1 that are defined as follows:

S i =

n⋂

j=0

A
d(j,i)
j , for 0 ≤ i < 2n.

where d(i, j) is the j-th binary digit of i and A0 is defined

as A and A1 is defined as the complement of A, A.

Due to the construction of the atomic sets, all S i are dis-

joint.

We define that an atomic set S i =
⋂n

j=0 A
d(j,i)
j , for 0 ≤

i < 2n is contained in a set A if and only if there is a j such

that A
d(j,i)
j = A.

Each given set Ai and its complement Ai can now be rep-

resented uniquely as atomic decomposition, which is the

union of all atomic sets that are contained in the set.

As the developed approach relies on the method de-

veloped by Kuncak et al. [3], we give a short introduction

to the latter.

3 Boolean Algebra and Presburger Arithmetic

The method of Kuncak et al. [2, 1] follows these 5 steps: a)

replace equations of sets A1 ≈ A2 with subset relations in

both directions A1 ⊆ A2∧A2 ⊆ A1, b) replace every subset

relation between two sets A1 ⊆ A2 with a relation on the

cardinality card(A1 ∩ A2) ≈ 0, c) create all atomic decom-

positions for the sets appearing in the given formula and

represent all set expressions by equivalent unions of atomic

sets, d) replace cardinality of unions with sum of cardinalit-

ies of atomic sets, e) purify by introducing new constants of

sort natural numbers for cardinalities of atomic sets. After

these steps, a prover for Presburger arithmetic can be used

to check the satisfiability of the derived formula. With this

method a formula in the combined theory BAPA is reduced

to a formula in Presburger arithmetic in a sound and com-

plete way. This works nicely as the only attributes of the

sets that needs to be considered is their size, i.e specific ele-

ments are not of interest. We extended this method to deal

with the additional bridging functions.

4 Combined Reasoning with Sets and Aggregation

Functions

In contrast to the method of Kuncak et al. [2, 1], we are

considering not only the size of the sets but their elements

as well. This makes the method applicable for checking the

satisfiability of a formula in the combined theories of sets

of numbers and the aggregation functions sum, avg, min,

max more complex.

In our approach, the bridging functions min and max

have to be considered together, and the handling of avg re-

lies on the function sum, i.e. we have three different the-

ories, called BAPAM (for min and max), BAPAA (for avg)

and BAPAS (for sum), or combinations thereof.

The method involves the following parts, which are ex-

plained afterwards: a) enrichment of the given formula

with axioms, b) transformation of the formula to pure lin-

ear arithmetic, c) computation of a model of this formula

and construction of a new formula in pure linear arithmetic

from the model, and finally d) computing a model of this

formula. If we have both models, we can construct a model

of the original formula.

In the enrichment step, a certain set of axioms for each of

the theories is added to the given formula, to model some

properties of the involved theories, resulting in the so called

enriched problem. In the transformation step, we use an ex-

tended version of the transformation of Kuncak et al. with

additional steps for treating each of the aggregation func-

tions. The result of this step is called transformed enriched

problem. We then need a prover for linear arithmetic for

checking the satisfiability of the transformed enriched prob-

lem. In Kuncak et al.’s approach, this is a prover for Pres-

burger arithmetic, as the value for the cardinality of a set is

a natural number. As we are considering not only the size

of the sets, but their elements as well, and as those can be

elements of N,Z,Q,R, we need a prover that can deal with

these domains and combinations thereof. The choice of the

universe affects the completeness of the method. This is

discussed in a later paragraph.

With a model of the enriched formula, we have values

for the size of each of the involved sets and an assignment

for the different instances of the involved aggregation func-

tions, but no assignment of the elements of the sets.

To be able to generate assignments for the elements of

the sets with the help of a prover for linear arithmetic, we

use the values from the constructed model to build a new

formula, which we call set constraint. A template on how

to use the values from the models is used to incorporate

the properties of sets and the involved aggregation func-

tion. There is one distinct template for each of the theories

BAPAS, BAPAA and BAPAM.

A model of the set constraint defines assignments for the

sets, i.e. defines which elements are in which of the sets.

Together with the assignments gathered from the model

of the transformed enriched problem, we can construct a

model for the original formula.

BAPAS. The method for dealing with the function sum is

proven to be sound, i.e. a model of the enriched transformed

model and a model of the set constraint can always be used

to construct a model of the original problem. Completeness

is proven for the case that the model of the transformed

enriched problem has the property that for all individuals

of the domain c there exist infinitely many individuals a

and b in the domain such that a 6= b ∧ a+ b = c.

If this property is not fulfilled, then the method is not

able to generate a model of the set constraint an therefore

no model of the original formula can be constructed.

BAPAA. As avg relies on sum the same considerations

concerning completeness and soundness apply.

BAPAM. Informal considerations lead to the result that

the method for dealing with min and max is sound. If a

dense ordering on the domain of the model of the trans-

formed enriched problem exists, the method is complete. If

the considered model does not have this property, the effect

is equivalent to the one for the appropriate case for sum.

Termination of the method is obvious.

Combination of the three theories BAPAS, BAPAA and

BAPAM are possible as well. For generating the trans-

formed enriched problem, a combination of the transforma-

tion methods is used, and the set constraint is a conjunction

of the involved set constraints, i.e. the template for con-

structing the set constraint in the combined case is a union

of the templates used for the involved theories.

5 Conclusion and Ongoing Work

We have developed a way for checking satisfiability of

formulae in BAPAS, BAPAA, BAPAM, or combinations

thereof. This method simplifies certain verification task and

only relies on provers for arithmetic, which are well estab-

lished and reliable tools.

As a next step we will formalize the proofs of soundness,

completeness and termination for the methods for reasoning

in BAPAM.

Based on the snippet presented in the appendix of [2], we

are implementing a system that allows to use the presented

methods and a prover for linear arithmetic for checking sat-

isfiability of formulae in the presented theories.

To increase the flexibility of the developed approach, we

will consider an extension that works in the following way:

Instead of applying the aggregation functions on the ele-

ments of the sets, we change the method in such a way that

a function f can be supplied so that the aggregation func-

tions do not consider an element e but f(e). This allows to

reason about properties of elements of a set.

With this extension, we will have a verification tool with

a variety of use cases in verification with data structures.

Acknowledgements

We would like to thank Viorica Sofronie-Stokkermans and

Matthias Horbach for fruitful discussions.

References

[1] Viktor Kuncak, Huu Hai Nguyen, and Martin C.

Rinard. An algorithm for deciding BAPA: Boolean al-

gebra with presburger arithmetic. In Robert Nieuwen-

huis, editor, CADE-20, Proceedings, volume 3632 of

LNCS, pages 260–277. Springer, 2005.

[2] Viktor Kuncak and Martin Rinard. The first-order the-

ory of sets with cardinality constraints is decidable.

Technical Report 958, MIT CSAIL, July 2004.

[3] Viktor Kuncak and Martin C. Rinard. Towards efficient

satisfiability checking for boolean algebra with pres-

burger arithmetic. In Frank Pfenning, editor, CADE-21,

Proceedings, volume 4603 of LNCS, pages 215–230.

Springer, 2007.

Reasoning about Auctions∗

Marco Caminati1 Manfred Kerber1 Christoph Lange1,2 Colin Rowat3

1 Computer Science, University of Birmingham, UK
2 Fraunhofer IAIS and University of Bonn, Germany

3 Economics, University of Birmingham, UK

Project homepage: http://cs.bham.ac.uk/research/projects/formare/

Abstract: In the ForMaRE project formal mathematical reasoning is applied to economics. After an initial

exploratory phase, it focused on auction theory and has produced, as its first results, formalized theorems and

certified executable code.

1 Introduction

An auction mechanism is mathematically represented

through a pair of functions (a, p): the first describes how

some given goods at stake are allocated among the bidders

(also called participants or agents), while the second spec-

ifies how much each bidder pays following this allocation.

Each possible output of this pair of functions is referred to

as an outcome of the auction. Both functions take the same

argument, which is another function, commonly called a

bid vector b; it describes how much each bidder values the

possible outcomes of the auction. This valuation is usually

expressed through money.

In this setting, some common questions are the study of

the quantitative and qualitative properties of a given auc-

tion mechanism (e.g., whether it maximizes some relevant

quantity, such as revenue, or whether it is efficient, that is,

whether it allocates the item to the bidder who values it

most), and the study of the algorithms running it (in partic-

ular, their correctness).

In the following three sections we will see three impor-

tant cases of auctions for which we have proved theorems

and extracted verified code using the Isabelle/HOL proof

assistant.

2 Single-good static auctions

In the simplest case there is exactly one indivisible good

auctioned in a single round of bidding. As a consequence,

the formal details are simple: the allocation function a takes

only two possible values, 1 and 0, depending on whether a

participant receives the good or not, respectively. Its argu-

ment, the bid vector, is a map from the set of participants to

the non-negative reals (or naturals, according to the kind of

numbers chosen to represent money). The payoff for a par-

ticipant is given by a simple algebraic expression (where v

is the actual valuation of the good according to that partici-

pant): v ∗ a (b)− p (b) . An important auction is Vickrey’s

auction in which the good is allocated to the highest bid-

der, who pays the second-highest price. In this situation

Vickrey’s theorem holds, one of the most important theo-

rems in auction theory: no participant can be better off upon

bidding anything different from her actual valuation of the

∗This work has been supported by EPSRC grant EP/J007498/1.

good; this holds independently of how the other participants

behave. We formalized Vickrey’s theorem in several proof

assistants to get an idea of their suitability for auctions [2].

The subsequent result of ForMaRE was to extend this

theorem, using Isabelle/HOL, in two ways: proving the

inverse of this result, and characterizing the class of all

the mechanisms (called generalized Vickrey) enjoying this

truthful bidding properties [3, Theorem 2].

Finally, a further important result was formalized in Is-

abelle: that it is impossible to achieve budget balancing for

the generalized Vickrey mechanism, [3, Theorem 3]. This

means that there will always be some acceptable bid vec-

tor giving an outcome for which the sum of the total pay-

ments will be non-zero. Such a result is another standard of

auction theory; however, our proof is original and has the

distinctive feature of not relying on the specific form of the

generalized Vickrey mechanism, thereby establishing an al-

gebraic property of a wide class of mechanisms.

3 Multiple-good static auctions

An important generalization of the single-good case (§2) is

that of a set of several goods at stake, but with the important

proviso that participants do not bid on each item indepen-

dently, but rather bid on subsets of items. That is, they bid

on combinations of items, e.g., allowing them to express in-

terest for multiple items which are worth to them only when

they are together (a left shoe and its right shoe); or allowing

participants to express the same preference between distinct

subsets of goods of which they need only one.

In this setting, there is a mechanism enjoying properties

similar to those enjoyed by the Vickrey mechanism (§2). It

is called nVCG (n goods following the mechanism of Vick-

rey, Clarke, and Groves). Determining the outcome (a, p)
of such a second price, combinatorial auction is much more

complex (indeed, NP-complete) [1, Chapter 12], since for

each possible allocation, the total revenue has to be com-

puted in order to find the maximum. This gives the value

of a; then, a similar computation has to be performed to

determine p.

In ForMaRE we have extracted executable Scala code for

this from the Isabelle formalization. This allows to provide

certified soundness properties for the code. In particular,

the prices are non-negative, the outcome of the auction al-

http://cs.bham.ac.uk/research/projects/formare/

locates each good exactly once, and for each possible bid

vector there is exactly one outcome (up to tie-breaking).

Producing the formalization of theorems and automati-

cally generated Scala code has been the fundamental ac-

complishment of the project. One of the main goals is now

to better integrate these two efforts. Indeed, at the mo-

ment, some formalized theorems only apply to the simplest

among the settings for which we can generate Scala code.

Notably, while we can extract code to run any combinato-

rial VCG auction, the proofs for the Vickrey characteriza-

tion and budget imbalance theorems are currently restricted

to the special case of single-good auctions.

Generalizing those results from the single-good case to

the combinatorial case is not trivial, because the allocation

function gets to yield values more complex than the num-

bers 0,1. Correspondingly, the definition of payoff has to

be modified into v (a (b)) − p (b) , and the simple second

price rule has to be reformulated.

4 Dynamic auctions

A possible goal in designing a mechanism is to allow partic-

ipants to refine their valuations about the goods at stake and

in general the information they have about the possible out-

comes. One common way to achieve this is to run dynamic

auctions: the goods are not allocated in a single round, but

multiple bidding rounds are run until some condition is met

(e.g., nobody raises her bid any longer). This inevitably in-

creases the risk of setting up an ill-specified auction (e.g.,

by specifying one that can never stop). Hence, formal meth-

ods get even more useful.

There are some problems for the adoption of formal

methods in this setting:

1. A dynamic auction inherently requires repeating an

input/output phase from participants, which typically

happens through hardware and software the designer

has no control on (e.g., on a remote machine).

2. The functional Isabelle/HOL formalization we used to

generate Scala code has no notion of time. Hence,

to actually run an auction, we wrap the Isabelle-

generated code in a manually written Scala snippet

providing access to the hardware clock of the machine.

For the last issue, the idea is to make the manually written

wrapper as thin as possible. A while loop is all one needs

to get access to the clock: both the termination condition

and the code executed in each round can and should then be

generated by Isabelle. Besides the skeleton of the while

loop, the remaining manually written code should only con-

cern input/output (point 1. above): we tested such a min-

imal wrapper loop around the Isabelle-generated code. It

is eight lines of code, in the file Dyna.scala available

in the GitHub repository linked from our homepage. After

this loop, the last bid vector is passed to a second stage de-

termining the outcome according to a and p, for which we

can use the existing code of static auctions (see § 3).

5 Conclusion

The ForMaRE project has been working on three themes:

theorems for single-good static auctions, verified code for

multiple-good combinatorial static auctions, and verified

code for dynamic auctions. These themes all present po-

tential for further work, suggesting three dimensions along

which to expand the project, building on the formalization

already created, and using it as a guidance. As we men-

tioned in section 3, combining the first two themes, we are

studying the extensions of theorems from section 2 to the

combinatorial auctions of section 3. But this will only be

a first step, because there are much more complex auctions

of theoretical and practical relevance: there are interesting

properties of a mechanism which depend on the informa-

tion and beliefs of the single participant, and not merely on

the specification of the mechanism itself. For example, a

possible desirable goal in designing an auction would be

that each participant submits a bid close to her perception

of the value of the good, rather than a strategic lie to influ-

ence the outcome; or even to allow each participant to form

or refine such a perception. To do that, the theory must be

enriched to more expressively model the participants them-

selves, rather than only the mechanism. This has been ac-

complished in a subfield of game theory, mechanism design

(also known as reverse game theory), by introducing the so-

called type profile ti of a given participant i. It models the

participant’s information, beliefs and preferences, so that

in general the payoff ui of the participant is a function of

both the outcome and the profile. Our current machinery

lacks the notion of profile, and introducing it will move our

whole approach beyond the generalization to combinatorial

auctions, granting us the possibility to formalize and inves-

tigate the vast range of results of reverse game theory.

The theme of dynamic auctions is of practical relevance

and presents challenging possible evolutions: for example,

how to regulate and implement the possibility for any par-

ticipant (including the current winner) to withdraw her bid,

and how to handle the feedback given to each participant

after each bidding round. This latter point will need more

complex interfacing between the dynamic stage and the ex-

isting winner determination code.

References

[1] Peter Cramton, Yoav Shoham, and Richard Steinberg,

editors. Combinatorial auctions. MIT Press, 2006.

[2] Christoph Lange et al. A qualitative comparison of

the suitability of four theorem provers for basic auction

theory. In Intelligent Computer Mathematics: MKM,

Calculemus, DML, and Systems and Projects 2013,

pages 200–215. Springer-Verlag, 2013.

[3] Eric Maskin. The unity of auction theory: Mil-

grom’s master class. Journal of Economic Literature,

42(4):1102–1115, December 2004.

Automating Regression Verification

Dennis Felsing Sarah Grebing Vladimir Klebanov Mattias Ulbrich

Karlsruhe Institute of Technology, Germany

Abstract: Regression verification is an approach to prevent regressions in software development using formal

verification. The goal is to prove that two versions of a program behave equally or differ in a specified way.

We worked on an approach for regression verification, extending Strichman and Godlin’s work by relational

equivalence and two ways of using counterexamples.

1 Introduction

Preventing unwanted behaviour, commonly known as re-

gressions, is a major concern during software development.

Currently the main quality assurance measure during de-

velopment is regression testing. Regression testing uses a

manually crafted test suite to check the behaviour of new

versions of a program.

For example, consider the following two functions in

ANSI C in Figure 1, which both calculate the greatest com-

mon divisor of two positive numbers:

int gcd1(int a, int b) {

if (b == 0) {

return a;

} else {

a = a % b;

return gcd1(b,a);

}

}

int gcd2(int x, int y) {

int z = x;

if (y > 0) {

z = gcd2(y, z % y);

}

return z;

}

Figure 1: Example functions calculating the GCD

To test such a function multiple test cases would have to

be written to cover the entire function behaviour. Writing

these regression tests requires such an amount of manual

work that typically more than 50% of the development time

is spent on designing test cases [5]. Still, there is no guar-

antee of finding all introduced bugs.

Another approach to this problem is formal verification:

The functions gcd1 and gcd2 can individually be proved

correct with respect to a formal specification of the great-

est common divisor, which would imply their equivalence.

This requires the software engineer to provide said formal

specification. Additionally it is often necessary to manually

guide the proof.

Regression verification offers the best of both worlds. As

in formal verification full coverage is achieved and no test

cases are required. As in regression testing no formal spec-

ification of function behaviour is required. Instead of com-

paring the two programs to a common formal specification,

regression verification compares them to each other. The

old program version serves as specification of the correct

behaviour of the new one. Note that the “correctness” that

regression verification proves is different from that shown

using formal verification. In formal verification there is a

degree of freedom for the program behaviour, which allows

to introduce certain bugs even when a bug is present.

