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Abstract: We propose a simple but powerful approach to the verificaifgraram-
eterised systems. The approach is based on modelling ttleatasitity between pa-
rameterized states as deducibility between suitable emgeaf states by formulae
of first-order predicate logic. To establish a safety progpéat is non-reachability
of unsafe states, the finite model finder is used to find a firotentermodel, the
witness for non-deducibility.
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1 Main idea of the method

Let. = (S —) be a transition system with the set of stafemnd transition relatior-. Denote
by —* the transitive closure of-. Consider encoding: s+— ¢ of states ot by formulae
of first-order predicate logic, satisfying the folowing pesty. The stat&' is reachable frons,
i.e. s—* g if and only if ¢4 is the logical consequence ¢f, that is¢s = ¢ and s - ¢g.
Here we assume standard definitions of semantical consegierand deducibilityt (in a
complete deductive system) for first-order predicate lodimder such assumptions one can
translate reachability questions f8to the classical questions in logic. Establishing readhgbi
amounts to theorem proving, while deciding non-reachigbilecomes theorem disproving. It
is clear that due to undecidability of first-order logic swant approach can not be universal.
However one may hope that much developed automated theommrg and model finders for
first-order logic can be used for automated decision of (meaehability problems.

In this paper we will focus on applications of these ideasigoautomated verification shfety
properties ofinfiite stateand parameterisedsystems. Restriction to the safety properties, i.e.
non-reachability olunsafestates means we will be mainly dealing with automated dispgo
To disprovegs = @< is is sufficient to find a countermodel fgg — ¢<, or, which is the same,
the model forgs A —¢g. In general, in first-order logic such a model may be ineWtainite.
Furthermore, the set of satisfiable first-order formulaediracursively enumerable, so one can
not hope for complete automation here. As a partial solutierpropose to use automattwite
model finders/builders?]. Here we present preliminary results realated to instéiotis of these
ideas to the verification of lossy channel systeriisand to the verification of parameterised
cache coherence protoco.[
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1.1 \Verification of Lossy Channel Systems

Lossy Channel Systems are essentially finite-state automuaggmented witha finite amount of
unbounded but lossy FIFO channels (queues). The messagegiadossy channels may be
lost in the transition. InJ] we find the definition of a Lossy Channel Systémas a tuple
(S %0,A,C,M, d), whereSis a finite set ofcontrol statessy € Sis aninitial control stateA is a
finite set ofactions C is a finite set of channel$/ is a finite set of messaged,is a finite set of
transitions. Starting in the intial control staggthe systeni may execute non-deterministically
any applicable transition from, which involves switching the control states and eithertimg
a messageinto some channed, or reading a messagefrom some channed, or just executing
an actiona. Additionally, at every step any message from any channglmedost. The sequence
of actionso € A* executed up to some step is called a tracé.offhe set of all traces df is
denoted byTracegL). A global stateof L is a pair(s,w), wherese Sandw:C — M* is a
function assigning to each channel a finite sequence of mesgaontent of the channel).

The general form of theafetyverification problem for lossy channel systems we addresss he
is as follows.

Given: A lossy channel systein= (S 5,A,C,M,d) and a regular se&t C A*
Question: DoesTracegL) C > hold?

We assume tha is effectively given by a deterministidinite automatorMs which accepts
the complemenof Z. Following the standard approact] ve first reformulate equivalently the
above question as a questionreachability.

Is it true that in Lx M5 no global state of the forfis,t), w) with t € F is reachable?

HereL x Ms is a lossy channel system, which igpeductof L andMs synchronized over
actions fromA, ((s,t),w) is a global state of x My andF is the set of accepting statesMg.

1.2 \Verification via countermodel finding

In this subsection we show how to apply reachability as didlitg concept and finite counter-
model finding for deciding the above reachability problem.

