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Modal Propositional Logic



Modal Logic

Syntax

• Formulas: ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | 3ϕ,

wherep is an atomic proposition

• Abbreviations∨, →, ↔ as usual; 2ϕ = ¬3¬ϕ

• Language: ML
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Semantics

• Models M = (W, R, V)

• FramesF = (W, R)

arbitrary frame
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Semantics

• Models M = (W, R, V)

• FramesF = (W, R)

linear order



Modal Logic

Truth and Satisfiability

• Truth is defined as usual.

• We consider the satisfiability problem ML-SAT:
Given a formulaϕ,
is there a modelM = (W, R, V) and a pointw ∈ W,
such thatM, w |= ϕ ?



Modal Logic

Truth and Satisfiability

• Truth is defined as usual.

• We consider the satisfiability problem ML-SAT:
Given a formulaϕ,
is there a modelM = (W, R, V) and a pointw ∈ W,
such thatM, w |= ϕ ?

• ML-SAT is PSPACE-complete.[L ADNER 1977]

• Under restricted frame classes:
• PSPACE-complete over transitive or reflexive frames

• NP-complete over equivalence relations
[L ADNER 1977]
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Temporal Logic

Basic Temporal Operators

• F, G (“Future”, “Going to” ) — other names for3, 2

• P, H (“Past”, “Has been” ) — correspond to3−, 2−

• Example:

ϕ ϕ ϕ
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Temporal Logic

Basic Temporal Operators

• F, G (“Future”, “Going to” ) — other names for3, 2

• P, H (“Past”, “Has been” ) — correspond to3−, 2−

• Example:

ϕ ϕ ϕ
Fϕ

¬Gϕ

Pϕ

Hϕ

• MLF,P-SAT remains PSPACE-complete.[SPAAN 1993]



Temporal Logic

Until and Since

• “There will be a point in the future, at which it willbe spring,
and from now until then it will alwaysbe cold.”

cold cold cold spring
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Temporal Logic

Until and Since

• “There will be a point in the future, at which it willbe spring,
and from now until then it will alwaysbe cold.”

cold cold cold springU(spring, cold)

• Analogously: S(ϕ, ψ)

• MLU,S-SAT over linear orders: PSPACE-complete.
(ML-SAT over linear orders: NP-complete.)

[SISTLA, CLARKE 1985 / ONO, NAKAMURA 1980]
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Why Transitive Frames?

• Transitivity is a property most temporal applications havein
common.

• Can we exactly locate the decrease in complexity taking place
when proceeding from arbitrary frames to linear orders?

arbitrary . . . linear
Logic frames orders

ML PSPACE . . . NP

P PSPACE . . . NP

i, @, P EXP . . . NP

i, ↓ coRE . . . NP
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Nominals

• Allow for explicit naming of points.

• Atomic propositionsi, j, . . . that hold atexactly onepoint.
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Hybrid Logic I

Nominals

• Allow for explicit naming of points.

• Atomic propositionsi, j, . . . that hold atexactly onepoint.

• Example:
• p → Fp definesreflexivity:

• valid on all reflexive frames
• not valid on any other frame

• p → ¬Fp does not defineirreflexivity.

i

• i → ¬Fi does!

• HL = ML “plus” nominals.



Hybrid Logic I

The @ Operator

• “Jumps” to named points.

• M, w |= @iϕ iff M, V(i) |= ϕ

• Example:
i

ϕ

@i ϕ

Complexity of satisfiability?
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HL @-SAT
Over arbitrary and transitive frames: PSPACE-complete.
[A RECES, BLACKBURN, MARX 1999/2000]
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HL @-SAT
Over arbitrary and transitive frames: PSPACE-complete.
[A RECES, BLACKBURN, MARX 1999/2000]

HL @
F,P-SAT

Over arbitrary and transitive frames: EXPTIME-complete.[ABM]

HL @
U,S-SAT

• Over arbitrary frames: EXPTIME-complete.[ABM]

• Overtransitive frames:
• EXPTIME-hard and in 2EXPTIME.[MSSW 2005]
• Lower bound holds for MLU-SAT.

• Overtransitive trees:
• EXPTIME-complete.[MSSW 2005]
• Lower bound holds for MLU-SAT.
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Hybrid Logic II

The ↓ Operator

• ↓ x.ϕ: Name the current pointx and evaluateϕ, treating all
occurrences ofx in ϕ as nominals for this point.



Hybrid Logic II

The ↓ Operator

• ↓ x.ϕ: Name the current pointx and evaluateϕ, treating all
occurrences ofx in ϕ as nominals for this point.

• Example: U can be expressed by means of↓ and@:

U(ϕ, ψ) ≡ ↓ x.3↓y.ϕ ∧ @x2(3y → ψ)

• or, alternatively, by means of↓ andpast modalities:

U(ϕ, ψ) ≡ ↓ x.F
(

ϕ ∧ H(Px → ψ)
)

ψ ψ ψ ϕx
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Satisfiability for ↓ languages

• Over arbitrary frames, HL↓ is undecidable.
[A RECES, BLACKBURN, MARX 1999]
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Hybrid Logic II

Satisfiability for ↓ languages

• Over arbitrary frames, HL↓ is undecidable.
[A RECES, BLACKBURN, MARX 1999]

• Overtransitive frames:
• HL↓ is NEXPTIME-complete.[MSSW 2005]

• HL↓,@ and HL↓
F,P are undecidable.[MSSW 2005]

• Overtransitive trees:

• ↓ aloneis useless.

• HL↓,@ and HL↓
F,P are nonelementarily decidable.

[MSSW 2005]
(

ELEMENTARY =

⋃

DTIME
(

22
. . .

2
n

)

)
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Overview and Open Questions

arbitrary transitive transitive linear
Logic frames frames trees orders

i, @ PSPACE PSPACE PSPACE NP

i, @, P EXP EXP PSPACE NP

i, @, U, S EXP in 2EXP, EXP PSPACE-

EXP-hard hard

i, ↓ coRE NEXP PSPACE NP

i, ↓, @ coRE coRE nonel. nonel.

i, ↓, P coRE coRE nonel. nonel.

i, ↓, @, P coRE coRE nonel. nonel.



Overview and Open Questions

arbitrary transitive transitive linear
Logic frames frames trees orders

i, @ PSPACE PSPACE PSPACE NP

i, @, P EXP EXP PSPACE NP

i, @, U, S EXP in 2EXP, EXP PSPACE-

EXP-hard hard

i, ↓ coRE NEXP PSPACE NP

i, ↓, @ coRE coRE nonel. nonel.

i, ↓, P coRE coRE nonel. nonel.

i, ↓, @, P coRE coRE nonel. nonel.

Thank you!
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