In regression verification the use of an old program ver-

sion as specification assures that the exact behaviour is pre-

served, so no new bugs can be introduced at all.

Regression verification is limited to proving functional

relations, such as equivalence, between program versions.

Regression testing on the other hand can also be em-

ployed to test for nonfunctional requirements, such as per-

formance.

A number of approaches for regression verification have

been developed. [1, 2, 4, 6]

2 Overapproximation using uninterpreted functions

Function r = gcd1(a, b)

gcd1 without recursions

Static Single

Assignment Sgcd1

Function z = gcd2(x, y)

gcd2 without recursions

Static Single

Assignment Sgcd2

(a = x ∧ b = y ∧ Sgcd1 ∧ Sgcd2) → r = z

Valid / Invalid

SMT Solver

Figure 2: Regression verification approach by Strichman

and Godlin

An initial approach for regression verification has been

developed by Strichman and Godlin and is illustrated in

Figure 2 [3]:

Proving equivalence of gcd1 and gcd2 is difficult since

the programs call themselves recursively, potentially an un-

bounded number of times. Strichman and Godlin propose

to replace recursive calls by the same placeholder in both

programs, a so called uninterpreted function U .

Afterwards the programs can be converted into logical

formulae Sgcd1
, Sgcd2

, which incorporate U . These formu-

lae model the behaviour of gcd1 and gcd2 respectively, re-

lating function outputs to inputs. Hence, Sgcd1
and Sgcd2

imply the equality of respective output values, assuming

equality of inputs, in the following way:

(a = x ∧ b = y ∧ Sgcd1 ∧ Sgcd2) → r = z (1)

Strichman and Godlin use the bounded model checker

CBMC to prove this formula for C programs on bitvectors.

We implemented this approach in the tool simplRV

(Simple Programming Language Regression Verification),

which is capable of performing regression verification on

unbounded integer and array functions in a simple impera-

tive programming language featuring recursions as well as

loops, but no global variables. simplRV outputs an SMT

formula, which is passed to state-of-the-art SMT solvers

like Z3 and Eldarica. We developed and implemented the

following extensions to the existing approach within sim-

plRV:

Total equivalence between the functions to be compared

is not always desired. Consider our example in Figure 1:

Equality fails for negative numbers, but one can imagine

that these functions are only called with positive numbers.

In this case we require conditional equivalence for nonneg-

ative inputs:

(a ≥ 0 ∧ a = x ∧ b = y ∧ Sgcd1 ∧ Sgcd2) → r = z (2)

Another common example for conditional equivalence

are bug fixes in the program. Once a bug has been fixed,

an equivalence proof is still desirable to prevent the intro-

duction of new bugs. But simple equivalence of all outputs

for all inputs would not be correct in this case. Instead the

case of the bug fix has to be excluded using a precondition.

We implemented relational equivalance (denoted

as “≃”), which is a superset of conditional equivalence,

so that the user can specify relations between the inputs

and outputs of functions. By default equality is used as the

relation.

Our tool makes use of counterexamples, which are re-

turned by the SMT solver on a failed proof. The functions

are automatically tested using these counterexamples, and

if their outputs differ, the programs are not equivalent and

the user is informed about this with an actual counterexam-

ple.

Spurious counterexamples can be returned by the SMT

solver because we overapproximate the functions using an

uninterpreted function. We use the information won from

spurious counterexamples as additional constraints on the

uninterpreted function U and rerun the proof. This success-

fully handles the cases where a finite number of function

values serve as the non-recursive base case of the function.

Function r = gcd1(a, b)

gcd1 without recursions

Static Single

Assignment Sgcd1

Function z = gcd2(x, y)

gcd2 without recursions

Static Single

Assignment Sgcd2

(a ≃ x ∧ b ≃ y ∧Sgcd1 ∧ Sgcd2∧ U(0, 1) = 0) → r1 ≃ r2

Valid / Invalid U(0, 1) = 0

SMT Solver
Execute

Add

Figure 3: Extended regression verification approach

A summary of our extensions to the initial approach is

given in Figure 3.

Using a collection of examples from various sources in-

cluding compiler optimizations, refactorings and other pub-

lications we evaluated our approach and found it to work

well for a wide range of examples.

Utilizing the information of spurious counterexamples

can lead to an endless loop of new spurious counterexam-

ples. These so called edge cases occur when only one of

multiple parameters has a base case. Proving equivalence

of functions of this kind is a limitation of the approach just

described. A more intricate view on the problem can help,

which is ongoing research.

3 Conclusion and future work

We have extended the reach of regression verification. This

enables us to prove a greater class of functions and to still

prove equivalence for the relevant cases when a bug has

been fixed in the program.

So far only integer programs have been considered. Ex-

tending our approaches to other constructs like heaps and

objects will improve comparability to other regression ver-

ification approaches and enable more realistic use cases.

References

[1] José Almeida, Manuel Barbosa, Jorge Sousa Pinto, and

Bárbara Vieira. Verifying cryptographic software cor-

rectness with respect to reference implementations. In

Marı́a Alpuente, Byron Cook, and Christophe Joubert,

editors, Formal Methods for Industrial Critical Sys-

tems, volume 5825 of LNCS, pages 37–52. Springer

Berlin / Heidelberg, 2009.

[2] Gilles Barthe, Juan Manuel Crespo, and César Kunz.

Relational verification using product programs. In

Michael Butler and Wolfram Schulte, editors, FM

2011: Formal Methods - 17th International Sympo-

sium on Formal Methods, Limerick, Ireland, June 20-

24, 2011. Proceedings, volume 6664 of Lecture Notes

in Computer Science, pages 200–214. Springer, 2011.

[3] Benny Godlin and Ofer Strichman. Regression verifica-

tion. In Design Automation Conference, 2009. DAC’09.

46th ACM/IEEE, pages 466–471. IEEE, 2009.

[4] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and

H. Rebêlo. Mutual summaries: Unifying program

comparison techniques. In Proceedings, First Inter-

national Workshop on Intermediate Verification Lan-

guages (BOOGIE), 2011.

[5] Glenford J. Myers and Corey Sandler. The Art of Soft-

ware Testing. John Wiley & Sons, 2004.

[6] Sven Verdoolaege, Martin Palkovic, Maurice

Bruynooghe, Gerda Janssens, and Francky Catthoor.

Experience with widening based equivalence checking

in realistic multimedia systems. J. Electronic Testing,

26(2):279–292, 2010.

Automated Reasoning in Deontic Logic∗

Ulrich Furbach1 Claudia Schon1 Frieder Stolzenburg2

1 Universität Koblenz-Landau, {uli,schon}@uni-koblenz.de
2 Harz University of Applied Sciences, fstolzenburg@hs-harz.de

1 Introduction

Deontic logic is a very well researched branch of mathe-

matical logic and philosophy. Various kinds of deontic log-

ics are discussed for different applications like argumenta-

tion theory, legal reasoning and actions in multi-agent sys-

tems ([6]). Recently there also is growing interest in mod-

elling human reasoning and testing the models with psy-

chological findings. Deontic logic is an obvious tool to this

end, because norms and licenses in human societies can be

described easily. In [5] there is a discussion of some of

these problems including a solution with the help of deon-

tic logic. This paper concentrates on automated reasoning

in deontic logic. We show that deontic logic can be trans-

lated into the description logic ALC, for which the first oder

reasoning system Hyper offers a decision procedure.

2 Deontic Logic as Modal Logic KD

In this section we briefly describe how standard deontic

logic can be seen as modal logic K together with the se-

riality axiom D: �Φ → ♦Φ. The �-operator is interpreted

as ‘it is obligatory that’ and the ♦ as ‘it is permitted that’.

Assuming a Kripke-semantics, we have that there are dif-

ferent worlds, in which not all of the norms have to hold,

but due to the seriality axiom, there always exists a world

in which the norms hold, hence an ideal world.

To demonstrate the use of deontic logic, we consider the

well-known problem of contrary-to-duty obligations intro-

duced in [4] and the formalization as a normative system

N ′ given in [10] (where s stands for steals and p for pun-

ished):

a’) �¬s

b’) s

c’) s → �p

d’) �(¬s → ¬p)

As shown in [10], the normative system a′) - d′) is inconsis-

tent. This example is used as a running example throughout

this paper.

3 Translating Deontic Logic into Description Logic

Hyper [11] is a theorem prover for first order logic with

equality. It is the implementation of the E-hypertableau

∗Work supported by DFG grants FU 263/15-1 and STO 421/5-1 ’Rati-

olog’

calculus [1] which extends the hypertableau calculus with

equality handling based on superposition. Hyper has been

successfully used in various AI-related applications, like

intelligent interactive books or natural language query an-

swering.

Recently the E-hypertableau calculus and its implemen-

tation have been extended to deal with knowledge bases

given in the description logic SHIQ [2]. There is a strong

connection between modal logic and description logic. As

shown in [9], the description logic ALC is a notational vari-

ant of the modal logic Kn. Therefore any formula given in

the modal logic Kn can be translated as usual into an ALC
concept and vice versa.

In addition to that, we have to translate the seriality ax-

iom into description logic. In [7] it is shown, that the seri-

ality axiom can be translated into the following TBox:

T = {⊤ ⊑ ∃R.⊤}

with R the atomic role introduced by the translation de-

scribed above.

4 Hypertableau for Deontic Logic

In this paper we used the deontic operator only in a few

conditional formulae. In the philosophical literature deon-

tic logic is also used to formulate entire normative systems

(e.g. [10]). In practice such normative systems can be rather

complex. This makes it difficult for the creator of a norma-

tive system to see if a normative system is consistent. We

will show that it is helpful to be able to check consistency

of normative systems automatically and use the Hyper the-

orem prover to check the consistency of a given normative

system very much the same way as we used it in the previ-

ous sections.

The translation of the normative system N ′ introduced

above into ALC, called φ(N ′) henceforth, is shown in Ta-

ble 1. Checking the consistency of the normative system

N ′ corresponds to checking the consistency of φ(N ′) w.r.t.

the TBox T = {⊤ ⊑ ∃R.⊤}, where φ(N ′) is the conjunc-

tion of the concepts given in the right column of Table 1.

We transform φ(N ′) into DL-clauses, which is the input

language of Hyper. We will not give the result of this trans-

formation here, but refer to [8] for details. Hyper constructs

a hypertableau for the resulting set of DL-clauses. This hy-

pertableau is closed and therefore we can conclude, that the

set of DL-clauses is unsatisfiable. This tells us, that the nor-

mative system N ′ formalized above is inconsistent.

Deontic Logic ALC
�Φ → ♦Φ ⊤ ⊑ ∃R.⊤

�¬s ∀R.¬S
s S

s → �p ¬S ⊔ ∀R.P

�(¬s → ¬p) ∀R.(S ⊔ ¬P)

Table 1: Translation of the normative system N ′ into ALC.

5 An Example from Multi-agent Systems

In multi-agent systems there is a relatively new area of re-

search, namely the formalization of ’robot ethics’. It aims

at defining formal rules for the behavior of agents and to

prove certain properties. As an example consider Asimov’s

laws, which aim at regulating the relation between robots

and humans. In [3] the authors depict a small example of

two surgery robots obeying ethical codes concerning their

work. These codes are expressed by means of deontic logic,

very much the same as we defined the normative systems in

this paper.

We will give a formalization in standard deontic logic of

this example together with a description of the proof tasks

for Hyper. In our example, the robots ag1 and ag2 have

two possible actions: ag1 can terminate a person’s life sup-

port and ag1 can delay the delivery of pain medication. We

consider two ethical codes O and O⋆

• O → �¬action(ag2 , delay), which means that “If

ethical code O holds, then robot ag2 takes care, that

delivery of pain medication is not delayed.”

• O⋆ → O ∧ O⋆ → �¬action(ag1 , term), which

means that “If ethical code O⋆ holds, then code O

holds, and robot ag1 takes care, that life support is

not terminated.”

Further we give a slightly modified version of the evaluation

of the robot’s actions given in [3], where (+!!) describes the

most and (−!!) the least desired outcome:

action(ag1 , term) ∧ action(ag2 , delay) → (−!!)

action(ag1 , term) ∧ ¬action(ag2 , delay) → (−!)

¬action(ag1 , term) ∧ action(ag2 , delay) → (−)

¬action(ag1 , term) ∧ ¬action(ag2 , delay) → (+!!)

Further we add formulae stating that the formulae for

the evaluation of the robot’s actions hold in all reachable

worlds. A possible query would be to ask, if the most de-

sirable outcome (+!!) will come to pass, if ethical code O⋆

is operative. This query can be translated into a satisfiabil-

ity test: If O⋆ ∧ ♦¬(+!!) is unsatisfiable, then ethical code

O⋆ ensures outcome (+!!). We have been able to solve this

task successfully by translating the above formulae and the

query into DL-clauses and use Hyper to test the satisfiabil-

ity of the resulting set of DL-clauses.

References

[1] Peter Baumgartner, Ulrich Furbach, and Björn Pelzer.

Hyper tableaux with equality. In Frank Pfennig, ed-

itor, Automated Deduction - CADE 21, 21st Inter-

national Conference on Automated Deduction, Bre-

men, Germany, July 17-20, 2007, Proceedings, vol-

ume 4603 of Lecture Notes in Computer Science,

2007.

[2] Markus Bender, Björn Pelzer, and Claudia Schon.

System description: E-KRHyper 1.4 - extensions for

unique names and description logic. In Maria Paola

Bonacina, editor, CADE-24, LNCS, 2013.

[3] Selmer Bringsjord, Konstantine Arkoudas, and Paul

Bello. Toward a general logicist methodology for en-

gineering ethically correct robots. IEEE Intelligent

Systems, 21(4):38–44, 2006.

[4] R. M. Chisolm. Contrary-to-duty imperatives and de-

ontic logic. Analysis, 23:33–36, 1963.

[5] Ulrich Furbach and Claudia Schon. Deontic logic for

human reasoning. CoRR, abs/1404.6974, 2014.

[6] John F. Horty. Agency and Deontic Logic. Oxford

University Press, Oxford, 2001.

[7] Szymon Klarman and Vı́ctor Gutiérrez-Basulto. De-

scription logics of context. Journal of Logic and Com-

putation, 2013.

[8] Boris Motik, Rob Shearer, and Ian Horrocks. Opti-

mized Reasoning in Description Logics using Hyper-

tableaux. In Frank Pfenning, editor, CADE-21, vol-

ume 4603 of LNAI. Springer, 2007.

[9] Klaus Schild. A correspondence theory for termi-

nological logics: Preliminary report. In In Proc. of

IJCAI-91, pages 466–471, 1991.

[10] Frank von Kutschera. Einführung in die Logik der

Normen, Werte und Entscheidungen. Alber, 1973.

[11] Christoph Wernhard and Björn Pelzer. System de-

scription: E-KRHyper. In Frank Pfennig, editor, Auto-

mated Deduction - CADE 21, 21st International Con-

ference on Automated Deduction, Bremen, Germany,

July 17-20, 2007, Proceedings, volume 4603 of Lec-

ture Notes in Computer Science, 2007.

Modular Verification of Interconnected Families

of Uniform Linear Hybrid Automata

Matthias Horbach Viorica Sofronie-Stokkermans

University Koblenz-Landau, Koblenz, Germany

and Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract: We provide a mathematical model for unbounded parallel compositions of structurally similar

linear hybrid automata, whose topology and flows are described using parametrized formulas. We study

how the analysis of safety properties for the overall system can be performed hierarchically, using quantifier

elimination to derive conditions on the parameters of individual components.

1 Introduction

We study possibilities of using hierarchical reasoning,

quantifier elimination and model generation for the analysis

and verification of families of structurally similar paramet-

ric hybrid systems. We illustrate our method using a system

of water tanks connected in a simple linear topology.

2 Linear Hybrid Automata

A hybrid automaton (HA for short) is a tuple S =
(X,Q, flow, inv, init, E, guard, jump). X is a set of vari-

ables, Q a set of control modes and E a finite multiset of

transitions between modes. For each q ∈ Q, (i) a predicate

flowq over the variables in X and their first derivatives spec-

ifies the continuous dynamics, (ii) a predicate invq over X

defines invariant conditions, and (iii) a predicate initq over

X definines the initial states for control mode q. For each

e ∈ E, (i) a predicate guarde over X resticts states in which

the transition can be taken, and (ii) a predicate jumpe over

X ∪X ′ (a copy of X whose elements are “primed”) states

how variables are reset during the transition.

A hybrid automaton S is linear if it satisfies the following

two requirements [3]:

1. Linearity: For every control mode q ∈ Q, the flow con-

dition, the invariant condition, and the initial condition are

convex linear predicates, i.e. finite conjunctions of strict or

non-strict linear inequalities For every control switch, the

guard and reset conditions are convex linear predicates. In

addition, as in [1, 2], we assume that the flow conditions are

conjunctions of non-strict linear inequalities.

2. Flow independence: The flow condition of every mode

is a predicate over the variables in Ẋ only (and does not

contain any variables from X). This requirement ensures

that the possible flows are independent from the values of

the variables, and only depend on the control mode.

Parametric Linear Hybrid Automata. We consider para-

metric linear hybrid automata (PLHA) (cf. also [1, 2]),

defined as linear hybrid automata for which a set ΣP =
Pc∪Pf of parameters is specified (consisting of parametric

constants Pc and parametric functions Pf) with the differ-

ence that for every control mode q ∈ Q and every mode

switch e:

(1) the linear constraints in the invariant conditions Invq ,

initial conditions Initq , and guard conditions guarde
are of the form: g ≤

∑n

i=1
aixi ≤ f ,

(2) the inequalities in the flow conditions flowq are of the

form:
∑n

i=1
biẋi ≤ b,

(3) the linear constraints in jumpe are of the form∑n

i=1
bixi + cix

′

i ≤ d,

where the coefficients ai, bi, ci and the bounds b, d are ei-

ther numerical constants or parametric constants in Pc; and

g and f are (i) constants or parametric constants in Pc,

or (ii) parameteric functions in Pf satisfying the convexity

(for g) resp. concavity condition (for f), or concrete func-

tions with these convexity/concavity properties such that

∀t(g(t) ≤ f(t)). The flow independence conditions hold

as in the case of linear hybrid automata.

