
Mechanized Support for Retrenchment

Simon Fraser and Richard Banach

Dept. of Computer Science, University of Manchester, M13 9PL
sfraser@cs.man.ac.uk, banach@cs.man.ac.uk

Retrenchment is a relatively new formal technique that extends the scope of traditional formal
methods, allowing more systems to be modelled and developed rigorously. Retrenchment can be
considered a more liberal version of refinement that allows an abstract specification to be formally
related to a more concrete specification.

Consider two abstract machines abc and def (described using B notation below). Both models
represent the addition of two natural numbers. The second, however, introduces the limitation
that, when implemented on a computer, the set of natural numbers cannot be infinite. It is felt
that both of these models are needed within a development. The first for use at the abstract level
when describing system behaviour, and the second for use during development when an exact
specification of the model is necessary.

MACHINE abc MACHINE def
VARIABLES aa, bb, cc SEES Bool TY PE
INVARIANT aa ∈ N ∧ bb ∈ N CONSTANTS upperbound

∧ cc ∈ N PROPERTIES upperbound ∈ N
INITIALISATION aa := 0 ‖ bb := 1

‖ cc := 2
OPERATIONS OPERATIONS

my plus =̂ aa := bb + cc resp, dd←− my plus(ee, ff) =̂
PRE ee ∈ N ∧ ff ∈ N ∧

ee ≤ upperbound ∧ ff ≤ upperbound
THEN IF ee + ff ≤ upperbound

THEN dd := ee + ff
‖ resp := TRUE

ELSE dd := 0 ‖ resp := FALSE
END

END

END END

The abstract machines abc and def .

A frequently used method of relating models in a formal development is refinement. In this
instance, however, it is clear that refinement cannot be used to relate the models. Firstly the
inputs and outputs of the operations differ, and more importantly there are circumstances where
the behaviour of the models differs. Retrenchment allows the relationship between the models
to be expressed formally through the introduction of two relations that together restrict the set
of pre-conditions in which the relationship is valid, and extend the set of post-conditions. The
first is known as the ‘within’ relation, and the second, the ‘concedes’ relation. The retrenchment
abc to def describes the relationship between our two models.



RETRENCHMENT abc to def
FROM abc
TO def
OPERATIONS

RAMIFICATIONS my plus
WITHIN bb = ee ∧ cc = ff
CONCEDES ((resp = TRUE)⇒ (dd = aa))

∧ ((resp = FALSE)⇒ (dd = 0))
END

END

The retrenchment relationship between the abstract machines abc and def .

To show that the retrenchment holds, it is necessary to show that, if it is possible to take a step
in the abstract model – and that both the retrieves and within relations hold – then there is an
equivalent step in the concrete model that establishes either the retrieves or concedes relation.
This can be expressed formally as follows.1

R(u, v) ∧WOp(i, j, u, v) ∧ stpOpc
(v, j, v′, p) ⇒ (∃u′, i, o • stpOpa

(u, i, u′, o) ∧
(R(u′, v′) ∨ COp(u′, v′, o, p; i, j, u, v)))

In the above example the within relation strengthens the pre-condition such that the ‘input’
variables of each model’s operation are equal. There is no retrieves relation in this instance (as
def has no state variables) so the concedes relation must be established after every execution: this
can be seen to hold through observation, if the upperbound is exceeded then there is no relationship
between the values of the variables in the two models. If, however, the sum is less than or equal
to the upperbound then the ‘output’ variables of each operation are equivalent.

Detractors of formal methods have long cited the complicated specifications – and their associated
long-winded proofs – as a major disadvantage of their use. In response to this criticism, tools have
been created that aid with both the specification, and proof of formally developed systems. These
tools provide syntactic and semantic checking to reduce mistakes in specification, and provide
automated theorem provers that are able to discharge large number of proofs. It is clear from
existing criticism of formal methods that retrenchment is unlikely to be accepted, or used, unless
mechanical support is provided to not only specify a retrenchment step, but to prove that the
retrenchment relationship between two models is valid.

As such, an initial attempt was made to provide mechanized support for retrenchment in the B-
Toolkit (a suite of software engineering tools that use the B-Method to specify and refine models).
A formal extension to the B-Method was proposed, and implemented within the B-Toolkit, but
only limited success was achieved. The structure of the toolkit, and its proof assistant, were such
that the new constructs and proof obligations required for retrenchment were not easily introduced.

It was decided, therefore, to create a new tool where the focus is not on producing code from a
specification, but on examining models, and the relationships between them. This tool would allow
models (and relationships) to be specified using a combination of the Z notation (ISO-13568), and
a simple wrapper language. Proof obligations will then be generated in a number of formats such
that a selection of automated theorem provers can be used in their discharge. It is hoped that
this tool will provide a practical aid to the advancement of retrenchment theory, automating the
previously manual exercise of retrenchment proof.

1Where u, i, o and v, j, p are the state, inputs, and outputs of the abstract and concrete model respectively.


