
OPTIMISING COMMUNICATION STRUCTURE FOR MODEL CHECKING.
Peter Saffrey
Department of Computing Science, University of Glasgow, Glasgow

Key words to describe this work: Model checking, formal verification, communication structure, state space
explosion

Key Results: An example of how communication structure can effect the size of a resultant state space.

How does the work advance the state-of-the-art?: A new technique for tackling concurrent systems which are
intractable to verify.

Motivation (Problems addressed): Many communicating concurrent systems are currently intractable.
Communication structure has not yet been exploited to address this problem.

Introduction
Model checking is a formal technique that can be
used in the analysis of concurrent systems. Model
checking proves properties for a given system using
state space exploration, an exhaustive search of all
system behaviour. However, for some systems, the
large combination of possible behaviours generate
intractably large state spaces. This is known as the
state space explosion problem.
We attack the state space explosion problem by
exploiting communication structure: the mechanism
used to model the communication between
concurrent processes.

Approach Motivation
Figure 1 shows the usual procedure used to apply
model checking.

Figure 1: The usual
modelling Procedure

A system specification is modelled in a language
designed for model checking. A model checker then
explores the state space for that model. Modelling is

analogous to the conversion of a specification into
software, often referred to as programming.
Figure 2 shows an alternative view which motivates
our work.

Figure 2: An alternative view of the model checking

procecure

In this view, there are a number of alternative
models, each based on the same specification. Using
the programming analogy, alternative programs
based on the same specification will differ in terms
of speed, memory footprint, ease of maintenance or
other measure of efficiency. In model checking the
alternative models may differ in terms of state space
size.
Our method aims to choose a communication
structure that conforms to the specification and
results in the smallest possible state space. We also
address the relationship between different
communication structures for the same system,
illustrated in figure 2 by the horizontal arrows
connecting models.

Communication Structure
In our method, communication is modelled using
channels, first-in-first-out buffers that can be shared
between any number of processes. We deal solely

with asynchronous communication, where the
sending and receiving of messages occur at different
times.
Channels can often be used in a variety of ways to
form the desired connections between processes.
Figure 3 shows 2 channel diagrams illustrating
alternative communication structures for an example
system, in this case a set of Internet Service
Providers (ISPs) exchanging e-mails with each
other. Note these diagrams illustrate models of the
system, not final system architectures.

Figure 3: Two channel structures for an e-mail
system. Top: one channel per connection;

 bottom: one channel shared by all.

In each channel diagram, a rectangle represents a
process, and a hexagon a channel, with directional
arcs indicating which processes send and receive on
each channel. In figure 3, the initial channel
structure (top) uses a single channel to mediate the
communication between each pair of processes. The
candidate channel structure (bottom) uses a single
channel to mediate all communication. We assume
all channels are of size 1 and that nothing other than
the channel structure is altered. By reducing the
number of channels, there will be fewer possible
combinations of messages in transit at any one time.
This should result in a smaller state space.
Reducing the number of channels is not always the
most effective way to reduce the state space size. In
some cases, a channel structure can be designed to
increase the effectiveness of reduction techniques, or

to take advantage of the construction of a particular
system.

Property Preservation
Although the two channel structures shown in figure
3 form the same connections between processes, the
behaviour of the two structures is not identical. For
example, in the candidate structure, only one
message can be passed at a time, whereas the initial
structure allows multiple messages.
We have devised a method for showing property
preservation between channel structures, which we
will describe briefly here.
Any behaviour which is possible for one structure,
but not possible for another is a difference
behaviour. To show that a property is preserved
between the two structures, we must show that the
difference behaviour is irrelevant to the verification
of that property. In order to achieve this, we try to
emulate the effect of difference behaviour with non-
difference behaviour. The effect of a behaviour is
defined with respect to the property in question.

Results
Using the model checker Spin, we verified the
example communication structures from figure 3.
Table 1 shows the number of states (to 3 significant
figures) explored when verifying for deadlock. We
also verify the linear temporal logic (LTL) property
notify which checks that a valid e-mail will always
arrive.

 Initial Candidate
deadlock 1.14e+06 1.19e+05
notify ? 9.11e+06

Table 1 Results for initial and candidate communication
structures

In the case of deadlock, the state space size of the
candidate structure is only 10% of the initial
structure. The property notify was intractable with
the initial structure, but with the candidate structure,
it can be verified.

Conclusion
Altering the communication structure of a
concurrent system can clearly reduce the resultant
state space. However, further work is needed to
determine which communication structures result in
the smallest state spaces.