Uniform Parametric Linear Hybrid Automata. The fact

that we consider PLHAs allows us to considerably simplify

the description of such hybrid automata: We regard then

as uniform parametric hybrid automata (UPLHA), i.e. sys-

tems in which modes have a uniform, but parametric, de-

scription. The differences between various modes are ex-

pressed not by different shapes of the predicates, but only

by different properties of the parameters. For UPLHAs we

have the following types of state change:

(Jump) The change of the control location from mode q

to mode q′ is simply due to an update of the values of the

parameters which control the flow. The values of data vari-

ables are updated according to the jump conditions.

(Flow) For fixed values of the parameters the state can

change due to the evolution in a given control mode over

an interval of time: the values of data variables change in

a continuous manner according to the flow rules of the cur-

rent control location for the given values of the parameters.

We have proven that every parametric LHA can be rep-

resented as a uniform parametric LHA.

Example 1 Consider a controller that tries to keep the wa-

ter level in a tank within a safe region, i.e. below a critical

level loverflow, by opening and closing an outlet valve (Fig-

ure 1, left). It is described by an LHA with two modes:

For the mode in which the valve is closed, the flow is

in

out (valve open/closed)

loverflow
lalarm

level

in(1) = in

in(2) = out(1)

in(3) = out(2)

Figure 1: A single water tank and a system of tanks

˙level = in, for the mode in which the valve is open we have
˙level = in − out. The difference between the two modes is

expressed only in the fact that different constants are used

in the differential equations which describe the flows in the

two modes: the coefficient of out is either 1 or 0.

The difference between the mode in which the valve is

open and the mode in which the valve is closed is in the

value of the constant in the flow description: ˙level = c. For

the mode in which the valve is closed, c = in, for the mode

in which the valve is open, c = in − out. A jump from one

mode to the other switches the value of c from in to in− out

and vice-versa.

3 Systems of Uniform Hybrid Automata

We consider systems of hybrid automata of the form {Si |
i ∈ I}, where I is an index set (with an underlying struc-

ture modeling neighborhood and/or communication) and

each Si is a (uniform) linear hybrid automaton. We as-

sume that all systems Si have a similar description, using

indexed variants of the same continuous variables (cf. [4]).

We consider “global” safety properties of the form ∀iΨ(i).
An example of a verification task is to show that the for-

mula is invariant under jumps and flows. We showed that,

in this setting, many verification tasks can be decomposed

modularly to the verification of a bounded number of com-

ponents. Moreover, we can synthesize requirements for the

parameters that guarantee safety. Because of space limina-

tions, we illustrate the ideas on an example.

Example 2 ([4]) Consider a family of n water tanks with a

uniform description (e.g. as in Figure 1, right), each mod-

eled by the hybrid automaton Si. Assume that every Si

has one continuous variable leveli (representing the water

level in Si), and that the input and output in mode q are de-

scribed by parameters ini and outi. Every Si has only one

mode, in which the water level evolves according to rule
˙leveli = ini − outi. We write level(i, t), in(i), and out(i)

instead of leveli(t), ini, and outi, respectively.

Assume that the water tanks are interconnected in such a

way that the input of system Si+1 is the output of system

Si. A global constraint describing the communication of

the systems is therefore:

∀i(2 ≤ i ≤ n− 1 → (in(i) = out(i− 1)) ∧ in(1) = in.

An example of a “global” update describing the evolution

of the systems Si during a flow in interval [t0, t1]:

∀i(level(i, t1) = level(i, t0)+(in(i)−out(i))(t1−t0)).

Let Ψ(t) = ∀i(level(i, t) ≤ loverflow) be the safety prop-

erty of our system that we are interested in. Assume that

∀i(in(i) ≥ 0 ∧ out(i) ≥ 0). We generate a formula which

guarantees that Ψ is an invariant: We start with the fol-

lowing formula (for simplicity of presentation we already

replaced in(i) with out(i− 1)):

∃t0, t1 t0 < t1 ∧ ∀i(level(i, t0) ≤ loverflow)
∧ ∃j(level(j, t1) > loverflow)
∧ ∀i((i=1 ∧ level(1, t1)=level(1, t0)+(in−out(1))(t1−t0))

∨ (i > 1 ∧ level(i, t1) = level(i, t0)
+(out(i−1)−out(1))(t1−t0))).

After Skolemization, quantifier elimination and some sim-

plification, we obtain

∀i((i = 1 → (in− out(i0))≤0)
∧(i > 1 → (out(i−1)− out(i))≤0)).

This means that Ψ is an invariant for the family of systems

if, and only if, this condition is satisfied.

4 Conclusion

We presented a way of representing systems of similar hy-

brid automata which allows us to reduce the problem of

checking invariance of safety conditions under jumps and

flows to checking satisfiability of ground formulae w.r.t.

background theories. We illustrated the types of problems

which can be solved for a system {Si | i ∈ I} of paramet-

ric linear hybrid automata, where I is a list (here modeled

by the set of natural numbers). Our method can also be

applied to more complex topologies (e.g. systems of water

tanks where I has a tree structure). Similar results can be

obtained if updates are caused by changes in the topology

(insertion or deletion of water tanks in the system in our ex-

ample). In the future, we want to make out approach fully

automatic and analyze its complexity.

Acknowledgements: This work was partly supported by

the German Research Council (DFG) as part of the Tran-

sregional Collaborative Research Center “Automatic Veri-

fication and Analysis of Complex Systems” (SFB/TR 14

AVACS). See www.avacs.org for more information.

References

[1] W. Damm, C. Ihlemann, V. Sofronie-Stokkermans. Decid-

ability and complexity for the verification of reasonable lin-

ear hybrid automata. Proc. HSCC 2011, 73–82, ACM, 2011.

[2] W. Damm, C. Ihlemann, V. Sofronie-Stokkermans. PTIME

Parametric Verification of Safety Properties for Reasonable

Linear Hybrid Automata. Mathematics in Computer Science

5(4): 469–497, 2011.

[3] T.A. Henzinger, P.W. Kopke, A. Puri, P. Varaiya. What’s

decidable about hybrid automata? Journal of Computer and

System Sciences 57(1): 94–124, 1998.

[4] V. Sofronie-Stokkermans. Hierarchical Reasoning and

Model Generation for the Verification of Parametric Hybrid

Systems. Proc. CADE 2013, 360–376, Springer, 2013.

(AI) Planning to Reconfigure your Robot?

Mark Judge

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield

m.judge@sheffield.ac.uk

Abstract: Current and future robotics and autonomous system applications will be used in highly complex

environments. In such situations, automatic reconfiguration, due either to changing requirements or equipment

failure, is highly desirable. By using a model of autonomy based around the Robot Operating System (ROS),

and building on previous work, it is possible to use Artificial Intelligence (AI) Planning to facilitate the auto-

matic reconfiguration. In this way, standard AI Planning machinery may be used with a suitable mathematical

model of a given system. This paper reviews the background to this concept and details the initial steps taken

towards the combination of AI Planning technology and a physical system, with the aim being to have the

planner provide possible validated system reconfigurations which can then be implemented on the hardware.

1 Introduction

Early robotics systems [7] were built around three funda-

mental primitives: Sense, Plan, Act (SPA). However, since

it became clear that planning was too complex to be car-

ried out on-board in real time, AI planning has become a

research area in its own right.

As a consequence of the divergence of planning and

robotics, AI planning has grown, matured, and now em-

ploys a wide range of techniques, many of which are ap-

plied to a broad spectrum of complex problem domains [2].

Hence, originally, planning was intended as a mechanism

for controlling the operation of a robot, but may now often

be considered a general solving method, applicable to prob-

lems with a known current (initial) state and a desired goal

state.

It is in this general problem solving sense in which AI

planning technology is used here in order to provide a so-

lution ”plan” for the reconfiguration “problem” of an au-

tonomous (robot) system. To facilitate the description of

the autonomous system(s) as a planning domain, the Robot

Operating System (ROS) [8] was used, with a mathematical

model developed to describe the ROS system, with this in

turn allowing autonomous reconfiguration.

A more detailed discussion of autonomous systems con-

trol and the formal model used for reconfiguration is pro-

vided in our foundational paper [1]. Here, in this current

paper, we summarise that previous work, focusing more on

the planning aspect and emphasising the use of an AI Plan-

ning logic system for the reconfiguration process.

2 Background

In this section, we highlight the need for the reconfiguration

of autonomous and robotic systems, introduce ROS, and

briefly describe one form of AI planning.

Autonomous control and robotics systems operate in

highly complex environments, much more complex than

the environments in which traditional control systems op-

erated. The reconfiguration of such systems is required in

order to accommodate either changes in the environment or

changes in a given system’s hardware [5], perhaps due to

a fault or a better subsystem component becoming avail-

able. Such reconfiguration demands considerable resources

from system engineers. Hence, automatic reconfiguration

is desirable not only to minimise resource use, but also to

reduce or remove errors and speed up redevelopment and

redeployment.

ROS is an open source robot operating system, originally

developed for use on specific large-scale service robot and

mobile manipulator platforms. The designers’ stated aims

in developing ROS were that their system would be peer-to-

peer, free, open source, thin, tools based, and multi-lingual

(C++, Python, LISP, Octave).

A typical ROS system comprises a number of processes,

optionally distributed over multiple hardware systems, and

consists of nodes, messages, topics, and services. Nodes

(software modules) carry out the computation and commu-

nicate via messages, doing this by publishing to a particular

topic. In addition to this “broadcast” type model, services

are used for synchronous transactions, which are defined by

a named string and pairs of messages of a strict type.

Classical planning, also known as STRIPS planning [3],

requires that the state space be finite and fully observ-

able. It is assumed that only specified actions can change a

state and that they do so instantaneously, with the resulting

state being predictable. A STRIPS planning problem, P =

(O,I,G), where O is a set of operators, I is a conjunction of

fact literals describing the initial state, and G another con-

juction of facts describing a partially specified goal state.

AI planning problems can be described using the Plan-

ning Domain Definition Language (PDDL) [6]. In order to

find solutions to such planning problems, a dedicated plan-

ning system must be constructed. This is generally a time

consuming process. Hence, for this work, one of the most

well known, and best performing, planning systems, called

Fast Forward (FF) [4], was used to solve the problem in-

stances once these were formulated.

3 AI Planning for System Reconfiguration

One way of mathematically describing [1] a ROS system is

by making use of a tri-partite graph (Figure 1).

Figure 1: Example ROS graph.

In Figure 1, the three vertex types are considered differ-

ent, with all inter-node communication occurring via a ser-

vice or topic. Hence, the edges represent data flow, with a

given topic or service requiring a minimum of one inbound

edge from a ROS node.

To use AI planning machinery to reconfigure a ROS sys-

tem of the type shown in Figure 1, we model the system

using a PDDL domain description. This contains the action

schema, which will be instantiated with the data contained

in an associated problem instance description file.

Figure 2: Example robot arm system diagram.

Taking as an example a modular robotic arm system com-

bined with visual perception equipment, it is possible to set

as a goal certain (lifting and moving) tasks, with the plan-

ning system providing the actual, physical (re)configuration

detail to guarantee that a given task can be completed.

Considering Figure 2, the prototype planning system was

set up to model two robot arms, each with 5 degrees of

freedom (DOF), one with DC motor control, the other with

servo control capability. The system is required to perform

two different tasks. The first is Disk Loading, the second,

Object Repositioning. The first task can only be performed

with the servo control system in place, whilst the second

can be carried out under either configuration.

In the planning action schema, each modelled ROS node

supplies (or requires) certain services required (or supplied)

by other nodes. This aligns well with the notion of precon-

ditions and effects [3] in AI planning.

(:action dc_place_object
:parameters
(?dcservo1 - dcservo
?grippernode1 - grippernode
?visualperceptnode1 - visualperceptnode
?positionarmnode1 - positionarmnode
?dcplacingobjectnode1 - dcplacingobjectnode)

:precondition
(and (dcservo_available ?dcservo1 ?grippernode1)

(gripper_sensing_available ?grippernode1)
(visual_percept_available ?grippernode1
?visualperceptnode1 ?positionarmnode1)

(no_dc_placing_object_available ?dcplacingobjectnode1)
(visual_percept_not_assigned ?visualperceptnode1))

:effect
(and (dc_placing_object_available ?dcplacingobjectnode1)

(not(visual_percept_not_assigned ?visualperceptnode1))

(not(no dc placing object available?dcplacingobjectnode1))))

Figure 3: Example prototype action.

Part of the action description for the prototype is shown

above in Figure 3. This shows the idea of one node (ac-

tion) relying on the services provided by another, in the

sense that the preconditions of the current action are sat-

isfied by the effects of other, previous actions. Thus, a plan

is a (re)configuration of the system.

Manual analysis of the ROS system used in the example

gives two possible configurations for the Disk Loading task,

and four for the Object Repositioning task. Running the

planner on the PDDL encoded model gives the correct sets

of solutions for both. A sample is shown in Figure 4.

0: DIGITAL_SERVO_BASE_TO_SHOULDER DIGITALBASENODE1 DIGITALSHOULDERNODE1 DISCLOAD1

1: DIGITAL_SERVO_SHOULDER_TO_ELBOW DIGITALBASENODE1 DIGITALSHOULDERNODE1 DIGITALELBOWNODE1

2: DIGITAL_SERVO_ELBOW_TO_WRIST DIGITALSHOULDERNODE1 DIGITALELBOWNODE1 DIGITALWRISTNODE1

3: DIGITAL_SERVO_WRIST_TO_GRIPPER DIGITALELBOWNODE1 DIGITALWRISTNODE1 DIGITALGRIPPERNODE1

4: SETUP_CAMERA_IMAGE CAMERANODE2

5: DIGITAL_SERVO_AVAILABLE DIGITALWRISTNODE1 DIGITALGRIPPERNODE1 DIGITALSERVO1

6: SETUP_GRIPPER_SENSING GRIPPERNODE2

7: VISUAL_PERCEPTION_READY VISUALPERCEPTNODE2 GRIPPERNODE2 CAMERANODE2 POSITIONARMNODE2

8: DIGITAL_DISC_LOADING DIGITALSERVO1 GRIPPERNODE2 VISUALPERCEPTNODE2 POSITIONARMNODE2 DIGITAL DISCLOADINGNODE1

Figure 4: Example Disk Loading configuration.

4 Conclusion

This paper summarises1 a foundation for the development

of autonomously reconfigurable robot systems. Results

show, by defining a system in ROS and modelling this in

PDDL, it is possible to attain automatic reconfiguration.

References

[1] J.M. Aitken, S.M. Veres, and M. Judge. Adaptation of System Con-

figuration under ROS. In Procs of 19th IFAC World Congress., 2014.

[2] A. Coles et al. A survey of the 7th ipc. AI Magazine, 33(1):1–8, 2012.

[3] R. E. Fikes and N. J. Nilsson. Strips. In Readings in Planning, pages

88–97. Kaufmann, San Mateo, CA, 1990.

[4] J. Hoffmann and B. Nebel. The FF planning system. Journal of Arti-

ficial Intelligence Research, 14:253–302, 2001.

[5] S. Karapinar, D Altan, and S. Talay. A robust planning framework for

cognitive robots. In Proceedings of AAAI Workshops (online), 2012.

[6] Craig Knoblock. Pddl. AIPS98, 78(4):1–27, 1998.

[7] N. J. Nilsson. Principles of artificial intelligence. Morgan Kaufmann,

San Francisco, CA, USA, 1980.

[8] M. Quigley et al. Ros: an open-source robot operating system. In

ICRA Workshop on Open Source Software, 2009.

1Thanks to J. Aitken and S. Veres, for access to their parts of [1] from

which this paper draws material.

Using CSP Meta Variables in AI Planning

Mark Judge

Department of Computer and Information Sciences, University of Strathclyde, Glasgow

mark.judge@strath.ac.uk

Abstract: Reformulating Artificial Intelligence Planning problems as Constraint Satisfaction Problems

(CSPs) brings a number of benefits. In this reformulation process however, the structure of the original plan-

ning problem is lost. Therefore, no planning problem specific guidance may be used during the assignment

of values to the CSP variables. Extending work, in which we implemented a planning-specific CSP variable

and value selection heuristic, the work described here aims to make better use of the propagation inherent in a

given CSP solver by using CSP meta variables. Such meta variables are used here for goal-locking and for the

assignment of resources to tasks within the problem solution process, with the aim being to reduce the search

space, and to better guide the search within it.

1 Introduction

AI planning problems are generally described using the

Planning Domain Definition Language (PDDL) [9]. Prob-

lems described in this way are then fed in to an application

called a planner in order to find a solution. Planners are

complex, often requiring much time and effort to build.

Instead of building a specialised application, it is possible

to use the constraint programming paradigm, reformulat-

ing the original planning problem as a Constraint Satisfac-

tion Problem (CSP) [2]. By doing this, it is possible to use

generic CSP solution methods to solve the planning prob-

lem, and then convert the CSP solution back into a form

that is a useful solution to the original problem.

Whilst generic CSP heuristics do aid the process of

choosing values for each of the CSP variables (labelling),

they fail to capitalise on the inherent structural information

found in the planning problem. In previous work [8], the

author presented a planning-specific CSP variable and value

selection heuristic. This current work builds on that foun-

dation by making use of CSP meta variables.

CSP meta variables are used both for goal-locking and

for resource-to-task assignment. In the former case, ad-

ditional inferences may be made as a result of the goal-

locking meta variables being assigned values, which leads

to reduced run time and less backtracking in the solution

process for certain problems. In the latter case, preliminary

work has shown that, by using meta variables to represent

a given resource to task allocation, more efficient solutions

are possible.

