
Needham-Schroeder authentication protocol and its formal analysis

COMP 522

Needham-Schroeder protocol

The Needham-Schroeder Protocol (with shared keys)

COMP 522

Needham-Schroeder protocol

- The goal of the protocol is to establish mutual authentication between two parties A and B in the presence of adversary, who can
 - · Intercept messages;
 - · Delay messages;
 - · Read and copy messages;
 - · Generate messages,

But who does not know

- secret keys of principals, which they share with the authentication server S.
- A and B obtain a secret shared key though authentication server S.
- The protocol uses shared keys encryption/decryption

COMP 522

Needham-Schroeder protocol

- Message 1 $A \rightarrow S: A, B, N_A$
- Message 2 $S \rightarrow A$: $\{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_B}\}_{K_A}$
- Message 3 ^A → B: {K_{AB}, A}_{K_R}
- Message 4 B → A: {N_B}_{KAB}
- Message 5 $A \rightarrow B$: $\{NB-1\}_{KAB}$

Here K_A and K_B are keys of A and B shared with S, resp. N_A and N_B are nonces, introduced by A and B, resp. K_{AB} is a secret session key for A and B provided by S

How it works

- A makes contact with the authentication server S, sending identities A and B and nonce NA:
- S responds with a message encrypted with the key of A. The message contains session key *KAB* (to be used by A and B) and certificate encrypted with B's key conveying the session key and A's identity;
- A sends the certificate to B;
- B decrypts the certificates and sends his own nonce encrypted by the session key to A; (nonce handshake);
- A decrypts the last message and sends modified nonce back to B.

By the end of the message exchange both A and B share the secret key and both are assured in the presence of each other.

COMP 522

Authentication goals

Main: $A \text{ believes } A \overset{KAB}{\longleftrightarrow} B$ and $B \text{ believes } A \overset{KAB}{\longleftrightarrow} B$

Subsidiary: A believes $A \overset{KAB}{\longleftrightarrow} B$ and $B \overset{B}{\longleftrightarrow} B$ believes $A \overset{KAB}{\longleftrightarrow} B$

COMP 522

Formal analysis using BAN logic

Explicit assumptions:

A believes:	B believes:	S believes:
$A \overset{K_A}{\longleftrightarrow} S$	$B \overset{K_B}{\longleftrightarrow} S$	$A \overset{K_A}{\leftrightarrow} S, \ B \overset{K_B}{\leftrightarrow} S$
S controls $A \overset{K_{AB}}{\longleftrightarrow} B$ S controls fresh $(A \overset{K_{AB}}{\longleftrightarrow} B)$	$S \textbf{ controls } A \overset{K_{AB}}{\longleftrightarrow} B$	$\begin{matrix} A & \overset{K_{AB}}{\longleftrightarrow} B \\ \mathbf{fresh} (A & \overset{K_{AB}}{\longleftrightarrow} B) \end{matrix}$
$fresh(N_A)$	fresh(NB)	

COMP 522

Protocol steps formalized

Transform each message into an idealized message, containing only nonces and statements (implicitly asserted by a sender)

Message	klealized Message
$1, A \rightarrow S; A, B, N_A$	÷
$2.S \rightarrow \Lambda; \{N_A,B,K_AB, \{K_AB,A\}_{KB}\}_{KA}$	$\begin{array}{ccc} (N_A,A&\overset{KAB}{\longleftrightarrow}B\ ,\ {\bf fresh}(A&\overset{KAB}{\longleftrightarrow}B),\\ &(A&\overset{KAB}{\longleftrightarrow}B)_{K_B})_{K_A} \end{array}$
$3.\ A \rightarrow B\colon (K_A g,A)_{K_{\hbox{\it B}}}$	$(A \overset{K_{AB}}{\leftrightarrow} B)_{Kg}$
4. B \rightarrow A: $\{NB\}_{KAB}$	$(NB, A \overset{K_{AB}}{\hookrightarrow} B)_{KAB}$
5. $A \rightarrow B$: $(NB-1)_{KAB}$	$(NB, A \overset{K_{\ell}B}{\leftrightarrow} B)_{KAB}$

First step of analysis

Let
$$M = (N_A, A \overset{K_{AB}}{\longleftrightarrow} B, \mathbf{fresh}(A \overset{K_{AB}}{\longleftrightarrow} B))$$

Then we have

- A believes $A \overset{K_A}{\longleftrightarrow} S$, (explicit assumption)
- $A \operatorname{sees} \{M\}_{K_A}$ (upon receiving Message 2)

Apply message-meaning rule:

$$\frac{A \text{ believes } A \overset{K_A}{\longleftrightarrow} S, A \text{ sees } \{M\}_{K_A}}{A \text{ believes } (S \text{ said } M)}$$

COMP 522

Further steps

· By nonce-verification rule:

· By the third decomposition rule

$$\frac{A \text{ believes } (S \text{ believes } (N_A, A \overset{K_{AB}}{\leftrightarrow} B, \text{ fresh}(A \overset{K_{AB}}{\leftrightarrow} B)))}{A \text{ believes } (S \text{ believes } A \overset{K_{AB}}{\leftrightarrow} B)}$$

COMP 522

Further steps

We have

- A believes fresh(N_A) (explicit assumption)
- N_A is a part of $M = (N_A, A \overset{K_{AB}}{\leftrightarrow} B, \mathbf{fresh}(A \overset{K_{AB}}{\leftrightarrow} B))$

By application of second decomposition rule we deduce:

A believes fresh(M)

COMP 522

Final step

By jurisdiction rule:

A believes (S controls
$$A \overset{KAB}{\longleftrightarrow} B$$
), A believes (S believes $A \overset{KAB}{\longleftrightarrow} B$)

A believes $A \overset{KAB}{\longleftrightarrow} B$

The first authentication goal is achievable!

Remaining authentication goals

•The statement B believes $A \overset{KAB}{\leftrightarrow} B$. is not derivable!

•One needs one extra assumption to derive it:

B believes fresh $(A \overset{KAB}{\leftrightarrow} B)$.

•Derivation of subsidiary goals is left as an exercise:

COMP 522

Conclusion

The formal analysis we have just done should not be

- · neither underestimated:
 - We have shown that the protocol is correct under explicit assumptions and concrete formalization;
- · nor overestimated:
 - The analysis is as good as formal (idealized) model and explicit assumptions are;
 - The adequacy of the model and assumptions may be an issue here.