Diffie-Hellman key exchange

Key Exchange

- We have seen already how public-key cryptography may be used for public key distribution;
- Public-key cryptography may be used also for key exchange:
- Two parties (users) execute some algorithm (protocol) and get a common secret key;
- The key may be used for subsequent encryption of messages;

Diffie-Hellman Key Exchange

- Most known algorithm for key exchange is Diffie-Hellman algorithm (1976);
- The purpose of the algorithm is exchange of a secret key (not encryption);
- DH algorithm is considered as a public-key algorithm because:
- Users to generate the same secret key rely on publicly known information + some private information;
- In principle, it is possible to generate a key knowing only public information, but it is computationally expensive;

Discrete logarithms

- Security of DH algorithm relies upon difficulty of computing discrete logarithms;
- Primitive root of a prime number p: a number such a that all numbers
$a \bmod p, a^{2} \bmod p, \ldots, a^{p} \bar{a}^{1} \bmod p$ are different;
- For any number b less than p and a primitive root
a of p the discrete logarithm (index) of b for the base
$a \bmod p$ is the number \imath such that

$$
b=a^{i} \bmod p \quad 0 \leq i \leq(p-1)
$$

Discrete logarithms

- Notation: ind ${ }_{a, p}(b)$
- Key facts:
- It is relatively easy calculate exponentials modulo a prime, that is given a, i, p calculate $\quad a^{i} \bmod p$
- It is very difficult and for large primes infeasible to calculate discrete algorithms, that is given b, a, p find i such that

$$
b=a^{i} \bmod p
$$

Diffie-Hellman key exchange

- Two publicly known numbers:
- prime number q
- primitive root α of q
- Let A and B wish to exchange a key, then they do the following:
- A selects a random integer $X_{A}<q$ and keeps it in secret
- B selects a random integer $X_{B}<q$ and keeps it in secret
- A computes $Y_{A}=\alpha^{X_{A}} \bmod q$ and sends it to B
- B computes $Y_{B}=\alpha^{X_{B}} \bmod q$ and sends it to A

The secret key

- Both A and B is now able to calculate common secret key:
- A calculates $K=\left(Y_{B}\right)^{X_{A}} \bmod q$
- B calculates $K=\left(Y_{A}\right)^{X_{B}} \bmod q$
- These calculations give identical results and K is the common secret key.

Deffie-Hellman Key Exchange

User A

How to break HD key exchange?

- An attacker knows $\quad q, a, Y_{A}, Y_{B}$
- How can (s)he calculate K?
- Straightforward way is to find out X_{A}, or X_{B} and repeat calculations of A or B;
- However this includes calculations of discrete logarithms:
$X_{B}=\operatorname{ind}_{\alpha, q}\left(Y_{B}\right)$ which is infeasible for large q;
- No essentially better passive attacks are known.

Example

- For $q=7$ check that 2 is not a primitive root of 7 and 3 is a primitive root of 7 ;
- Let $q=7$ and $a=3$ is publicly known numbers in DH algorithm;
- Let $X_{A}=4$ and $X_{B}=3$ be private keys of A and B, respectively;
- Then $Y_{A}=3^{4} \bmod 7=4$
- $\quad \mathrm{Yb}=3^{3} \bmod 7=6$
- Common secret key

$$
K=6^{4} \bmod 7=4^{3} \bmod 7=1
$$