2 Background

The AI planning considered in this project is known as

STRIPS planning [3], in which it is assumed that only spec-

ified actions can change a state and that they do so instan-

taneously, with the resulting state being predictable. The

state space is required to be finite and fully observable.

A STRIPS planning problem, P = (O,I,G), where O is a

set of operators, I is a conjunction of fact literals describing

the initial state, and G another conjuction of facts describ-

ing a partially specified goal state.

In order to construct a CSP representation, the original

planning problem (described in PDDL) was converted into

a representation based on SAS+ [1]. The SAS+ approach

may be considered more concise than STRIPS since a given

planning problem can be encoded with many fewer vari-

ables, each with a larger range of possible values. This is

helpful [2] when considering reformulation of a planning

problem as a CSP.

Instead of labelling each of the CSP variables using a

generic CSP variable and / or value selection heuristic, use

is made of the problem’s causal graph (CG) [6], which cap-

tures the causal dependencies between the SAS+ variables.

With this approach, the goal-state variables may be used in

a planning specific heuristic algorithm [7] to better guide

the variable and value selection process.

The result of using such a goal centric heuristic is a plan

comprising a series of sub plans, each of which satisfies one

of the goal-state goals. Figure 1 gives an example of this for

a small logistics problem, showing the first sub plan.

3
 5
 2
 . . .
 Ac1:
 1: boardtruckdriver1truck1s0

3
 0
 2
 . . .
 Ac2:
 22: drivetrucktruck1s0s1driver1

3
 0
 2
 . . .
 Ac3:
 44: loadtruckpackage2truck1s1

3
 0
 4
 . . .
 Ac4:
 51: drivetrucktruck1s1s2driver1

3
 0
 4
 . . .
 Ac5:
 68: unloadtruckpackage2truck1s2

3
 0
 0
 . . .
 Ac6:
 _{[4,6,8,35,38,40,41,77,109]}

_{[2,3,7]},
 _{[0,3]},
 _{[0,4]},
 . . .
 Ac7:
 _{[2,4,6,8,9,12,15,16,19..22,31,...]}

_{0,4,7},
 _{0,2..6},
 _{0..2,4},
 . . .
 Ac8:
 _{[1..10,12,15..53,55,56,64..77,109]}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac9:
 _{[1..79,106,109]}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac10:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac11:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac12:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac13:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac14:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac15:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac16:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 .
 Ac17:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac18:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac19:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac20:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac21:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac22:
 _{1..109}

_{0..7},
 _{0..7},
 _{0..4},
 . . .
 Ac23:
 _{[1,2,4..10,13..34,36..44,46..64,...]}

_{0..7},
 _{0..7},
 _{[0,4]},
 . . .
 Ac24:
 _{[5..8,13..21,23,26,27,29..34,...]}

_{0..7},
 _{0..7},
 _{[0,4]},
 . . .
 Ac25:
 _{[5,6,13..20,26,27,29,30,32,34,...]}

_{[1..4,6]},
 _{1..5},
 _{[0,4]},
 . . .
 Ac26:
 _{[5,6,14,16,26,27,29,30,32,34,56,...]}

_{[2,4,6]},
 _{[1,2,4]},
 _{[0,4]},
 . . .
 Ac27:
 _{[14,16,56,59,68,84,107,109]}

4
 4
 0
 . . .

Figure 1: Partial solution matrix with 1st subplan.

3 CSP Meta Variables for AI Planning

The solution of a CSP requires that a value is found for

each of the variables, and that such values are taken from

the respective domains of those variables. Additionally, the

set of values assigned must simultaneously satisfy all of the

declared constraints. However, certain values for a given

variable may be interchangeable [4] with no impact on the

solution(s). A value, b, for a CSP variable, V, is fully in-

terchangeable with a value, c, for V iff: 1. Every solution

to the CSP which contains b remains a solution when c is

substituted for b, and 2. Every solution to the CSP which

contains c remains a solution when b is substituted for c.

Where it is possible to eliminate interchangeable values in

CSPs, a clustering of subsets of the original CSP variables

may be achieved, with a set of meta-variables created.

A meta-CSP of a ground CSP, X, consists of variables

that correspond to subsets of the variables in X. The values

of the meta-variables are the solutions of the problems in-

duced by the subsets of variables. The constraints between

the meta-variables are satisfied when all of the constraints

from the original CSP are satisfied. Applying this concept

to a CSP encoded planning problem [5] allows a meta-CSP

to be constructed, the variables of which represent the goals

of the original planning problem. For a planning problem,

P = (O,I,G), the meta-CSP is a CSP where |X| = |G| and

Di = { a | gi ∈ add(a)}. Each variable represents a goal,

gi ∈ G, with the associated domain containing only the ac-

tions that achieve gi. Such actions have gi in the add list of

their effects. With a variable assigned a value in this repre-

sentation, 〈xi, a〉, the meaning is that a is the final achiever

of gi. This means that it is not possible for any action ap-

pearing later in the plan than a to delete gi. This is shown in

the partial solution matrix below (Figure 2) for the example

in Section 2.

It is clear from Figure 2 that the domain (search space) of

each the action variables, Ac8 to Ac23, has been reduced,

giving the heuristic algorithm even less choice than before,

leading to more efficient solving (Figures 3 and 4).

The second use of meta variables allows a meta variable

to be assigned a value depending on which of the avail-

able resources are allocated to each of a problem’s tasks.

By labelling these meta variables, and using this to direct

the search for actions to form a plan to satisfy the prob-

lem’s goals (tasks), it is possible to show that such plans

can be built faster, often with fewer backtracks, and some-

times with fewer actions. Although this part of the project

is ongoing, results look promising.

3
 5
 2
 . . .
 Ac1:
 1: boardtruckdriver1truck1s0

3
 0
 2
 . . .
 Ac2:
 22: drivetrucktruck1s0s1driver1

3
 0
 2
 . . .
 Ac3:
 44: loadtruckpackage2truck1s1

3
 0
 4
 . . .
 Ac4:
 51: drivetrucktruck1s1s2driver1

3
 0
 4
 . . .
 Ac5:
 68: unloadtruckpackage2truck1s2

3
 0
 0
 . . .
 Ac6:
 _{[4,6,8,35,38,40,41,109]}

_{[2,3,7]},
 _{[0,3]},
 0
 . . .
 Ac7:
 _{[2,4,6,8,9,12,15,16,19..22,31,...]}

_{0,4,7},
 _{0,2..6},
 0
 . . .
 Ac8:
 _{[1,2,4..10,12,15..43,45..53,55,56,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac9:
 _{[1,2,4..10,12..43,45..66,70..75,78,79,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac10:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac11:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac12:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac13:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac14:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac15:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac16:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac17:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac18:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac19:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac20:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac21:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac22:
 {[1,2,4..10,12..43,45..66,70..75,78..80,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac23:
 _{[1,2,4..10,13..34,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac24:
 _{[5..8,13..21,23,26,...]}

_{0..7},
 _{0..7},
 0
 . . .
 Ac25:
 _{[5,6,13..20,26,27,...]}

_{[1..4,6]},
 _{1..5},
 0
 . . .
 Ac26:
 _{[5,6,14,16,26,27,...]}

_{[2,4,6]},
 _{[1,2,4]},
 0
 . . .
 Ac27:
 _{[14,16,56,59,68,...]}

4
 4
 0
 . . .

Figure 2: Partial solution matrix with goal locking applied.

1

10

100

1000

10000

D
ri
v
e
rl
o
g
-1

D
ri
v
e
rl
o
g
-2

D
ri
v
e
rl
o
g
-3

D
ri
v
e
rl
o
g
-4

D
ri
v
e
rl
o
g
-5

D
ri
v
e
rl
o
g
-6

D
ri
v
e
rl
o
g
-7

D
ri
v
e
rl
o
g
-8

D
ri
v
e
rl
o
g
-9

D
ri
v
e
rl
o
g
-1

0

D
ri
v
e
rl
o
g
-1

1

D
ri
v
e
rl
o
g
-1

2

D
ri
v
e
rl
o
g
-1

3

T
im

e
 (

s
)

Problem instances

No locking vs. Meta-vars locking

No locking
Meta-vars locking

IPC time limit

Figure 3: Runtime with & without meta-variables.

1

10

100

D
ri
v
e

rl
o

g
-1

D
ri
v
e

rl
o

g
-2

D
ri
v
e

rl
o

g
-3

D
ri
v
e

rl
o

g
-4

D
ri
v
e

rl
o

g
-5

D
ri
v
e

rl
o

g
-6

D
ri
v
e

rl
o

g
-7

D
ri
v
e

rl
o

g
-8

D
ri
v
e

rl
o

g
-9

D
ri
v
e

rl
o

g
-1

0

D
ri
v
e

rl
o

g
-1

1

D
ri
v
e

rl
o

g
-1

2

D
ri
v
e

rl
o

g
-1

3

N
u
m

b
e
r

o
f

b
a
c
k
tr

a
c
k
s

Problem instances

No locking backtracks vs. Locking backtracks

No locking
Meta-vars locking

Figure 4: Backtracks with & without meta-variables.

4 Conclusion

Depending on the structure of a particular problem, action
pruning resulting from the increased inferences (due to the
use of meta variables) may lead to a reduction in the amount
of both runtime and backtracking required to find a solution
to the given problem. However, whilst such propagation
may aid faster solution, the increased number of constraints
and associated processing may be an overhead. Further,
the overall impact will depend on the causal dependencies
between as yet unassigned CSP variables and those recently
locked.

References

[1] Christer Backstrom. Equivalence and Tractability Results for SAS+

Planning. In Proceedings of KR’92. Morgan Kaufmann, 1992.

[2] Rina Dechter. Constraint processing. Elsevier, 2003.

[3] R. E. Fikes and N. J. Nilsson. Strips. In Readings in Planning, pages

88–97. Kaufmann, San Mateo, CA, 1990.

[4] Eugene C. Freuder. Eliminating interchangeable values in csps. In

Procs of the 9th National Conference on AI - Volume 1, 1991.

[5] Peter Gregory, Derek Long, and Maria Fox. A Meta-CSP Model for

Optimal Planning. In Proceedings of Abstraction, Reformulation and

Approximation, Seventh International Symposium, 2007.

[6] Malte Helmert and Silvia Richter. Fast Downward. In Proceedings of

the International Planning Competition 2004, pages 41–43, 2004.

[7] Mark Judge. Constraint-based Heuristic Guidance for Solution of AI

Planning Problems. In Procs of International IEEE / EPSRC Work-

shop on Autonomous Cognitive Robotics. Univ of Stirling, 2014.

[8] Mark Judge and Derek Long. A CSP Heuristic for AI Planning. In

Procs of 20th Automated Reasoning Workshop, School of Computing,

University of Dundee, UK, 2013.

[9] Craig Knoblock. Pddl. AIPS98, 78(4):1–27, 1998.

Computing Uniform Interpolants of ALCH-Ontologies with

Background Knowledge

Patrick Koopmann and Renate A. Schmidt

University of Manchester, UK

{koopmannp,schmidt}@cs.man.ac.uk

Abstract: Uniform interpolation is a technique to restrict the concept and roles symbols used in an ontology

to a specified subset, while preserving all logical entailments that can be expressed using that subset. We

propose the notion of relative uniform interpolation, where knowledge from a second ontology is taken into

account, and present a method for the description logic ALCH. Relative uniform interpolation of ontologies

corresponds to strongest necessary conditions of formulae studied in classical logics.

1 Introduction

Uniform interpolation deals with the problem of restricting

the symbols used in an ontology to a given set in such a

way, that all entailments in that signature are preserved. It

has applications in a range of areas covering ontology anal-

ysis, hiding confidential information, ontology reuse and

ontology evolution, and methods have been developed for

various description logics [5, 3, 2].

A topic that has only gained little attention in the past is

computing uniform interpolants in the presence of an ontol-

ogy with background knowledge. For example, it is possi-

ble that an application requires only the computation of the

uniform interpolant of a subset of the ontology, whereas in-

formation about the terms to be forgotten is present in other

parts of the ontology. We call these uniform interpolants

relative, since they interpolate the ontology relative to a sec-

ond ontology. Possible applications are analysing how cer-

tain concepts are related in a subset of the ontology, remov-

ing confidential information from ontologies to be shared,

or approximating communication between agents that only

share a limited set of common vocabulary.

Relative uniform interpolants have been investigated for

classical logics under the name strongest necessary condi-

tions (see for example [1]). We believe “relative uniform

interpolant“ is better suited for the description logic case,

since it is unusual to speak of ontologies as sets of condi-

tions.

We give a formal definition of relative uniform inter-

polants. Let sig
c
(E) denote the concept symbols occurring

in E, where E is an ontology or a concept inclusion.

Definition 1. Given two ontologies O and Ob and a set

of concept symbols S , an ontology Orui is a uniform inter-

polant of O for S relative to Ob, iff the following conditions

are satisfied:

1. sig
c
(Orui) ⊆ S

2. For every axiom α with sig
c
(α) ⊆ S , Ob ∪ Orui |= α

iff Ob ∪ O |= α.

If Ob is empty, Orui is a uniform interpolant of O for S . We

call O the input ontology and Ob the background ontology.

Resolution:
C1 ⊔A C2 ⊔ ¬A

C1 ⊔ C2

provided C1⊔C2 contains at most one negative definer

literal.

Role Propagation:

C1 ⊔ ∀s.D1 C2 ⊔ Qr.D2

C1 ⊔ C2 ⊔ Qr.D3
O |= r ⊑ s

where Q ∈ {∃, ∀} and D3 is a (possibly new) definer

symbol representing D1 ⊓D2, provided C1 ⊔C2 con-

tains at most one negative definer literal.

Figure 1: The calculus.

2 Computing Relative Uniform Interpolants

The method assumes that both the input ontology O and

the background ontology Ob are normalised into a specific

normal form, which is defined as follows. Let ND be a set

of special concept symbols that do not occur in the input

ontology, called definer symbols.

Definition 2. An ALCH-literal is a concept description

of the form A, ¬A, ∀r.D or ∃r.D, where A is a concept

symbol, r a role symbol and D ∈ ND. A literal of the

form ¬D, where D ∈ ND, is called negative definer literal.

A TBox is in ALCH-clausal form if every axiom is of the

form ⊤ ⊑ L1⊔ ...⊔Ln, where each Li is an ALCH-literal

and at most one Li is a negative definer literal. The right

part of such a concept inclusion is called ALCH-clause.

We assume that ALCH-clauses are represented as sets of

literals.

Each ontology can be polynomially transformed into

ALCH-normal form by using standard flattening and con-

junctive normal form transformations.

We first present the method for computing uniform inter-

polants relative to an empty background ontology (standard

uniform interpolation) as described in [3].

In order to compute a uniform interpolant of an ontol-

ogy O for S , we forget each symbol B ∈ sig(O) \ S one

Definer Purification:
T

T [D 7→⊤]

provided D occurs only positively in T .

Non-Cyclic Definer Elimination:

T ∪ {D ⊑ C}

T [D 7→C]

provided D 6∈ sig
c
(C).

Cyclic Definer Elimination:

T ∪ {D ⊑ C[D]}

T [D 7→νX.C[X]]

Figure 2: Definer elimination.

after another using the rules in Figure 1.

The role propagation rule may involve the introduction

of a new definer symbol D12 representing the conjunc-

tion D1 ⊓D2, which is performed by adding new clauses

¬D12 ⊔D1 and ¬D12 ⊔D2. By introducing only one de-

finer symbol per pair, the number of introduced definer

symbols is limited by a finite bound. This way, the number

of symbols used in the derived clause set is always finite,

which also gives a finite bound on the number of clauses

and ensures termination.

In order to forget a symbol B, we only apply resolution

on B or definer symbols, and only apply the role propa-

gation rule if that enables us to do further resolution steps.

Afterwards all clauses containing B are filtered out, as well

as clauses of the form ¬D ⊔D′, which were added when a

new definer symbol was introduced.

After all symbols have been forgotten, the definers sym-

bols are eliminated. For this we replace for each definer

symbol D the clauses of the form ¬D⊔Ci by a single con-

cept inclusion D ⊑
d

i
Ci, and then apply the rules in Fig-

ure 2 exhaustively. The cyclic definer elimination rule in-

troduces fixpoint operators to the result, which is in general

unavoidable if we want to represent the uniform interpolant

finitely. It is however possible to represent the result with-

out fixpoints by approximation or using helper concepts [3].

The method can be further optimised by using redundancy

elimination techniques as described in [3].

In order to compute uniform interpolants relative to non-

empty background ontologies, we follow a set of support

strategy. The background ontology Ob is transformed into

a set of clauses Nb and the input ontology O into a set of

clauses Nk. Both sets will be updated during the computa-

tion, where Nb serves as set of support, and Nk contains the

clausal form of the relative uniform interpolant in the end.

When forgetting a concept symbol B, the rules are ap-

plied with the additional requirement that at most one

premise is taken from the set Nb, and derived clauses are

added to Nk. If a clause of the form ¬D ⊔ C, D ∈ ND, is

added to Nk, all clauses from Nb that contain D are moved

to Nk. This step is necessary to ensure that no informa-

tion is lost when eliminating the definer symbols in the last

step. After having forgotten a concept symbol B this way,

all clauses containing B are moved to Nb.

Through resolution with clauses from the set Nb, it is

possible that previously forgotten symbols get reintroduced

to Nk. For this reason, the process has to be repeated until

no clause in Nk contains a symbol that is neither a definer

symbol nor in S , where we take care that we do not add

any clauses to Nk that have previously been moved to Nb.

Since there is a finite bound on the set of clauses that can

be derived using our calculus, this process always termi-

nates. From the final clause set Nk, the relative uniform

interpolant Orui is computed by eliminating all definer sym-

bols using the rules in Figure 2.

