
A Three-Valued Hoare Calculus

Viviana Bono
Dipartimento di Informatica

Universit̀a di Torino
Corso Svizzera 185

I-10149 Torino, Italy
www.di.unito.it/˜bono

bono@di.unito.it

Manfred Kerber
School of Computer Science

The University of Birmingham
Birmingham B15 2TT

England
www.cs.bham.ac.uk/˜mmk
M.Kerber@cs.bham.ac.uk

If we consider programs on concrete computers then
physical limitations have to be taken into account. The
implemented integers, for instance, can form only a sub-
set of all (mathematical) integers. This can be done (and
is done in many programming languages) in the form that
two integersMIN andMAX are defined and any integer
computation that leads outside this range of integers leads
to an error state. We will introduce a Hoare calculus that
can deal with this phenomenon in an adequate way.

As soon as we consider concrete computers, functions
are typically partial. Even addition is no longer total,
since in a finite subset ofZ, the sum of two big enough
numbers will exceed any given bound (assumed addition
in the subset is a restriction of standard addition). Let us
assume that we have in our programming language inte-
gers which are defined asZf = Z∩ [MIN,MAX], where
Z is the mathematical (infinite) set of all integers. Let us
defineMAX = 32768 andMIN = −32767, for instance.
With this setting+ is partial, sinceMAX + 1 is not de-
fined and leads to a crash.

If we want to reason about crash as well, we have to
consider how a Hoare triple

{precondition} P {postcondition}

should read. We keep the original reading:If the precon-
dition holds and the program terminates then the post-
condition holds.We could also have given a Hoare triple
a weaker meaning, namely: “If the precondition holds,
the program does not crash and terminates, then the post-
condition holds.” We don’t follow this possible reading,
since we want to be able to prove that the program does
not crash and don’t want to assume it.

Our programming language is a minimal language that
has two types, the usual constructs of a Turing complete
language, and the possibility of crash.

• The program that does not do anything:skip .

• The program that just crashes:crash .

• Assignment:x := t assigns the termt of typeint
to the variablex.

• Sequencing:P;Q means execute firstP thenQ.

• Conditional:IF C THEN P ELSE Q FImeans
that if the boolean expressionC (of type bool ) is
true thenP will be executed. IfC is false thenQ will
be executed. To build conditional expressions we
make use of the primitive binary predicates=, <,
and<=, which result with termss andt of type
int in boolean expressions of typebool . Note
that a conditional expression may crash, e.g., for
MAX < MAX + 1.

• Loop: WHILE C DO P ODmeans that if the bool-
ean expressionC (of typebool ) is true the program
fragmentP will repeatedly be executed until either
C is false or crashes, orP itself crashes.

• The last construct is a finite version for a loop tra-
versed at mostk times (for a natural numberk with
a new counternc, which must not occur in the pro-
gramP). We write: WHILEF (nc k) C DO P
OD. We are not interested in programs which make
use of this construct, but use it only as a vehicle to
reason about crashes of while loops.

An example programP is:

WHILE i < n DO
i := i + 1 ;
sum := sum + i

OD

which assumesi, n, andsum to be defined and to contain
values of typeint . With sum considered to be0 initially,
the program adds up the firstn natural numbers and the
result will besum, if sum is smaller than or equal toMAX;
otherwise the program will crash.

Logic

In order to speak about crash, we need to know when an
expression is defined and when not. For instance, if we
assume integer division with rest,x

y is defined for anyx
and anyy 6= 0. That is, the expression is defined for



{(x, y) |x ∈ Z ∧ y ∈ Z ∧ y 6= 0}. We writeDterm(x
y ) ↔

x ∈ Z ∧ y ∈ Z ∧ y 6= 0. Dterm is a predicate symbol
which expects aterm (indicated by the index), and gives
back a truth value true or false (that is, we assume that
Dterm itself never crashes). Likewise we will have a con-
struct which tells us whether aformula is undefined, e.g.,
whetherx

y =̇ 0 is defined or not. We write in this case
D(x

y =̇ 0). D is a connective which is true iff the for-
mula is true or false, and false otherwise. Together with
the traditional connectives¬, ∧, ∨, and→, this consti-
tutes the propositional logic fragment of the three-valued
language. Terms are variables, constant symbols, or ap-
plications of function symbols to terms. They are inter-
preted in a standard non-empty domainD, or as an error
elementerror. We assume all functions to be strict, that
is, if a subterm of a term is mapped to the error element,
then the whole term will be mapped to the error element.