First, we define a translation of the product system Ms into a formula of the first-order
predicate logicP .y as follows. The vocabulary @b . consists of constant symbols to de-
note the control states afandMs, the messages f the constant symbealto denote the empty
sequence of messages; one binary associative syftioollenote concatenation and to encode
sequences of messages; for every aciiarunary functional symbdl,; and one relational sym-
bol Rof arity n+2, wheren is a number of channels In The global statg of L x My is encoded
then naturally as a+ 2-tuple of termg,, the first two terms are to represent the control states of
L andMs, and the remaining terms are to encode the content of the channels.

Ithe restriction to deterministic automata leads to moreisertranslations dts's to first-order formulae, but is
not very essential in the proposed approach
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The intended meaning of the atomic formﬁlét_y) is “the global statey is reachable”, and the
whole formuladJLfo axiomatizes the reachability inx Ms:

Theorem 1The global statey is reachable in Lx Mg if and only if® . u - R(t_y).

Let F be a set of acceptable statedwf andds be a constant denoting asy F. Let thenB
be a first-order sentencace Iy3IxXR(y, ds, X).

Theorem 2Either ®_ . - B, or there is dinite model for® , v A —B.

The proof of the Theorem 2 uses the completeness of the sigwbakhability algorithm for
the lossy channel systems fror,[in particular thefinite characterization of the set of global
states backwards reachable from any upwards cfosedof global states. Based on both the-
orems, the following is a complete decision procedure fergafety problem for lossy channel

systems. ] o ,
Runin parallel the complete theorem prover for the firstesridgic with the inputby - —

B and the complete finite model finder for the first-order logith the input® . m; A =B
until exactly one successfully returns.

In practical experiments with that procedure we have usedrdmation of the prover Prover9
and the model finder Mace4]| which provides with the convenient unified interface. e
Appendix for the report on the verification of Alternatingt Birotocol modelled as las.

1.3 \Verification of parameterized cache coherence protocsl|

Another class of the systems to which verification via finbertermodel finding approach has
been applied is parameterized cache coherence prot@oisddelled by Extended Finite State
Machines(EFSM). The states of EFSM are non-negative integeors and transitions are affine
transformations with affine pre-conditions. The safetyxpressed as the non-reachability of
global states which belong to some upwards closed sets. Wesdetranslation of the EFSM

modelM and the correctness conditio@to the first-order formulagy and Yc = VviIx g (ti),
respectively, such that the following proposition holds.

Proposition 11f there is a finite model fogy A —~Yic then M satisfies C
Using the finite model finder Mace4 we have verified all cacheoence protocols frong].
One example, the verification of Futurbus protocol, is givetne Appendix B.
Bibliography
[1] Parosh Aziz Abdulla, Jonsson B. Verifying programs withreliable channelsinformation and
Computation127(2):91-101, June 15, 1996.

[2] R. Caferra, A. Leitsch, N. PeltieAutomated Model BuildingApplied Logic Series, 31, Kluwer,
2004.

[3] G. Delzanno. Constraint-based Verification of Paraimett Cache Coherence Protocolormal
Methods in System Desigp3(3):257-301, 2003.

[4] W. McCune Prover9 and Macédttp://www.cs.unm.edu/"mccune/mace4/

2with respect to an embeddability pre-order
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Appendix A. Verification of Alternating Bit Protocol

The first-order translatio® of the specification of ABP given in terms of lossy channeteiys
in [1].

% Protocol ABP, first-order translation of the specificati on given in Abdulla and Jonsson paper,
% Prover9/MACE syntax

% The positions of arguments: R(Sender,Receiver,Message, Ack, Automaton)

R(1,1,e.e,1).

R(1,x,y,z,w) -> R(2,X,y,z,5(W)).
R(2,x,y,z,w) -> R(2,x,0 * y,Z,W).
R2xy,z * 1,w) -> R(2,X)Y,Z,W).
R(2,x,y,z * 0,w) -> R(3,x,y,z,w).
R(3,x,y,z,w) -> R(4,x,y,z,s(W)).
R(4,x,y,z,w) -> R(4,x,1 *Y,Z,W).
R(4,x,y,z * 0,w) -> R(4,xy,z,w).
R(4,x,y,z * 1,w) -> R(1,xy,z,w).