3 Outlook

We implemented a prototype of the presented method based

our implementation for computing uniform interpolants [4]

and did some first experiments for small subsets of on-

tologies, the remaining part of the ontology was taken as

background ontology. Sometimes a lot of information was

transferred from the background ontology into the uniform

interpolant, causing many iterations for each symbol to be

forgotten, but usually we could compute relatively small

relative uniform interpolants.

While the presented method extends our method for

computing uniform interpolants in ALCH, the key idea

can be used with similar resolution based approaches, as

for example for computing uniform interpolants of SHQ-

ontologies [5] or ontologies with ABoxes.

Open questions are how the method would perform in a

deeper evaluation and whether the computed relative uni-

form interpolants are minimal in the sense that only as

much information as needed is used from the background

ontology.

References

[1] Patrick Doherty, Witold Lukaszewicz, and Andrzej

Szalas. Computing strongest necessary and weakest

sufficient conditions of first-order formulas. In Proc.

IJCAI’01, pages 145–154. Springer, 2001.

[2] Boris Konev, Dirk Walther, and Frank Wolter. Forget-

ting and Uniform Interpolation in Large-Scale Descrip-

tion Logic Terminologies. In Proc. IJCAI ’09, pages

830–835. AAAI Press, 2009.

[3] Patrick Koopmann and Renate A Schmidt. Forgetting

concept and role symbols in ALCH-ontologies. In

Proc. LPAR’13, pages 552–567. Springer, 2013.

[4] Patrick Koopmann and Renate A. Schmidt. Implemen-

tation and evaluation of forgetting in ALC-ontologies.

In Proc. WoMO’13. CEUR-WS.org, 2013.

[5] Patrick Koopmann and Renate A. Schmidt. Count and

forget: Uniform interpolation of SHQ-ontologies. In

Proc. IJCAR’14. Springer, 2014. To appear.

On Herbrand theorems for classical and non-classical logics

Alexander Lyaletski

Faculty of Cybernetics, Taras Shevchenko National University of Kyiv

4D, Hlushkov avenue, 03680 Kyiv, Ukraine

lav@unicyb.kiev.ua

Abstract: The talk is devoted to Herbrand-type theorems for an wide enough spectrum of first-order logics

for both the classical and intuitionistic cases as well as for their modal extensions. A way for the construction

of Herbrand theorems for first-order logics containing the ineliminable cut rule is discussed.

1 Introduction

The purpose of this talk is to present a general way for

the construction of Herbrand theorems for an wide enough

spectrum of first-order logics having the form of sequent

calculi [1]. The research is based on some of the author’s re-

sults relating to the construction of computer-oriented first-

order sequent calculi not requiring performing preliminary

skolemization before the starting of deduction.

As in the case of the original Herbrand theorem [2], any

Herbrand theorem under consideration presents itself a (re-

duction) theorem reducing the problem of the deducibility

of an initial sequent S of the form → F (where F is a closed

formula) in a first-order sequent calculus to the problem of

the deducibility of a certain quantifier-free sequent (being

constructed on the basis of S) in its quantifier-free-rule part.

Herbrand theorems are divided into two classes: one con-

tains the theorems for first-order classical (modal) logics

and the other contains theorems for their intuitionistic mod-

ifications. Initially wording for logics without equality, all

such results then are extended to logics with equality.

2 Preliminaries

The signature of any (sequent) logic contains: a finite (pos-

sibly, empty) set of function symbols; a finite non-empty

set of predicate symbols containing, perhaps, the equality;

all the logical connectives including the universal and exis-

tential quantifiers; and modal operators. A specifity of our

formalism is that it uses multisets of formulas instead of se-

quences of formulas. This leads to that all the axioms of

any logic have the form Γ, A → A,∆, where Γ and ∆ are

multisets of formulas and A is an atomic formula including

t = t for any term t not containing so-called dummies [3]

(i.e. variables admitting their replacement by any terms) in

the case of equality.

Besides of the axioms, any sequent calculus contains the

usual inference rules for all the logical connectives and,

perhaps, the cut rule, which may be ineliminable in it or

its expansion. Any logic with equality contains only the

Kanger-type equality rules [3]. All the modal logics being

considered in the paper are constructed from classical or

intuitionistic ones (with or without equality) by adding spe-

cific inference rules for modal connectives. Any inference

is supposed to have the form of an inference tree called a

proof tree, if all its leaves are axioms.

For obtaining Herbrand theorems in the form of reduc-

tion, the usual notion of an Herbrand universe HF for F
(consisting of terms) is modified in a certain way and the

notion of an Herbrand expansion of F being the result of

(multiple) “doubling” of certain subformulas of F is intro-

duced. The result of a Herbrand reduction for → F can be

presented in the form → M · σ, where M is the result of

the removing of all the quantifiers from an expansion F ′ of

F , σ is a substitution of terms from HF ′ for all the dum-

mies from M , and M · σ is the result of the applying of σ
to M . Namely, the existence of a proof tree (satisfying cer-

tain restrictions) for → M · σ in the propositional part of a

calculus under consideration guarantees the deducibility of

→ F in the calculus.

It is well known that in classical logic the deducibility

(validity) of any formula is invariant w.r.t. the skolemiza-

tion operation. In this connection, most of Herbrand-type

theorems for classical logic are formulated in the form of

reduction theorems using skolemization. But already in

the case of (usual) intuitionistic logic, deducibility (valid-

ity) is not invariant w.r.t. skolemization in general, which

makes us look for ways to get Herbrand theorems for the

intuitionistic logic and different modal extensions without

performing preliminary skolemization. Attempts to move

in this direction were made in some of the author’s papers

relating to inference search in non-classical (and classical)

logics without equality, in which the original notions of the

admissibility of a substitution (of terms for variables) for a

formula (sequent) and the compatibility of an inference tree

with a substitution were used. Namely, both these notions

and analogues of a usual Herbrand universe and Herbrand

expansion lead to the opportunity to obtain Herbrand theo-

rems for all the logics under consideration.

To obtain Herbrand theorems for the logics, in which the

cut rule cannot be eliminated, it is suggested to introduce

the notion of a tautological expansion of an initial formula

F , according to which formulas of the form G ⊃ G, where

the structure of G is connected with F , are allowed to use

for the construction of a Herbrand expansion of F .

3 Herbrand theorems for logics without equality

For modal intuitionistic logics without equality rule, we

have the following results.

Theorem 1. Let SC be a first-order intuitionistic modal

sequent logic with maybe the cut. For a closed formula F ,

the sequent → F is deducible in SC if and only if there are

a sequence of tautological and Herbrand expansions of F
leading to the construction of a formula F ′ and a substitu-

tion σ of terms from a Herbrand universe HF ′ for all the

dummies of M being the result of removing all the quanti-

fiers from F ′ such that

(i) there exists a proof tree Tr for M · σ in the proposi-

tional part of SC,

(ii) σ is an admissible substitution for F ′, and

(iii) the tree Tr is compatible with the substitution σ.

For other classes of logics without equality, we have:

(1) In the case of intuitionistic (modal) logics containing

the eliminable cut, reminder about tautological expansion

can be removed from Theorem 1.

(2) In the case of classical modal logics containing the

ineliminable cut, the item (iii) can be removed Theorem 1.

(3) In the case of classical modal logics (or simply classi-

cal logic) containing the eliminable cut, both the reminder

about tautological expansion and the item (iii) can be re-

moved from Theorem 1.

(4) In the case of logics containing the ineliminable cut

and admitting skolemization, the items (ii) and (iii) can be

removed from Theorem 1, if skolemization is applied.

(5) In the case of logics containing the eliminable cut and

admitting skolemization, both the reminder about tautolog-

ical expansion and the items (ii) and (iii) can be removed

from Theorem 1, if skolemization is applied.

Applying Theorem 1 to Gentzen’s calculi LK and LJ

without equality [1], we obtain the Herbrand theorems stat-

ing that the deducibility of sequents in LK and LJ is equiv-

alent to the deducibility of certain quantifier-free sequents

in their propositional parts.

4 Herbrand theorems for logics with equality

In the case of the logics with equality, the Herbrand uni-

verse HF for a formula F is partitioned into disjoint classes

of terms in accordance with the set of all the so-called neg-

ative “equality atoms” of F and a substitution σ selected

for replacement of all the dummies of F by terms from

HF . The result of the applying of this partition operation

is denoted by π(HF , σ). If M is the result of removing all

the quantifiers from F then [M · σ]/π(HF , σ) is defined

as the result of the replacement of every term that occu-

pies an argument place in M · σ by the class containing

this term and being considered as a constant in the formula

[M · σ]/π(HF , σ).

The specifity of any logic with equality under consid-

eration is that the deducibility of an initial sequent → F
in a usual sequent logic with the equality (for example, in

Getzen’s logic LK or LJ with equality) is equivalent to the

deducibility of the sequent → ∀x(x = x) ⊃ F in an appro-

priate calculus SC= under consideration containing only

Kanger’s rules for equality handling.

Theorem 2. Let SC= be a first-order intuitionistic modal

sequent logic with equality and maybe the cut. For a closed

formula F , the sequent → ∀x(x = x) ⊃ F is deducible

in SC= if and only if there exist a sequence of tautological

and Herbrand expansions of → ∀x(x = x) ⊃ F leading

to the construction of a formula F ′ and a substitution σ of

terms from a Herbrand universe HF ′ for all the dummies of

M being the result of removing all the quantifiers from F ′

such that

(i) there exists a proof tree Tr for [M · σ]/π(HF , σ) in

the propositional fragment of SC=,

(ii) σ is an admissible substitution for F ′, and

(iii) tree Tr is compatible with the substitution σ.

For other classes of logics with equality, we have:

(1) In the case of intuitionistic (modal) logics containing

the eliminable cut, reminder about tautological expansion

can be removed from Theorem 2.

(2) In the case of classical modal logics containing the

ineliminable cut, the item (iii) can be removed Theorem 2.

(3) In the case of classical modal logics (or simply classi-

cal logic) containing the eliminable cut, both the reminder

about tautological expansion and the item (iii) can be re-

moved from Theorem 2.

(4) In the case of logics containing the ineliminable cut

and admitting skolemization, the items (ii) and (iii) can be

removed from Theorem 2, if skolemization is applied.

(5) In the case of logics containing the eliminable cut and

admitting skolemization, both the reminder about tautolog-

ical expansion and the items (ii) and (iii) can be removed

from Theorem 2, if skolemization is applied.

Applying Theorem 2 to Gentzen’s calculi LK and

LJ with equality [1], we obtain the Herbrand theorems

stating that the deducibility of sequents in LK and LJ

with equality is equivalent to the deducibility of certain

quantifier-free sequents in their propositional parts not

requiring equality rule applications.

When proving the results, all the reasoning is made on

deducibility. If for a certain sequent calculus under con-

sideration, there is a theorem on its soundness and com-

pleteness, we automatically obtain a corresponding Her-

brand theorem on validity. The calculi LK and LJ (with

and without equality) can serve as such examples.

References

[1] G. Gentzen, Untersuchungen uber das Logische

Schliessen, Math. Z., 39 (1934-5): 176–210, 405–431,

1935.

[2] J. Herbrand, Recherches sur la theorie de la demon-

stration, Travaux de la Societe des Sciences et de Let-

tres de Varsovie, Class III, Sciences Mathematiques et

Physiques, Vol. 33. (Also see in English: Logical Writ-

ing, Hinghan, Reidel Publishing Company, 1971).

[3] S. Kanger, Simplified proof method for elementary

logic, Computer Programming and Formal Systems:

Studies in Logic, 87–93, North-Holland, 1963.

Extended Resolution in Modern SAT Solving

Norbert Manthey

Knowledge Representation and Reasoning Group
Technische Universität Dresden

norbert.manthey@tu-dresden.de

Abstract: Modern SAT solvers are applied in many academic and industrial fields. The CDCL algorithm,
which is employed by most SAT solvers, is based on resolution, but solvers also use stronger reasoning
techniques in preprocessing steps. Only few attempts have been made to include stronger reasoning
techniques in the search itself. The current work revisits the embedding of extended resolution into SAT
solvers, and improves existing work. Experiments indicate that the approach is very promising.

1 Introduction

SAT solvers are used in many academic and industrial
fields, either directly to solve a given formula, or SAT
solving technology is embedded into other reasoners, for
example bounded model checker, higher order logic provers,
ASP or SMT solvers [4]. The huge application field is
due to the recent development starting from the well
known DPLL procedure [6]: modern solvers use clause

learning [13] as deduction, employ restarts [7] to avoid
searching at the wrong place, and have sophisticated
decision heuristics to drive their search.

From a proof complexity point of view, this combination
is known to be as powerful as general resolution [12],
whereas the DPLL algorithm is only as strong as tree-
like resolution. Hence, a CDCL solver can produce
an unsatisfiability proof for a formula with a length
that is polynomial compared to the shortest resolution
proof. However, for propositional formulas, proof theory
provides stronger deduction techniques, as for example
cutting planes [5], or extended resolution [14]. There exist
formulas where these three systems are known to be able
to produce exponentially shorter proofs than resolution.
Most modern SAT solvers do not exploit this reasoning
power, or just exploit it in a limited way: During a formula
simplification phase, Lingeling [3] uses a form of cutting
planes, and extended resolution is used in bounded variable

addition(BVA) [11]. Sat4J [9] can use cutting planes
during search, but reports a slowdown of multiple orders of
magnitude. Finally, Huang [8] and Audemard et al. [1]
presented how to use extended resolution in the CDCL
algorithm: Huang replaces a disjunction of two literals with
a fresh variable, and Audemard et al. replace a conjunction
of two literals with a fresh variable. However, both
approaches are not used in any modern SAT solver. Even
worse, restricted extended resolution (RER) has been
dropped from the solver Glucose again, due to its high
code complexity. The presented work reimplements and
analyzes RER. With the current state of the work, the
performance of the SAT solver Riss can be improved
slightly.1 The implementation is a starting point to

1The source code of the RER extension in Riss is available at
http://tools.computational-logic.org.

integrate extended resolution into CDCL SAT solvers.

2 Extended Resolution

The SAT problem is to find a model for a propositional
formula [4]. Formulas are sets of clauses, which are sets of
literals. A literals x is a Boolean variable v, or a negated
variable v. Given two clauses C = (l∨E) and D = (l∨F),
then the resolvent R is R = C⊗D = (E∨F). A resolution
proof for a formula F is a sequence of resolvents Ri, where
each resolvent is produced by resolving two clauses that
are present either in the proof with a lower index, or in the
formula F . Given a formula F , a variable v is fresh, if F
does not contain v.
Let l1 and l2 be two literals that are present in the

formula F . Extended resolution introduces a fresh variable
v, and adds three clauses (v∨ l1), (v∨ l2), and (v∨ l1∨ l2),
to represent v ↔ (l1 ∨ l2) [14]. This functional dependency
of v to l1 and l2 can be changed to any other Boolean
function, and even the number of input literals can be
modified, as in the simplification technique BVA [11].

2.1 Restricted Extended Resolution

Audemard et al. [1] introduce a fresh variable, if two
consecutive learned clauses Ci and Ci+j share all except
one literal: Ci = (l1 ∨ D) and Ci+j = (l2 ∨ D). The
different literals l1 and l2 can occur only at the very
first position. In the local extension, the fresh variable
v represents the disjunction of l1 and l2: v ↔ (l1 ∨ l2).
The corresponding clauses are added to the formula F .
The clauses Ci and Ci+j are replaced by C ′ = (v ∨D),
because Ci and Ci+j can be obtained by resolution from
C ′ with the two binary extension clauses. Hence, by
introducing a fresh variable, the number of clauses is
reduced. The more the variable v is used further in the
unsatisfiability proof, the higher is the potential to reduce
the size of the proof.

Once an extension is made, all clauses C in the formula
that contain l1 and l2 are rewritten to C := (C \{l1, l2})∪
{v}. Similarly to the two learned clauses, the clauses that
have been rewritten can be obtained by resolution again.
Furthermore, whenever a new clause is learned, its literals

http://tools.computational-logic.org

are checked to contain the pair l1 and l2, so that this pair
can be replaced by v. This check is done for all extensions
that have been introduced. When an introduced variable
becomes irrelevant, such a variables is removed again, and
the original clauses are recovered, to decrease the cost
of the check [1]. On average, Audemard et al. report an
extension every 1000 conflicts.

Reducing the Procedural Overhead To find a
matching pattern, Audemard et al. report a size based
filter: if two consecutive learned clauses Ci = (l1 ∨D) and
Ci+j = (l2 ∨ E) do not have the same size, they are no
candidates for an extension. Additionally, since D has to
match E, a Bloom filter is introduced which checks the
sums of the literals in D and E. The two sets D and E

can only match, if
∑

l∈D =
∑

l∈E .
As presented in [11], increasing the number of variables

in a formula to decrease the number of clauses in CDCL
solvers does not influence the performance. Hence, the new
RER implementation does not delete introduced variables.
When an extension v ↔ (l1 ∨ l2) is added, for the smaller
literal l1 the literals l2 and v are stored. When l1 is used as
the smaller literal in another extension with l2 and w, then
the old extension is not used for new clauses any more.
Thus, the check for new clauses becomes less costly, and
the cost for keeping all introduced variables is very low.

3 Evaluation and Future Work

The modified version of RER is implemented into the
SAT solver Riss [10], and evaluated on the instances of
the SAT competition with a 3600 s timeout. The results
for satisfiable (⊤) and unsatisfiable formulas (⊥) are
presented in Table 1. Surprisingly, RER helps to solve
more satisfiable instances. Compared to the results of [1],
on the whole benchmarks an extension is performed at
most every 1000 conflicts. Most of the time, less than 10
extensions are made. Furthermore, on crafted formulas
more extensions are made than on application formulas.

Riss is a state-of-the-art SAT solver, and with the given
implementation, a starting point for further research is
given. With the current implementation, heuristics for
deciding when to introduce a fresh variable with extended
resolution can be developed, and tested. Furthermore, new
functional dependencies can be tested. As a first step,

Table 1: Evaluation on recent competition benchmarks.