We define the semantics of the connectives as follows:

¬
false true
crash crash
true false

D
false true
crash false
true true

∧ false crash true
false false false false
crash crash crash crash
true false crash true

Note that the connective∧ is not symmetric (but as-
sociative). This is made in order to mirror the behaviour
of the lazy boolean functionand in the programming lan-
guage (and the ones that can be defined likeor). If the A
in A and B is false the whole expression is false indiscrim-
inately of theB. Likewise, if the evaluation ofA crashes,
the whole expression crashes. Only if theA evaluates to
true, the second, theB, is evaluated and its value will be
the value of the conjunction.

Quantification will always be guarded by a typeT (or
sort),∀xT A and∃xT A. We assume a simple type system
of (non-empty) disjoint types (we consider onlyT = Z).

We defineIφ(QxSA) := Q̃({Iφ,[a/x](A) | a ∈ AS})
whereQ ∈ {∀,∃} and furthermore

∀̃(T ) :=

 true for T = {true}
crash for T = {true, crash} or {crash}
false for false ∈ T

From the semantics we can directly construct a tableau
calculus analogously to the work in Kerber and Kohlhase
(1996).

Hoare calculus

The Hoare calculus that can deal with crash makes use of
the assignment schema:

{Dterm(t) ∧At
x} x := t {Dterm(x) ∧A} with

At
x = A[x/t] replace all freex in A by t.

and an axiom schema which says that we can’t recover
from crash:{CRASH} P {CRASH}

The rules consider the possibilities how a crash can be
avoided or obtained, for instance, for an implication this
means:

A → D(C) {A ∧ C} P {B} {A ∧ ¬C} Q {B}
{A} IF C THEN P ELSE Q FI {B}

A → ¬D(C)
{A} IF C THEN P ELSE Q FI {CRASH}

The second rule reads: if the preconditionA of a rule
implies that the conditionC will crash, then the whole
if-then-else expression will crash. The first rule is almost
the traditional rule with the extension, however, that from
the preconditionA follows that the conditionC will not
crash. Note that for the first rule the postconditionB can
also beCRASH.

Likewise we can build rules which characterise the
behaviour of loops.

We have proved the soundness of the rules relative to
an operational semantics following the approach outlined
in Mitchell (1996). Proving a relative completeness prop-
erty is left as future work.

With the calculus it is possible to establish:{
Dterm(n) ∧Dterm(i) ∧Dterm(sum)
∧ 0 ≤ n ≤ 255 ∧ i =̇ 0 ∧ sum =̇ 0

}
P{

Dterm(n) ∧Dterm(i) ∧Dterm(sum)
∧ sum =̇ 1

2n(n + 1)

}
and{
Dterm(n) ∧Dterm(i) ∧Dterm(sum)
∧ n =̇ 256 ∧ i =̇ 0 ∧ sum =̇ 0

}
P

{
CRASH

}

Summary

We have extended the traditional Hoare calculus to a three-
valued setting to deal with crash. The meaning of the
Hoare triple is that if the precondition holds before the ex-
ecution ofP andP terminates, then after the execution ofP
the postcondition will hold. If the postcondition says that
the variables are in a particular state, then the program
will not crash, if the postcondition saysCRASH then the
program will crash.

References

Manfred Kerber and Michael Kohlhase. A tableau calcu-
lus for partial functions.Collegium Logicum – Annals
of the Kurt-G̈odel-Society, 2:21–49, 1996.

John C. Mitchell. Foundations of Programming Lan-
guages. MIT Press, Cambridge, Massachusetts, USA,
1996.