R(x,1y,zw) -> R(x,1,y,1 * Z,W).
R(x,1,y * 1,zw) -> R(x,1,y,Z,w).
R(x,1,y * 0,z,w) -> R(x,2,y,Z,w).
R(x,2,y,z,w) -> R(x,3,y,z,r(w)).

R(x,3,y,z,w) -> R(x,3,y,0 * Z,W).

R(x,3,y * 0,z,w) -> R(X,3,y,Z,w).

R(x,3,y,z,w) -> R(x,4,1 *Y,Z,W).

R(x,4,y,z,w) -> R(x,1,y,z,r(w)).

R(x,y,(z1 * z2) * z3,v,w) -> R(x,y,z1 * 73,V,w).
R(x,y,z,(v1 * v2) * v3w) -> R(x,y,z,v1l * v3,w).

x *y) »z=xx*(y * 2.

s(l) = 2.
s(2) = 3.
r(l) = 3.
r2) = 1.

The first-order translatiod of the the (negation of ) correctness condition of ABP.

% Prover9/MACE syntax

exists x exists y exists z exists w R(x,y,z,w,3)

The finite model ford A =W was found in 0.97 seconds by Mace4 running on the laptop of
average specification.
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Appendix B. Verification of Futurbus parameterized cache ctierence
protocol

The first-order translatio® of EFSM model of the Futurebus+ protocol.

% Protocol FutureBus, counting abstraction, first-order t ranslation.

%The syntax of Prover9/MACE. R(..) stands for reachable glo bal state.

plus(0,y) =y.

plus(i(x),y) = i(plus(xy)).

%-(i(x) = x).

R(i(x1),x2,x3,x4,x5,0,x7,x8,x9) -> R(x1,0,0,0,i(x5),0 ,plus(x4,x7),x8,plus(x2,plus(x3,x9))).

R(x1,x2,x3,x4,x5,x6,i(x7),x8,x9) ->
R(x1,plus(i(0),plus(x2,x5)),x3,x4,0,x6,X7,x8,x9).

R(x1,x2,x3,x4,x5,x6,x7,x8,i(x9)) ->
R(x1,i(plus(x2,plus(x5,x9))),x3,x4,0,x6,x7,x8,0).

R(x1,x2,x3,x4,i(i(x5)),x6,0,x8,0) ->
R(x1,i(i(plus(x5,x2))),x3,x4,0,x6,0,x8,0).

R(x1,x2,x3,x4,i(0),x6,0,x8,0) ->
R(x1,x2,i(x3),x4,0,x6,0,x8,0).

R(i(x1),x2,x3,x4,x5,0,x7,x8,x9) ->
R(plus(x1,plus(x3,plus(x2,plus(x9,plus(x5,x7))))),0 ,0,0,0,i(0),0,plus(x4,x8),0).
R(x1,x2,x3,x4,x5,x6,x7,i(x8),x9) ->

R(i(x1),x2,x3,plus(x6,x4),x5,0,x7,x8,x9).

R(x1,x2,x3,x4,x5,x6,x7,0,x9) ->
R(x1,x2,x3,plus(x6,x4),x5,0,x7,0,x9).

R(x1,x2,i(x3),x4,x5,x6,Xx7,x8,x9) ->
R(x1,x2,x3,i(x4),x5,x6,X7,x8,X9).

R(x1,i(x2),x3,x4,x5,x6,Xx7,x8,x9) ->
R(plus(x2,x1),0,x3,i(x4),x5,x6,x7,x8,x9).

R(i(x),0,0,0,0,0,0,0,0).
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The first-order translatiot of the (negation of ) correctness condition for the Futusabu
protocol.

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,x2,i(i(x3)),x4,x5,x6,x 7,x8,X9) |

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,x2,i(x3),i(x4),x5,x6,x 7,x8,X9) |

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,x2,x3,i(i(x4)),x5,x6,x 7,x8,X9) |

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,i(x2),i(x3),x4,x5,x6,x 7,x8,X9) |

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,i(x2),x3,i(x4),x5,x6,x 7,x8,X9).

The model ford A =W was found in 1.14 seconds by Mace4 running on the laptop oagee
specification.
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