Riss Riss+RER

Category Year ⊤ ⊥ ⊤ ⊥

2011 79 42 81 42
Crafted 2012 229 145 228 146

2013 104 84 106 86

2011 86 117 89 116
Application2012 237 296 243 296

2013 95 86 98 86

and to stay as close as possible to RER, any functional
dependency for a fresh variable v that can be hidden in
two consecutive learned clauses should be considered.
Candidates for such extensions are XOR gates, v ↔ (a⊕ b),
or If-Then-Else(ITE) gates, v ↔ ITE(s, t, f). Both
gates appear frequently in propositional formulas from
cryptographic instances and scheduling, because ITE gates
are used to encode binary decision diagrams into SAT. A
first attempt to use ITE gates similarly to the conjunction
of two literals in RER did not lead to any improvements.
We believe that good heuristics and useful functional
dependencies can be discovered by automatic configuration
tools. Then, the addition of extended resolution to the
CDCL algorithm might result in the next exponential
boost of SAT solvers.

Acknowledgements

The author thanks the ZIH of TU Dresden for providing
the computational resources for the empirical evaluation.

References

[1] Gilles Audemard, George Katsirelos, and Laurent Simon. A
restriction of extended resolution for clause learning sat solvers.
AAAI Press, 2010.

[2] A. Balint, A. Belov, M. J.H. Heule, and M. Järvisalo, editors.
Proceedings of SAT Challenge 2013, volume B-2013-1 of
Department of Computer Science Series of Publications B.
University of Helsinki, Helsinki, Finland, 2013.

[3] A. Biere. Lingeling, Plingeling and Treengeling entering the
SAT competition 2013. In Balint et al. [2], pages 51–52.

[4] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors. Handbook of Satisfiability. IOS Press, Amsterdam, 2009.

[5] W. Cook, C.R. Coullard, and Gy. Turán. On the complexity of
cutting-plane proofs. Discrete Applied Mathematics, 18(1):25 –
38, 1987.

[6] M. Davis, G. Logemann, and D. Loveland. A machine program
for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[7] Jinbo Huang. The effect of restarts on the efficiency of clause
learning. In IJCAI, pages 2318–2323, 2007.

[8] Jinbo Huang. Extended clause learning. Artif. Intell.,
174(15):1277–1284, October 2010.

[9] Daniel Le Berre and Anne Parrain. The SAT4J library, release
2.2, system description. JSAT, 7:59–64, 2010.

[10] N. Manthey. The SAT solver RISS3G at SC 2013. In Balint
et al. [2], pages 72–73.

[11] Norbert Manthey, Marijn J. H. Heule, and Armin Biere.
Automated reencoding of Boolean formulas. In HVC 2012, 2012.

[12] Knot Pipatsrisawat and Adnan Darwiche. On modern clause-
learning satisfiability solvers. J. Autom. Reasoning, 44(3):277–
301, 2010.

[13] João P. Marques Silva and Karem A. Sakallah. GRASP - a new
search algorithm for satisfiability. In ICCAD 1996, pages
220–227, Washington, 1996. IEEE Computer Society.

[14] G. Tseitin. On the complexity of proofs in propositional logics.
In J. Siekmann and G. Wrightson, editors, Automation of

Reasoning: Classical Papers in Computational Logic 1967–1970,
volume 2. Springer-Verlag, 1983.

A Resolution-Based Prover for Normal Modal Logics

Cláudia Nalon1 George Bezerra Silva1

Department of Computer Science

University of Brası́lia, Brazil

nalon@unb.br, georgelione@gmail.com

Abstract: We present a prototype tool for automated reasoning for multimodal normal logics where combi-

nations of the axioms K, T, D, B, 4, and 5 hold. The theorem prover is based on previous work on resolution

calculi for such logics. We briefly present the syntax, the semantics, and the calculus for the basic normal

logic together with the inference rules for dealing with each specific axiom. We then give details of the imple-

mentation of the prover and discuss future work.

1 Introduction

In [1], sound, complete, and terminating resolution-based

methods for fifteen families of propositional normal modal

logics are presented. These calculi deal with multimodal

logics Kn, in which the schemata �a (ϕ ⇒ ψ) ⇒ (�a ϕ ⇒
�a ψ) (Ka), where ϕ and ψ are well-formed formulae, are

valid, and the extensions of Kn where the (combination of

the) following axioms for reflexive (Ta:�a ϕ ⇒ ϕ), serial

(Da:�a ϕ ⇒ ♦a ϕ), symmetric (Ba:♦a �a ϕ ⇒ ϕ), transitive

(4a:�a ϕ ⇒ �a �a ϕ), and Euclidean systems (5a:♦a ϕ ⇒
�a ♦a ϕ) also hold.

Here, we present a prototype theorem-prover for those

families of logics using the methods given in [1]. In the

next section, we present the language of Kn. In Section 3,

we introduce the resolution-based method for Kn and the

rules for dealing with the axioms given above. In Section 4,

we introduce the theorem-prover for Kn, giving details of

its implementation. Conclusions are given in Section 5.

2 The Normal Logic Kn

Formulae in Kn are constructed from a denumerable set of

propositional symbols, P = {p, q, p′, q′, p1, q1, . . .}. Be-

sides classical connectives (¬,∧), a set of unary modal op-

erators �a , a ∈ A, is introduced, where �a ϕ is read as

“the agent a considers ϕ necessary” and A = {1, . . . , n}
is the set of agents.. The operator ♦a ϕ is an abbreviation

for ¬�a ¬ϕ. The set of well-formed formulae, WFF , is de-

fined in the usual way: p ∈ P is in WFF ; true is in WFF ;

if ϕ and ψ are in WFF , then so are ¬ϕ, (ϕ ∧ ψ), and �a ϕ,

for all a ∈ A. A literal is either p or ¬p, for p ∈ P . L is the

set of literals. A modal literal is either �a l or ¬�a l, l ∈ L.

A Kripke structure M over P is a tuple M =
〈S, π,R1, . . . ,Rn〉, where S is a set of possible worlds

(or states) with a distinguished world s0 ; the function

π(s) : P → {true, false}, s ∈ S , is an interpretation that

associates with each state in S a truth assignment to propo-

sitions; and each Ra ⊆ S × S is a binary relation on S ,

where a ∈ A.

We write (M, s) |= ϕ to say that ϕ is true at world s

in the Kripke structure M . Truth of classical formulae is

given as usual; for modal formulae, we have that (M, s) |=

�a ϕ iff for all t, such that (s, t) ∈ Ra, (M, t) |= ϕ. The

formulae false, (ϕ∨ψ), and (ϕ⇒ ψ) are introduced as the

usual abbreviations for ¬true, ¬(¬ϕ∧¬ψ), and (¬ϕ∨ψ),
respectively. Formulae are interpreted with respect to the

distinguished world s0. Let M = 〈S, π,R1 . . . ,Rn〉 be a

Kripke structure with a distinguished world s0. A formula

ϕ is said to be satisfiable in M if (M, s0) |= ϕ; ϕ is said to

be satisfiable if there is a model M such that (M, s0) |= ϕ;

and ϕ is said to be valid if for all models M , (M, s0) |= ϕ.

3 The Resolution Method for K

The resolution method is applied to formulae in the Sepa-

rated Normal Form for Normal Logics (SNFK). A nullary

connective start is introduced to deal with reasoning within

the distinguished world s0; formally, (M, s) |= start iff

s = s0. A formula in SNFK is a conjunction of clauses,

in one of the following forms: initial (start ⇒
∨r

b=1 lb),

literal (true ⇒
∨r

b=1 lb), positive modal (l′ ⇒ �a l), or

negative modal (l′ ⇒ ¬�a l), where l, l′, lb ∈ L. Transfor-

mation rules and their correctness can be found in [1].

Once a formula has been transformed in its normal form,

the inference rules are applied to the set of clauses until ei-

ther a contradiction is found (in the form of true ⇒ false

or start ⇒ false) or no new clauses can be generated. If a

contradiction is found when the method is applied to a set

of clauses S , we say that there is a refutation for S . The

inference rules are shown in Figure 1, where l, l′, li, l
′

i ∈ L
(i ∈ N) and D, D′ are disjunctions of literals. Figure 2

shows the inference rules for dealing with the satisfiabil-

ity problem in systems where reflexivity ([REF]), seriality

([SER]), symmetry ([SYM]), transitivity ([TRANS]), and

Euclideanness ([EUC1] and [EUC2]) hold. The resolvents

of the inference rules [TRANS], [EUC1], and [EUC2] in-

troduce literals of the form posa,l and neca,l, which are

used to keep the normal form of the resolvents by renaming

the formulae ¬�a ¬l and �a l, respectively,

4 The Prover

The theorem prover for Kn together with rules to deal with

systems where the axioms K, T, D, B, 4, and 5 hold can

be found in [2]. The prover, which has been implemented

[IRES1] true ⇒ D ∨ l

start ⇒ D′
∨ ¬l

start ⇒ D ∨D′

[IRES2] start ⇒ D ∨ l

start ⇒ D′
∨ ¬l

start ⇒ D ∨D′

[LRES] true ⇒ D ∨ l

true ⇒ D′
∨ ¬l

true ⇒ D ∨D′

[MRES] l1 ⇒ �a l

l2 ⇒ ¬ �a l

true ⇒ ¬l1 ∨ ¬l2

[GEN1] l′
1
⇒ �a ¬l1
.
.
.

l′m ⇒ �a ¬lm
l′ ⇒ ¬ �a ¬l

true ⇒ l1 ∨ . . . ∨ lm ∨ ¬l)
true ⇒ ¬l′

1
∨ . . . ∨ ¬l′m ∨ ¬l′

[GEN2] l′
1
⇒ �a l1)

l′
2
⇒ �a ¬l1)

l′
3
⇒ ¬ �a ¬l2)

true ⇒ ¬l′
1
∨ ¬l′

2
∨ ¬l′

3

[GEN3] l′1 ⇒ �a ¬l1
.
.
.

l′m ⇒ �a ¬lm
l′ ⇒ ¬ �a ¬l

true ⇒ l1 ∨ . . . ∨ lm)
true ⇒ ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

Figure 1: Inference Rules for K

[REF] l1 ⇒ �a l

true ⇒ ¬l1 ∨ l

[SER] l1 ⇒ �a l)
l1 ⇒ ¬ �a ¬l

[SYM] l1 ⇒ �a ¬l

l ⇒ �a ¬l1

[TRANS] l1 ⇒ �a l)
true ⇒ ¬l1 ∨ neca,l)

neca,l ⇒ �a l

neca,l ⇒ �a neca,l

[EUC1] l1 ⇒ ¬ �a ¬l

true ⇒ ¬l1 ∨ posa,l
posa,l ⇒ ¬ �a ¬l

¬posa,l ⇒ �a ¬l

posa,l ⇒ �a posa,l

[EUC2] l1 ⇒ �a l2
posa,l1 ⇒ �a l2
posa,l1 ⇒ ¬ �a ¬l1

¬posa,l1 ⇒ �a ¬l1
posa,l1 ⇒ �a posa,l1

Figure 2: Inference Rules for Other Systems

in C++, takes as input a file with formulae in the language

of Kn (where several different notations are allowed). For

each formula, the prover carries out the transformation into

the normal form and applies the resolution method, taking

into consideration all inference rules specified as arguments

at a command line. For instance, with the argument -kt4,

the prover applies all the inference rules for Kn and the rules

[REF] and [TRANS]. The prover has several levels of ver-

bosity: only the result (satisfiable/unsatisfiable), the proof

(or the last attempt of a proof), or all the steps in the attempt

of finding a proof.

The prover cycles over the set of clauses applying, firstly,

the inference rules [SER], [SYM], [TRANS], [EUC1], and

[EUC2], until no new clauses can be found. Note that

these rules are applied to modal clauses only, so they can

all be applied before the cycle corresponding to the res-

olution method for K(n), as the resolution rules for this

system (i.e. [IRES1], [IRES2], [MRES], [LRES], [GEN1],

[GEN2], and [GEN3]) do not generate modal clauses. For

the same reason, the rules [MRES] and [GEN2] are also ap-

plied before the other rules. The prover for Kn then tries to

employ linear resolution to the propositional part of the lan-

guage as far as possible, but does not backtrack. If the last

generated clause cannot be resolved with any other clause,

then modal resolution is exhaustively applied and a new cy-

cle of linear resolution over the literal clauses begins. Back-

tracking only takes place if literal and modal resolution can-

not be further applied. Initial resolution consists on check-

ing if the literal, which renames the original formula and

is introduced during translation, appears negated in the set

of literal clauses. Forward subsumption is implemented for

the set of literal clauses.

5 Conclusion

The theorem-prover for Kn performs well and the imple-

mentation of the linear strategy helps the prover to make

better use of space. Nevertheless, the implemented prover

is not robust enough to deal with large formulae and is cur-

rently under revision. The architecture of the prover is also

to be changed to allow for an easier inclusion of new infer-

ence rules. Moreover, all the features of the present version

are hard-coded in the prover. We therefore intend to pro-

vide more options for testing some features of the calculi

as, for instance, giving priorities for inference rules, better

selection of clauses and literals (e.g. by using ordered res-

olution), and the use of pure set of support instead of the

combination with linear resolution. Another desirable fea-

ture is to allow for modal operators under different logics

(e.g. �1 in KDn and �2 in S5n).

References

[1] C. Nalon and C. Dixon. Clausal resolution for normal

modal logics. J. Algorithms, 62:117–134, July 2007.

[2] G. B. Silva. Implementação de um provador de

teoremas por resolução para lógicas modais normais.

Monografia de Conclusão de Curso, Universidade de

Brası́lia, 2013. Prover available at http://www.

cic.unb.br/˜nalon/#software.

Models Minimal Modulo Subset-Simulation for Expressive

Propositional Modal Logics

Fabio Papacchini Renate A. Schmidt

School of Computer Science, The University of Manchester, {papacchf,schmidt}@cs.man.ac.uk

Abstract: Terminating procedures for the generation of models minimal modulo subset-simulation for normal

modal logics have recently been presented. In this abstract we explain what are the challenges to generalise

those procedures to more expressive modal logics, and discuss possible solutions.

1 Introduction

Model generation and minimal model generation are use-

ful for computer science tasks such as fault analysis, model

checking and debugging of logical specifications [8, 4].

For this reason, there have been several studies on mini-

mal model generation for classical and non-classical log-

ics [1, 5, 6, 7, 4, 2].

[7] presents terminating, minimal model sound and com-

plete procedures for the generation of minimal models for

all the normal modal logics in between K and S5, where

a semantic notion of minimality, similar to the notions

in [6, 4], is used. The minimality criterion is designed

so that minimal models are semantically meaningful, more

natural than models minimal with respect to other minimal-

ity criteria, and contain a minimal amount of information.

The procedures in [7] are a combination of tableaux calculi

and a minimality test to close branches.

In this abstract we discuss what are the main challenges

that need to be faced to generalise the procedures in [7]

to more expressive modal logics. Specifically, we are in-

terested in extensions to multi-modal logics with universal

modalities and inclusion axioms. Our ultimate aim is to ob-

tain terminating, minimal model sound and complete pro-

cedures for all these generalisations.

2 Logics and Minimality Criterion

Syntax of modal formulae is defined as usual. Only one

remark needs to be made to avoid confusion. That is, we

use the notation [U] and 〈U〉 for the universal modalities,

and we use [Ri] and 〈Ri〉 for the other modalities.

An inclusion axiom has the following form.

[Ri]φ → [R1] . . . [Rn]φ.

Such axioms represent frame properties of the form R1 ◦
. . . ◦Rn ⊆ Ri, where ◦ denotes relational composition.

We adopt the standard Kripke semantics of modal for-

mulae. An interpretation I is a tuple (W,R, V), where W

is a non-empty set of worlds, R is a set of accessibility re-

lations Ri ⊆ W × W over W , and V is an interpretation

function that assigns to each world u ∈ W a set of propo-

sitional symbols, meaning that such propositional symbols

hold in u. Given an interpretation I, a world u and a modal

formula φ, if I, u |= φ, then I is a model for φ.

Let I = (W,R, V) and I ′ = (W ′,R′, V ′) be two mod-

els of a modal formula φ. A subset-simulation is a binary

relation S ⊆ W ×W ′ such that for any two worlds u ∈ W

and u′ ∈ W ′, if uSu′ then the following hold.

• V (u) ⊆ V ′(u′), and

• if uRiv for some Ri ∈ R, then there exist a v′ ∈ W ′

and Ri ∈ R′such that u′Riv
′ and vSv′.

If S is such that for all u ∈ W there is at least one u′ ∈
W ′ such that uSu′, then we call S a full subset-simulation

from I to I ′. Given two models I and I ′, if there is a full

subset-simulation S from I to I ′, we say that I ′ subset-

simulates I, or I is subset-simulated by I ′. We write I ≤⊆

I ′ if I is subset-simulated by I ′.

Subset-simulation is a preorder on models. That is,

subset-simulation is a reflexive and transitive relation on

models. For this reason it can be used to define the follow-

ing minimality criterion. A model I of a modal formula φ

is minimal modulo subset-simulation iff for any model I ′

of φ, if I ′ ≤⊆ I, then I ≤⊆ I ′.

To have a visual idea of the minimality criterion, Figure 1

shows two possible models of a modal formula. The subset-

simulation relationship is represented by directed dashed

lines. Given the definition of the minimality criterion, the

model on the left is considered minimal because it is subset-

simulated by the model on the right.

{p} {p, q}

Figure 1: Example of minimality w.r.t. subset-simulation

As subset-simulation is not anti-symmetric, there can be

models that subset-simulate each other, resulting in a sym-

metry class w.r.t. the ordering. As a result, many models

minimal modulo subset-simulation can belong to the same

symmetry class. To avoid the generation of all such mod-

els, and because they share a lot of positive information,

we consider a procedure to be minimal model complete if it

generates at least a minimal model for each symmetry class

of minimal models.

