
Advanced crypto:

Zero-knowledge proofs and
Secure Multi Party computations

Further Advanced Crypto techniques

• Zero-knowledge proofs

• Secure Multi-Party Computations

Zero-Knowledge Proofs

• Can we convince somebody that we know something
(solution to the problem, a secret password, etc) without
actually revealing it?

• Yes, we can! (starting from Goldwasser, Micali, Rackoff,
1980s)

Interactive zero-knowledge proof of 3-colorability

http://web.mit.edu/~ezyang/Public/graph/svg.html

Zero-knowledge proof for 3-colorabiity
• Problem:

• How to colour vertices of a graph with no neighbouring vertices having the same
colour?

• In general it is a difficult NP-hard problem.
• For a given graph, can the Prover (Peggy) convince the Verifier (Victor)

she knows a 3-coloring of the graph without revealing any information?
Yes! In short:

1. Peggy hides her solution and allows Victor to open the colours of any
pair of vertices

2. Then, Peggy reshuffles actual colours preserving 3-colorability, hides
modified solution, and allows Victor to open the colours of any pair of
vertices again;

3. Repeat step 2 until Victor convinced.

See detailed popular explanation at
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-
proofs-illustrated-primer

ZKP: Prover vs Verifier
Prover needs to convince verifier that he has a solution
(information required)

Requirements for ZKP
Completeness: Prover should be able to convince Verifier that

he has true solution (with high-probability)
Soundness: It should be able to convince Verifier only in true

solutions
Zero-knowledge(ness): Verifier should not be able to learn

anything but the fact Prover has a solution

Applications:
Zero-knowledge authentication; zero-knowledge information
exchange contracts, verifiable computing, etc

Zero-Knowledge: interactive vs non-
interactive
zk-SNARK:

• Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge

• “Prover sends a short message (evidence) to a Verifier to
prove that he knows something (without revealing any
additional information

• For example: prover may convince verifier that he has an
input (message, number) which produces a given hash!

• Question: can you think about an application of such a
technique?

zk-SNARK

• Small proofs and cheap verification

• But expensive prover computations (both time & space)

• Statement to be proved (F(x,w)=true) has to be presented
by a circuit:
• 10-20 millions gates max (2017) and to produce a proof it takes

1ms per gate

DIZK

• DIZK: A Distributed Zero Knowledge Proof System (H. Wu
et al, UC Berkley, 2018)

• Distributes proofs computations across a computer cluster
(Java & Apache Spark)

• Can generate proofs for the statements up to billions of
circuits taking 0.01ms per gate Available at
https://github.com/scipr-lab/dizk

• Examples of applications: authenticity of edited photo,
integrity of machine learning models

Secure Multi Party Computations

• Several parties would like to compute something useful with
their secret information, but would not like to share information.
• Yao millionaire problem (1982): Alice and Bob would like to know

who is richer without revealing their actual wealth.

Introductory explanation of a solution of a bit simpler problem
• Candy problem: Alice and Bob would like to know whether they

have the same number of chocolates without revealing to each
other how many they have.

is at
https://hackernoon.com/eli5-zero-knowledge-proof-
78a276db9eff

Short History of Secure MPC

• Yao, 1982: the idea of MPC, in following few years the
first Garbled Circuits Protocol for generic MPC was
introduced

• Malkhi et al, 2004: Fairplay implementation of generic
SMPC (median of two sorted arrays of ten integers in 7s)

• 2004-now, speed of SMPC increased in 5 orders of
magnitude

(D Evans et al, A Pragmatic Introduction to Secure Multi-
Party Computation, 2018)

Applications of SMPC

• Danish sugar beets auction (2009);

• Estonian Student Study (2015);

• Boston Wage Equity study (2017) ...

Secure Auctions, Voting, Secure Machine Learning,
Privacy-Preserving Genomics, etc

How does it work? Simplified Yao’s Protocol

• We would like to compute F(x,y) where P1 holds x X
and P2 holds y Y as their private values;

• P1 calculates and tabulates all values of F(x,y) x X and
y Y in the table T = (Tx,y)

• P1 encrypts each Tx,y with two random keys kx and ky,
randomly permutes the table T and sends it to P2

• Now, in order for P2 to compute F(x,y), P1 sends kx and ky

to P2, who after that can complete computation

How does it work? Simplified Yao’s Protocol

• We would like to compute F(x,y) where P1 holds x X and
P2 holds y Y as their private values;

• P1 calculates and tabulates all values of F(x,y) x X and y
Y in the table T = (Tx,y)

• P1 encrypts each Tx,y with two random keys kx and ky,
randomly permutes the table T and sends it to P2

• Now, in order for P2 to compute F(x,y), P1 sends kx and ky

to P2, who after that can complete computation

• Question: How does P1 know which ky to send to P2? P1

knows x, but not y!

• Answer: It is done using oblivious transfer!

Oblivious Transfer (OT)

• Given: Sender S has input secrets x0 and x1 (binary
strings) and Receiver R has a selection bit b {0,1}

• After executing OT: Receiver gets xb and Sender does
not learn anything about b

• Can be implemented using public-key encryption (can you
propose how to do it?)

• The above version is 1-out-of-2 OT, for simplified Yao’s
protocol we need 1-out-of-Y OT, which can be
implemented similarly.

From Theory to Applications

• JIFF library developed in Boston University
(multiparty.org)

• JIFF is a JavaScript library for building applications that
rely on secure multi-party computation. JIFF is built to be
highly flexible with a focus on usability, with the ability to
be run in the browser, on mobile phones, or via Node.js.
JIFF is designed so that developers need not be familiar
with MPC techniques or know the details of cryptographic
protocols in order to build secure applications.

(from https://github.com/multiparty/jiff|)

Advanced Crypto to Applications

• All these technologies:
• Fully Homomorphic Encryption (FHE)

• CryptDB-like solutions

• Zero-knowledge proofs (ZKP)

• Secure Multi-Party Computations (SMPC)

• Verifiable Computing

are at the beginning of exciting applications.

