
Public-Key Encryption 



Public-key, or  asymmetric encryption 

• Public-key encryption techniques. It is particular and 
most  important kind of 

• Asymmetric encryption (or asymmetric key encryption): 
• One key is used for encryption (usually publicly known, public key);

• Another key is used for decryption (usually private, or secret key)   



Public-key encryption 



Components of public-key encryption

• Plaintext

• Encryption algorithm

• Public and private key

• Ciphertext

• Decryption algorithm



Essential steps in communications using 
public-key encryption
• Each user generates a pair of keys;
• Each users makes one of the key publicly accessible 

(public key). The other key of the pair is kept private; 
• If B wishes to send a private message to A, B encrypts

the message using A’s public key;
• When A receives the message, A decrypts it using A’s 

private key. No other recipient can decrypt the message 
– nobody else knows A’s private key.   



Public-key encryption

• Advantages

• All keys (public and private) are generated locally;

• No need in distribution of the keys; 

• Moreover, each user can change his own pair of 
public/private key at any time;

• Disadvantages

• It is more computationally expensive. 



Applications of Public-Key Cryptosystems

• Encryption/decryption: the sender encrypts a message 
with the recipient’s public key. 

• Digital signature (authentication): the sender “signs” 
the message with its private key; a receiver can verify the 
identity of the sender using sender’s public key. 

• Key exchange: both sender and receiver cooperate to 
exchange a (session) key. 



Authentication using public-key systems



Requirements for Public-Key 
Cryptography
• Diffie and Hellman conditions
• “Easy part”
• It is computationally easy for a party B to generate a pair 

(public key , private key). 
• It is computationally easy for a sender A, knowing the 

public key of B and the message M to generate a 
ciphertext: 

• It is computationally easy for the receiver B to decrypt the 
resulting ciphertext using his private key  



Requirements for Public-Key 
Cryptography
• “Difficult part”
• It is computationally infeasible for anyone, knowing the 

public key, to determine the private key,

• Additional useful requirement (not always necessary) 
• Either of the two related keys can be used for encryption, 

with the other used for decryption. 

•



Public-key cryptography and number 
theory

• Many public-key cryptosystems use non-trivial number 
theory;

• Security of most known RSA public-key cryptosystem is 
based on the hardness of factoring big numbers; 

• We will  overview basic notions of divisors, prime 
numbers, modular arithmetic



Divisors and prime numbers

• Divisors

• Let a and b are integers and b is not equal to 0; 

• then we say b is a divisor of a if  there is an integer m
such that a = mb; 

• Prime numbers

• An integer p is a prime number if its only divisors are 1, -
1, p, -p



gsd and relatively prime numbers

• gcd(a,b) is a greatest common divisor of a and b

• Examples: gcd(12, 15) = 3; gcd(49,14) = 7. 

• a and b are relatively prime if gcd(a,b) = 1. 

• Example: gcd (9,14) = 1. 



Modular arithmetic 

• If a is an integer and n is a positive integer, we define a 
mod n to be the remainder when a is divided by n: 

• a = qn+r,

• Here q is a quotient  and r = a mod n

• If (a mod n) = (b mod n) then a and b are congruent 
modulo n; 

• It is easy to see, that (a mod n) = (b mod n) iff n is a 
divisor of a-b. 



Modular arithmetic. Properties 

• [(a mod n) + (b mod n)] mod n = (a+b) mod n 

• [(a mod n) – (b mod n)] mod n = (a-b) mod n 

• [(a mod n)  x  (b mod n)] mod n = (a x b) mod n

• Example: 3 mod 5 x 4 mod 5  = 12 mod 5  = 2 mod 5 



RSA algorithm 



RSA Public-Key Encryption Algorithm 

• One of the first, and probably best known public-key 
scheme;

• It was developed in 1977 by R.Rivest, A.Shamir and L. 
Adleman; 

• RSA is a block cipher in which the plaintext and ciphertext 
are integers between 0 and n-1, where 

• n is some number; 

• Every integer can be represented, of course, as a 
sequence of bits; 



Encryption and decryption in RSA

• Encryption

•

• Decryption

Here           is a block of a plaintext,        is a block of a ciphertext and                 
and        are some numbers. Sender and receiver know n and 

e. Only the receiver knows the value of d. 



Private and Public keys in RSA

•

• Public key KU = {e,n}; 

• Private key KR = {d,n}; 

•

• Requirements: 

• It is possible to find values e,d,n such that 

•

• It is easy to calculate 



Requirements

• It is possible to find values e,d,n such that 

• (key generation) , where k is some number , k  < n 

• It is easy to calculate        and        modulo n
• It is difficult to determine d given e and n



Key generation 
• Select two prime numbers p and q;

• Calculate n = p x q; 

• Calculate           = (p-1)(q-1); 

• Select integer e less than          and relatively prime with          
; 

• Calculate d such that                                  ;

• Public key  KU = {e,n}; 

• Private key KR = {d,n};



Fermat – Euler Theorem 

• Correctness of RSA can be proved by using Fermat-Euler  
theorem: 

• Where p is a prime number and 



Chinese Remainder Theorem 
For relatively prime p and q and any x and y

Implies 



Example 

• Select two prime numbers, p = 17, q = 11; 

• Calculate n = pq = 187;

• Calculate             = 16 x 10 = 160; 

• Select e less than 160 and relatively prime with 160;

• Let e = 7; 

• Determine d such that   de mod 160 = 1 and d < 160. The 
correct value is d = 23, indeed 23 x 7 = 161 = 1 mod 160.

• Thus KU = {7,187} and KR = {23,187} in that case.



Encryption and decryption 

• Let a plaintext be M = 88; then encryption with a key 
{7,187} and decryption with a key {23,187} go as follows 



How to break RSA 

• Brute-force approach: try all possible private keys of the 
size n. Too many of them even for moderate size of n;

• More specific approach: given a number n, try to  find its 
two prime factors p and q; Knowing these would allow us 
to find a private key easily.  

•



Security of RSA

• Relies upon complexity of factoring problem: 

• Nobody knows how to factor the big numbers in the 
reasonable time (say, in the time polynomial in the size of 
(binary representation of ) the number (unless you go to 
quantum computing!) ;

• On the other hand nobody has shown that the fast 
factoring is impossible; 



RSA challenge 
• RSA Laboratories to promote investigations in security of 

RSA put a challenge to factor big numbers. Least number, 
not yet factored in that challenge is 

• RSA-260 = 
221128255295296664352810852550262309276120895024
700153944137483191288229414020019865127297265697
465990859003300314000511707422045608592763579537
571859542988389587092292384910067030341246205457
845664136645406842143612930176940208

• 46391065875914794251435144458199

• 862 bits, or 260  decimal digits



RSA challenge, recent news
RSA-250  (829 bits) 

214032465024074496126442307283933356300861471514475501779775492
088141802344714013664334551909580467961099285187247091458768739
626192155736304745477052080511905649310668769159001975940569345
7452230589325976697471681738069364894699871578494975937497937 = 

641352894770715802787901901705773890848250147429434472081168596
3202453234463 0238623598752668347708737661925585694639798853367
x 

333720275949781565562260106053551142279407603447675546667845209
8023841729210037080257448673296881877565718986258036932062711

(> ~2700 CPU-core years, F. Boudot et al., Feb 2020) 