3 Challanges and Possible Solutions

Due to lack of space, we do not explain the procedures

in [7]. For this abstract it is enough to say that those proce-

dures are based on tableaux calculi that are minimal model

complete, minimal model soundness is achieved by using

a minimality test called the subset-simulation test, and ter-

mination is guaranteed by the use of variations of ancestor

equality blocking (an example of equality blocking can be

found in [3]).

Three challenges need to be addressed to expand the pro-

cedures in [7]. First, some rules of the calculus need to be

modified to the multi-modal case, and new rules need to be

added. Second, minimal model completeness needs to be

preserved. Finally, termination needs to be ensured. Mini-

mal model soundness is not a challenge. This is because the

subset-simulation test is logic independent enough to result

in minimal model sound procedures for all logics we con-

sider. This is true only if the procedures are minimal model

complete.

Adopting the rules for the multi-modal case is easy. Also

the introduction of rules for universal modalities and in-

clusion axioms does not pose particular problems. As an

example, the following rule can be used for the universal

modality 〈U〉.

(〈U〉)
u : 〈U〉φ

v : φ
where v is fresh.

Regarding the inclusion axioms, it is enough to add a

rule for each of them as in the following example. Suppose

there is an inclusion axiom of the form [R1]φ → [R2][R3]φ.

Then the following rule is added to the calculus.

(u, v) : R2 (v, w) : R3

(u,w) : R1

.

Once the rules of the calculus are established, minimal

model completeness needs to be proved. This can be proved

by showing that for each minimal model there exists a

branch of the tableau from which an equivalent model can

be extracted. The proof we have in mind is a variation of the

minimal model completeness proof in [6], where a similar

minimality criterion and a similar calculus are used.

The last challenge is to preserve termination. This is the

most complex problem to be solved. Decision procedures

for reasoning in the logics under consideration already ex-

ist. What makes the task of minimal model generation

harder is that termination techniques have a clear impact

on models. It might happen, if a wrong termination strat-

egy is used, that minimal model soundness and complete-

ness are lost. What is clear from our previous studies is

that some termination techniques, such as subset blocking,

cannot be used because they conflict with the minimality

criterion. This led us to think that only strategies based on

equality blocking can be used, but we are still investigating

which technique can be used to achieve termination while

preserving minimal model completeness. Finding terminat-

ing procedures for the logics under consideration is impor-

tant for theoretical and practical reasons. First, it would

imply that all the logics under consideration have a finite

number of symmetry classes of minimal models. Second,

termination is fundamental for an efficient and effective im-

plementation of the procedures.

4 Conclusion

The procedures in [7] are an important contribution to-

wards the generation of models minimal modulo subset-

simulation for modal logics. In this abstract we focused

on generalising such procedures to more expressive modal

logics. We believe that it is possible to design minimal

model sound and complete procedures for more expressive

modal logics, and this can be done by modifying carefully

the tableau calculus in [7].

The main remaining challenge is to ensure termination.

We believe that some variation of equality blocking can

help us to reach our goal, to prove that all the logics un-

der consideration have a finite number of symmetry classes

of minimal models, and to provide a basis for practical im-

plementations of the procedures.

References

[1] Bry, F., Yahya, A.: Positive unit hyperresolution

tableaux and their application to minimal model gen-

eration. J. Automated Reasoning 25(1), 35–82 (2000)

[2] Hintikka, J.: Model minimization - an alternative to

circumscription. J. Automated Reasoning 4(1), 1–13

(1988)

[3] Horrocks, I., Sattler, U.: A description logic with tran-

sitive and inverse roles and role hierarchies. J. Logic

Computation 9(3), 385–410 (1999)

[4] Nguyen, L.A.: Constructing finite least Kripke mod-

els for positive logic programs in serial regular gram-

mar logics. Journal of the IGPL 16(2), 175–193

(2008)

[5] Papacchini, F., Schmidt, R.A.: A tableau calculus for

minimal modal model generation. Electr. Notes The-

oret. Computer Sci. 278(3), 159–172 (2011)

[6] Papacchini, F., Schmidt, R.A.: Computing minimal

models modulo subset-simulation for propositional

modal logics. In: Proc. FroCoS’13. LNAI, vol. 8152,

pp. 279–294. Springer (2013)

[7] Papacchini, F., Schmidt, R.A.: Terminating Mini-

mal Model Generation Procedures for Propositional

Modal Logics. In: Proc. IJCAR’14. Springer (2014).

To appear

[8] Reiter, R.: A theory of diagnosis from first principles.

Artificial Intelligence 32(1), 57–95 (1987)

Tableau Development for a Bi-Intuitionistic Tense Logic∗

John G. Stell1 Renate A. Schmidt2 David Rydeheard2

1 School of Computing, University of Leeds, Leeds, UK
2 School of Computer Science, University of Manchester, Manchester, UK

Abstract: Motivated by the theory of relations on graphs and applications to spatial reasoning,

we present a bi-intuitionistic logic BISKT with tense operators. The logic is shown to be decidable

and have the effective finite model property. We present a sound, complete and terminating tableau

calculus for the logic and use the MetTeL system to obtain an implementation.

1 Introduction

In image processing the operations of mathematical

morphology are used to derive new images from given

ones. These new images approximate the input im-

ages in useful ways. The operations transform sets

of pixels to sets of pixels in a way which depends

on a parameter which is effectively a relation on the

set of all pixels. Motivated by the aim of develop-

ing similar approximation operations for subgraphs of

a graph, we have developed a theory of relations on

graphs [5]. These are ordinary relations on the set of

all edges and nodes of the graph which satisfy a sta-

bility condition. A generalisation of these relations is

used here to provide accessibility relations for a modal

logic. Semantically, formulae can represent subgraphs

of a graph, or more generally, downward closed sets in

a pre-order. A particular novel feature of the seman-

tics is the use of a weaker form of the converse opera-

tion on relations. This has resulted in a bi-intuitionistic

tense logic, called BISKT, in which the four modalities

are not mutually independent. In exploring the proper-

ties of this logic we have made essential use of tableau

systems generated using the MetTeL software [1, 8].

2 Bi-intuitionistic stable tense logic

BISKT is a modal bi-intuitionistic logic with four

modalities �, �, ♦ and �. The remaining connectives

are ⊥, ¬ (intuitionistic negation), ¬ (dual negation),

∧, ∨, → (intuitionistic implication) and � (dual impli-

cation).

Kripke frames for BISKT consist of a pre-order H

interacting with an accessibility relation R via a stabil-

ity condition. A binary relation R on a set U is stable,

if H ;R ;H ⊆ R, where ; denotes relational composi-

tion. The semantics interprets formulae as H-sets, i.e.,

∗This research was supported by UK EPSRC research grant

EP/H043748/1.

the downwardly closed sets of the pre-order, and the

bi-intuitionistic connectives are interpreted as usual.

This means, for example, ¬ is interpreted as pseudo-

complement with respect to H , → as relative pseudo-

complement (i.e., intuitionistic implication) with re-

spect to H , etc. � and � are interpreted respectively

as the standard box modality and the standard back-

ward looking diamond over R. The pair � and ♦ are

interpreted similarly as the standard box modality and

the standard backward looking diamond, but this time

over the left converse of R. The left converse of a sta-

ble relation R is

x

R = H ; R̆ ; H , where R̆ is the

(ordinary) converse of R.

Unlike in (bi-)intuitionistic logics and other

(bi-)intuitionistic modal logics, where all connectives

are independent from each other, in BISKT the white

� and white ♦ are related as follows:

♦ϕ ≡
¬
�¬ϕ.

We have shown:

Theorem 1 BISKT is decidable, it has the effective fi-

nite model property and the computational complexity

is PSPACE-complete.

The proof is by showing that BISKT can be embed-

ded into a modal logic, called Kt(H,R), which itself

can be embedded into the guarded fragment, which

is known to be decidable and has the effective finite

model property [2]. Kt(H,R) is a traditional modal

logic with forward and backward looking modal op-

erators defined by H and R as accessibility relations.

The frame conditions are reflexivity and transitivity of

H , and stability of R with respect to H . As both em-

beddings have linear complexity and define in fact an

effective translation into a subfragment of the guarded

fragment, which is PSPACE-complete, the result fol-

lows.

3 Tableau development

Since the accessibility relations in the Kripke models

of BISKT involve converse relations it is natural to use

a semantic tableau method. In particular, we use a la-

belled signed tableau approach based on an explicit

tableau system because this ensures proof confluence.

This means there is no need for backtracking over the

proof search, and there is more flexibility in defining

search heuristics in an implementation. These are as-

pects that make it harder to develop implicit tableau

systems where the rules operate on formulae of the

logic and do not include any meta-logical entities re-

ferring to semantics. An additional advantage of se-

mantic tableau calculi is that they return concrete mod-

els for satisfiable formulae.

Semantic tableau deduction calculi are easy to de-

velop. We follow the methodology of tableau syn-

thesis and refinement as introduced in [3, 7] to de-

velop a tableau calculus for BISKT. Tableau synthesis

amounts to a normalisation process of the definition of

the semantics of the logic. In the case of BISKT atomic

rule refinement was sufficient to obtain a set of tableau

rules with reduced branching. Soundness and com-

pleteness of the obtained calculus follows from the re-

sults of the general framework in [3, 7]. To guaran-

tee termination we use the unrestricted blocking tech-

nique [3, 4]. Compared to other blocking techniques it

imposes no restrictions and is generic, so independent

of any logic and can even be used for undecidable log-

ics. Unrestricted blocking has the property that adding

it to a sound and complete semantic tableau calculus

guarantees termination, for any logic that has the fi-

nite model property. Since we proved that BISKT has

the finite model property the tableau calculus is thus

terminating.

Implementing a prover requires lots of specialist

knowledge and there are various non-trivial obstacles

to overcome, but using the MetTeL tableau prover

generator requires just feeding in the rules of the cal-

culus into the tool which then fully automatically gen-

erates an implementation in Java [1, 8]. Our tableau

calculus is in exactly the form as accepted by MetTeL

and unrestricted blocking is supported by MetTeL. We

have therefore implemented the calculus using Met-

TeL. MetTeL turned out to be useful to experiment

with several initial versions of the calculus. In com-

bination with the tableau synthesis method it was easy

to run tests on a growing collection of problems with

different provers for several preliminary versions of

formalisations of bi-intuitionistic tense logics before

settling on a definition. MetTeL has also allowed us to

experiment with different refinements of the rules and

different variations of blocking.

4 Concluding remarks

Further details and a detailed description of the

tableau calculus are presented in the long ver-

sion [6] of this abstract. The MetTeL speci-

fication of the tableau calculus and the gener-

ated prover for BISKT can be downloaded from

http://staff.cs.manchester.ac.uk/

˜schmidt/publications/biskt13/, where

also performance graphs and the problems used can

be found.

References

[1] MetTeL website. http://www.

mettel-prover.org.

[2] R. A. Schmidt, J. G. Stell, and D. Rydeheard. Ax-

iomatic and tableau-based reasoning for Kt(H,R).

In Advances in Modal Logic, Volume 10, London,

2014. College Publ. To appear.

[3] R. A. Schmidt and D. Tishkovsky. Automated

synthesis of tableau calculi. Logical Methods in

Computer Science, 7(2):1–32, 2011.

[4] R. A. Schmidt and D. Tishkovsky. Using tableau

to decide description logics with full role nega-

tion and identity. ACM Transactions on Computa-

tional Logic, 15(1), 2014.

[5] J. G. Stell. Relations on hypergraphs. In Proc.

RAMiCS 2012, volume 7560 of LNCS, pages 326–

341. Springer, 2012.

[6] J. G. Stell, R. A. Schmidt, and D. Rydeheard.

Tableau development for a bi-intuitionistic tense

logic. In Proc. RAMiCS 14, volume 8428 of

LNCS, pages 412–428. Springer, 2014.

[7] D. Tishkovsky and R. A. Schmidt. Refinement

in the tableau synthesis framework. arXiv e-Print

1305.3131v1, 2013.

[8] D. Tishkovsky, R. A. Schmidt, and M. Khodadadi.

The tableau prover generator MetTeL2. In Proc.

JELIA 2012, volume 7519 of LNCS, pages 492–

495. Springer, 2012.

Socratic Proofs for Propositional Linear-Time Logic

Mariusz Urbanski1 Alexander Bolotov2 Vasilyi Shangin3 Oleg Grigoriev3

1 Adam Mickiewicz University, Poznań, Poland

Mariusz.Urbanski@amu.edu.pl
2 University of Westminster, UK

A.Bolotov@wmin.ac.uk
3 Moscow State University, Russia

shangin@philos.msu.ru, grigoriev@philos.msu.ru

Abstract:

This paper presents a calculus of Socratic proofs for

Propositional Linear-Time Logic (PLTL) and discusses po-

tential automation of its proof search.

1 Introduction

Propositional Linear-Time Logic (PLTL) [6] gained vari-

ous deductive constructions: axiomatic [5], tableau [11],

resolution [4], and natural deduction [1]. In this paper

we present a calculus of Socratic proofs for Propositional

Linear-Time Logic (PLTL) [6], [3], [7] abbreviated as

PLTLSP. The calculus is based upon the hypersequent cal-

culus [2] and it fits into the framework of Socratic proofs

by Wisniewski (cf. [8], [10] and [9]).

2 Logic PLTLT

We utilise the language of PLTL which extends the lan-

guage of Classical Propositional Calculus (CPC) by tem-

poral operators: U (until) ⃝ (at the next moment in time),

2 (always in the future), and 3 (at sometime in the future or

eventually). The semantics for the temporal part of the logic

PLTLT is defined in the standard way over linear sequence

of states, finite in the past, infinite in the future.

In order to formulate PLTLT we need to extend the lan-

guage of PLTL with the following signs: ⊢, ?, 1 and 2. Intu-

itively, ⊢ stands for derivability relation and ? is a question-

forming operator. The numerals 1 and 2 will be used to

encode tree-structure of a Socratic transformation.

There are two disjoint categories of wffs: declarative

wffs (d-wffs) and erotetic wffs (e-wffs), or questions. There

are also two types of d-wffs: atomic d-wffs and indexed d-

wffs. Atomic d-wffs are expressions of the form S ⊢ A,

where S is a finite sequence (possibly with repetitions) of

PLTL-wffs, and A is a PLTL-wff, and if A is an empty for-

mula, then S is a non-empty sequence. Indexed d-wffs are

expressions of the form S ⊢n A or of the form T ⊢n, where

S ⊢ A and T ⊢ are atomic d-wffs of and n is a sequence

of 1’s or 2’s, starting with 1. E-wffs, or questions are ex-

pressions of the form ?(Φ), where Φ is a non-empty finite

sequence of indexed atomic d-wffs (constituents of Φ).

In the formulation of rules we shall use the following

classification of PLTL formulae to α and β types:

α α1 α2

A ∧B A B

¬(A ∨B) ¬A ¬B
¬(A → B) A ¬B
2A A ⃝2A

¬3A ¬A ⃝2¬A
¬(AUB) ¬B ¬(A ∧⃝(AUB))

β β1 β2 β∗

1

¬(A ∧B) ¬A ¬B A

A ∨B A B ¬A
A → B ¬A B A

¬2A ¬A ⃝3¬A A

3A A ⃝3A ¬A
AUB B A ∧⃝(AUB) ¬B

Rules for PLTLT :

Lα :
? (Φ;S ′ α ′ T ⊢n C; Ψ)

? (Φ;S ′ α1
′ α2

′ T ⊢n C; Ψ)

Lβ :
? (Φ;S ′ β ′ T ⊢ C; Ψ)

? (Φ;S ′ β1
′ T ⊢n1 C;S ′ β2

′ T ⊢n2 C; Ψ)

L¬¬ :
? (Φ;S ′ ¬¬A ′ T ⊢n C; Ψ)

? (Φ;S ′ A ′ T ⊢n C; Ψ)

L¬⃝ :
? (Φ;S ′ ¬⃝A ′ T ⊢n C; Ψ)

? (Φ;S ′ ⃝¬A ′ T ⊢n C; Ψ)

Rα :
? (Φ;S ⊢n α; Ψ)

? (Φ;S ⊢n1 α1;S ⊢n2 α2; Ψ)

Rβ :
? (Φ;S ⊢n β; Ψ)

? (Φ;S ′ β∗
1
⊢n β2; Ψ)

R¬¬ :
? (Φ;S ⊢n ¬¬A; Ψ)

? (Φ;S ⊢n A; Ψ)

R¬⃝ :
? (Φ;S ⊢n ¬⃝A; Ψ)

? (Φ;S ⊢n ⃝¬A; Ψ)

If none of the above rules is applicable to a PLTL formula

B, such a formula is called marked. If all PLTL-formulas

within an indexed formula S ⊢n A are marked, such a for-

mula is called a state.

The following is a state-prestate rule:

S−P :
? (Φ;S ⊢n A; Ψ)

? (Φ;S◦ ⊢n A◦; Ψ)

where S ⊢n A is a state and S◦ (resp. A◦) results from S

(resp. A) by replacing all the formulas of the form ⃝B with

B and deleting all the remaining formulas. Every formula

of the form S∗ ⊢m A∗, where n is an initial subsequence of

m or m is an initial subsequence of n, is called a pre-state

(cf. [11]).

Definition 1. Let q = ⟨Q1, . . . , Qr⟩ be a finite sequence of

questions of P∗. Let Qg, Qh−1, Qh (1 ≤ g < h−1 ≤ r) be

elements of the sequence q. Let Sj ⊢n Aj be a constituent

of Qg and let Sk ⊢m Ak be a constituent of Qh such that

Sj = Sk, Aj = Ak and the sequence n is an initial sub-

sequence of the sequence m. Let Sl ⊢
i Al be a constituent

of Qh−1 such that Sk ⊢m Ak is obtained from Sl ⊢
i Al by

application of a PT∗-rule. Then Sj ⊢n Aj , . . . , Sl ⊢i Al

form a loop (a sequence of atomic d-wffs of P∗ . . . etc.),

and Sk ⊢m Ak is called a loop-generating formula.

Socratic transformations are sequences of questions that

aim at deciding derivability of formuls from sets of formuls.

Definition 2. A finite sequence ⟨Q1, . . . , Qr⟩ of questions

of P∗ is a Socratic transformation of S ⊢ A iff the following

conditions hold: (i)Q1 =?(S ⊢1 A); (ii)Qi (where i =
2, . . . , r) results from Qi−1 by applying a PT∗-rule.

Definition 3. A constituent φ of a question Qi is called

successful iff one of the following holds: (a) φ is of the form

T ′B′U ⊢n B, or (b) φ is of the form T ′B′U ′¬B′W ⊢n C,

or (c) φ is of the form T ′¬B′U ′B′W ⊢n C.

Definition 4. A Socratic transformation ⟨Q1, . . . , Qr⟩ of

S ⊢ A is completed iff the for each constituent φ of Qr at

least one of the following conditions hold: (a) no rule is

applicable to PLTL-formulas in φ, or (b) φ is successful, or

(c) φ is a loop-generating formula.

Definition 5. A formula B is called an eventuality in S ⊢n

A iff one of the following holds: (i) B is a term of S and

there exists a PLTL-formula C such that B = 3C, or (ii)

there exists a PLTL-formula C such that B = A = 2C.

Definition 6. A completed Socratic transformation q =
⟨Q1, . . . , Qr⟩ is a Socratic proof of S ⊢ A iff: (a) all

the constituents of Qn are successful, or (b) for each non-

successful constituent φ of Qn, φ is a loop-generating for-

mula and the loop generated by φ contains a pre-state with

an unfulfilled eventuality.

The presented system is sound and complete. Proofs of

these theorems involve construction of a canonical model

with maximal consistent sets of formulae as its states.

3 Examples

In the examples below by highlighting we indicate a for-

mula which is analyzed at the current step. Double under-

lining of a formula reflects that it is a state. The question

following the one containing a state is obtained by state-

prestate rule.

Example 1

1. ?(⊢1
2p → p)

2. ?(2p ⊢1 p)

3. ?(p,⃝2p ⊢1 p)

Example 2

1. ?(⊢1
2p → ⃝p)

2. ?(2p ⊢1 ⃝p)

3. ?(p,⃝2p ⊢1 ⃝p)

4. ?(2p ⊢1 p)

5. ?(p,⃝2p ⊢1 p)

References

[1] O. Grigoryev A. Basukoski, A. Bolotov and

V. Shangin. Natural deduction system for linear time

temporal logic . Logical investigations, (13):71–95,

2004.

[2] A. Avron. The Method of Hypersequents in the Proof

Theory of Propositional Non-Classical Logics, pages

1–32. Logic: Foundations to Applications. Clarendon

Press, 1996.

[3] M. Finger, D. M. Gabbay, and M. Reynolds. Ad-

vanced Tense Logic, volume 7 of Handbook of Philo-

sophical Logic, pages 43–203. Springer, 2002.

[4] Michael Fisher, Clare Dixon, and Martin Peim.

Clausal temporal resolution. ACM Trans. Comput.

Log., 2(1):12–56, 2001.

[5] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On

the temporal analysis of fairness. In 7th ACM Sympo-

sium on Principles of Programming Languages, pages

163–173, 1980.

[6] A. Pnueli. The temporal logic of programs. In Pro-

ceedings of the 18th Symposium on Foundations of

Computer Science, pages 46–57, 1977.

[7] A. P. Sistla and E. M. Clarke. The complexity of

Propositional Linear Temporal Logic. Journal of the

Association for Computing Machinery, 32(3):733–

749, 1985.

[8] A. Wiśniewski. Socratic Proofs. Journal of Philo-

sophical Logic, 33(2):299–326, 2004.

[9] A. Wiśniewski and V. Shangin. Socratic proofs

for quantifiers. Journal of Philosophical Logic,

35(2):147–178, 2006.

[10] A. Wiśniewski, G. Vanackere, and D. Leszczyńska.

Socratic Proofs and Paraconsistency. A Case Study.

Studia Logica, 80:431–466, 2005.

[11] P. Wolper. The tableau method for temporal logic: An

overview. Logique et Analyse, 28:119–136, 1985.

Second-Order Characterizations of Definientia in Formula Classes

Christoph Wernhard

Technische Universität Dresden

Abstract: Predicate quantification can be applied to characterize definientia of a given formula that are in

terms of a given set of predicates. Methods for second-order quantifier elimination and the closely related

computation of forgetting, projection and uniform interpolants can then be applied to compute such definientia.

Here we address the question, whether this principle can be transferred to definientia in given classes that allow

efficient processing, such as Horn or Krom formulas.

Tasks in knowledge processing such as view-based query

rewriting with exact rewritings [1, 14, 16, 5, 21] involve

the computation of a definiens R of a given “query” for-

mula Q within a second given “background” formula F ,

such that R meets certain conditions, for example, that it is

expressed in terms of a given set S of predicates. That is,

for given Q,F and S, a formula R must be computed, such

that F |= (R ↔ Q) and only predicates from S do occur in

R. If the requested property of R is indeed that it involves

only predicates from a restricted set, then the class of solu-

tion formulas R can be characterized straightforwardly with

predicate quantification. This allows to relate the computa-

tion of formulas R to the various advances concerning ap-

plications of and methods for second-order quantifier elim-

ination and its variants, the computation of forgetting, of

projection, and of uniform interpolants, in particular with

respect to knowledge representation in first-order logic and

description logics [7, 6, 9, 12, 18, 2, 19, 10], and in the pre-

processing of propositional formulas [4, 8, 13]. The under-

lying basic principle is that the second-order formula ∃P F ,

where F is a first-order formula and P is a predicate, is –

if it admits elimination of the predicate quantifier – equiv-

alent to a first-order formula that does not involve P but is

equivalent to F with respect to the other predicates.

The question addressed here is whether also definientia

in given classes of formulas that are typically characterized

by other means than vocabulary restrictions, such as Horn

formulas, conjunctions of atoms or Krom formulas, can be

specified with predicate quantification and can thus be com-

puted by second-order quantifier elimination methods. The

envisaged main application is to compute such definientia

as query rewritings that are in restricted classes which al-

low further processing in particularly efficient ways or by

engines with limited deductive capability. It seems that also

the requirement that the negation of a definiens R is in some

given formula class can be useful: R might be evaluated by

proving that a given knowledge base is unsatisfiable when

conjoined with ¬R. The case of negated definientia is sub-

sumed by the general case: The requirement that R is a

definiens for Q, where ¬R is in some formula class, can be

expressed just as the requirement that R′ is a definiens in

some formula class for ¬Q and letting R be ¬R′.

A starting point for the second-order characterizations of

the considered formula classes is the semantic characteri-

zation of the class of propositional Horn formulas [3, 15]:

A propositional formula is equivalent to a Horn formula if

and only if it has the model intersection property. Literal

projection [11, 17] is a generalization of predicate quan-

tification that allows to specify that only positive or nega-

tive predicate occurrences are affected. It can be combined

with the semantic characterization of Horn formulas to ex-

press the requirement that the definiens is a conjunction of

atoms. This restriction can be – up to equivalence – charac-

terized purely by second-order operators that can be defined

in terms of predicate quantification. It can be applied to

express restrictions to further classes as vocabulary restric-

tions by meta-level encodings. We show this for Krom for-

mulas, which can be represented as conjunctions of “meta-

level” atoms of the form clause(L,M), defined in the back-

ground formula with equivalences (clause(L,M) ↔ L ∨
M) for literals L,M of the original vocabulary.

As elaborated in [22], such characterizations of

definienta and definability, that is, the existence of definien-

tia, can be developed in a framework on the basis of three

second-order operators: For literal projection, for “rais-

ing” [18], which can be applied to express generalizations

of circumscription, including model maximization, and for

“scoped difference” [22], which allows, for example, to

specify a formula whose models are exactly all the lower

bounds of the set of models of a given formula (interpreta-

tions are compared there w.r.t. the subset relationship be-

tween the sets of the ground atoms that they satisfy). The

characterizations of definientia and definability are then ex-

pressed by further second-order operators, which can be de-

fined like macros in terms of these three basic ones. As also

shown in [22], the three basic operators themselves can all

be encoded as predicate quantification, such that character-

izations of definability and definientia in terms of these op-

erators can be translated to characterizations with predicate

quantification as the only second-order operator.

An inherent feature or limitation of the presented ap-

proach is that it applies only to formula classes that are

closed under equivalence. Nevertheless, with respect to vo-

cabulary restrictions, elimination methods usually produce

outputs that do no longer contain the quantified predicates,

thereby ensuring that results are also in the corresponding

syntactic classes. It needs to be investigated, in which way

elimination methods applied to the suggested second-order

expressions for the considered formula classes yield results

that are actually also in the corresponding syntactic classes.

Although the envisaged underlying logic is classical first-

order logic, the material in has been technically developed

in [22] essentially for propositional logic, for simplicity of

presentation and because the considered formula classes

there have immediate correspondence to syntactic classes

such as Horn and Krom formulas as well as conjunctions

of atoms. Actually, the material transfers to a large ex-

tent easily to first-order logic, following the principles in

[17, 18, 21]. Some minor particularities are indicated in

[22]. What still need to be examined for the first-order case

is the correspondence of the semantic characterizations of

formula classes to expressibility in syntactic classes.

Operators and properties are formally defined in terms of

each other in a way that fits mechanization. In fact, they

have been defined similarly on top of the ToyElim system

[20].1 This is currently only suitable for small experiments

and an advanced implementation of the suggested operators

seems to be a major challenge on its own. At least in princi-

ple, the presented characterizations of definientia should be

expressible also on top of other systems for second-order

quantifier elimination and its variants, the computation of

forgetting, projection and uniform interpolants.

References

[1] Diego Calvanese, Giuseppe De Giacomo, Maurizio

Lenzerini, and Moshe Y. Vardi. View-based query

processing: On the relationship between rewriting,

answering and losslessness. TCS, 371(3):169–182,

2007.

[2] B. Cuenca Grau and B. Motik. Reasoning over on-

tologies with hidden content: The import-by-query

approach. JAIR, 45, 2012.

[3] Rina Dechter and Judea Pearl. Structure identification

in relational data. AI, 58:237–270, 1992.

[4] Niklas Eén and Armin Biere. Effective preprocessing

in SAT through variable and clause elimination. In

SAT 2005, volume 3569 of LNCS, pages 61–75, 2005.

[5] Enrico Franconi, Volha Kerhet, and Nhung Ngo. Ex-

act query reformulation over databases with first-order

and description logics ontologies. JAIR, 48:885–922,

2013.

[6] Dov M. Gabbay, Renate A., Schmidt, and Andrzej

Szałas. Second-Order Quantifier Elimination: Foun-

dations, Computational Aspects and Applications.

College Publications, London, 2008.

[7] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I

damage my ontology? A case for conservative exten-

sions in description logics. In KR 2006, pages 187–

197. AAAI Press, 2006.

[8] Marijn Heule, Matti Järvisalo, and Armin Biere.

Clause elimination procedures for CNF formulas. In

LPAR-17, volume 6397 of LNCS, pages 357–371.

Springer, 2010.

1See http://cs.christophwernhard.com/toyelim/.

[9] Boris Konev, Dirk Walther, and Frank Wolter. Forget-

ting and uniform interpolation in large-scale descrip-

tion logic terminologies. In IJCAI-09, pages 830–835.

AAAI Press, 2009.

[10] Patrick Koopmann and Renate A. Schmidt. Uniform

interpolation of ALC-ontologies using fixpoints. In

FroCoS 2013, volume 8152 of LNCS (LNAI), pages

87–102. Springer, 2013.

[11] Jérôme Lang, Paolo Liberatore, and Pierre Marquis.

Propositional independence – formula-variable inde-

pendence and forgetting. JAIR, 18:391–443, 2003.

[12] Carsten Lutz and Frank Wolter. Foundations for uni-

form interpolation and forgetting in expressive de-

scription logics. In IJCAI-11, pages 989–995. AAAI

Press, 2011.

[13] Norbert Manthey, Tobias Philipp, and Christoph

Wernhard. Soundness of inprocessing in clause shar-

ing SAT solvers. In SAT 2013, volume 7962 of LNCS,

pages 22–39. Springer, 2013.

[14] Maarten Marx. Queries determined by views: pack

your views. In PODS ’07, pages 23–30. ACM, 2007.

[15] J. C. C. McKinsey. The decision problem for some

classes of sentences without quantifiers. JSL, 8:61–

76, 1943.

[16] Alan Nash, Luc Segoufin, and Victor Vianu. Views

and queries: Determinacy and rewriting. TODS,

35(3), 2010.

[17] Christoph Wernhard. Literal projection for first-order

logic. In JELIA 08, volume 5293 of LNCS (LNAI),

pages 389–402. Springer, 2008.

[18] Christoph Wernhard. Projection and scope-

determined circumscription. JSC, 47(9):1089–1108,

2012.

[19] Christoph Wernhard. Abduction in logic program-

ming as second-order quantifier elimination. In Fro-

CoS 2013, volume 8152 of LNCS (LNAI), pages 103–

119. Springer, 2013.

[20] Christoph Wernhard. Computing with logic as op-

erator elimination: The ToyElim system. In INAP

2011/WLP 2011, volume 7773 of LNCS (LNAI).

Springer, 2013.

[21] Christoph Wernhard. Expressing view-based query

processing and related approaches with second-order

operators. Technical Report KRR 14–02, TU Dres-

den, 2014. http://www.wv.inf.tu-dresden.

de/Publications/2014/report-2014-02.pdf.

[22] Christoph Wernhard. Second-order charac-
terizations of definientia in formula classes.
Technical Report KRR 14–03, TU Dresden,
2014. http://www.wv.inf.tu-dresden.

de/Publications/2014/report-2014-03.pdf.

http://cs.christophwernhard.com/toyelim/.
http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-02.pdf
http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-02.pdf
http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-03.pdf
http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-03.pdf

The Leo-III Project

Max Wisniewski1 Alexander Steen2 Christoph Benzmüller3

1 FU-Berlin, Arnimallee 7, max.wisniewski@fu-berlin.de
2 FU-Berlin, Arnimallee 7, a.steen@fu-berlin.de

3 FU-Berlin, Arnimallee 7, c.benzmueller@fu-berlin.de

Abstract: We introduce the recently started Leo-III project — a Higher-Order Logic Theorem Prover and

successor to LEO-II.

1 Summary

We report on the recently started Leo-III project, in which

we design and implement a state-of-the-art Higher-Order

Logic Theorem Prover, the successor of the well known

LEO-II prover [2]. Leo-III will be based on ordered

paramodulation/superposition.

In constrast to LEO-II, we replace the internal term rep-

resentation (the commonly used simply typed lambda cal-

culus) by a more expressive system supporting type poly-

morphism. In the course of the project, we plan to further

enhance the type system with type classes and type con-

structors similar to System Fω .

In order to achieve a substantial performance speed-up,

the architecture of Leo-III will be based on massive par-

allelism (e.g. And/Or-Parallelism, Multisearch) [3]. The

current design is a multi-agent blackboard architecture [10]

that will allow to independently run agents with our proof

calculus as well as agents for external (specialized) provers.

Leo-III will focus right from the start on compatibility to

the widely used TPTP infrastructure [8]. Moreover, it

will offer built-in support for specialized external prover

agents and provide external interfaces to interactive provers

such as Isabelle/HOL [5]. The implementation will exces-

sively use term sharing [6, 7] and several indexing tech-

niques [4, 9]. Leo-III will also offer special support for

reasoning in various quantified non-classical logics by ex-

ploiting a semantic embedding [1] approach.

References

[1] Christoph Benzmüller. A top-down approach to com-

bining logics. In Proc. of the 5th International Confer-

ence on Agents and Artificial Intelligence (ICAART),

Barcelona, Spain, 2013. SciTePress Digital Library.

[2] Christoph Benzmller, Lawrence C. Paulson, and

Frank Theiss. Leo-ii a cooperative automatic theo-

rem prover for higher-order logic. In In Fourth In-

ternational Joint Conference on Automated Reason-

ing (IJCAR08), volume 5195 of LNAI. Springer, 2008.

[3] Maria Paola Bonacina. A taxonomy of parallel strate-

gies for deduction. Ann. Math. Artif. Intell., 29(1-

4):223–257, 2000.

[4] Robert Nieuwenhuis, Thomas Hillenbrand, Alexandre

Riazanov, and Andrei Voronkov. On the evaluation of

indexing techniques for theorem proving, 2003.

[5] T. Nipkow, L.C. Paulson, and M. Wenzel. Is-

abelle/HOL: A Proof Assistant for Higher-Order

Logic. Lecture Notes in Computer Science. Springer,

2002.

[6] Alexandre Riazanov and Andrei Voronkov. The de-

sign and implementation of vampire. AI Commun.,

15(2,3):91–110, August 2002.

[7] Stephan Schulz. E - a brainiac theorem prover. AI

Commun., 15(2,3):111–126, August 2002.

[8] Geoff Sutcliffe. The tptp problem library and asso-

ciated infrastructure. J. Autom. Reason., 43(4):337–

362, December 2009.

[9] Frank Theiss and Christoph Benzmüller. Term in-

dexing for the LEO-II prover. In IWIL-6 workshop

at LPAR 2006: The 6th International Workshop on

the Implementation of Logics, Pnom Penh, Cambodia,

2006.

[10] Gerhard Weiss, editor. Multiagent Systems. MIT

Press, Cambridge, MA, 2013.

	Introduction
	Single-good static auctions
	Multiple-good static auctions
	Dynamic auctions
	Conclusion
	Introduction
	Overapproximation using uninterpreted functions
	Conclusion and future work
	Introduction
	Extended Resolution
	Restricted Extended Resolution

	Evaluation and Future Work

